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ABSTRACT

Audio classification aims at recognizing audio signals, in-
cluding speech commands or sound events. However, cur-
rent audio classifiers are susceptible to perturbations and ad-
versarial attacks. In addition, real-world audio classification
tasks often suffer from limited labeled data. To help bridge
these gaps, previous work developed neuro-inspired convo-
lutional neural networks (CNNs) with sparse coding via the
Locally Competitive Algorithm (LCA) in the first layer (i.e.,
LCANets) for computer vision. LCANets learn in a com-
bination of supervised and unsupervised learning, reducing
dependency on labeled samples. Motivated by the fact that
auditory cortex is also sparse, we extend LCANets to au-
dio recognition tasks and introduce LCANets++, which are
CNNs that perform sparse coding in multiple layers via LCA.
We demonstrate that LCANets++ are more robust than stan-
dard CNNs and LCANets against perturbations, e.g., back-
ground noise, as well as black-box and white-box attacks,
e.g., evasion and fast gradient sign (FGSM) attacks.

Index Terms— Audio Classification, Robustness, Neural
Networks, Adversarial Machine Learning

1. INTRODUCTION

Audio signal classification for the purposes of sound recogni-
tion (SR) or sound event detection (SE) has become an active
area of research interest [1, 2]. This includes using the Con-
volutional Neural Network (CNN) models for understanding
human speech words, e.g., ‘yes’, ‘stop’, etc., or classifying
sound events like ‘baby cries’, and ‘barking’. However, stan-
dard CNNs are notoriously susceptible to perturbations or ad-
versarial attacks [3, 4, 5, 6]. Standard audio classification
models depend highly on large labeled datasets for better per-
formances [7, 8], but large labeled datasets can be scarce for
many common tasks, such as speaker identification. Gener-
ating augmented samples for audio data is one proposed ap-
proach to mitigate this challenge, but data augmentation can
be time-consuming and expensive [9, 10]. Therefore, it is cru-
cial to develop audio classifiers that can learn robust features
with limited labeled samples.
∗Author performed the work while working at the Los Alamos National

Laboratory

Recent studies have shown that CNNs that are more simi-
lar to the primary visual cortex are more robust than standard
CNNs [11]. Based on this, previous work developed CNNs in
which the first layer performed sparse coding via the Locally
Competitive Algorithm (LCA) [12, 13, 14], which is a bio-
logically plausible model of the primate primary visual cor-
tex [15]. These CNNs, which we refer to as LCANets, were
shown to be more robust than standard CNNs on standard CV
tasks. However, there are two issues with this approach we
address here. First, sparse coding models were designed to
model the visual cortex, so it is unclear how they will impact
the performance of CNNs on audio classification tasks. Sec-
ond, these LCANets were robust to natural corruptions, but
they were susceptible to white-box adversarial attacks [13]
unless the exact attack was known before hand [14].

Motivated by this, we introduce multi-layer LCANets,
which perform sparse coding in multiple CNN layers. We
refer to these multilayer LCANets as LCANets++ and train
them on audio classification tasks. To test the robustness of
LCANets++ relative to LCANets and standard CNNs, we
first conducted experiments with different audio perturba-
tions, e.g., background noise. In addition, we show that our
proposed LCANets++ are more robust compared to the state-
of-the-art (SOTA) models (e.g., ResNet18, standard CNN)
and LCANets against white-box attacks, i.e., fast gradient
sign attack (FGSM) [16] and projected gradient descent at-
tack (PGD) [17], as well as black-box attacks, i.e., evasion
attack.

2. PROPOSED METHOD

2.1. LCA Layer

As presented in Fig. 1, LCA layer is the basic building block
for the LCA frontend and our proposed LCANets++. LCA
layer converts the input X to a coding C, i.e., representation
of the input X , leveraging the least number of active neurons
(i.e., features). The goal of the reconstruction minimization
problem applied here is to find the sparse coding representa-
tion C closest possible to original input X as follows:

Lre =min
C

1

2
∣∣X − C ⍟Φ∣∣22 + λ∣∣C∣∣1 (1)
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(a) LCA Frontend. (b) The overall architecture of our proposed LCANets++.

Fig. 1: An overview of (a.) LCA frontend and (b.) pipeline of our proposed LCANets++, utilizing sparse coding via multiple
LCA layers in the state-of-the-art (SOTA) CNN backbone, enabling lower misclassification on perturbed test sets or attacks.

where Lre denotes the reconstruction loss, X is the original
input, C is the sparse code, ⍟ is transpose convolution, Φ
is dictionary components learned last iteration, and λ is the
trade-off (i.e., regularization) constant. LCA layers perform
lateral competitions to fire neurons and a neuron membrane
follows the following ordinary differential equation [13]:

M̂(t) =
1

γ
[D(t) −M(t) − C(t) ∗ S + C(t)] (2)

where γ is time constant,D(t) stands for neuron’s input drive
obtained by convolution of inputs with dictionary, i.e., X ⋆Φ;
M(t) is neuron’s membrane potential, S= Φ ⋆Φ is the pair-
wise feature similarity, and C(t) is the neuron’s firing rate
obtained by applying a soft threshold activation on the mem-
brane potentialM(t). Coordinate ascent is used to learn dic-
tionary Φ, which solves for C, given an input batch using LCA
and then updates Φ with stochastic gradient descent (SGD).

2.2. LCA Frontend

LCA frontend is the unsupervised pre-training part of the
LCANet, as shown in Fig. 1a. It basically consists of the raw
audio waveform converted to MFCCs, as input signal X and
the LCA layer to compute the sparse representation C of the
input X , which can then feed to conventional CNN layers for
the classification task.

2.3. LCANets

LCANets for the audio classification consist of the LCA fron-
tend and followed by CNN layers. LCA frontend learns in
unsupervised fashion and then passes the computed sparse
code C to the CNN layers to finally perform the classification
task. One major difference is that, the sparse code C does not
need to recompute back to original input X before feeding
to CNN layer, as other reconstruction-based models usually
do. This makes the LCANets more effective agaisnt perturba-
tions, while reducing dependency on labeled audio samples.

2.4. LCANets++

We present the overview of our proposed LCANets++ in
Fig.1b. The basic building block of our proposed LCANets++
is the LCA layers. In this architecture, multiple LCA layers
are inserted that learn in unsupervised fashion. The convo-
lutional layers in SOTA CNN networks are replaced by the
LCA layers, performing sparse coding in each layer. Simi-
lar to [18], in order to reduce over-sparsity, in between two
consecutive sparse layers (i.e., LCA layers), a dense layer,
i.e., batch normalization layer, is mounted (Fig.1b) in our
LCANets++.

3. EXPERIMENTS

In this section, details of the experimental setup, including
dataset, pre-processing, and models, are described.

3.1. Dataset and Pre-processing

We experiment with Google Speech Commands v2 [19]
dataset. This dataset has audio waveforms of 35 classes of
human speech commands like “yes,” “no,” and “left”, “right.”
We perform pre-processing on the raw waveforms of the three
influential classes, i.e., “yes,” “no,” and “stop” to obtain the
Mel-frequency cepstral coefficient (MFCC) [8] features and
train all the models with the MFCCs of the waveforms.

3.2. Models

We experiment with regular CNN models with 2 convolu-
tional layers. In our LCANets++ on CNN model, we re-
place both convolutional layers with the LCA layers. We also
compare our LCANets++ with the larger SOTA model, i.e.,
ResNet18. In the ResNet18 model, we replace the alterna-
tive convolutional layers in the first block with LCA layers to
obtain the ResNet18 LCA++ model. To experiment with the
performance of LCANets++ against white-box or black-box
attacks, we consider the regularization constant λ = 1.00 for
better sparse representations and hence, improved robustness
against perturbations or attacks.



(a) Regular CNN (b) ResNet18

Fig. 2: Comparisons of our LCANets++ and other SOTA
models against perturbations with background noise.

3.3. Experimental Setup

We run all the experiments on 8 nodes NVIDIA A100-PCIE-
40GB GPUs with 64-128 cores on the cluster. We use the Py-
torch framework to develop the LCA class and LCANets++
implementations. We consider a train test split of 70% and
30% for all the models experimented in this work. For the
background noise experiment, we train models for 50 epochs,
for rest of the experiments models are trained with 20 epochs.
We consider 0.0001 learning rate. We use SGD optimizer
with 0.9 momentum for optimization. In order to add back-
ground noise, we impose background noise on all test set raw
waveforms of audio clips, tuning the SNR [db] values to ob-
tain different perturbed test sets. Similarly, we consider per-
turbing MFCCs with different ϵ values.

4. RESULTS AND ANALYSIS

In this section, we illustrate the key results of our experiments
on different perturbations and adversarial attacks.

4.1. Input Perturbations

We test the robustness of standard CNNs without the LCA
layer(s), LCANets, and our proposed LCANets++ to pertur-
bations. We experiment with two different cases of input per-
turbations: i) background noise on the raw audio clips and
ii) gaussian noise on MFCCs to compare robustness against
both perturbation scenarios.

4.1.1. Background Noise

In Fig. 2a, we present the performance of regular CNN,
LCANet, and our proposed LCANet++, tested on different
perturbed test sets with background noise, varying SNR [db]
values. Observe that the regular CNN model performance
drastically goes down as more perturbation is applied to orig-
inal waveforms (i.e., lower SNRs). Whereas, LCANet goes
down slowly with increasing perturbations, and our proposed
LCANet++ shows the most robustness compared to LCANet
and regular CNN models, as presented in Fig. 2a. This is

Table 1: Performance comparisons against perturbations with
Background Noise on waveforms

Model SNR
= 15db 20db 24db 25db ∞

CNN 0.692 0.788 0.793 0.858 0.920
LCANet 0.760 0.840 0.876 0.904 0.940
LCANet++ 0.768 0.847 0.903 0.914 0.962
ResNet18 0.847 0.920 0.942 0.955 0.970
ResNet18 LCA 0.850 0.922 0.944 0.958 0.966
ResNet18 LCA++ 0.853 0.928 0.945 0.959 0.971

Table 2: Performance comparisons against perturbations with
Gaussian Noise on MFCCs

Model ϵ
= 0 0.01 0.02 0.03 0.04 0.05

CNN 0.866 0.864 0.863 0.863 0.858 0.856
LCANet 0.939 0.938 0.935 0.925 0.909 0.883
LCANet++ 0.950 0.943 0.939 0.927 0.914 0.900

attributed to the fact that LCA layers learn in an unsuper-
vised fashion, reducing the numbers of the neurons activated
through lateral competitions. These fewer activated neurons
represent the most relevant input features, which are less
impacted by slight perturbations.

We also test the robustness of LCANets++ on larger
models, i.e., ResNet18 model with 18 layers. As pre-
sented in Fig. 2b, we observe that the ResNet18 with mul-
tilayer LCAs, i.e., ResNet18 LCANet++ outperforms reg-
ular ResNet18 and ResNet18 with LCA in the first layer,
i.e., ResNet18 LCANet. From Table 1, we find that for the
ResNet18 architecture, LCANets++ slightly improves the ro-
bustness on perturbed test sets than regular ResNet18 without
LCA layers, as opposed to significantly higher robustness
LCANets++ exhibited on regular CNN model. Larger model
with more layers and parameters make ResNet18 inherently
more robust than regular CNNs, resulting in LCANets++ to
boost up only slightly in ResNet18 than regular CNNs.

4.1.2. Gaussian Noise

We impose Gaussian noise on the MFCCs varying ϵ val-
ues. As presented in Table. 2, with increasing the ϵ (more
perturbations), performance of the regular CNN model goes
down. Also, LCANet and LCANet++ performance slightly
goes down, but still, the models with LCA layers show more
robustness compared to the model without LCA layers, i.e.,
regular CNN model. This shows that our LCANets++ are
more robust not only against perturbations on raw wave-
forms, but also against perturbations on the feature space,
i.e., MFCCs.



Table 3: Comparisons against white-box attacks

Attack Model ϵ
= 0 0.01 0.016 0.02 0.03

FGSM
CNN 0.866 0.439 0.196 0.108 0.017

LCANet 0.939 0.261 0.123 0.092 0.062
LCANet++ 0.950 0.679 0.418 0.417 0.414

PGD
CNN 0.866 0.382 0.147 0.073 0.025

LCANet 0.939 0.028 0.005 0.005 0.005
LCANet++ 0.950 0.588 0.585 0.579 0.567

4.2. Adversarial Attacks

We experiment with adversarial attacks having different ca-
pabilities. For experimental purposes, we consider both the
white-box and black-box adversarial attacks.

4.2.1. White-box Attacks

In white-box attacks, an adversary has more capabilities like
having access to the model architectures, including model pa-
rameters, weights, and gradients. We consider two different
types of white-box attacks, i.e., FGSM [16] and PGD [17]. In
both attacks, the adversary utilizes the gradients to perturb the
MFCCs of test sets to misclassify them during inference.

We present the performances of the regular CNN model
and LCANets, as well as our proposed LCANets++, against
the FGSM attack in Fig. 3a. We find that the regular CNN
is not very robust, and it’s performance goes down, as per-
turbations (ϵ) go higher. We observe that, the single-layer
LCA, i.e., LCANets are not robust against the white-box
FGSM attack, which is consistent to findings in [13] for
CV tasks. However, our proposed multi-layer LCANets++
outperforms the CNN model and LCANets on audio classifi-
cation agianst the FGSM attack. In Fig. 3a, we observe that
LCANets++ performance decreases comparatively slowly as
attack becomes stronger with higher perturbations (ϵ). We
also experiment with another white-box attack, i.e., PGD at-
tack, where LCANets++ consistently show more robustness
than SOTA models and LCANets, as shown in Table 3.

4.2.2. Black-box Attacks

We experiment with the black-box evasion attack, where the
adversary has no access to the model gradients. In this attack,
an adversary only has query access to the model and can get
predictions from the model utilizing the query access. In our
setup, the adversary is able to make queries to the original
target model and get predictions from the model. The ad-
versary utilizes the predictions and input queries to develop
a surrogate model. The surrogate model generates the per-
turbed samples, varying perturbations (ϵ), and we tested the
performance of the original models on these perturbed test
sets. We present the performances of regular CNN, LCANet,

(a) FGSM (white-box) Attack (b) Evasion (black-box) Attack

Fig. 3: Comparisons of LCANets++ and SOTA models on
L∞ norm white-box attacks.

Table 4: Comparisons against black-box (Evasion) attack

Model ϵ
= 0 0.01 0.02 0.03 0.04 0.05

CNN 0.866 0.865 0.865 0.864 0.862 0.860
LCANet 0.939 0.939 0.935 0.926 0.908 0.880
LCANet++ 0.950 0.948 0.939 0.928 0.915 0.905

and our proposed LCANet++ against the black-box evasion
attack in Fig. 3b. We observe that, in black-box evasion at-
tack, LCANet shows more robustness compared to CNN and
LCANet++ outperforms all the models on perturbed test sets
(i.e., ϵ > 0). Note that, models are trained for 20 epochs with
three audio classes (i.e., limited samples), which might lead
to a significant performance gap among the regular CNN and
LCA-based models on unperturbed test sets ϵ = 0 in Table. 4.

5. CONCLUSIONS

In this work, we developed CNNs with sparse coding in
multiple layers, referred to as LCANets++. We showed
that LCANets++ can be easily implemented using regular
CNNs like ResNet18. Our empirical analysis shows that
LCANets++ can be used in audio classifiers to increase ro-
bustness to noise and adversarial attacks relative to LCANets
and standard CNNs. In addition, we observe how the unsuper-
vised training with LCA and number of LCA layers impacts
clean and robust test accuracy. Overall, our work sheds light
into future directions in designing privacy-preserving robust
audio classifiers.
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