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Abstract 

Objective: Positron Emission Tomography (PET) has been a commonly used imaging modality in broad 

clinical applications. One of the most important tradeoffs in PET imaging is between image quality and 

radiation dose: high image quality comes with high radiation exposure. Improving image quality is desirable 

for all clinical applications while minimizing radiation exposure is needed to reduce risk to patients. 

Approach: We introduce PET Consistency Model (PET-CM), an efficient diffusion-based method for 

generating high-quality full-dose PET images from low-dose PET images. It employs a two-step process, 

adding Gaussian noise to full-dose PET images in the forward diffusion, and then denoising them using a 

PET Shifted-window Vision Transformer (PET-VIT) network in the reverse diffusion. The PET-VIT 

network learns a consistency function that enables direct denoising of Gaussian noise into clean full-dose 

PET images. PET-CM achieves state-of-the-art image quality while requiring significantly less 

computation time than other methods. Evaluation with normalized mean absolute error (NMAE), peak 

signal-to-noise ratio (PSNR), multi-scale structural similarity index (MS-SSIM), normalized cross-

correlation (NCC), and clinical evaluation including Human Ranking Score (HRS) and Standardized 

Uptake Value (SUV) Error analysis shows its superiority in synthesizing full-dose PET images from low-

dose inputs. 

Results: In experiments comparing eighth-dose to full-dose images, PET-CM demonstrated impressive 

performance with NMAE of 1.278±0.122%, PSNR of 33.783±0.824dB, SSIM of 0.964±0.009, NCC of 

0.968±0.011, HRS of 4.543, and SUV Error of 0.255±0.318%, with an average generation time of 62 

seconds per patient. This is a significant improvement compared to the state-of-the-art diffusion-based 

model with PET-CM reaching this result 12x faster. Similarly, in the quarter-dose to full-dose image 

experiments, PET-CM delivered competitive outcomes, achieving an NMAE of 0.973±0.066%, PSNR of 

36.172±0.801dB, SSIM of 0.984±0.004, NCC of 0.990±0.005, HRS of 4.428, and SUV Error of 

0.151±0.192% using the same generation process, which underlining its high quantitative and clinical 

precision in both denoising scenario. 

Significant: We propose PET-CM, the first efficient diffusion-model-based method, for estimating full-

dose PET images from low-dose images. PET-CM provides comparable quality to the state-of-the-art 

diffusion model with higher efficiency. By utilizing this approach, it becomes possible to maintain high-

quality PET images suitable for clinical use while mitigating the risks associated with radiation. 

  



 

 

I. Introduction 

Positron Emission Tomography (PET) has broad clinical applications for diagnosis, prognosis, and 

treatment planning for oncology 1, cardiology 2, and neurology 3. PET images can be used to determine the 

disease stage, lesion malignancy, and response to treatment 4, and the images can also be co-registered with 

Computed Tomography (CT) or magnetic resonance imaging (MRI) scans  to visualize both anatomic and 

metabolic localization 5. One of the most important tradeoffs in PET imaging is between image quality and 

radiation dose: high image quality comes with high radiation exposure. Improving image quality is desirable 

for all clinical applications while minimizing radiation exposure is needed to reduce risk to patients.  

Accordingly, various techniques (mainly machine learning techniques) have been developed to minimize 

the doses of PET scans, while preserving high image quality. These methods include multilevel canonical 

correlation analysis 6, mapping-based sparsed representation 7, and semisupervised tripled dictionary 

learning 8. These advances allow reductions of administered radiotracer or scan time required for obtaining 

full-dose PET images 9. Nonetheless, the performances of these approaches depend on handcrafted features 

extracted based on prior domain knowledge, which is incomprehensive to describe all the anatomical 

structure and texture details of the PET images, limiting the quality and visual reality of the denoising PET 

images. 

Recently, deep learning approaches 4,5,10,11 using deep auto-context convolutional neural networks (CNN) 

12 have been introduced for PET image denoising.  State-of-the-art methods including three-dimensional 

conditional generative adversarial networks (CGAN) 8 and cycle-consistent GAN 13, deploy adversarial 

training strategy to enable the denoised PET image to be not only with high accuracy compared to the full 

dose PET image but also with highly realistic visual appearance 14-17. These GAN-based models employ a 

dual-network architecture that operates in an adversarial manner: a generator tasked with converting low-

dose PET images into full-dose equivalents, and a discriminator that ensures the generator's outputs closely 

align with the statistical distribution of ground-truth full-dose PET images. The optimization function of 

the discriminator are equivalent to minimizing the Jensen-Shannon divergence 18 between the distribution 

of the synthetically generated full-dose PET images and the ground-truth, resulting in outputs with a highly 

realistic visual appearance. However, the GAN-based models reveal high instability in the training process 

due to the adversarial strategy, which also limits the accuracy of the structure details of the PET denoising. 

Accordingly, Denoising Diffusion Probabilistic Models (DDPM) and Score-matching Models present an 

alternative generative approach. DDPM methods employ a Markov chain of diffusion steps to 

systematically introduce random noise into data and subsequently learn to reverse the diffusion process 

iteratively, generating desired data samples from the noise 19,20. They have been proven to be advantageous 

over GANs, in both natural image 21-27 and medical image synthesis in other different modalities 28-32, with 



 

 

improved training stability and the production of more authentic and higher-quality synthetic images 29. 

However, its iterative reverse process requires much more time to generate images. Accordingly, Song et 

al. proposed a Consistency Model (CM), which can generate images with quality comparable to DDPMs, 

but with much higher efficiency 33. Instead of a step-by-step reversal, iterating backwards through each 

noise addition stage as DDPMs in the reverse process, the CM is designed to learn a function that can 

directly map any noisy image, denoted as 𝑋𝑡, back to its clean, original form 𝑋0, irrespective of the noise 

level '𝑡'. As a result, the CM can regenerate high-quality images in just a few iterations, substantially cutting 

down the generation time. 

In this study, we propose PET-CM to generate full-dose PET images from low-dose images. It is the first 

CM-based model for conditional medical image synthesis and also for PET denoising. Drawing upon the 

innovative integration of the Shifted-window Vision Transformer V-Net (called PET-VIT) into the 

consistency model, the PET-CM is able to capture both global and local features effectively, forging a 

pathway to richer and more accurate representations of PET images therefore promising a significant 

improvement in both the efficiency and quality of the synthetic PET images. Furthermore, our strategy adds 

a new loss regularization term to the CM process to minimize the difference between the truth and generated 

full-dose PET images. This term can benefit the consistency model in two primary aspects: stabilizing the 

training phase fundamentally and augmenting the pixel-level detail’s accuracy of the synthetic images. The 

proposed PET-CM mitigates the well-acknowledged training instabilities that have been a notable 

limitation in existing GAN-based models, and requires much less time to generate synthetic images 

compared to the diffusion-based models. The PET-CM was evaluated through comparative analyses against 

contemporaneous methods like PET-CGAN, PET-cycleGAN, PET-DDPM, and PET-IDDPM utilizing 

eighth- and quarter-dose PET images. Our quantitative evaluation resoundingly demonstrates that the PET-

CM can synthesize full-dose PET images with state-of-the-art accuracy, surpassing competing 

methodologies in either quality and efficiency, thereby evidencing a pioneering stride towards redefined 

boundaries in PET image denoising. 

 

II. Method 

The proposed PET-CM framework includes a two-step process: the forward process introduce noise into 

the data 𝑋 through a controlled process including multiple timestep 𝑡; the reverse process trains a deep 

learning model to denoise the image noise from the forward process to create high-quality synthetic images 

from pure noise samples, called the reverse process. While most conventional diffusion models consider 

the reverse process an iterative Markov process so we can generate 𝑋𝑡−1 from 𝑋𝑡  at each timestep 𝑡 , 

enabling the recursive generation of 𝑋0 through multiple timesteps; PET-CM trained a neural network, 

namely PET Shifted-window vision transformer (PET-VIT) that directly connects 𝑋𝑇 to 𝑋0. This direct 



 

 

connection allows for the generation of 𝑋0 in just a few steps, bypassing the need for extensive recursion 

so greatly reduce the generation time, as shown in Fig. 1 a). In addition, a low-dose PET scan is 

concatenated to the input noisy image of the neural network through the whole reverse process, to generate 

paired full-dose PET for the same patients. 

Figure 1.b) illustrates the design of PET-VIT, which is based on Pan et al.'s 29 denoiser architecture. The 

architecture comprises a two-dimensional encoder and decoder. The encoder includes down-sampling 

residual convolutional blocks and Shifted-window self-attention (we called it Swin transformer) blocks 34, 

which enable the learning of semantic features at various resolution levels. Conversely, the decoder exhibits 

a symmetrical structure to the encoder and is responsible for reconstructing the final estimations using the 

learned semantic features. We show the details of network architecture in Appendix. A. Below, we provide 

a detailed description of the mathematical formulation for PET-CM. 

 

Figure 1: a) The denoising diffusion process of PET-CM employs a forward diffusion process to introduce Gaussian 

noise to full-dose PETs using multiple timesteps, gradually transforming them into pure Gaussian noise. Contrast to 



 

 

the conventional reverse diffusion, PET-CM generates clean images with larger intervals between timesteps, providing 

efficient denoising without requiring a large number of iterations. b) Network architectures of PET-VIT used in PET-

CM: A symmetrical encoder-decoder architecture is employed to learn the reverse process, in which PET-CM learns 

a consistency function for generating full dose images. 

 

II.A PET Consistency model 

A standard conditional consistency model consists of three processes: First, a forward process gradually 

applies small amounts of Gaussian noise 𝑁 to an initial full dose PET image 𝑋0 over a series of 𝑇 timesteps. 

This transforms the PET scan into pure multi-dimensional Gaussian noise 𝑋𝑇 . Following this, our 

developed PET-VIT is configured to learn a reverse diffusion process, considering the supplementary low-

dose PET scan (Z) as a guiding variable. Distinct from established diffusion models which progressively 

eliminate the incremental noise incorporated at each interval, reverting 𝑋𝑇 to its pristine state of 𝑋0, our 

consistency model envisages a more efficient trajectory. It orchestrates the PET-VIT to identify a pathway 

that encompasses the viable solutions for all timesteps, facilitating a non-recursive derivation of 𝑋0 directly 

from 𝑋𝑇. In the third process, by employing an optimal PET-CM denoiser, we can run a sampling process 

to recursively translate a pure Gaussian noise to a full dose PET image corresponding to the input low dose 

PET.  

 

II.A.1 Forward process of the Consistency Model 

During the forward process in, we aim to generate noisy images [𝑋1, 𝑋2, … , 𝑋𝑇] so we can have data to train 

the PET-VIT for denoising. Specifically, the process of generating the noisy image can be described as a 

Markov process, where the transition probability from image 𝑋𝑡−1  to image 𝑋𝑡  follows independent 

Gaussian distribution: 𝑞(𝑋𝑡│𝑋𝑡−1 ) = 𝒩(𝑋𝑡; √1 − 𝛽𝑡𝑋𝑡−1, 𝛽𝑡𝐼) with a pre-determined variance 𝛽𝑡. 

Assuming a large timestep T, we can generalize the forward diffusion process into continuous-time 

processes. We follow Song et al.’s work 20 to  develop the forward process in a form of stochastic 

differential equations (SDE): 

𝑑𝑋𝑡 = 𝑓(𝑋𝑡 , 𝑡)𝑑𝑡 + 𝑔(𝑡)𝑑𝑤𝑡     [1] 

where 𝑑𝑤𝑡 is a normal noise (the derivative of a Wiener process 𝑤𝑡 is a normal noise).  

In implementation, we need to build a set of timesteps 𝑡 = [𝑡1, 𝑡2, … , 𝑡𝐽] suitable for the consistency model: 

𝑡𝑗 = (𝜀
1

𝜌 +
𝑗−1

𝐽−1
(𝑇

1

𝜌 − 𝜀
1

𝜌))

𝜌

      [2] 

where we empirically set the minimum noise scale 𝜀 = 0.001, the maximum noise scale 𝑇 = 100, the 

number of timesteps 𝐽 = 150, and noise power 𝜌 = 7. Then, we can generate the noisy full dose PET 𝑋𝑡𝑗
 

at timestep 𝑡𝑗: 



 

 

𝑋𝑡𝑗
= 𝑋0 + 𝑡𝑗𝜖𝑡𝑗

      [3] 

where 𝜖𝑡𝑗
~𝒩(0, 𝐼) is a random normal noise. 

 

II.A.2 Reverse process of the Consistency Model 

Based on Eqn. 1, we have a Probability Flow ordinary differential equation (PF-ODE) reverse process as: 

𝑑𝑋𝑡 = [𝑓(𝑋𝑡 , 𝑡) −
1

2
𝑔2(𝑡)∇ log 𝑝𝑡(𝑋𝑡)] 𝑑𝑡   [4] 

By setting 𝑓(𝑋𝑡 , 𝑡) = 0 and 𝑔(𝑡) =  √2𝑡, we arrive at: 

𝑑𝑋𝑡

𝑑𝑡
= −𝑡𝑆𝜃(𝑋𝑡 , 𝑡)                [5] 

where 𝑆𝜃(𝑋𝑡, 𝑡) is the estimation of the score function ∇𝑙𝑜𝑔𝑝𝑡(𝑋𝑡) and the PF-ODE can be solved by any 

numerical ODE solver, such as Heun’s method 33 (details shown in Appendix. B). 

Obtaining the clean image 𝑋0 using ODE solvers requires iterative evaluations of the score model 𝑆𝜃(𝑋𝑡, 𝑡), 

which is a computationally costly process. To accelerate sampling, the self-consistency property is 

introduced to arbitrary pairs of (𝑋𝑡 , 𝑡), under the guidance of 𝑍, in the same PF-ODE trajectory, which is 

formulated as: 

𝑐𝜃(𝑋𝑡 , 𝑡, 𝑍) =  𝑐𝜃(𝑋𝜖 , 𝜖, 𝑍) =  𝑋𝜖  ≈ 𝑋0, 𝑡 ∈ [𝜖, 𝑇]   [7] 

where 𝑐𝜃 is the consistency function learned by the PET-VIT 𝜃, mapping all the points in the trajectory to 

the destination of the trajectory 𝑋0, and the consistency function is estimated by a neural network model 𝜃. 

𝜖 is a scalar sufficiently close to 0. We can thus translate a pure Gaussian noise 𝑋𝑇 into a full dose PET 𝑋0 

conditioning on a low-dose PET 𝑍 and, in an extreme case, the full-dose PET can be generated by one step 

as 𝑋0  ≈ 𝑐𝜃(𝑋𝑇 , 𝑇, 𝑍)).  

A straightforward way to train the consistency model 𝑐𝜃 is to perform distillation of the pre-trained score 

function 𝑆𝜃, which is called the consistency distillation (CD) method. However, the CD strategy requires 

pre-trained model training on an extremely large-scale dataset, which is impractical in medical image 

synthesis. Alternatively, we can directly train the consistency model without knowledge of the score model 

𝑆𝜃 in what is called the consistency training (CT) method. In the CT strategy, we avoid the pre-trained score 

model by leveraging the unbiased estimator 33 

∇ log 𝑝𝑡(𝑋𝑡, 𝑍) = −𝐸[
𝑋𝑡−𝑋0

𝑡2 |𝑋𝑡 , 𝑍]     [8] 

and the PET-VIT 𝜃 is optimized by: 

L = 𝑀𝐴𝐸 (𝑐𝜃(𝑋𝑡𝑗
, 𝑡𝑗, 𝑍), 𝑐𝜃(𝑋𝑡𝑗−1

, 𝑡𝑗−1, 𝑍))    [9] 

where 𝑡𝑗 and 𝑡𝑗−1 are adjacent time steps for the same PF-ODE trajectory, and 𝑋𝑡𝑗−1
 is calculated by Heun’s 

method from the 𝑋𝑡𝑗
. The loss function is designed to minimize the output of two adjacent data points 



 

 

(𝑋𝑡𝑗−1
, 𝑡𝑗−1) and (𝑋𝑡𝑗

, 𝑡𝑗). When the subscript 𝑗 runs through all possible steps, the consistency property of 

𝑐𝜃 is enforced on all the data points in the same trajectory. 

Furthermore, to address denoising tasks more proficiently, we introduce a regularization term within the 

loss function. This addition is designed to steer the synthesis of full-dose PET images towards a 

configuration where pixel-level discrepancies with the ground truth are substantially minimized, ensuring 

higher fidelity in the generated output: 

Lp = 𝑀𝐴𝐸 (𝑐𝜃(𝑋𝑡𝑗
, 𝑡𝑗, 𝑍), 𝑋0)      [10] 

The final objective function can be expressed as: 

Ltotal = 𝐿 + 𝛾𝐿𝑝       [11] 

where 𝛾 is empirically chosen as 0.5. 

Following Song 33, we employed the exponential moving average (EMA) technique to boost the 

convergence of the optimization problem. Specifically, the optimization process requires two identical 

networks: 𝜃 and 𝜃′. The loss function is minimized by stochastic gradient descent on the model parameter 

set 𝜃, while updating 𝜃′ with the EMA of 𝜃. The modified loss function can be expressed as: 

Ltotal = 𝑀𝐴𝐸 (𝑐𝜃(𝑋𝑡𝑗
, 𝑡𝑗, 𝑍), 𝑐𝜃′(𝑋𝑡𝑗−1

, 𝑡𝑗−1, 𝑍))  + 𝛾𝐿_𝑝   [12] 

 

II.A.3 Consistency Sampling 

With a well-trained consistency denoiser 𝜃, we can generate a full-dose PET image at timestep 𝑡𝑗′ at any 

arbitrary timestep 𝑡𝑗: 

𝑋𝑡𝑗′
=  𝑐𝜃(𝑋𝑡𝑗

, 𝑡𝑗, 𝑍) + √𝑡𝑗′
2 − 𝜀2𝜖𝑡𝑗

     [13] 

In our consistency model experiments, we adopt two-step generation using the set of timesteps 𝑡 =

[1,75,150] for inference and 𝑋𝑡1
 is the final synthetic full dose PET images (sPET). Utilizing timesteps 

[1, 75, 150], the process initiates with 𝑋𝑡𝑗
 at 𝑡𝑗 = 150, representing pure Gaussian noise, to compute a less 

noisy image 𝑋𝑡𝑗
′ at 𝑡𝑗

′ = 75 as Eqn. 13. This yields an intermediate noisy PET image, denoted as 𝑋75, which, 

when applied with the same equation, for the calculation of 𝑋1 , the final sPET. This timestep is 

accommodated on the initial application of 150 timesteps during the training phase, which introduce the 

maximal level of noise. To account for the randomness introduced during the generation process, each full-

dose image is generated three times, and the final output is obtained by averaging the results. This approach 

follows a Monte Carlo-based (MC-based) generation method, which helps to mitigate the impact of random 

noise and improve the overall stability and reliability of the generated PETs 28. 

 



 

 

III. Data acquisition 

III.A Institutional whole-body PET dataset 

The dataset consists of 35 patients (20 with cancer at various sites) contain 11,200 slices from whole-body 

13 F-FDG PET/CT with a pixel size of 3.65 x 3.65 x 3.27 mm³. A five-fold cross-validation methodology 

was adopted for the study. In this schema, four out of five subsets—each comprising 28 patients, which 

collectively contribute 8,960 image slices—were allocated for model training during each fold. 

Simultaneously, the fifth subset, consisting of 13 patients and totaling 2,240 slices, was sequestered for 

model validation. This process was iteratively conducted, with the model undergoing training and 

assessment across the differing folds, ensuring that each fold was evaluated. Images were acquired using a 

GE Discovery 690 PET/CT scanner. For patients with BMI less than or greater than 30, 370 MBq and 

440 MBq 18F-FDG radiotracer was administrated, respectively, followed by 60-minute uptake 

period.  All subjects were scanned with 2 bed positions at 2.5 minutes. A 3D ordered-subset 

expectation maximization (OSEM) algorithm of 3 iterations and 24 subsets was used for image 

reconstruction, and a CT-based attenuation correction was applied. To create low-dose PET data, two 

additional sets of PET data were histogram-reduced to one eighth and one quarter of the original bed 

duration for all bed positions. 

All full- and low-dose PETs were centered and cropped to a size of 96 x 192 x 320. PET intensities were 

then jointly normalized to [-1, 1]. Networks were trained and tested on 2D axial slices. These slices were 

subsequently combined to reconstruct a complete whole-body scan for evaluation. For the purpose of 

reconstructing a complete whole-body scan for evaluation, we meticulously combined individual slices. 

Throughout both the low-dose dataset preparation and the training phase, we consistently employed a patch 

size of 64x64. During the inference phase, a sliding window prediction strategy was utilized to segment the 

boundary-padded PET axial slices, which were expanded to dimensions of 128x192, into numerous patches 

of identical size to those used in training. Each patch was independently processed by the PET-CM to 

predict the corresponding full-dose PET patches. These were then meticulously assembled to reconstruct 

the complete PET image, which was boundary-cropped to restore its original size of 96x192, thus yielding 

our final output. During training, we utilized an AdamW optimizer with an initial learning rate of 2 x 10-5 

and a weight decay of 1 x 10-4 across 500 epochs to train PET-CM. In the PET-CM experiments, the model 

was trained with 150 timesteps and generated full dose PETs with 2 steps (𝑡 = [1,75,150]). 

 

IV. Implementation and performance evaluation 

IV.A Implementation details 

The PET-CM frameworks and competing networks were executed on a workstation running Microsoft 

Windows 11 equipped with a single NVIDIA RTX 6000 GPU with 48 gigabytes of memory. The 



 

 

experiments were conducted using the PyTorch framework in Python version 3.8.11. 

 

IV.B Quantitative evaluation 

The quality of the synthetic PET generated by the proposed PET-CM were evaluated using the normalized 

mean absolute error (NMAE in percentage of the activity concentration value per volume), peak signal-to-

noise ratio (PSNR in decibel (dB)), multi-scale structure similarity index (MS-SSIM, with an evaluation 

scale of 3) and maximum normalized cross correlation (NCC) indices. NMAE is a negatively-oriented 

score: a smaller value indicates a smaller absolute difference between the ground truth PET and the sPET 

images, implying better sPET quality. PSNR, SSIM and NCC are positively-oriented: higher PSNR 

indicates a higher peak signal similarity, higher SSIM indicates greater overall visual similarity, and higher 

NCC indicates better image correlation between the sPET and PET images. All metrics were background 

excluded and calculated at the patient level. Furthermore, our study incorporates the expertise of radiation 

oncologist and medical physicist for clinical evaluation purposes. Initially, sPET images generated by the 

PET-CM and four other distinct methodologies, alongside the ground truth full-dose PET images, were 

independently assessed by the two clinicians on a scale from 1 to 6, with higher scores indicating superior 

sPET image quality. Following this, abnormal regions present in all patients were identified. In these 

identified areas, we computed the Standardized Uptake Value (SUV) Error in percentage terms. This 

measure is based on the absolute difference in SUVmean between the sPET's tumor region and the ground 

truth PET's corresponding area, adjusted by the highest intensity values in the ground truth PET. The 

evaluations culminated in an average value of all patients for each metric. To establish a benchmark, we 

compared the proposed networks' performance against state-of-the-art low-dose to full-dose PET 

conversion methods, including 3D PET-CGAN 13, 3D PET-cycleGAN 13, 2D PET-DDPM 19, and 2D PET 

improved DDPM (PET-IDDPM) 35. We configured the GAN-based networks as detailed in their 

corresponding references. For PET-DDPM and PET-IDDPM, we adopted the same network architecture 

from PET-CM for equipoise. We applied identical training hyperparameters for all networks, including 

training and generation timesteps (applicable only for diffusion-based methods), and data preprocessing. 

Furthermore, all employed methods rigorously followed a Monte Carlo (MC)-based generation strategy. 

This entailed conducting three separate runs for each method, subsequently averaging the outcomes of these 

runs to yield the result. We conducted pair-wise comparisons using one-sampled Student's paired t-test with 

α = 0.05. 



 

 

 

Figure 2: Visualization of the imaging results and single line profiles for the synthetic images obtained from eighth 

dose PETs. The figure displays the full dose image (1st column), the corresponding low dose image (2nd column), and 

the sPET images generated by different methods: PET-CGAN (3rd column), PET-cycleGAN (4th column), PET-

DDPM (5th column), PET-IDDPM (6th column), and PET-CM (7th column). The single-line profiles, represented by 

the yellow line traversing the axial slices of the full-dose PET, are displayed beneath the visual representations. These 

profiles depict the fluctuation of intensity values along the line in both the authentic and synthesized images. The color 

red is used to denote the ground truth full-dose PET images. 



 

 

 

 

Figure 3: Visualization of the imaging results and single line profiles for the synthetic images obtained from quarter- 

dose PETs. The figure displays the full dose image (1st column), the corresponding low dose image (2nd column), and 

the sPET images generated by different methods: PET-CGAN (3rd column), PET-cycleGAN (4th column), PET-

DDPM (5th column), PET-IDDPM (6th column), and PET-CM (7th column). The single-line profiles, represented by 

the yellow line traversing the axial slices of the full-dose PET, are displayed beneath the visual representations. These 

profiles depict the fluctuation of intensity values along the line in both the authentic and synthesized images. The color 



 

 

red is used to denote the ground truth full-dose PET images. 

 

IV.C Quantitative study for network selection and generation timesteps 

To comprehensively evaluate the performance of our proposed method and determine the optimal 

conditions for each approach, we conducted several studies. The first study aimed to assess the impact of 

different state-of-the-art deep learning neural networks on the quality of synthetic full dose PET images. 

We compared the performance of three networks: Swin Vision Transformer (PET-VIT, proposed), U-net 

36, and token-based multi-layer linear Mixer Unet (MLP-Unet) 37. Unet is constructed by replacing Swin 

transformer blocks with convolutional blocks (shown in Fig. 1), and MLP-Unet is constructed using 2D 

token-based MLP-Mixer blocks instead of Swin transformer blocks. 

In the second study, we examined the effect of generation timesteps on the quality of synthetic PET images. 

We varied the generation timestep for PET-CM using even spaced timesteps ranging from 1 to 150, with 

step sizes 1, 2 (proposed), 5, and 10. These studies provide valuable insights into the optimal neural network 

architecture and generation timestep for achieving high-quality synthetic PET images. 

 

 

V. Result 

Synthetic full-dose PETs generated from low-dose images using PET-CM and competing networks are 

presented in Fig. 2 and 3, accompanied by single-line image profiles. In the comparative analysis of sPET 

images, it is observed that those generated through PET-CM and PET-IDDPM exhibit a significantly higher 

degree of realism in comparison to those produced by PET-CGAN and PET-cycleGAN, in the context of 

synthesizing full-dose PET images from eighth- and quarter-dose PET images. The line profiles, illustrated 

beneath the visual representations, further corroborate the superiority of PET-CM and PET-IDDPM. These 

profiles demonstrate that the activity concentration delineated along the designated yellow line, traversing 

various axial sections, bears a closer visual resemblance to the ground truth full-dose PET images. To 

evaluate the quality of the synthetic images, we conducted quantitative assessments, the results of which 

are presented in Table. 1 for the eighth-dose PETs and Table. 2 for the quarter-dose PETs. Additionally, 

we performed additional experiments to analyze the impact of network selection. Results are summarized 

in Table. 3. Results of varying generation timesteps for PET-CM are given in Table. 4. 

 

Table 1: Quantitative analysis of synthetic full-dose images from PET-CM vs. PET-CGAN, PET-cycleGAN, PET-

DDPM, and PET-IDDPM using the eighth-dose PETs. (↑) indicates positive-orientation: greater values indicate better 

performance; (↓) indicates negative orientation: smaller values indicate better performance. The generation time (G-

time) for each patient is reported. The best-performing network(s) are highlighted in bold, and the second-best 

network(s) are underlined, based on mean evaluation results. P-values between the competing networks and PET-CM 



 

 

are shown below each method. Values are rounded to three decimals.  

1/8 dose to 

full dose 

NMAE (%) 

(↓) 

PSNR (dB) 

(↑) 
SSIM (↑) NCC (↑) HRS (↑) 

SUV Error 

(%) (↓) 

G-time 

(Sec) 

PET-CM 1.278±0.122 33.783±0.824 0.964±0.009 0.968±0.011 4.543 0.255±0.318 

62.321 p-value 

(PET-CM) 
N/A N/A N/A N/A N/A N/A 

PET-

IDDPM 
1.211±0.104 33.217±0.798 0.960±0.011 0.966±0.012 4.457 0.253±0.376 

823.713 
p-value 

(PET-CM) 
0.728 0.711 0.462 0.931 N/A 0.978 

PET-

DDPM 
3.871±0.322 23.281±0.298 0.823±0.046 0.852±0.049 1.000 1.082±0.761 

817.326 
p-value 

(PET-CM) 
<0.010 <0.010 <0.010 <0.010 N/A <0.010 

PET-

CGAN 
2.521±0.358 26.782±2.381 0.936±0.020 0.934±0.020 2.614 0.547±0.640 

32.142 
p-value 

(PET-CM) 
<0.010 <0.010 <0.010 <0.010 N/A <0.010 

PET-

cycleGAN 
2.212±0.274 27.180±1.702 0.941±0.016 0.939±0.017 3.100 0.555±0.639 

32.142 
p-value 

(PET-CM) 
<0.010 <0.010 <0.010 <0.010 N/A <0.010 

 

Table 2: Quantitative analysis of synthetic full-dose images from PET-CM vs. PET-CGAN, PET-cycleGAN, PET-

DDPM, and PET-IDDPM using the quarter-dose PETs. (↑) indicates positive-orientation: greater values indicate better 

performance; (↓) indicates negative orientation: smaller values indicate better performance. The generation time (G-

time) for each patient is reported. The best-performing network(s) are highlighted in bold, and the second-best 

network(s) are underlined, based on mean evaluation results. P-values between the competing networks and PET-CM 

are shown below each method. Values are rounded to three decimals.  

1/4 dose to 

full dose 

NMAE (%) 

(↓) 

PSNR (dB) 

(↑) 
SSIM (↑) NCC (↑) HRS (↑) 

SUV Error 

(%) (↓) 

G-time 

(Sec) 

PET-CM 0.973±0.066 36.172±0.801 0.984±0.004 0.990±0.005 4.428 0.151±0.192 

62.321 p-value 

(PET-CM) 
N/A N/A N/A N/A N/A N/A 

PET-

IDDPM 
0.956±0.054 36.723±0.681 0.984±0.003 0.987±0.004 4.571 0.155±0.201 

823.713 
p-value 

(PET-CM) 
0.826 0.584 0.963 0.810 N/A 0.847 

PET-

DDPM 
3.738±0.398 24.114±0.238 0.831±0.074 0.857±0.050 1.000 1.020±0.692 

817.326 
p-value 

(PET-CM) 
<0.010 <0.010 <0.010 <0.010 N/A <0.010 

PET-

CGAN 
1.762±0.200 30.125±1.371 0.948±0.012 0.940±0.015 2.557 0.469±0.481 

32.142 
p-value 

(PET-CM) 
<0.010 <0.010 <0.010 <0.010 N/A <0.010 

PET-

cycleGAN 
1.382±0.182 31.712±0.752 0.955±0.010 0.955±0.022 3.157 0.423±0.440 32.142 



 

 

p-value 

(PET-CM) 
<0.010 <0.010 <0.010 <0.010 N/A <0.010 

 

 

V.1 Comparison of eighth-dose to full-dose PETs 

The PET-CM secured the second-best results, recording an NMAE of 1.278±0.122% and SUV Error of 

0.255±0.318%. It excelled by achieving the highest SSIM of 0.964±0.009, a PSNR of 33.783±0.824dB, an 

NCC of 0.968±0.011, and HRS of 4.543. Statistical analysis confirms that there is no significant difference 

between the PET-CM and PET-IDDPM. The PET-CM demonstrates significantly faster generation time 

than the PET-IDDPM (62 seconds vs. 823 seconds to generate one patient’s image), though both proposed 

methods are slower than GAN-based methods. Comparatively, the proposed PET-CM exhibits substantial 

quantitative improvements at all image-quality metrics with statistical significance (p<0.05) compared to 

other methods.  

 

V.2 Quantitative result of quarter-dose to full-dose PETs 

The PET-CM exhibited superior performance, achieving the highest SSIM at 0.984±0.004, an NCC of 

0.990±0.005, and a SUV Error of 0.151±0.192%. It also recorded the second-best results with an NMAE 

of 0.973±0.066% a PSNR of 36.172±0.801dB, and a HRS of 4.428, closely matching the performance 

attained by the PET-IDDPM. Compared to the PET-IDDPM, the PET-CM does not show any statistical 

difference. However, when compared to other methods, the PET-CM shows significant quantitative and 

statistical improvements (all p < 0.05). This finding highlights the superiority of diffusion-based models 

over the commonly used GAN-based models in accurately estimating full-dose images from low-dose 

inputs.  

 

V.3 Network selection and consistency model’s design results 

Regarding network selection, the PET-VIT network outperforms Unet-based networks in terms of NMAE, 

PSNR, SSIM, and NCC for PET-CM. However, it requires more generation time. Both Unet and MLP-

Unet show comparable performance to PET-VIT in terms of PSNR, SSIM, and NCC, suggesting that they 

could be viable options as the denoising network in PET-CM. Furthermore, the MLP-Unet demonstrates 

the highest speed in the generation process. 

For PET-CM, using two steps yields the best NMAE and SSIM, while five and ten steps result in superior 

PSNR, SSIM, and NCC. The performance of 2, 5, and 10 timesteps is similar, but two steps result in the 

greatest efficiency. 

 

Table 3: Quantitative analysis and generation time (G-Time) for synthetic full-dose images from PET-CM using Unet, 



 

 

PET-VIT (proposed network), and MLP-Unet as the denoising network. The best-performing network(s) are in bold. 

PET-CM NMAE (%) (↓) PSNR (dB) (↑) SSIM (↑) NCC (↑) G-time (Sec) 

Unet 1.428±0.174 33.092±0.837 0.960±0.010 0.965±0.017 84.140 

MLP-Unet 1.301±0.130 33.628±0.792 0.964±0.010 0.966±0.018 51.351 

PET-VIT (proposed) 1.278±0.122 33.783±0.824 0.964±0.009 0.968±0.011 62.321 

 

Table 4: Quantitative analysis and generation time (G-Time) for synthetic full-dose images from PET-CM with 

varying timesteps. The best-performing network(s) are in bold.  

PET-CM NMAE (%) (↓) PSNR (dB) (↑) SSIM (↑) NCC (↑) G-time (Sec) 

1 step 1.876±0.382 30.728±0.892 0.942±0.016 0.943±0.017 32.142 

2 steps (proposed) 1.278±0.122 33.783±0.824 0.964±0.009 0.968±0.011 62.321 

5 steps 1.269±0.164 33.811±0.783 0.965±0.008 0.968±0.011 160.761 

10 steps 1.270±0.134 33.790±0.765 0.965±0.008 0.968±0.011 321.481 

 

 

VI. Discussion 

In our study, we introduce the highly efficient PET-CM, based on diffusion probabilistic model framework 

and optimized to generate superior full-dose PET images from low-dose counterparts. Although renowned 

diffusion models like DDPM and IDDPM facilitate exceptional synthesis of full-dose PET images, they 

suffer from time-consuming processes. Conversely, GAN-based alternatives, while faster, significantly 

compromise image quality. Our PET-CM proposes a proficient solution, forging a favorable equilibrium 

between speed and quality. It establishes itself as a notable contender in the synthesis of nearly state-of-

the-art image with reduced generation times. The model is structured into forward and reverse processes. 

The forward process incrementally introduces Gaussian noise to a clean full-dose PET image over 

designated timesteps, ultimately transforming it into pure Gaussian noise. In contrast, the reverse process 

leverages a dedicated PET-VIT neural network, utilizing associated low-dose PET inputs to effectively 

denoise the images, and restoring them to their pristine state. The primary distinction between our PET-

CM and the work of DDPM-based PET denoising methods (for example, Gong et al.’s work 38) lies in the 

underlying frameworks. Although both methodologies are rooted in diffusion dynamics, they diverge 

significantly in their learning objectives. Our PET-CM adeptly transforms pure Gaussian noise into a 

pristine PET image, deviating from the traditional DDPMs, which meticulously refine Gaussian noise into 

a progressively cleaner PET image. Contrary to DDPM’s emphasis on learning the incremental noise 

reduction across timesteps, PET-CM focuses on achieving consistency in the output amidst varying noise 

levels in PET images. As, our model significantly enhances efficiency, achieving full-dose PET image 

generation in merely two steps, in stark contrast to usually the 1000 steps required by DDPMs. This 



 

 

efficiency potentially reduces the generation time by a factor of 500 under similar conditions, marking our 

primary contribution towards high-efficiency PET applications. Additionally, while there is a minor 

difference in the network architectures used—our model employs Swin-Unet versus DDPM’s commonly 

use of U-net—the fundamental contrast remains within the operational frameworks of the two models. 

Significantly, we employ the PET-VIT to learn the reverse procedure, functioning as a consistency method 

that produces identical results across all possible timesteps, to allow image denoising with fewer 

intermediary steps (for example, transitioning from timestep T to T/2, followed by zero), thus considerably 

reducing the necessary time. We also integrate a specially designed loss regularization into the consistency 

model to minimize the mean absolute error between the genuine full-dose PET image and the output of the 

consistency function. This innovation marks a pioneering step in applying conditional consistency models 

to medical image translation tasks, promoting a paradigm shift in patient care by enhancing safety, image 

quality, contrast, and quantification. 

As shown in Table 1 and Table 2, PET-CM methods exhibited remarkable quantitative image-based quality, 

clinical-based quality, and statistical improvements compared to most competing methods (PET-DDPM, 

PET-CGAN, and PET-cycleGAN). Accordingly, the PET-CM showcases its capacity to maintain image 

integrity and accurately replicate structural nuances from the full-dose images, therefore potentially 

enhancing delineation in radiotherapy treatment planning. The efficacy of the PET-CM methodology 

transcends its notable denoising precision, as delineated in our study. It underscores the implementation of 

an efficient diffusion-based generation process integral to PET-CM, thereby circumventing the adversarial 

training paradigm typical of GAN-based techniques. This deliberate omission engenders a more stable 

training regimen, effectively surmounting a predominant challenge associated with the deployment of 

GAN-based frameworks. Contrary to GAN methodologies, which demand extensive time investments for 

hyperparameter optimization (as evidenced by our experiments, spanning several months) and exhibit 

vulnerability to destabilization upon the incorporation of new data, PET-CM demonstrates remarkable 

resilience. As illustrated in Figures 2 and 3, despite considerable experimental efforts to refine the networks, 

PET-CGAN fails to achieve optimal training, showing artifacts. This underscores the difficulty in 

identifying the optimal set of hyperparameters for CGAN. Conversely, PET-CM facilitates a 

straightforward training process, obviating the exhaustive search for network parameters. This 

characteristic significantly mitigates the impact of data variability, thereby substantially curtailing the 

duration required for hyperparameter adjustment. This inherent stability against data and hyperparameter 

changes, substantiated by the observations from the network and consistency process presented in Tables 3 

and 4, ascertains that PET-CM can be applied without engaging in an exhaustive search for the optimum 

hyperparameter. Therefore, the PET-CM could potentially be more practical for clinical usage. 

On the other hand, the PET-CM demonstrates superior performance compared to the PET-DDPM operating 



 

 

with 50 timesteps. It is worth noting that PET-DDPM underperforms the GAN-based network on a large 

scale. This could be attributed to the fact that PET-DDPM can achieve comparable image synthesis to PET-

IDDPM and PET-CM when the timestep is large (e.g., 1000 timesteps) 29,31, but may not perform as well 

in our setting with only 50 timesteps. This limitation is visually evident in the generated images (Figures 2 

and 3), where the presence of noise indicates that PET-DDPM cannot fully remove noise to generate high-

fidelity images. This further suggests that a limited number of timesteps hinders DDPM's ability to generate 

high-quality images through the effective elimination of noise. To generate a whole-body full-dose PET 

image of comparable quality, the PET-DDPM necessitates 1000 timesteps, amounting to about 30000 

seconds with our hardware settings, rendering it impractical for our evaluation. Moreover, the PET-CM 

showcases results on par with the PET-IDDPM but operates at a mere 8% of the PET-IDDPM’s generation 

time per patient. This efficiency is attained by establishing a direct connection between the pure noise 𝑋𝑇 

and the clean full-dose image 𝑋0 , thereby avoiding an iterative generation process and necessitating only 

a few timesteps to create high-quality PET images. This pronounced speed not only translates to a more 

streamlined workflow but also opens avenues for real-time applications where swift decision-making is 

pivotal. For instance, it can pave the way for the incorporation of PET images in live monitoring and 

adjustment of radiation doses during real-time image-guided radiotherapy sessions 39, enhancing the 

precision and responsiveness of the treatments. Furthermore, the reduced generation time implies that 

healthcare facilities have the potential to process a larger volume of PET images in a reduced timeframe, 

thereby optimizing resource allocation and increasing the throughput of radiotherapy procedures. 

In the study of the hyperparameters of the network and consistency model, PET-CM, using PET-VIT, 

achieves the best quantitative performance across all metrics, but with increased generation time. MLP-

Unet shows comparable performance to PET-VIT with less generation time, indicating its potential as a 

denoising network in PET-CM if even higher efficiency is required. Furthermore, the investigation 

underscored the pivotal role of appropriate timestep selection in attaining desirable outcomes. Remarkably, 

PET-CM exhibited comparable levels of performance across settings of 2, 5, and 10 timesteps, with the 2-

timestep configuration presenting the most optimal quantitative efficiency. Delving into the implications of 

these results reveals that a PET-CM configuration utilizing a mere 2 timesteps is sufficient for state-of-the-

art accuracy of the synthetic full-dose PET images. It was discerned that further augmentations in the 

generation timestep did not yield significant enhancements in image quality, thus indicating a point of 

diminishing returns beyond the 2-timestep mark. 

In addition, the selection of timesteps [1, 75, 150] is strategically designed to facilitate a progressive 

reduction in noise levels, transitioning from the highest noise intensity at timestep 150 to an intermediate 

noise level at timestep 75, and culminating at the lowest noise level at timestep 1. Although our framework 

accommodates transitions between any timesteps within the range 1 to 150 (for example [1,10,150]), the 



 

 

preference for our transitions, however, emerges as the most logical sequence, even though the choice 

seems to not strongly influence the final performance (as shown in Appendix. C). Nevertheless, it is 

imperative to acknowledge that the framework retains flexibility, enabling users to adjust the timesteps 

according to specific requirements or objectives. 

The PET-CM methodology exhibits significant advancements in efficiency and quantitative performance 

compared to other approaches. One limitation is that the realism of using histogram-reduction to simulate 

low dose PET has not been well studied as downsampling list-mode data 40. However, theoretically, this 

method can still be superior to the method of reducing acquisition time, which may introduce inconsistency 

in uptake distribution but is still commonly used as a surrogate for low dose PET simulation in studies 6,8. 

One the other, hand, it is crucial to note, however, that these advancements are predominantly observed in 

the sphere of 2D PET image synthesis. Our multiple-folded cross-validation experiments have 

demonstrated the PET-CM's capacity for generalization in 2D PET image synthesis across a dataset 

comprising 11,200 axial slices. Additionally, the PET-CM has shown its applicability across various 

anatomical regions, including the brain, chest, and abdomen, within a whole-body PET dataset. This 

underscores the method's effectiveness in 2D PET image synthesis and potential generalizability on other 

PET datasets. However, our practical experiments have not yet achieved the desired outcomes when 

applying PET-CM models to the more complex task of 3D PET image synthesis, a challenge that is also 

present with other 3D diffusion-based models. The limitations of diffusion-based models, including PET-

CM, in synthesizing 3D images may be attributed to the significantly greater complexity of 3D volumes as 

opposed to 2D slices. Specifically, the process of reverse diffusion is substantially more challenging in the 

context of 3D PET image denoising. Moreover, expanding our dataset to include more patient cases for the 

purpose of exploring the effectiveness of the PET-CM approach in 3D PET image denoising represents a 

critical direction for future research. This is essential to assess the model's generalizability in the denoising 

of 3D PET images.  

Moreover, despite the PET-CM's superior performance over GAN-based methods at eighth- and quarter-

dose PET denoising, there are existing studies that achieve PET denoising at even lower doses. The works 

of Sanaat et al. 15 and Chen et al. 41 introduce GAN-based methodologies for brain PET denoising at 1/20 

and 1/50 low-dose levels, respectively. Additionally, Zhou et al.42 have developed a cycleGAN that 

demonstrates effective denoising at a 1/100 low-dose level in the lung region. Exploring the extension of 

the PET-CM to facilitate ultra-low-dose PET denoising (such as at 1/20, 1/50, and 1/100 levels) across the 

whole body represents another potential avenue for our future research. Additionally, exploring more 

advanced network architectures 23,43-51 represents a potential focus for our future research. 

 

 



 

 

VII. Conclusion 

In this work, we have introduced a novel diffusion-based method for denoising and synthesizing full-dose 

PETs from low-dose PETs: the PET consistency model (PET-CM). The method successfully restores noisy 

PET images of one eighth and one quarter of the full dose to standard high-quality PET images. PET-CM 

offers a negligible tradeoff in image quality for a thirteen-fold improvement in computational efficiency. 

PET-CM may prove a valuable tool for improving PET imaging by enabling radiation dose reduction 

without compromising diagnostic accuracy. 
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SUPPLEMENT MATERIAL 

This document contains supplementary information for the manuscript “Full-dose whole-body PET 

Synthesis from Low-dose PET Using High-efficiency Diffusion Denoising Probabilistic Model: PET 

consistency model”. 

 

Appendix. A Network detail of the PET-VIT 

A.1 The network description 

 

Figure A. 1: Visualization of the PET-VIT network using in the PET-CM. 

 

The complete architecture is depicted in Fig A.1. a). Starting with the encoder, the input undergoes a 

convolutional layer with a 1×1 kernel size and stride of 1 to capture early features. These features are then 

down-sampled by a factor of 2 in each block. In the encoder architecture, we propose one initial down-

sampled convolutional block (as shown in Fig. A.1 c)) to learn local characteristics from inputs with higher 

resolutions. Subsequently, we incorporate three sequential down-sampled Swin-transformer blocks (as 

shown in Fig. A.1 b)) to capture global information from lower-resolution features. Following this, two 

middle Swin-transformer blocks (without down-sampling or up-sampling) are connected to further extract 



 

 

global characteristics. The decoder consists of three up-sampled Swin-transformer blocks and one final up-

sampled convolutional block to obtain the features with the original resolution. Eventually, the resulting 

features are fed into one convolutional layer to estimate the consistency function. On the other hand, the 

timesteps 𝑡 are encoded using sinusoidal embedding (SE) 21, where the maximum period of SE is set as 

10^6, and the feature dimension is set as 128. These timestep embeddings are then input into all blocks, 

after adaptive group normalization 21, so the network denoise the input PET according to the corresponding 

timestep.  

Several techniques are additionally applied to stabilize the network training. Firstly, we utilize the "Residual 

connection" 52 (as shown in Fig. A.1.c)) in each convolutional and Swin-SA block to enhance network 

stability. Furthermore, we employ "shortcut connections" across the blocks (as shown in Fig. A.1.b)), 

connecting each encoder block to a decoder block at the same resolution level. This facilitates the 

transmission of high-resolution information from the encoder to the decoder, enhancing estimation 

accuracy. 

 

Table A.1: PET-VIT details: Convolution channel, convolution kernel size are parameters of the 

convolutional layers of the convolutional/Swin-transformer layers. Down-sample ratio and up-sample ratio 

are the parameters of the sampling layers. Window size, attention channel, and attention heads are 

parameters of the Swin transformer layer.  

PET-VIT Encoder (5 layers) 
Middle 

layer 
decoder (5 layers) 

Convolution 

channel 
64 64 128 192 256 256 256 256 192 128 64 1 

Convolution kernel 

size 

(1, 

1) 

(3, 

3) 

(3, 

3) 

(3, 

3) 

(3, 

3) 

(3, 

3) 

(3, 

3) 

(3, 

3) 

(3, 

3) 

(3, 

3) 

(3, 

3) 

(1, 

1) 

Down-sample ratio 
(1, 

1) 

(2, 

2) 

(2, 

2) 

(2, 

2) 

(2, 

2) 
N/A N/A N/A N/A N/A N/A N/A 

Up-sample ratio N/A N/A N/A N/A N/A N/A N/A 
(2, 

2) 

(2, 

2) 

(2, 

2) 

(2, 

2) 

(1, 

1) 

Window size N/A N/A 
(4, 

4) 

(8, 

8) 

(8, 

8) 

(8, 

8) 

(8, 

8) 

(8, 

8) 

(8, 

8) 

(4, 

4) 
N/A N/A 

Attention channel N/A N/A 
102

4 

102

4 

102

4 

102

4 

102

4 

102

4 

102

4 

102

4 
N/A N/A 

Attention heads N/A N/A 12 24 24 24 24 24 24 12 N/A N/A 

 



 

 

Appendix. B Implementation details of the Heun solver 

Recall that by setting 𝑓(𝑋𝑡 , 𝑡) = 0 and 𝑔(𝑡) =  √2𝑡, we can have a probability-flow ordinary differential 

equation (PF-ODE) for the reverse process: 

𝑑𝑋𝑡

𝑑𝑡
= −𝑡𝑆𝜃(𝑋𝑡 , 𝑡)       [1] 

the PF-ODE can be solved by neural network or any other ODE solvers. For example, using Heun’s second 

order ODE solver 53, we can obtain the less noisy PET 𝑋𝑡−∆𝑡 (the continuous version of 𝑋𝑡−1): 

𝑑 =
𝑋𝑡−𝑋0

𝑡
        [2] 

𝑑′ =
𝑋𝑡−𝑑∆𝑡−𝑋0

𝑡−∆𝑡
        [3] 

𝑋𝑡−∆𝑡 =  𝑋𝑡 −
𝑑+𝑑′

2
∆𝑡       [4] 

 

 

 

 


