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We analyse the dynamics of metastable Markovian open quantum systems by unravelling their
average dynamics into stochastic trajectories. We use quantum reset processes as examples to
illustrate metastable phenomenology, including a simple three-state model whose metastability is
of classical type, and a two-qubit model that features a metastable decoherence free subspace. In
the three-state model, the trajectories exhibit classical metastable phenomenology: fast relaxation
into distinct phases and slow transitions between them. This extends the existing correspondence
between classical and quantum metastability. It enables the computation of committors for the
quantum phases, and the mechanisms of rare transitions between them. For the two-qubit model,
the decoherence-free subspace appears in the unravelled trajectories as a slow manifold on which the
quantum state has a continuous slow evolution. This provides a classical (non-metastable) analogue
of this quantum effect. We discuss the general implications of these results, and we highlight the
useful role of quantum reset processes for analysis of quantum trajectories in metastable systems.

I. INTRODUCTION

Isolated quantum systems evolve unitarily, according
to the Schrödinger equation. However, practical quan-
tum systems are never isolated – their unavoidable cou-
pling to the environment leads to effects such as dissipa-
tion and decoherence [1, 2]. Indeed, recent experimen-
tal advances have demonstrated a rich phenomenology
in open quantum systems, such as ultracold atoms [3],
optomechanical systems [4, 5], superconducting circuits
[6, 7] and Rydberg atoms in optical lattices [8, 9]. Un-
derstanding and modelling these systems is essential for
applications of quantum technologies.

Metastability in open quantum systems occurs when
their dynamical relaxation features a separation of
timescales [10–13]. This offers a route to realisation of
long-lived quantum coherences [14–17], which are crucial
for quantum technologies such as computation [18, 19],
which require quantum memories [20, 21]. Understand-
ing emergent slow time scales is also important for more
fundamental questions that arise in open quantum sys-
tems, including quantum phenomena associated with
non-equilibrium phase transitions [22–25]. These include
metastable decoherence free subspaces (DFSs) [10] and
glassy phenomenology [26, 27].

This work focuses on Markovian metastable open
quantum systems, which exhibit a rich phenomenol-
ogy, while remaining theoretically tractable. Recent
work [25, 28–30] has analysed such systems through the
quantum master equation (QME) which describes de-
terministic non-unitary evolution of the system’s den-
sity matrix [31, 32]. This allows characterisation of
metastable phenomena such as slow transient relaxation
to the steady state, and slow decay of steady-state au-
tocorrelation functions [10]. However, the resulting the-
ory of quantum metastability is distinct from its clas-
sical counterpart: the quantum theory gives access to

expectation values but the classical theory also predicts
the behaviour of stochastic trajectories. The behaviour
of trajectories in the quantum setting requires informa-
tion beyond the QME, including time records of environ-
mental measurements [33–38] and the unravelled quan-
tum state, via a quantum trajectory formalism [39–42].
Analysis of these trajectories reveals phenomena beyond
the reach of the QME, including full-counting statistics
of photon emissions [43–46], measurement-induced phase
transitions [47–51], geometric phase transitions [52, 53],
the quantum Zeno effect [54–56], quantum steering [57]
and quantum thermodynamics [58, 59].

This work analyses several metastable quantum sys-
tems in the trajectory formalism. This extends previous
results based on the QME [10, 12], and time records [12],
and strengthens the connections to classical theories of
metastability. For example, metastable classical sys-
tems relax quickly into distinct phases, after which they
make slow transitions between them; one may also iden-
tify basins of attractions of the phases, via the com-
mittor [60, 61]. Our analysis of quantum trajectories
yields corresponding committors for metastable quantum
phases, as well as the mechanism of transitions between
them. This allows characterisation of fluctuations within
these systems’ nonequilibrium steady states, beyond the
QME.

We demonstrate these results by analysing several
different systems, which highlight general features of
metastability, as well as providing their own specific
insights. We mostly focus on quantum reset mod-
els [45, 62], which are particularly tractable in the tra-
jectory formalism. These models have the property that
each quantum jump operator has a unique destination
state, which are termed reset states. While this may seem
like a significant restriction, such models are known to be
rich enough to support classical metastable behaviour (in
the sense of [10, 12]). We show here that they also exhibit
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intrinsically quantum metastability, specifically DFSs.

Quantum reset models are convenient for trajectory
analyses because their unravelled dynamics can be re-
stricted to a relatively small set of quantum states, avoid-
ing the requirement to follow the complicated random
time evolution of a wavefunction or density matrix. In
fact, many aspects of these systems can be obtained from
a mapping to classical semi-Markov processes [45, 62]:
this means that the rate of quantum jumps at time t
only depends on the destination of the last jump, and the
time elapsed since that jump. In this work, we discuss
several examples within this class, which are depicted
in Fig. 1. The left column shows the quantum models,
with solid arrows indicating unitary (Hamiltonian) evo-
lution, and the wavy arrows quantum jumps. The right
column shows the semi-Markov representation, whose in-
ternal states correspond to the reset states of the jumps;
the arrows indicate the jumps, which may reset the state
to the previous destination, or jump to a new one.

The three models are illustrative of several aspects of
quantum metastability. The models in Fig. 1(a,b) each
have a three-dimensional Hilbert space, but they differ in
the number of quantum jump operators, and thus in the
number of reset states in the semi-Markov representation.
For suitable parameters, both models exhibit classical
metastability in the sense of [10, 12]. This work addition-
ally shows that their quantum trajectories support the
full metastable phenomenology expected for classical sys-
tems, such as fast relaxation into the metastable phases,
and slow transitions between them. We also identify
the mechanisms for transitions between the metastable
phases, and we analyse the committors for the phases.
This material is the subject of Sec. III. Based on these
observations, we then present in Sec. IV several general
results for the committor, and its connections with the
QME.

In contrast to these three-state models, the two-qubit
(four-state) system of Fig. 1(c) supports a non-classical
form of metastability – a metastable DFS – which mani-
fests in quantum trajectories as a manifold on which the
quantum state evolves in a slow but continuous fashion,
although the number of reset states is finite. This dif-
fers qualitatively from classical metastability in the sense
of [12], which features rare transitions between discrete
metastable phases. This model is discussed in Sec. V.

Throughout this work, we use these example systems
to identify and explain generic features of trajectories of
metastable open quantum systems. While previous work
has focussed on the QME evolution and on experimen-
tal time records [12, 27], our focus on quantum trajec-
tories gives a more direct connection to metastability in
classical systems, for which the focus on trajectories is
natural, as in transition state theory and transition path
theory [60, 61]. While quantum trajectories are less in-
tuitive than their classical counterparts, our examples of
quantum reset processes result in simple and physically-
informative descriptions.

Our concluding Sec. VI summarises our main insights

Quantum Model
Semi-Markov 

Representation

FIG. 1. Example models studied in this work. (a) Three-state
model with a single jump operator, see Sec. IIIA. (b) Three-
state model with two jumps, see Sec. III E. (c) Two-qubit
model featuring a metastable DFS, see Sec. V.

and surveys open directions. For quantum metastabil-
ity with discrete phases, we discuss a detailed correspon-
dence with metastability of classical systems, including
the committor, the intermittent fluctuations of the quan-
tum state, and the mechanisms of transitions between
metastable phases. For intrinsically quantum metastable
phenomena like DFS, the results establish a different kind
of correspondence with classical stochastic processes, in
terms of slow continuous relaxation that would not be
interpreted as metastability in the classical setting, but
rather as slow relaxation within a continuous manifold.
We also explain that while our examples have been taken
from quantum reset processes, many of these conclusions
are generic for metastable open quantum systems.

II. DYNAMICS OF MARKOVIAN OPEN
QUANTUM SYSTEMS

This Section summarises theoretical background for
metastable open quantum systems, and the concept of
the committor from classical metastable systems.

A. Quantum master equation

The quantum master equation (QME) [31, 32, 63] is a
generic description of the dynamics of the density matrix
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ρ of a Markovian open quantum system. It takes the
form

ρ̇ = L(ρ) ,

L(ρ) = −i[H, ρ] +
M∑
k=1

(
JkρJ

†
k −

J†
kJkρ+ ρJ†

kJk
2

)
, (1)

where H is the system Hamiltonian and the Jk are jump
operators which describe the environmental interac-
tion. We consider systems defined on finite-dimensional
Hilbert spaces H.

The linear operator L is called the quantum Liouvil-
lian. Its eigenvalues have non-positive real parts, they are
denoted λj for j = 1, 2, . . . ,dim(H)2. We order them ac-
cording to their real parts: Re(λj) ≤ Re(λj−1) ≤ · · · ≤
λ1. The corresponding eigenmatrices of L are denoted
by Rj and those of L† are denoted by Lk. These sat-
isfy Tr [LiRj ] = δij .

1 We assume that the open quan-
tum system has a unique steady state, so there is a non-
degenerate zero eigenvalue λ1 = 0 and the density matrix
for this steady state is ρss = R1.

B. Metastability in the QME

In the QME description, a quantum system is
metastable if its spectrum has a gap: the operator L has
m “slow” eigenvalues which separate from the rest of the
spectrum. There are slow and fast time scales associated
with metastability:

τs =
−1

Re(λm)
, τf =

−1

Re(λm+1)
(2)

where the gap in the spectrum means that τs ≫ τf.
It will be convenient in the following to assume that

metastability is controlled by a small parameter ϵ: specif-
ically, we assume that limϵ→0 Re(λm) = 0 so that τs di-
verges in this limit, but τf is finite. Hence, after an initial
fast relaxation, the dynamics of ρ(t) is controlled by the
slow eigenvalues and eigenmatrices of L [10], such that
for t≫ τf

ρ(t) ≈ ρss +

m∑
k=2

αke
tλkRk (3)

where αk = Tr[Lkρ(0)]. This characterisation of the slow
dynamics describes the metastable time regime τf ≪ t≪
τs,

2 as well as the slow relaxation to ρss that occurs at
long times t≫ τs [64].
Consider two-phase metastability, m = 2, which has

many similarities with metastablility in simple classical

1 We assume for simplicity that L is diagonalisable, ignoring the
possibility of Jordan blocks.

2 Mathematically, this regime is accessed by taking first ϵ→ 0 and
then t→ ∞.

systems. The emerging picture is that the system has
two distinct metastable phases which are described by
matrices ρA, ρB which have unit trace. These can be
computed as

ρA = ρss + αmax
2 R2, ρB = ρss + αmin

2 R2, (4)

where αmax
2 , αmin

2 are the extremal eigenvalues of L2 [12].
For small ϵ, the matrices ρA, ρB are called are called ex-
tremal metastable states (EMS), they are almost density
matrices, as explained in [10, 12].
The emerging physical picture is that ρ(t) relaxes

quickly into a linear combination of ρA, ρB : during the
metastable time regime τf ≪ t ≪ τs the system appears
stationary because (3) reduces to

ρ(t) ≈ pAρA + pBρB (5)

where pA,B = Tr[PA,Bρ(0)], with

PA =
L2 − αmin

2 1
αmax
2 − αmin

2

, PB =
−L2 + αmax

2 1
αmax
2 − αmin

2

. (6)

These operators have non-negative eigenvalues and PA+
PB = 1, ensuring that pA, pB are probabilities.3 This
means in particular that a system initialised in a state
ρ(0) with Tr[PAρ(0)] = 1 will relax quickly to ρA (on
timescale τf). The approximate equality in (5) appears
because we have neglected terms that vanish as either
τf/t→ 0 or t/τs → 0.
The situation described here for m = 2 corresponds

to classical metastability in the sense of [10, 12]: within
the metastable time regime, ρ(t) can be expressed as a
linear combination of density matrices corresponding to
distinct phases, with real coefficients that correspond to
probabilities, as in (5). More complex forms of quantum
metastability – such as DFS – can occur when m > 2,
these involve long-lived coherences between the phases,
see Sec. V.

C. Trajectories of quantum reset processes and
their mapping to semi-Markov processes

The QME describes the evolution of the quantum sys-
tem, while the environment has been integrated out com-
pletely. Quantum trajectory theory [1, 42, 65–67] de-
scribes systems subject to continuous monitoring, includ-
ing the joint statistics of measurements in the system and
the environment. For example, consider a driven sys-
tem in which experiments yield a time record of photon
emissions, as observed in quantum optics experiments
[33, 34, 68], superconducting qubits [36, 69] and quan-
tum dots [70]. These (stochastic) time records are not
captured by the QME, instead we use an unravelled rep-
resentation in terms of a pure density matrix ψt (the

3 PA and PB form a positive operator-valued measure (POVM).
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conditional state), which has its own stochastic evolution
[39–42].

We use angle brackets ⟨·⟩ to indicate averages over the
(stochastic) unravelled dynamics. Note that ⟨ψt⟩ = ρ(t),
which follows the QME (1) so the time-dependent den-
sity matrix can be obtained as an average of ψt over the
quantum trajectories. Since ψt is pure, one can always
write ψt = |ψt⟩⟨ψt| and work with the wavefunction |ψt⟩
instead of the density matrix. In the following we use ψt

and |ψt⟩ as interchangeable representations of the condi-
tional state, for ease of writing.

In quantum reset processes [45], all jump operators are
of rank 1:

Jk =
√
κk|ϕk⟩⟨ξk| (7)

where |ϕk⟩ is the reset state (i.e., the jump destination),
while κk and ⟨ξk| parameterise the jump rate. Such mod-
els are widespread in recent studies [29, 54, 71–74]. Re-
peated global projective measurements at fixed rate also
naturally results in reset dynamics, where the reset states
|ϕk⟩ correspond to the eigenstates of the measured ob-
servable [75]. Quantum trajectories are particularly sim-
ple for quantum reset processes [45]. (Note that quantum
reset models are distinct from the ‘stochastic resetting’
considered in [76–78], in which the trajectory is reset with
a fixed rate, independent of the current quantum state.)
It is convenient to define

G = −iHeff, (8)

where Heff = H − i
2

∑
k J

†
kJk is an effective Hamiltonian

which governs the evolution of the conditional state be-
tween jumps. If the system jumps by operator Jj at time
t, the probability that it does not jump again before time
t+ τ is the survival probability

Sj(τ) = Tr[eGτϕje
G†τ ]. (9)

Moreover, if the system does survive until time t+ τ , its
conditional state is then ψt+τ = ψj(τ) with

ψj(τ) =
eτGϕje

τG†

Sj(τ)
. (10)

In this state, the rate to jump by operator Jk is

wjk(τ) = Tr[Jkψj(τ)J
†
k ]

= κk⟨ξk|ψj(τ)|ξk⟩. (11)

The quantum jump Monte Carlo method allows these
quantum trajectories to be generated [42, 67]; they can be
described mathematically as piecewise deterministic pro-
cesses, whose stochastic simulation is discussed in Section
7.1 of [1].

As this rate depends explicitly on the time τ since the
last jump, the sequence of jumps cannot be described by
a Markov process. Instead, it is an example of a semi-
Markov process [62, 79].

This observation – that the conditional state (10) only
depends on the last jump Jj and the time τ since this
last jump – allows a simplified analysis of quantum tra-
jectories in quantum reset processes. Instead of following
the conditional state itself, we can follow the evolution of
j, τ , from which ψt can be easily reconstructed. Note that
the steady-state probability distribution for ψt – which
we refer to in the following as the invariant measure – is
entirely supported on states of the form (10).

D. Classical metastability in trajectories, and the
committor

In the following, we exploit some established methods
from metastability in classical systems, including transi-
tion path theory [61, 80, 81]. We briefly summarise these
ideas for classical Markov processes on finite configura-
tion spaces, which may be discrete or continuous.
The central idea is that typical trajectories of

metastable systems relax quickly into one of their
metastable phases, followed by rare transitions between
them: we formalise this notion below. Anticipating the
connection to quantum systems, the associated fast and
slow time scales are denoted by τf and τs respectively.
For simplicity, we focus on the case of two metastable
phases which we denote as A and B. The extension to
more than two phases is straightforward.
To identify the phases, we define “core” sets of config-

urations, which are SA for phase A, and SB for phase B.
(The theory is independent of the specific choice of these
sets, as long as certain constraints are met, see below.)
Then any stochastic trajectory can be partitioned into
phases, as follows: Let χA

t = 1 if SA was visited more re-
cently than SB and χA

t = 0 otherwise; similarly χB
t = 1

if SB was visited more recently than SA and and χB
t = 0

otherwise. Then if χA
t = 1 we say that the system is in

phase A and similarly if χB
t = 1 then it is in phase B.

If χA
t = χB

t = 0 then neither core set has been visited
during the whole trajectory and we say that the system
is not in either phase.
Within this setting, we also define the committor: For

any configuration x outside the core sets, the commit-
tor to phase A is the probability that a trajectory starting
at x hits set SA before set SB. This committor is de-
noted by CA(x). If x is in set SA then define CA(x) = 1
and similarly for x in SB then CA(x) = 0. Obviously
CA(x) + CB(x) = 1. The committor CA(x) can always
be estimated numerically by generating many stochastic
trajectories starting from x, and measuring the fraction
that hit SA before SB , although this may be computa-
tionally expensive. (In the models considered here, more
efficient methods are available, see below.)
The definition of the committor applies for any sets

SA,B . However, trajectories of metastable systems have
two essential properties within this setting: (i) for any
initial state, the system almost surely relaxes into one
of the phases, on a fast time scale of order τf; (ii) the
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residence times within the phases are long, of order τs.
These features depend weakly on the specific choices of
the core sets, as long as they are representative of the
configurations explored within the phases.

Now assume as in Sec. II B that metastability in this
classical system is controlled by a parameter ϵ, such that
(τf/τs) → 0 as ϵ → 0. We will analyse the committor in
this limit

C∗
A(x) = lim

ϵ→0
CA(x) . (12)

For metastable systems with properties (i,ii) above, it
follows that while the committor is defined in terms of
hitting times of the core sets SA,B , it can also be com-
puted as the probability that χA

t = 1 for a time t with
τf ≪ t≪ τs, that is

C∗
A(x) = lim

t→∞
lim
ϵ→0

Prob(χA
t = 1|x0 = x) . (13)

Finally, we identify the basin of attraction of phase A
as the set of states x with C∗

A(x) = 1, with a correspond-
ing basin for phase B. Hence, for ϵ = 0, trajectories
started from within the basins relax quickly into their
corresponding phases.4 There are generically configura-
tions x with C∗

A(x) ̸= 0, 1, which are in neither basin.
Trajectories started from these configurations may relax
into either phase, with finite probability.

III. THREE-STATE MODEL

A. Model, and metastable phenomenology

A canonical model of an open quantum system is the
three-state ‘V’ shaped model depicted in Fig. 1(a), which
has been well studied in a range of contexts [43, 82–85]
and is known to exhibit metastability [10, 86–88]. This
model can be realised experimentally as states in a cavity
[89], energy levels of an atom [82, 90] and in quantum
dots [85].

Consider a quantum system with three physical states
|a⟩, |b⟩, |c⟩; its Hamiltonian and single jump operator are

H = Ω1 (|a⟩⟨b|+ |b⟩⟨a|) + Ω2 (|a⟩⟨c|+ |c⟩⟨a|)
J1 =

√
κ1|a⟩⟨b|, (14)

from which we see that the system is a quantum reset
process, with a semi-Markov representation as depicted
in Fig. 1(a). Physically, it is natural to think of Ω1,Ω2

as coherent driving terms while κ1 > 0 is a matrix ele-
ment for spontaneous photon emission. Metastability is
relevant for small driving frequency Ω2, specifically

|Ω2| ≪ |Ω1|, κ1. (15)

4 These basins are defined asymptotically as ϵ → 0. For finite ϵ,
it may be useful to define a larger basin as the set of configura-
tions x with CA(x) > 1− δ for some small parameter δ, but the
asymptotic definition is sufficient for our purposes.

(b)

(c)

(a)

FIG. 2. Three-state model. (a) QME dynamics from initial
state |0⟩⟨0| with Ω1 = 1, Ω2 = 0.05, κ = 4 and ρij = ⟨i|ρ(t)|j⟩.
(b) Corresponding example unravelled trajectory. (c) Mea-
surement record for (b), where each vertical line denotes a
jump.

To analyse metastability in the framework of Sec. II B,
we therefore take Ω2 = ϵω2 and take ϵ → 0 at fixed
ω2,Ω1, κ1.

It is convenient to change basis, defining |0⟩ = |a⟩,
|1⟩ = i|b⟩, |2⟩ = i|c⟩. In this basis, the matrix elements
of G are all real and the reset state is |0⟩. It follows that
the steady state of the unravelled dynamics is restricted
to conditional states with real matrix elements.

The spectrum of the QME has λ1 = 0 (as it must); in
the metastable regime (15), we explain in Appendix A 1
that it has one small (real) eigenvalue λ2 = O(ϵ2) that
is well-separated from the rest [which are O(1)]. Hence,
the QME dynamics has fast relaxation to (5) on timescale
τf = O(1), followed by slow relaxation to ρss on timescale
τs = O(ϵ−2), as described by (3). This is shown in Fig.
2(a).

A representative quantum trajectory and its corre-
sponding measurement record is shown in Figs. 2(b,c),
obtained from a single quantum jump Monte Carlo sim-
ulation of the dynamics described in Sec. II C [1, 2].
It consists of alternating “bright” and “dark” periods,
which correspond to two metastable phases which we la-
bel as B (bright) and D (dark). These correspond to the
phases A,B anticipated in Secs. II B and IID. The dark
phase consists of long time periods where the conditional
state is “shelved” with |ψt⟩ ≈ |2⟩, and no jumps take
place. Within the bright phase the state ψt fluctuates;
the jump rate is of order unity so jumps occur frequently;
and ⟨2|ψt|2⟩ remains small. The large rate of quantum
jumps corresponds to frequent photon emissions, hence
the name “bright”.



6

B. Connections between trajectory and QME
dynamics

Figs. 2(a,b) highlight the different information that
is available in the averaged (QME) dynamics for ρ(t)
and the quantum trajectories for the conditional state
ψt. One always has ρ(t) = ⟨ψt⟩ on average, but typical
states ψt are not close to ρ(t). This situation is generic
for metastable systems with intermittent trajectories.

To understand the relationships between the averaged
dynamics and the quantum trajectories, we consider a
perturbative analysis about ϵ = 0 [10, 12]. In the de-
generate case ϵ = 0, the Hilbert space is broken into
two subspaces: one contains the levels |0⟩, |1⟩ and cor-
responds to the bright phase; the other is just level |2⟩.
As in (5), an initial density matrix with support on both
components relaxes quickly under the QME dynamics,
and arrives in a linear combination of the two EMS:

ρ(t) ≈ pBρB + pDρD (16)

for τf ≪ t ≪ τs, where ρB , ρD represent the bright and
dark phases respectively, and are supported on the two
subspaces.

Turning to the unraveled dynamics with ϵ = 0, every
trajectory relaxes quickly into either the bright phase or
the dark phase: in the notation of Sec. IID, this means
that either χB

t = 1 or χD
t = 1 after a short time of

order τf, after which these variables do not change. (In
Sec. IV below, we establish some general relationships be-
tween quantum trajectories and the QME, showing that
the probabilities of relaxing into each phase are pB , pD.)
After this fast relaxation, the key point is that ψt is typ-
ically close to either ρB or ρD, depending on the phase
into which the system relaxed. This differs from the aver-
age state in (16) as long as both pB and pD are non-zero.
On increasing ϵ from zero, the system becomes ergodic:

the QME dynamics now has two-step relaxation to a
unique steady state and the trajectories show rare transi-
tions between the metastable phases (recall Fig. 2 and the
associated discussion). On these long time scales t ∼ τs,
the coefficients pB , pD in (16) acquire time-dependence
according to (3): we have m = 2 so this is well-described
by a single exponential with (real) rate λ2 = O(ϵ2). For
consistency with the unravelled trajectories, this λ2 must
be the rate for the rare transitions between the phases:
this is an additional connection between quantum tra-
jectories and QME dynamics [12, 30]. Finally, note that
in addition to this (non-perturbative) restoration of er-
godicity on taking ϵ > 0, the EMS ρB , ρD are affected
(perturbatively) by ϵ, acquiring weak coherences, for ex-
ample ⟨1|ρss|2⟩ = O(ϵ).

C. Jumpless trajectory

To analyse the system further, we exploit the fact that
it is a quantum reset process. This means that when a

(b)

(c)

(a)

(d)

FIG. 3. Three-state model. (a) Trajectories of the (real)
wavefunction |ψt⟩ can be plotted on a sphere. Red lines are
the jumpless trajectory for Ω2 = 0.05 (solid) and Ω2 = 0.0001
(dashed) with κ = 4, Ω1 = 1. The shading shows the com-
mittor to the dark phase. (b) Steady-state probability density
p(ℓ) for the distance ℓ travelled along the jumpless trajectory.
Here Ω2 = 0.05. We also show the corresponding jump rate
w11(ℓ). (c) Probability density for the time since the last
jump, within the steady state. (d) Committor to the dark
phase as a function of the time since the last jump. All pan-
els take Ω1 = 1, κ1 = 4 as in Fig. 2.

jump occurs, the subsequent evolution is determined by
the effective Hamiltonian according to (10), with ϕj =
|0⟩⟨0|. The system follows this evolution until the next
jump occurs, after which the process repeats. Similarly
to (10), this means that

|ψτ ⟩ ∝ eτG|0⟩ (17)

where τ is the elapsed time since the last jump, and
the constant of proportionality is fixed by normalisation.
This equation describes the time evolution of the quan-
tum state after a jump, under the assumption that no
further jumps takes place. Hence we refer to it as the
“jumpless trajectory”.
Of course, this (deterministic) jumpless trajectory is

not typical for the (stochastic) unravelled dynamics. In-
stead, typical trajectories of the unravelled dynamics can
be constructed by piecing together segments of the jump-
less trajectory, each of which starts from the reset state,
interspersed by jumps. Since there is a single reset state,
the invariant measure for ψt is entirely supported on this
jumpless trajectory.
In our chosen basis, G is a (non-symmetric) 3×3 matrix

with real elements so the elements of |ψτ ⟩ are also real.
Hence, |ψτ ⟩ can be represented as a point on the surface
of a sphere. For simplicity, we focus our discussion on
the parameter regime κ1 ≥ 4Ω1, the alternative case is
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discussed in Appendix A. Fig. 3(a) shows the resulting
jumpless trajectory for illustrative parameters, represen-
tative of the metastable regime (15). The north pole of
the sphere corresponds to the reset point: the trajectory
extends away from this point and eventually converges
towards to a stationary point. From (17), this is the
eigenvector of G with largest real part, which we denote
by |φa⟩. In addition, we have from (11), the jump rate
for states on the jumpless trajectory is

w11(τ) = κ1⟨1|ψ1(τ)|1⟩ . (18)

Using (17,18) together is helpful for understanding the
unravelled dynamics of this model. Some properties of
the jumpless trajectory are computed in Appendix A2,
we summarise here the main results and their implica-
tions: We have |φa⟩ = |2⟩ + O(ϵ). The eigenvector of
G with the second largest real part is denoted by |φ+⟩.
Starting from the reset point |0⟩, the jumpless trajectory
evolves quickly (on a time scale of order unity) to a state
|φ̃+⟩ = |φ+⟩+O(ϵ): this corresponds to the point where
the trajectory abruptly changes direction in Fig. 3(a),
which we refer to as the “elbow”. The jump rate w11(ψ)
is large (of order 1/τf) between the reset point and the
elbow, so the typical dynamical behaviour involves re-
peated rapid motion from |0⟩ towards |φ̃+⟩, interspersed
with frequent jumps back to |0⟩. This is the characteristic
behaviour of the bright phase, the corresponding average
activity is κ1⟨1|ρB |1⟩ = O(1).

To understand the transition to the dark phase, note
that the jumpless trajectory slows down near the elbow:
Appendix A 2 shows that it remains close to |φ̃+⟩ for a
time of order τf log(1/ϵ). On longer times, it evolves to-
wards |φa⟩ where the jump rate is κ1⟨1|φa|1⟩ = O(ϵ2).
This corresponds to the dark phase: we see that the
transition mechanism from bright to dark is a continuous
evolution along the jumpless trajectory. Such events are
rare because the jump rate is large near the elbow and
the state remains there a long time: Appendix A2 shows
that the probability to pass the elbow before jumping is
O(ϵ2). By contrast, the transition from dark to bright
occurs by a jump back to |0⟩: this is rare because of the
small jump rate. The two dynamical regimes can both
be seen in the trajectory Fig. 2(b): it starts in the bright
phase and visits the dark phase twice.

The above analysis illustrates that the steady state of
the unravelled dynamics only visits states on the jumpless
trajectory, as expected for a quantum reset process with
a single jump operator. Fig. 3(b) shows how the steady
state probability density can be parameterised in terms
of the distance ℓ travelled along the jumpless trajectory.
Here, the distance between two nearby points ψ and
ψ + dψ, denoted by dℓ, is given by the trace distance of
the corresponding pure states dℓ = 1

2∥dψ∥1 = 1
2

∑
i |λi|,

where λi are the eigenvalues of dψ which are real [91].
Hence, the distance along the jumpless trajectory at time
τ since the last reset is given by ℓ(τ) = 1

2

∫ τ

0
∥ψ̇(t)∥1dt,

where ψ̇(τ) is the time derivative of the jumpless trajec-
tory (10). The steady state probability density along the

jumpless trajectory is given by p(ℓ) = p(τ)dτ/dℓ, where
p(τ) is the steady state probability density parameterised
by time since the last reset.
The probability shows two peaks, corresponding to the

two phases. The bright phase forms a broad peak centred
near |φ̃+⟩ while the dark phase is a sharp peak near |φa⟩.
For large τ , both p(τ) and dℓ/dτ decay exponentially as
ln(p(τ)) = O(ϵ)τ and ln(dℓ/dτ) = O(1)τ respectively.
The faster decay of dℓ/dτ results in p(ℓ) diverging as
ℓ→ ℓmax, i.e. as |ψ⟩ approaches |ϕa⟩.

D. Committor and semi-Markov analysis

The shading in Fig. 3(a) shows the committor CD(ψ).
Recalling Sec. IID, this is the probability that a trajec-
tory started in state ψ reaches the dark phase before
the bright phase. For any stochastic dynamics, the com-
mittor can always be estimated numerically by running
many stochastic trajectories starting from ψ. However,
Sec. IVB derives a generic formula for the committor in
quantum reset processes, which allows more efficient nu-
merical estimation. The results of Fig. 3(a) use this more
efficient method.
It is convenient to take the core set of the bright phase

SB as the single point |0⟩, so the hitting time for this
set is the time of the first jump. For the dark phase we
take SD as a small ball around |φa⟩. As discussed in
Sec. IID, the committor can be used to identify the two
phases within the Hilbert space: CD is large when ψ is
close to the dark phase, and small when it is far away.
As explained in Sec. II C, the jumps in this quantum

reset process are semi-Markov: as long as at least one
jump has taken place, the state |ψt⟩ is restricted to the
jumpless trajectory in Fig. 3(a), and its position on this
line only depends on the time τ since the last jump. This
means that after the first jump has taken place, the un-
ravelled dynamics can be reduced to a reset process for
the random variable τ ∈ [0,∞), or equivalently for log τ .
To illustrate this, Fig. 3(c) shows the steady state prob-
ability distribution of log τ . It shows two peaks, which
correspond to the two metastable phases.
Within the semi-Markov representation, the commit-

tor becomes a function of τ , shown in Fig. 3(d). Re-
calling that the committor CD is large for systems in
the dark phase and small for those in the bright phase,
we see that the bright phase corresponds to small τ and
the dark phase to large τ . The semi-Markov jump rate
w11(τ) is shown in Fig. 3(b), parameterised as a function
of distance along the jumpless trajectory. Metastability
in this semi-Markov representation arises because w11(τ)
is large when τ is small, but decreases strongly for large
τ : this encapsulates the effect of shelving in the dark
state. These results in the semi-Markov representation
illustrate the advantage of the quantum reset process for
analysis of quantum trajectories: a generic three-state
quantum system has a dynamical evolution of |ψt⟩ in a
3-dimensional Hilbert space, but the invariant measure
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and the basins of attraction of the phases can be anal-
ysed via a one-dimensional stochastic process for τ .

E. Two-jump variant of three-state model

The three-state model considered thus far illustrates
several aspects of metastability but it also has special
features, due to its simplicity. In particular, as ϵ→ 0 the
dark metastable phase has no activity at all.

To illustrate a more generic situation we modify
the model by adding an additional jump operator [see
Fig. 1(b)]:

J2 =
√
κ2|2⟩⟨2|, (19)

Recalling (11), this operator manifests in the unravelled
dynamics as a jump into state |2⟩ with rate wj2(τ) =
κ2⟨2|ψj(τ)|2⟩ that depends on the destination j of the
last jump, as well as the time τ since that jump. At
the level of the QME, the operator J2 corresponds to
dephasing within the dark phase. We take Ω2 = ϵω2

as before, and κ2 = O(1). This choice ensures that the
model is still metastable as ϵ→ 0.
Figs. 4(a,b) depict a representative trajectory and cor-

responding measurement record. The behaviour is simi-
lar to Fig. 2, except that the “dark phase” now includes
fluctuations of the quantum state, with a finite rate of
internal jumps whose statistics are approximately Pois-
sonian with rate κ2⟨2|φa|2⟩. (Despite this fact, we con-
tinue to refer to it as the “dark phase”, to aid comparison
with previous Sections.)

The system is still a quantum reset process so its quan-
tum trajectories have a semi-Markov representation, as
depicted in Fig. 1(b). However, it is slightly more com-
plex than the original 3-state model because there are two
different jumpless trajectories, one starting from each re-
set point (which are |0⟩ and |2⟩). The resulting situation
is illustrated in Fig. 4(c). Both jumpless trajectories end
at the same point: this is the dominant eigenvector of
G, which we continue to denote by |φa⟩. As ϵ → 0,
we have |φa⟩ ≈ |2⟩, as in the original three-state model.
We emphasize that the invariant measure for ψt is fully
supported on these two jumpless trajectories: this is the
essential simplification that is available for quantum reset
processes.

To characterise the stochastic trajectory dynamics, we
again consider the probability distribution for the dis-
tance travelled along the jumpless trajectories [Fig. 4(d)].
Since each jumpless trajectory ends at the same asymp-
totic point, we now measure the length backwards from
that point, so we take ℓ to be negative, with the final
point (ℓ = 0) corresponding to |ψt⟩ = |φa⟩. The invariant
measure now has contributions from both jumpless tra-
jectories: the probability density for the system to be on
trajectory j at a distance ℓ from the corresponding reset

point is pj(ℓ), with normalisation
∑2

j=1

∫ 0

−∞ pj(ℓ)dℓ = 1.
One metastable phase is concentrated on each jumpless

(d)

(e) (f)

(c)

(a)

(b)

FIG. 4. Two-jump variant of three-state model. (a) Example
unravelled trajectory, from initial state |0⟩⟨0|. (b) Measure-
ment record for (a) with jumps J1 (blue) and J2 (green). (c)
Jumpless trajectories from the reset states, |0⟩ (red) and |2⟩
(blue) to the asymptotic state (black dot). The shading shows
the committor to the dark phase. (d) Probability density for
the steady state, as a function of distance along the jumpless
trajectories, from each reset state denoted by |ψr⟩. (e) Prob-
ability density for the time since the last jump, within the
steady state, from each reset state. (f) Committor to the
dark phase as a function of the time since the last jump, from
each reset state, calculated using (29). All panels take Ω1 = 1,
κ1 = 4, κ2 = 1, with Ω2 = 0.05 in (a-d).

trajectory. Hence, in contrast to the bimodal distribu-
tion in Fig. 3(b), each pj now has a single peak, which
corresponds to one of the coexisting phases.

Fig. 4(e) shows the corresponding distributions of the
time since the last jump. To understand the mechanisms
of transition between the phases, observe that the system
leaves the dark phase by a jump to |0⟩, as in the original
model of (14). It may transition to the dark phase either
by passing the elbow along the jumpless trajectory (as
in the original model) or by a direct jump to |2⟩: the
relative probabilities of these two mechanisms depends
on κ2.

The existence of two reset states means that the steady
state in the semi-Markov representation is now repre-
sented as a joint probability distribution for the type of
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the last jump and the time since this jump. This means
that the invariant measure in Fig. 4(e) consists of two
histograms, instead of the single histogram in Fig. 3(c).
Nevertheless, the common features of the two variants of
the model are that they both exhibit intermittent dynam-
ics of trajectories, with fast relaxation into metastable
states, and rare transitions between them.

Fig. 4(f) shows the committor in the semi-Markov rep-
resentation, analogous to Fig. 3(d). The interpretation
is that the jumpless trajectory starting from |2⟩ is pre-
dominately in the dark phase (CD is large); the jumpless
trajectory starting from |0⟩ starts in the bright phase
(CD is small for small τ) but it crosses over to the dark
phase when τ is large [similar to Fig. 3(d)]. There are
four jump rates wjk(τ) in the semi-Markov representa-
tion (indexed by j, k): the important feature is that the
jump rate into |2⟩ is large in the dark phase and small in
the bright phase, and vice versa for the jump rate into
|0⟩. This means that after a jump into either reset state,
it is overwhelmingly likely that the next jump will return
to the same reset state – this is generic for metastability
in reset models where both states have finite activity.

IV. THE COMMITTOR

We have seen that the committor is a useful quan-
tity for the analysis of quantum trajectories, especially
as a way to identify the distinct metastable phases in
Figs. 3(a) and 4(c). We now derive general properties of
this object, which directly aid its computation. In do-
ing so we develop generic connections between the com-
mittor (which depends on trajectories) and the quantum
master equation (which describes the average dynamics).
These generic results are not restricted to quantum re-
set models. We also derive some additional properties of
the committor that hold for the specific case of quantum
reset models.

A. Relation of the committor to the QME

The unravelled dynamics of the models discussed so far
has all the features of classical metastability: a system
started in any state |ψ⟩ typically relaxes quickly into ei-
ther the bright or the dark phase; it explores that phase
quickly and it resides there for a long time, before even-
tually transitioning into the other phase. The fast relax-
ation is stochastic, the probability to relax into the dark
phase is the committor CD.

Now consider a general open quantum system with
two-phase metastability. After initialisation in pure state
ψ0 at time t = 0, we consider the probability distribu-
tion µ(ψ, t) of the conditional state ψt. Assuming that
ψt relaxes quickly into one of the phases A or B (such
that either χA

t = 1 or χB
t = 1 after a time of order τf),

we have by (13) that for τf ≪ t≪ τs,

µ(ψ, t) ≈ C∗
A(ψ0)µA(ψ) + [1− C∗

A(ψ0)]µB(ψ) (20)

where all dependence on the initial condition appears
through (the asymptotic value of) the committor C∗

A(ψ0),
and µA,B(ψ) are probability distributions for the condi-
tional state, within the metastable phases. The approxi-
mate equality appears because we rely on the separated
time scales τf ≪ t≪ τs.
Recalling that ρ(t) = ⟨ψt⟩, averaging ψ against the

distribution in (20) yields

ρ(t) ≈ C∗
A(ψ0)ρA + [1− C∗

A(ψ0)]ρB (21)

where ρA, ρB are the averages of ψ with respect to
µA, µB . Since (5) holds in the same asymptotic limit,
it is natural to compare these two results, which suggests
that we identify pA with CA(ψ0), and similarly for phase
B. Noting that (5,21) are approximate equalities that
become accurate in the limit ϵ→ 0, one finds

C∗
A(ψ) = Tr[P ∗

Aψ], C∗
B(ψ) = Tr[P ∗

Bψ], (22)

with P ∗
A,B = limϵ→0 PA,B .

Eq. (22) – which is generic for unravelled systems
with two-phase metastability – is important as a con-
nection between the QME and trajectory representa-
tions of metastability. For example if P ∗

A|ψ⟩ = |ψ⟩ then
C∗

A(ψ) = 1 so this state is in the basin of attraction of
phase A, and quantum trajectories started in |ψ⟩ will
(typically) relax quickly into that phase. A similar prop-
erty holds if P ∗

B |ψ⟩ = |ψ⟩, in which case |ψ⟩ is in the
basin of attraction of phase B (and P ∗

A|ψ⟩ = 0). For ini-
tial (pure) states ψ which overlap with both phases, the
committor is intermediate: they relax to one phase or the
other with probability C∗

A,B(ψ). (The extension of these

results to more than two phases is straightforward.)
An interesting feature of (22) is that the commit-

tor is independent of the unravelling (for example, the
same formula applies also for homodyne unravellings [2]).
Hence, the basins of attraction of the phases A and B are
also independent of the unravelling. We also emphasise
that (20) – which is the starting point for this analysis
– relies on the assumption that the unravelled dynamics
relaxes quickly into either phase A or phase B. This cer-
tainly holds in the 3-state examples considered here and
we expect it to hold in a broad range of examples, but a
detailed investigation of the conditions required remains
as an interesting direction for future work.

Having identified these general principles, we sum-
marise their implications for the 3-state models. Any
trajectory which starts in a quantum superposition of
the two phases, such as (|0⟩+ i|2⟩)/

√
2, will evolve on the

fast timescale τf into either the dark or the bright phase,
according to these committor probabilities. In the limit
ϵ→ 0, the relevant operators are projectors: P ∗

D = |2⟩⟨2|
and P ∗

B = (|0⟩⟨0| + |1⟩⟨1|). These are projections onto
the bright/dark subspaces of the model. The committors
to each phase – which are computed directly in Sec. IVB
– are related to the underlying QME by (22). Hence as
ϵ→ 0 they converge to

C∗
B(ψ) = ⟨0|ψ|0⟩+ ⟨1|ψ|1⟩, C∗

D(ψ) = ⟨2|ψ|2⟩. (23)
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B. Committor for reset processes

For reset processes, the core sets SA,SB that appear
in the definition of the committor can often be identified
with reset states, as they were in Sec. III E. Here we
derive a formula for the committor that applies in this
situation. (We note however that this choice of core sets
is not possible in all cases: an example is given by the
model of Sec. III A, which has only one reset state.)

For a quantum trajectory starting in state ψ0 at time
t = 0, the probability that the first jump has destina-
tion |ϕj⟩ and occurs in the time interval [t, t + dt) is
p(j, t|ψ0)dt, with

p(j, t|ψ0) = S(t, ψ0)wj(t, ψ0) (24)

where S(t, ψ0) = Tr[eGtψ0e
G†t] is the survival probability

up to time t [analogous to (9)] and

wj(t, ψ0) =
Tr[Jje

Gtψ0e
G†tJ†

j ]

Tr[eGtψ0eG
†t]

(25)

is the jump rate by jump Jj at time t [analogous to (11)].
For quantum reset processes we can then use (7) to obtain

p(j, t|ψ0) = κj
〈
ξj
∣∣eGtψ0e

G†t
∣∣ξj〉. (26)

Hence, the total probability that the first jump after t = 0
is of type j is

P (j|ψ0) =

∫ ∞

0

dt p(j, t|ψ0). (27)

This is an example of a splitting probability [92].
Now consider a system with two or more phases, where

the core set for each phase A,B, . . . consists of a single re-
set state, with corresponding jump operators of the form
(7). Then the committor from state ψ0 to phase A is ex-
actly the probability that a quantum trajectory starting
at ψ0 makes its first jump to |ϕA⟩, which is

CA(ψ0) =

∫ ∞

0

dτ κA
〈
ξA
∣∣eGtψ0e

G†t
∣∣ξA〉. (28)

For example, in the model of Sec. III E, one identi-
fies the jump operator corresponding to jumps into the
“dark” phase as J2 =

√
κ2|2⟩⟨2| and (28) reduces to

CD(ψ0) =

∫ ∞

0

dτ κ2⟨2|eGτψ0e
G†τ |2⟩, (29)

with a similar formula for CB on replacing |2⟩ → |1⟩ and
κ2 → κ1. The committor for this model, calculated from
(29), is shown in Figs. 4(c,f). Note that as ϵ → 0, (29)
converges to (23).

The result (28) has practical implications. It is much
more efficient than estimating committors directly by
running many random trajectories starting from each
state. Of course one can also use (22) to obtain the com-
mittor in the limit ϵ → 0, but (28) is useful since it is

valid also at finite ϵ, and it also avoids the requirement
to diagonalise the quantum Liouvillian operator. In ad-
dition, while (28) is not directly applicable to the first
model of Sec. III, a modified version of the formula still
applies, where the upper limit on the integral is the time
at which the jumpless reaches the core set SD for the
dark state. This last method was used to compute the
committor in Figs. 3(a,d).

V. TWO QUBIT MODEL

As well as the two-phase metastability considered so
far, the general theory of quantum metastability includes
a range of other phenomena including noiseless subsys-
tems (NSS) and decoherence free subspaces (DFS)[93],
which are protected from dissipation and decoherence,
and have been proposed as possible candidates for the im-
plementation of quantum information processing [94, 95].

A. Quantum reset model with metastable DFS

As an example of a metastable DFS in a quantum reset
process, we consider two coupled qubits, with Hamilto-
nian and jump operators given by

H = Ω1σ
y
1 +Ω2σ

y
2

J1 =
√
γ1n1σ

−
2 (30)

J2 =
√
γ2(1− n1)σ

+
2 ,

where σ±
i = 1

2 (σ
x
i ± σy

i ), the subscript denotes the qubit

on which the operator acts, ni =
1
2 (1 + σz

i ), and we use
the single qubit basis {|↑⟩, |↓⟩}. This system is depicted
in Fig. 1(c) and based on a similar model, proposed in
[10]. It is defined in a basis for which the matrix elements
of G and L are all real. The model is a quantum reset
process with two reset points, |↑↓⟩ and |↓↑⟩. The semi-
Markov structure of the model is illustrated in Fig. 1(c).
Note that this has the same structure as for the two-jump
three-state model shown in Fig. 1(b), but the differing
waiting time distributions of the semi-Markov processes
lead to very different qualitative behaviour.
The metastable regime is

|Ω1|, |Ω2| ≪ γ1, γ2. (31)

For consistency with the general formalism of Sec. II B,
we take Ω1,2 = ϵω1,2 with γ1,2 > 0 and ω1,2 held constant
as ϵ → 0. In this limit, the QME is metastable with
four slow eigenvalues, m = 4: in fact, the model has a
metastable DFS [10]. These four slow eigenvalues and
the metastable DFS are also preserved on replacing

H → H +Ωrσ
x
1σ

y
2 (32)

and fixing Ωr = O(1) as ϵ → 0. This generates fast
unitary evolution of the quantum state within the DFS.
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Our analysis focuses on the model (30) which corresponds
to Ωr = 0, but we also include brief comments on the
general case.

We recall the distinction of [10] between classical
metastability and a metastable DFS. In classical metasta-
bility for m = 4, the QME solution (3) for t≫ τf would
become

ρ(t) ≈
∑

X∈{A,B,C,D}

pX(t)ρX (33)

where the four states are A,B,C,D, the pX(t) are time-
dependent probabilities of each state (summing to unity),
and ρX is a density matrix describing phase X [10, 12].
All these density matrices are supported on different
parts of the system’s Hilbert space. The four terms in the
sum mirror them terms in (3). In contrast, for the model
considered here, we have (at the same level of accuracy):

ρ(t) ≈ p1(t)|↑↓⟩⟨↑↓|+ p2(t)|↓↑⟩⟨↓↑|
+ z(t)|↑↓⟩⟨↓↑|+ z∗(t)|↓↑⟩⟨↑↓| (34)

where now p1,2(t) are real-valued probabilities (summing
to unity) but z(t) is complex (with |z|2 ≤ p1p2). This
means that the metastable manifold approximately cor-
responds to a qubit with basis states |↑↓⟩ and |↓↑⟩. The
z-terms in (34) represent coherences between different
parts of the metastable manifold, which are forbidden in
(33).

B. Connections between trajectory and QME
dynamics

Figs. 5(a,b) show a typical quantum trajectory of this
model, and its corresponding time record. Compared
with the models considered so far, there are several strik-
ing features. First, the projection of ψ onto the states
|↑↑⟩ and |↓↓⟩ is extremely small throughout [in fact,
O(ϵ)]. Second, quantum jumps are rare, throughout the
evolution. Third, the two-phase behaviour of Figs. 2(b)
and 4(a) is absent: instead one sees occasional fast events
(triggered by jumps), which are followed by periods of
continuous slow evolution towards an asymptotic (dark)
state.

These aspects of the behaviour are linked to proper-
ties of the QME, which are clearest from a perturbative
analysis about ϵ = 0. As noted above, the QME be-
haviour for ϵ = 0 corresponds to fast relaxation into
(34). All contributions to ρ(t) that involve |↑↑⟩ and
|↓↓⟩ decay quickly so they do not appear in (34), this
is a decay subspace [64, 96]. Similarly, quantum tra-
jectories for ϵ = 0 relax into pure states |ψ⟩⟨ψ| with
|ψ⟩ = z1|↑↓⟩+ z2|↓↑⟩, which are stationary in the unrav-
elled dynamics at ϵ = 0. The manifold (34) is annihilated
by jump operators J1, J2, hence these states are dark.
On restoring a positive ϵ > 0, one naturally recov-

ers small contributions of |↑↑⟩, |↓↓⟩ in the quantum tra-
jectories. For small positive ϵ, the small contributions

(a)

(b)

(c) (d)

(e)

FIG. 5. Two-qubit quantum reset model with metastable
DFS. (a) Example unravelled trajectory, from initial state
1
4

∑
ij |i⟩⟨j|. (b) Corresponding measurement record. (c) Il-

lustration of the unravelled dynamics. (d) Stationary state
probability density along the length of the jumpless trajec-
tory from each reset state denoted by |ψr⟩. (e) Semi-Markov
probability density. All panels take γ1 = 4, γ2 = 1, with
Ω1 = 0.02, Ω2 = 0.01 in (a,b,d).

of |↑↑⟩, |↓↓⟩ restore small finite jump rates, as observed.
The slow continuous evolution of the conditional state
in Fig. 5(a) is a more subtle feature of the metastable
DFS. We explain below that it is related to the evolution
of coherences z(t) within the metastable manifold. Note
also that this slow evolution is a feature of this model
that is not fully generic for metastable DFSs: for the
model of (32), Eq. (34) includes a fast unitary evolution.
However, we focus here on Ωr = 0, for simplicity.

C. Quantum trajectories

To analyse quantum trajectories in more detail, we
begin with jumpless trajectories starting from the reset
points, as before. The matrix G has real elements. For
ϵ = 0 the states |↑↓⟩ and |↓↑⟩ are eigenvectors of G with
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degenerate eigenvalues of zero, while |↑↑⟩ and |↓↓⟩ are
eigenvectors with positive eigenvalues. For ϵ > 0 the de-
generate pair are split, leading to a dominant eigenvector
|φa⟩ and a second eigenvector |φ2⟩ which are both of the
form cosϕ|↑↓⟩+sinϕ|↓↑⟩+O(ϵ), with eigenvalues O(ϵ2).

It follows that the jumpless trajectories evolve quickly
away from the reset points before arriving in a slow man-
ifold spanned by |φa⟩ and |φ2⟩. This is illustrated in
Fig. 5(c): there is fast motion along the blue lines, fol-
lowed by slow motion along the purple line, which is
the slow manifold. The dotted red line can be param-
eterised as cosϑ|↑↓⟩+ sinϑ|↓↑⟩; similarly the purple line
is cosϑ|φa⟩+sinϑ|φ2⟩: the separation of the two lines is
O(ϵ).

The dominant eigenvector |φa⟩ is the black dot, and
both jumpless trajectories eventually converge to this
point. The two slow eigenvalues of G are both O(ϵ2),
and this sets the speed at which the jumpless trajec-
tory moves along the slow manifold. (Note that the
jumpless trajectory describes a four-dimensional wave-
function with real co-efficients: we represent it by a three-
dimensional sketch, bearing in mind that the fourth com-
ponent is fixed by normalisation.)

In contrast to the models discussed so far, the proper-
ties outlined in Sec. IID do not hold in this case, and one
cannot identify fast relaxation into distinct metastable
phases with slow transitions between them. This quali-
tative difference from the 3-state model illustrates that
the metastable DFS is inherently non-classical. The ab-
sence of distinct phases also means that committors –
which are characteristic of classical metastability – can-
not be defined in this case. The possibility of continu-
ous slow evolution of the quantum state within a slow
manifold is a distinctive feature of quantum metastable
systems: this behaviour is absent from classical theories
of metastability.

Fig. 5(d) shows the invariant measure along the jump-
less trajectories: there is significant probability [p(ℓ) =
O(1) as ϵ → 0] over a range of ℓ. The typical time be-
tween jumps is long, as shown in Fig. 5(e). In fact, the
entire slow manifold is similar to a dark phase in that the
jump rate is O(ϵ2) everywhere. Following the prescrip-
tion of Sec. IVB, one can use the semi-Markov property
of the quantum trajectories to compute the probability
that the system jumps to a given reset state given the
destination of the previous jump, using (29). Since there
are two reset points, there are four such probabilities:
we find that they are all of order unity. This is in stark
contrast to the three-state model of Sec. III E where the
system tends to make multiple repeated jumps of the
same type: in that case, two of the probabilities are O(1)
but the other two are small, O(ϵ2).

Having described trajectories that start from the reset
points, we briefly consider other initial points. The pur-
ple line in Fig. 5(c) is just one part of a larger slow man-
ifold that corresponds to a qubit |ψ⟩ = za|φa⟩ + z2|φ2⟩
where za, z2 are complex in general. A trajectory ini-
tialised anywhere on this manifold will evolve slowly to-

wards |φa⟩, and its jump rate is small [in fact, O(ϵ2)]
throughout this evolution. The slow time scales for these
processes mean that any coherence between |↓↑⟩ and |↑↓⟩
in the initial condition survives a long time: this is a cen-
tral feature of the metastable DFS. In the specific case of
quantum reset processes, jumps necessarily remove the
coherences between the reset states, with the result that
DFSs must always be “dark”, as in this example.
Finally, it is also interesting to analyse quantum tra-

jectories for the generalised model of (32). The essential
difference in this case is that the purple line in Fig. 5(c)
is extended to a closed circle around which the jumpless
trajectories circulate quickly (frequency of order Ωr), al-
though the DFS remains dark, as it must. Similarly to
introducing (32), one can also apply any unitary oper-
ation (gate) acting as a rotation within the slow mani-
fold. This produces a logical qubit, from the two physical
qubits, which supports long lived coherence. The evolu-
tion under the applied operations remains approximately
unitary on the long times between jump events.

D. Recovering classical metastability for Ω1 ≪ Ω2

In addition to a metastable DFS, the two qubit model
(30) also supports other metastable structures. To il-
lustrate this, note that for Ω1 = 0, the Hilbert space is
disconnected into two subspaces that are not mixed un-
der the dynamics: suitable bases for the subspaces are
{|↑↑⟩, |↑↓⟩} and {|↓↑⟩, |↓↓⟩}. We label these subspaces as
↑ and ↓, according to the state of the first spin. It fol-
lows that for |Ω1| ≪ |Ω2|, γ1, γ2, one recovers two-phase
metastability, with one phase supported on each sub-
space, and phenomenology similar to the 3-state model
considered above.
Similarly to the analysis of Sec. IVA, the committors

for these phases can be identified from (22). Labelling
the phases according the subspaces, the committor for
the ↑-phase can be identified as

C∗
↑ (ψ) = Tr[n1ψ]

= ⟨↑↑|ψ|↑↑⟩+ ⟨↑↓|ψ|↑↓⟩ (35)

and similarly C∗
↓ (ψ) = Tr[(1− n1)ψ].

A particularly interesting situation occurs for

|Ω1| ≪ |Ω2| ≪ γ1, γ2 (36)

in which case the QME spectrum has two gaps. As an
example, we take Ω1 = ϵ2ω1, Ω2 = ϵω2 in which case the
slow eigenvalues of the QME are λ1 = 0, λ2 = O(ϵ4),
λ3,4 = O(ϵ2). For times t ≫ ϵ−2, the eigenvalues λ3,4
do not contribute and one does indeed observe simple
two-phase (classical) metastability. However, the eigen-
values λ3,4 affect the behaviour on intermediate time
scales. [The system still features the “slow manifold”
(34). After each jump, the relaxation into this mani-
fold occurs quickly; while motion within this manifold
can occur with intermediate rates which scale as λ3,4 or
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(c)

(b)

(a)

(e)
(f)

(d)

FIG. 6. Two-qubit model with classical metastability. (a)
Example measurement record for Ω1 = 0.0005, Ω2 = 0.01
and initial state 1

4

∑
i,j |i⟩⟨j|. (b) Corresponding quantum

trajectory. (c) Magnified portion of (b). (d) Illustration of the
unravelled dynamics. (e) Probability density along the length
of the jumpless trajectory from each reset state denoted by
|ψr⟩. (f) Committor to the state |ψ⟩ ≈ |↑↓⟩ in the semi-
Markov representation, calculated from (28).

with slow rates, scaling as λ2.] This resulting situation
is illustrated in Fig. 6. The two-phase metastability is
clear from the representative trajectory and correspond-
ing measurement record in Figs. 6(a,b) and the existence
of an intermediate relaxation time is visible in Fig. 6(c).

Fig. 6(d) illustrates that the stationary point |φa⟩ of
the unravelled dynamics is close to the reset point |↑↓⟩, in
contrast to the situation shown in Fig. 5(c). The ↑-phase
consists of rapid motion from |↑↓⟩ towards |φa⟩, with
frequent jumps back to |↑↓⟩, reminiscent of the bright
phase in the three-state models of Sec. III. Trajectories
in the ↓-phase evolve quickly from the reset state |↓↑⟩
to the slow manifold: they move towards |φa⟩ with an
intermediate rate, but they typically reset back to |↓↑⟩
before getting close to |φa⟩. These two phases are visible
as two separate peaks in the distribution p(ℓ) in Fig. 6(e).

Finally, Fig. 6(f) shows the committor as a function of
the time since the last reset. The core sets for the two
phases are the reset points, as in Sec. III E. Hence the
committor to the ↑-phase is given by (28) on replacing

A→↑, κA → γ1 and |ξA⟩ → |↑↓⟩. Fig. 6(f) shows that if
the last reset was to |↑↓⟩, the next reset state will almost
certainly be the same, independent of the time since the
last reset. If the last reset was to |↓↑⟩, the most likely
destination of the next jump depends on the time τ . For
small τ then the system most likely resets to the same
destination, but for large τ the state approaches |φa⟩ and
tends to jump to |↑↓⟩ instead. This behaviour is similar
to Fig. 4(f).
Since this model has frequent jumps in both phases,

it is essential for the two-phase metastability that the
destination of each jump tends to be similar to that
of the previous one (recall Sec. III E). To see how this
happens, it is convenient to write the slow manifold as
|ψ⟩ = cosϑ|u⟩ + sinϑ|v⟩ with |u⟩ = |↑↓⟩ + O(ϵ), and
|v⟩ = |↓↑⟩+O(ϵ). The ↑-phase corresponds to ϑ ≈ 0 and
it can be shown that ⟨↑↑|u⟩ = O(ϵ), while ⟨↓↓|u⟩ = O(ϵ2).
Constructing the semi-Markov rates from (11), one finds
that systems in the ↑-phase jump to |↑↓⟩ with rate O(ϵ2)
but they jump to |↓↑⟩ with a much smaller rate O(ϵ4).
Hence, resets to the same state are indeed much more
frequent. A similar situation holds in the ↓-phase.

VI. OUTLOOK

A. Beyond quantum reset models

All examples considered so far have been quantum re-
set models: we emphasised that quantum trajectories
are particularly tractable in this case. However, the
metastable phenomenology discussed above is not re-
stricted to these models. In particular, the relationship
(22) between the committor and the spectrum of the
QME is generic for system with classical metastability
(in the sense of [12]).
We offer two specific examples of metastable non-reset

processes. The first is obtained by combining the jump
operators of the two-jump three-state model of Sec. III E
into a single jump operator

J = J1 + J2 =
√
κ1|0⟩⟨1|+

√
κ2|2⟩⟨2|. (37)

This operator does not mix the unperturbed phases, so
the coupling between them is unchanged from the orig-
inal model and the low-lying spectrum of the QME has
the same qualitative features. As a result, the commit-
tors to the two phases are still given to leading order by
(23), and the average jump rates within the phases are
also unchanged, although the higher-order statistics are
different. The quantum trajectories have the same qual-
itative behaviour as the original quantum reset model.
In this sense, the reset model is a tractable system that
exemplifies a broader class of metastable systems.
A similar construction can be used to analyse a two-

qubit model introduced in [10]. This has the same Hamil-
tonian as (30), but a single jump operator

J =
√
γ1n1σ

−
2 −√

γ2(1− n1)σ
+
2 (38)
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(c)

(b)

(a)

FIG. 7. Non-quantum-reset variant of two-qubit model. (a)
Example unravelled trajectory, from initial state 1

4

∑
i,j |i⟩⟨j|

with Ω1 = 0.02, Ω2 = 0.01, γ1 = 4, γ2 = 1. (b) Measurement
record for (a). (c) Illustration of the dynamics (see text).

which replaces the two jumps in (30) by a single jump
which superposes them. The low lying spectrum of the
QME is almost unchanged since at ϵ = 0 the DFS is dark,
so that at ϵ > 0 the QME spectrum has m = 4 with the
metastable DFS.

Fig. 7 shows a representative quantum trajectory for
this model, with its corresponding measurement record,
and a sketch illustrating the behaviour of jumpless trajec-
tories. This can be compared with Fig. 5. The main dif-
ference is that the system is not a quantum reset model:
the red circle in Fig. 7(c) shows the possible destina-
tions of quantum jumps, which are all states of the form

|ψ⟩ = q|↑↓⟩ ±
√

1− q2|↓↑⟩ with −1 ≤ q ≤ 1.5

From (38), the jump destination (parameterised by q)
depends on the small components of |ψ⟩, which have a
non-trivial evolution, leading to a complicated depen-
dence of q on the starting point of the jump. However,
it is still useful to consider jumpless trajectories in this
representation. Every jump takes the system onto the
red circle, after which the state relaxes quickly onto the
slow manifold (purple circle). It then evolves within that
manifold towards the asymptotic state |φa⟩. Jumps may
take place from any point on the slow manifold and may
end at any point on the red circle. As a result, there is
a continuous family of jumpless trajectories. In contrast
to the corresponding quantum reset model (Section V),
this means that the steady state probability distribution
cannot be represented as in Fig. 5(d,e). However, the
DFS phenomenology is very similar between reset and
non-reset models: Again, the reset model is useful as a
tractable example that illustrates generic metastable be-
haviour. An interesting question is whether there are
qualitative aspects of metastability that cannot be cap-
tured by reset models: an important case might be the
metastability that appears near first-order phase transi-
tions in many-body systems [11, 24, 30].

5 Since the state of the unravelled dynamics is the pure density
matrix ψ = |ψ⟩⟨ψ|, the points |ψ⟩ and −|ψ⟩ are equivalent in
this graphical illustration.

B. Quantum Systems with Classical Metastability

A central conclusion of Secs. III and IV is a connection
between quantum trajectories and those of classical sys-
tems with metastability. This appears in quantum sys-
tems with classical metastability in the sense of [10, 12].
The associated phenomenology is that typical trajecto-
ries relax quickly into one of the metastable phases and
explore them quickly; on long time scales they exhibit
rare transitions between the phases. In the stationary
regime, these trajectories show intermittent behaviour,
which switches between the phases: this mirrors the in-
termittent behaviour of time records discussed in [12].
The rates for the slow and fast processes in such systems
are controlled by τs and τf respectively. In the classical
framework, an important role is played by the committor:
for two-phase metastability, we explained that this can
be related to the spectrum of the QME, via (22), provid-
ing quantitative connection between QME and trajectory
representations.
As examples of this behaviour we considered two vari-

ants of a simple 3-state model, which exhibits bright
and dark states. Both examples are quantum reset pro-
cesses: we explained how this structure can be exploited
in order to characterise their behaviour via a mapping
to semi-Markov processes, and by analysis of jumpless
trajectories that start from the reset point(s). Hence
the stationary state of the unravelled dynamics is sup-
ported on a finite set of lines in the Hilbert space. Our
results show these quantum reset models are relatively
simple to analyse, while still supporting rich metastable
behaviour. This means that some general insights can be
extrapolated from such simple examples: for example,
metastable systems generically show large differences be-
tween quantum trajectories and the averaged behaviour
of the QME; we also shows how the committor is useful
for delineating metastable phases within quantum trajec-
tories.
To continue the theoretical programme that we have

started here, it would be important to characterise more
rigorously the conditions required to observe intermit-
tency in unravelled dynamics. One could also investi-
gate models which are metastable but do not exhibit
this intermittent behaviour, for example a qubit with
H = Ωσz, J = ϵγxσ

x + ϵγyσ
y + γzσ

z. Other interest-
ing questions occur in quantum trajectories where two
metastable phases have the same average jump rate,
which makes them harder to distinguish from experimen-
tal time records.

C. Quantum Systems with Non-Classical
Metastability

Our analysis of the two-qubit model of Sec. V illus-
trates the observation of [10], that quantum systems
can support non-classical metastable behaviour such
as metastable DFS. Consistent with the nomenclature
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of non-classical metastability, we find that the corre-
sponding quantum trajectories do not exhibit the clas-
sical metastable phenomenology of fast relaxation into
metastable phases and rare transitions between them. In-
stead, the unravelled dynamics features a slow manifold
within which they undergo continuous (slow) motion.

The existence of metastable DFS in quantum reset
models may be surprising, given the simplicity of the
models. We explained that this is possible because the
DFS is “dark”, in that all jump rates vanish as ϵ → 0,
within the relevant subspace. This is also true for the
non-reset model discussed in Sec. VIA.

Quantum trajectories are highly relevant to experi-
mental setups, especially where systems undergo continu-
ous monitoring as is becoming increasingly implemented
in modern experiments [97–99]. Therefore, understand-
ing their behaviour in non-classically metastable systems,
which exhibit phenomena crucial for implementation of
quantum technologies, is an important task. We have in-
vestigated this in few-level systems, both reset and non-
reset, where the trajectories behave analogously to slow
continuous classical dynamics within a manifold of low
activity. A natural next step is to build on this work to
consider many-body systems, which have a greater range
of practical applications [100–102].
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Appendix A: Three-state model

1. Quantum Master Equation

Here we discuss the structure of the QME for the model
of Sec. III A. Writing the QME operator in the basis

{|2⟩⟨2|, |1⟩⟨1|, |0⟩⟨0|, σx
01, σ

x
02, σ

x
12, iσ

y
01, iσ

y
02, iσ

y
12},

where σx
jk = |j⟩⟨k|+ |k⟩⟨j| and iσy

jk = |j⟩⟨k| − |k⟩⟨j|, we
obtain a matrix representation of L as

L =



0 0 0 0 −Ω2 0 0 0 0
0 −κ1 0 −Ω1 0 0 0 0 0
0 κ1 0 Ω1 Ω2 0 0 0 0
0 2Ω1 −2Ω1 −κ1

2
0 Ω2 0 0 0

2Ω2 0 −2Ω2 0 0 Ω1 0 0 0
0 0 0 −Ω2 −Ω1 −κ1

2
0 0 0

0 0 0 0 0 0 −κ1
2

0 −Ω2

0 0 0 0 0 0 0 0 Ω1

0 0 0 0 0 0 Ω2 −Ω1 −κ1
2


(A1)

This matrix has a block structure, the steady state eigen-
vector comes from the first block while the eigenvalues of
the second block have strictly negative real parts and
correspond to decaying coherences.

To understand metastability at this level, recall that
Ω2 = ϵω2 and consider perturbation theory about ϵ = 0
by writing L = L0 + ϵV . The first row and column of
L0 are both full of zeros, showing that ρ∗D = |2⟩⟨2| is a
(dark) steady state of the model with ϵ = 0. There is
a second (bright) steady state ρ∗B which is supported on
|1⟩⟨1|, |0⟩⟨0|, and σx

01.
For small positive ϵ one recovers a unique stationary

state which is well-approximated by a linear combination
of ρ∗B and ρ∗D. The two zero eigenvalues are split as
θ1 = 0 and θ2 = O(ϵ2). (One might expect in general
θ2 = O(ϵ) but there is no such contribution here because
Tr[ρ∗BV (ρ∗D)] = 0.)

2. Jumpless trajectories

We describe here the jumpless dynamics of the three-
state model, as defined in (17). For this, we require some
properties of G (or equivalently the effective Hamiltonian
Heff = iG). Working in the basis (|0⟩, |1⟩, |2⟩), we have

G =

 0 Ω1 Ω2

−Ω1 −κ1

2 0
−Ω2 0 0

 . (A2)

Using also that Ω2 = ϵω2, the system can be analysed
perturbatively in ϵ. For ϵ = 0, the only non-zero elements
of G appear in a 2×2 block: the corresponding subspace
of the model’s Hilbert space corresponds to the bright
phase and the effective Hamiltonian is that of a two-level
atom. The eigenvectors of G at ϵ = 0 are |φ∗

a⟩ = |2⟩ (the
dark state) with eigenvalue θ∗a = 0, and

|φ∗
±⟩ ∝ θ∗∓|0⟩+Ω1|1⟩ , (A3)

where the coefficient of proportionality is fixed by nor-
malisation and

θ∗± =
−κ1 ±

√
κ21 − 16Ω2

1

4
(A4)

are the corresponding eigenvalues, which are of order
unity. For ϵ > 0, the eigenvectors of G are

|φ±⟩ = |φ∗
±⟩+O(ϵ)

|φa⟩ = |2⟩+O(ϵ). (A5)

The corresponding eigenvalues are θ± = θ∗± + O(ϵ) and
θa = O(ϵ2). The perturbative corrections in (A5) are re-
sponsible for weak coherences in the EMSs, as described
in Sec. III B.

The eigenvalues θ± may be real, or a complex conju-
gate pair. We focus on the case κ ≥ 4Ω1 in which case
they are both real. [In our numerical examples we take
κ = 4Ω1 in which case θ∗± are degenerate, but they are
split by the perturbation, so θ± are real and distinct.
Hence, the numerics reflect qualitatively what occurs for
all κ1 ≥ 4Ω1.]
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Restricting to this case we have 0 > θa > θ+ > θ− and
(17) becomes

|ψτ ⟩ ∝ Aa|φa⟩+A+|φ+⟩e−(θa−θ+)τ +A−|φ−⟩e−(θa−θ−)τ

(A6)
for suitable (real) constants Aa, A±; the constant of
proportionality is set by normalisation and we assume
Aa > 0 without loss of generality. Since the jumpless
trajectory starts from the reset state |0⟩, we must have
Aa|φa⟩ + A+|φ+⟩ + A−|φ−⟩ = |0⟩. Note that G is not
Hermitian, so its eigenvectors are not orthogonal. Nev-
ertheless, multiplying from the left by ⟨2| and using (A5)
shows that Aa = O(ϵ), and similarly the overlaps with
⟨0| and ⟨1| show that A± = O(1).

The exponential factors in (A6) are decaying with rates
of O(1), so for very long times we must have |ψτ ⟩ ≈ |φa⟩.
However, the small coefficient Aa = O(ϵ) means that this
only occurs for times τ ≳ (θ+ − θa)

−1 log(|A+|/ϵ) which
diverges as ϵ → 0. On the other hand, (θ+ − θ−) =
O(1) so one sees that for (θ+ − θ−)

−1 ≪ τ ≪ (θ+ −
θa)

−1 log(|A+|/ϵ) one has |ψτ ⟩ ≈ |φ+⟩. This state cor-
responds to the elbow in Fig. 3: the jumpless trajectory
moves slowly past this elbow because the contribution
of |φ−⟩ decays almost to zero before the contribution of
|φa⟩ becomes significant.

It is useful to identify the time τe at which the jumpless
trajectory “passes the elbow”. We define this via the
relation

Aa = d|A+|e−(θa−θ+)τe (A7)

where d > 0 is a threshold that describes how far past the
elbow the trajectory must go: for times τ > τe, the rela-
tive contribution of |φa⟩ to |ψτ ⟩ is at least d. Recalling
that Aa = O(ϵ) then τe diverges as log(1/ϵ). Now observe

that once |ψτ ⟩ passes the elbow, the jumpless trajectory
converges exponentially fast into the dark state |φa⟩ with
rate (θ+ − θa)

−1 = O(1). This means that while tran-
sitions from the elbow to the dark phase are rare (see
below), the actual transition takes place quickly.
To understand why these transitions are rare, it is use-

ful to estimate the probability that a trajectory starting
from the reset state |0⟩ does actually pass the elbow be-
fore jumping back to |0⟩. This is exactly the survival
probability of (9), evaluated at τe. From the properties
of G, this results in

S(τe) ≈ A2
ae

2θaτe +A2
+e

2θ+τe , (A8)

where the approximate equality is due to sublead-
ing corrections from (fast-decaying) exponential factors
e−(θa−θ−)τ and the fact that ⟨φa|φ+⟩ = O(ϵ). Using (A7)
we obtain S(τe) ≈ A2

a(1 + d−2)e2θaτe . For small ϵ then
Aa = O(ϵ) and d = O(1) and θaτe ∼ ϵ2 log(1/ϵ) → 0
so the probability that the conditional state passes the
elbow before jumping is

S(τe) = O(ϵ2). (A9)

In other words, there are typically O(ϵ−2) jumps within
the bright state before any transition to the dark state.
This is consistent with the bright state being metastable.
As a final comment in this Appendix, recall that we

have analysed the behaviour for κ1 ≥ 4Ω1. For the op-
posite case κ1 < 4Ω1, the jumpless trajectory does not
feature an elbow. For ϵ = 0 this trajectory describes cir-
cles in the plane ⟨2|ψ⟩ = 0. For ϵ > 0 these circles slowly
spiral into |ψa⟩. However, the time-dependent overlap
between |φa⟩ to |ψt⟩ is similar to the case already con-
sidered: it only becomes significant after a time of order
log(1/ϵ), after which the jumpless trajectory converges
exponentially into |φa⟩ with a rate of O(1).
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