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Non-reciprocal interactions between microscopic constituents can profoundly shape the large-scale
properties of complex systems. Here, we investigate the effects of non-reciprocity in the context of
theoretical ecology by analyzing a generalization of MacArthur’s consumer-resource model with
asymmetric interactions between species and resources. Using a mixture of analytic cavity cal-
culations and numerical simulations, we show that such ecosystems generically undergo a phase
transition to chaotic dynamics as the amount of non-reciprocity is increased. We analytically con-
struct the phase diagram for this model and show that the emergence of chaos is controlled by a
single quantity: the ratio of surviving species to surviving resources. We also numerically calculate
the Lyapunov exponents in the chaotic phase and carefully analyze finite-size effects. Our find-
ings show how non-reciprocal interactions can give rise to complex and unpredictable dynamical
behaviors even in the simplest ecological consumer-resource models.

Many complex systems operate out of equilibrium
where components generically interact non-reciprocally.
Significant current research aims to untangle the implica-
tions of non-reciprocal interactions for self-organization
and pattern formation. While much progress has been
made towards understanding non-reciprocity in systems
composed of a few types of species or fields, the conse-
quences of non-reciprocity in more complex systems com-
posed of many interacting components are less clear and
presents interesting questions in studies of ecosystems,
pattern formation, active matter, mechanical networks,
and neural networks [1–5].

Large, diverse ecosystems with many types of species
and resources provide a natural setting for exploring this
open problem. Over the last decade, researchers have
adapted methods from the statistical physics of disor-
dered systems (e.g., replicas, the cavity method, random
matrix theory) to analyze such ecosystems [6–15]. Much
of this work has focused on systems with reciprocal inter-
actions in which dynamics are often implicitly governed
by an optimization function and reach a fixed point [16–
19].

One notable exception are recent studies of the ran-
dom Generalized Lotka–Volterra (GLV) model in which
species interact non-reciprocally [20–25]. These sys-
tems can exhibit novel behaviors such as dynamic fluc-
tuations and chaos, including unpredictable “boom-
and-bust” dynamics where low-abundance species sud-
denly bloom to high abundance [26]. These observa-
tions suggest that non-reciprocal interactions can quali-
tatively change ecological dynamics in species-only mod-
els. However, the generalization of these observations
to more complex ecosystems with multiple trophic layers
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or environmentally-mediated interactions remains unex-
plored.
Here, we introduce a generalization of the classic

MacArthur Consumer Resource Model (MCRM) that in-
cludes non-reciprocal interactions between species and re-
sources. Consumer-resource models, first introduced by
MacArthur and Levins [19, 27, 28], have played a founda-
tional role in modern theoretical ecology and undergird
many powerful theoretical frameworks for understand-
ing ecological competition, including contemporary niche
theory and Tilman’s R* principle [29, 30].
Theoretical setup. We consider an ecosystem with
i = 1, . . . , S species which may consume α = 1, . . . ,M
distinct self-replenishing resources with dynamics gov-
erned by the equations,

dNi

dt
= Ni

(
M∑
α=1

ciαRα −mi

)
, (1)

dRα

dt
= Rα(Kα −Rα)−

S∑
i=1

NieiαRα, (2)

where Ni is the population size of species i, Rα is the
abundance of resource α, ciα is the relative consump-
tion preference of species i for resource α, eiα describes
the impact of species i on resource α, mi is the natu-
ral mortality rate of species i, and Kα is the carrying
capacity of resource α in the absence of consumption.
We call this model the asymmetric MacArthur Consumer
Resource Model (aMCRM) with a schematic provided
in Fig. 1. When eiα = ciα the species-resource interac-
tions become reciprocal, or symmetric, and the aMCRM
reduces to the classical MacArthur Consumer Resource
Model (MCRM).
To develop intuition for the role of non-reciprocity

in the aMCRM, we consider the limit where the re-
source dynamics are fast and the resource abundances
become entrained to species dynamics. In this case, we
take the RHS of Eq. (2) to be zero and solve to find
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FIG. 1. Schematic of the asymmetric MacArthur Consumer
Resource Model (aMCRM). Species i benefits with relative
weight ciα from consuming resource α and impacts the abun-
dance of the resource with relative weight eiα.

Rα = max {0,Kα −
∑

i NieiαRα}. Substituting this re-
sult into the equation for species dynamics yields an ef-
fective Generalized Lotka–Volterra (GLV) equation,

dNi

dt
=Ni

κi −
S∑

j=1

AijNj

,

κi =

M∑
α=1

ciαKα −mi,

Aij =

M∑
α=1

ciαejαΘ(Rα),

(3)

where κi is the effective carrying capacity for species i
and Aij is the effective species-species interaction matrix,
encoding how species j impacts species i (Θ is the Heavi-
side function). Although typically not quantitatively ac-
curate, this approximation provides useful qualitative in-
sight into the nature of the non-reciprocal interactions.

In MacArthur’s original consumer-resource model, im-
pacts and benefits are identical, eiα = ciα. In this
case, Aij is symmetric, all interactions are reciprocal,
the ecosystem has a unique fixed point, and the re-
sulting steady state can be derived using an optimiza-
tion principle [16]. Such behavior is expected because
choosing ciα = eiα implicitly assumes that each species
consumes resources proportional to the marginal util-
ity conferred to that species (in the context of game
theory and microeconomics, this is a “rational strat-
egy”). When the resource-species interactions are non-
reciprocal, eiα ̸= ciα, Aij is no longer symmetric, the re-
sulting dynamics can no longer be described using an
optimization principle, and there is no guarantee that
the dynamics will reach a stable fixed point.

Numerical integration of the aMCRM is performed
with a small immigration rate to numerically regular-
ize simulations and ensure that when a steady state is
reached, it is uninvadable (see SI section D2 for details).
Thermodynamic limit. To investigate the aMCRM,
we work in the thermodynamic limit where the numbers
of species S and resources M become very large while
their ratio M/S is held fixed. We assume that parame-

ters are drawn randomly from a fixed distribution anal-
ogous to quenched disorder. To ensure a proper thermo-
dynamic limit, parameters are drawn as follows:

Kα = K + σKδKα, mi = m+ σmδmi,

ciα =
µc

M
+

σc√
M

diα,

eiα =
µe

M
+

σe√
M

(
ρdiα +

√
1− ρ2xiα

) (4)

where δKα, δmi, diα, xiα are independent standard ran-
dom variables (i.e., zero mean and unit variance) and
|ρ| ≤ 1 is the interaction reciprocity parameter. For sim-
plicity, we take µc = µe ≡ µ and σc = σe ≡ σ in all
figures and simulations. The central limit theorem en-
sures that, in the thermodynamic limit, our results are
agnostic to the exact form of the underlying distributions
and depend only on first and second moments. There-
fore, we sample all parameters from normal distributions
unless otherwise specified.
With this parameterization, ρ controls the level of reci-

procity of species-resource interactions through the cor-
relation of consumption benefits and impacts:

corr(ciα, ejβ) = ρ δijδαβ . (5)

When ρ = 1, the aMCRM reduces to the fully sym-
metric MCRM; when ρ = 0, the aMCRM models com-
pletely non-reciprocal species-resource interactions. By
tuning ρ, we can systematically explore the effects of non-
reciprocity.
Cavity method. Just as in the original MCRM, we
can analytically calculate the thermodynamic-limit be-
havior using the cavity method [13, 14, 31, 32]. Unlike
replicas, the cavity method does not require the exis-
tence of an energy function and therefore can be extended
to the aMCRM. We assume dynamics are self-averaging
and described by a replica-symmetric ansatz. Using this
ansatz, we derive self-consistent mean-field equations for
the fraction of surviving species, the fraction of non-
depleted resources, the first and second moments of the
steady-state species and resource abundances, and the
average linear-order responses of a resource’s abundance
to a small change in its own carrying capacity and of a
species’ population to a small change in its own natural
mortality rate (see SI section A for detailed derivations).
As seen in Figs. A6 and A8, numerical simulations and
analytical predictions agree remarkably well for moderate
non-reciprocity.
Transition to dynamic phase. Without reciprocal in-
teractions, the aMCRM has no guarantee of reaching a
steady state. We find that when the interaction reci-
procity ρ is less than a critical ρ⋆, the aMCRM exhibits
a phase transition from a unique self-averaging steady
state to a chaotic dynamic phase. Fig. 2 shows numeri-
cal simulations of typical resource and species dynamics
observed in each phase (see SI section D for simulation
details [33–38]).
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FIG. 2. Example dynamics of the aMCRM in a community
of S = M = 256 species and resources. Left: dynamics in the
stable phase; species-resource interactions are nearly recipro-
cal. Right: dynamics in the dynamic phase; species-resource
interactions are less reciprocal. The parameter values for the
stable-phase and dynamic-phase simulations are respectively
marked with a circle and star in Fig. 3(a).

Using the cavity method, we can analytically com-
pute the phase boundary between the stable and dy-
namic phases [31]. We perturb the nonzero steady-state

species and resource abundances, Ni → Ni + εη
(N)
i and

Rα → Rα + εη
(R)
α , where ε is a small parameter and

η
(N)
i , η

(R)
α are independent standard random variables,

and calculate the susceptibilities dNi/dε , dRα/dε . Be-
cause of the disordered nature of the perturbation, the
expectations of the first moments of the susceptibili-
ties are zero, but the second moments, ⟨(dNi/dε )

2⟩,
⟨(dRα/dε )

2⟩, are nonzero (see SI section B for details).
The phase transition to the dynamic phase is signaled

by the divergence of the these susceptibilities’ second mo-
ments (see Fig. 3). Surprisingly, we find that ρ⋆, the criti-
cal value marking the phase transition to chaos, depends
on model parameters only through the species-packing
fraction, the ratio of surviving species to non-depleted
resources, via the expression (see SI section B):

ρ⋆ =

√
# of surviving species

# of non-depleted resources
. (6)

When ρ < ρ⋆ the ecosystem undergoes a phase transition
to chaos. As the number of surviving species and non-
depleted resources are fixed by model parameters, the
above equation defines a co-dimension-one phase bound-
ary in the parameter space. Beyond this boundary in
the dynamic phase, the second moments of the suscep-
tibilities become negative, indicating that the replica-
symmetric ansatz no longer holds, and its results are

FIG. 3. Phase diagram of the aMCRM and diverging sus-
ceptibility. (a) Heatmap of the fraction of simulations which
reached steady state in finite simulation time for various val-
ues of ρ, the level of reciprocity of species-resource interac-
tions, and σ, the magnitude of fluctuations in species-resource
interactions. Overlain is the cavity method-calculated phase
boundary. (b) Variances of susceptibilities of mean-field
species and resources as a function of ρ, with σ fixed at the
value indicated by the dashed line in (a).

unstable to any perturbation.
Fig. 3(a) shows a phase diagram overlain on a heatmap

of the fraction of simulations that reach steady state
within a chosen finite runtime. We highlight the locations
of the simulations in the stable and dynamic phases in
Fig. 2 with a circle and a star, respectively. In Fig. 3(b),
we plot the second moments of the susceptibilities as a
function of ρ with fixed σ along the slice of phase space
indicated by the dashed line in Fig. 3(a). The suscep-
tibilities’ variances diverge at the phase transition and
become invalidly negative in the dynamic phase. As the
phase transition is approached, the fraction of simula-
tions that reach steady state in a finite simulation time
sharply decreases. An alternative phase diagram with
parameters drawn from uniform distributions is shown
in Fig. F19.
Finally, we note that for certain choices of parame-

ters, the replica-symmetric self-consistent equations do
not have a solution. This transition to infeasibility has
an interesting interpretation but is not physically real-
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ized because it occurs within the dynamic phase where
the replica-symmetric solution is unstable (see SI sec-
tion A5). When ρ = 1, the instability transition and
transition to cavity infeasibility coincide, and neither
transition is ever achieved because in the MCRM, the
competitive exclusion principle applies, keeping the right-
hand side of Eq. (6) less than or equal to one. When
ρ = 0, the system is beyond the instability transition, and
the cavity infeasibility transition is achieved, meaning no
replica-symmetric solution exists. Mathematically, for
ρ = 0, the only solution to the mean-field equations is
the trivial solution where all species are extinct.

Chaos. In order to better understand the transition to
chaos, we numerically computed the maximal Lyapunov
exponent λ1 of the aMCRM in the dynamic and stable
phases using the “H2” method of Geist [39–42]. The
maximal Lyapunov exponent characterizes how quickly
trajectories from nearby initial conditions diverge (posi-
tive exponent) or converge (negative exponent). As seen
in Fig. 4(a), typically, in the dynamic phase, λ1 > 0,
while in the stable phase, λ1 < 0. For the parameters
used in Fig. 2, |λ1| ≈ 5 × 10−3, indicating that the di-
vergence or convergence of nearby trajectories occurs on
a timescale of λ−1

1 ≈ 2 × 102 time units. We further
confirmed the existence of chaos by analyzing the gen-
eralized alignment index (GALI) which measures how a
volume element formed by tangent vectors to a trajectory
changes over time [41–43] (see Fig. C13). Additionally,
we estimated and analyzed the Kaplan–Yorke dimension
and found that it is less than the number of surviving
species and resources [44]. Further details are given in SI
section C.

A direct signature of chaotic dynamics is high sensitiv-
ity to initial conditions as observed in Fig. 4(b). The red
and blue lines show the simulated trajectory of a single
species (top) and resource (bottom) started from initial
conditions with slight differences. Initially, the trajecto-
ries are almost identical before diverging from each other
significantly after a few Lyapunov times.

Finite-size effects. Like most phase transitions, the
transition between the stable and dynamic phases is a
thermodynamic-limit phenomenon. In small ecosystems,
the aMCRM may approach steady state even when in the
dynamic phase due to finite-size effects. As a result, it
is not clear in Fig. 3 what the true probability of steady
state is in the thermodynamic limit. In SI section E, we
quantify these effects by performing a numerical analy-
sis to extrapolate the steady-state probabilities to infi-
nite system size for each of the two points highlighted in
Fig. 3. For both sets of parameters, we measure the dis-
tribution of steady-state times for many simulations for
a variety of system sizes. Using a custom method based
on maximum-likelihood estimation, we then perform a
finite-size scaling collapse on these distributions, allowing
us to approximately determine the steady-state probabil-
ities as a function of system size. Our scaling collapses
provide strong evidence that the probability of reaching
steady state in the thermodynamic limit approaches ex-

FIG. 4. Chaos in the dynamic phase of the aMCRM. (a)
Dot and box-and-whisker plot of λ1s, maximal Lyapunov ex-
ponents, for simulations at various values of ρ, colored by the
mean of absolute values of derivatives of all species and re-
sources at the end of the simulation which is an indicator of
whether the simulation has reached steady state. (b) Two
trajectories (red and blue) with slightly different initial con-
ditions in the dynamic phase of the aMCRM. A species and
a resource are highlighted to emphasize the chaotic dynam-
ics; all other species and resources are shown at low opacity
for clarity. The units of time are given by the inverse of the
maximal Lyapunov exponent, λ−1

1 = 190.

actly zero in the dynamic phase and one in the stable
phase.

Discussion. In this letter, we analyzed the effects of
non-reciprocal species-resource interactions on the sta-
bility of ecosystems. We introduced the asymmetric
MacArthur Consumer Resource Model (aMCRM), a gen-
eralization of the MacArthur Consumer Resource Model
(MCRM). Using the cavity method, we identified a phase
transition between a stable phase in which a unique, un-
invadable, self-averaging steady state exists and a dy-
namic phase with chaotic fluctuations. Remarkably,
the phase boundary depends on model parameters only
through the species-packing ratio—the ratio of surviving
species to non-depleted resources.

Tilman analyzed stability in a two-species, two-
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resource system where the yields of the species on re-
sources differs from their growth and determined “the
equilibrium point will be stable if each species consumes
proportionately more of the resource that more limits its
own growth” [29]. The divergence between ciα and eiα
in the aMCRM is analogous to the divergence between
the yield and growth rate in Tilman’s analysis. Our re-
sults suggest that this principle generalizes to ecosystems
with many species and resources; however, our analysis
takes a statistical approach and uses a different model of
dynamics.

We found that the chaotic regime is generic and oc-
curs robustly and shares features with GLV models with
asymmetric interactions where chaos can also be found
[9, 20]. In consumer-resource models, chaotic dynam-
ics generically occurs when the systems are well below
the competitive exclusion bound, while the dynamics in
GLV systems can violate the competitive exclusion prin-
ciple. Unlike previous work on dynamical fluctuations
in consumer-resource models [45–49], the aMCRM does
not require the introduction of explicit species-species in-
teractions to exhibit chaotic dynamics, chaos occurs be-
low the competitive exclusion bound, the resource car-
rying capacities are static, the dynamics are continuous
and not discrete, and the onset of chaos requires no fine-
tuning and is analyzed in high dimensions. Additionally,
our analysis works explicitly with the consumer-resource
model and not the effective GLV model.

Collectively, these works suggest that non-reciprocal
interactions can lead to complex, chaotic dynamics in
systems with many types of species/fields. In particu-
lar, like GLV models, we also find that species and re-
sources often jump rapidly between low and high abun-
dances. In the future, it will be interesting to see if the
methods developed in Ref. 26 in the context of GLV sys-
tems generalize to explain boom-and-bust dynamics in
consumer-resource models and derive relevant correla-
tion functions and dynamical susceptibilities. Prelimi-
nary results suggest that other consumer resource mod-
els with non-reciprocal species-resource interactions, such
as that with externally supplied resources [50], also ex-
hibit chaotic dynamics; we hope to explore this in fu-
ture work. Finally, further investigations may seek to
understand these phenomena in the context of ecological
processes such as immigration, alternative resource dy-
namics [16, 50], the addition of network and metabolic
structure into interactions [51–53], the inclusion of ad-
ditional trophic structure [54], and spatial and temporal
structure [55].
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Appendix A: Cavity calculation

The objective of the cavity calculation is to find the steady-state behavior of the aMCRM. In particular, we will find
the distribution of the steady-state abundances of the species and resources. The cavity method takes advantage of
the system’s self-averaging behavior. A system is said to have self-averaging behavior if the distribution of properties
of constituents are independent of the exact realization of quenched disorder. This means that constituents’ properties
can be treated as random variates drawn from a distribution that is common to all systems with the same distribution
of quenched disorder. A consequence of this is that an average of some observable taken over constituents given
a fixed realization of quenched disorder is equal to the average of the observable for one constituent taken over all
realizations of quenched disorder. The emergence of this self-averaging behavior is a consequence of the central limit
theorem and quenched disorder, as we will see. In Fig. A5, we compare the distribution of steady-state resource and
species abundance for a single realization of quenched disorder to the distribution of abundances predicted by the
cavity method.

FIG. A5. Comparison of the empirical cumulative distribution functions (eCDFs) of the steady-state abundances of species
(S = 512) and resources (M = 512) for a single realization of quenched disorder and the distribution predicted by the cavity
calculation; simulations are performed in the stable phase. See appendix G for simulation parameters.

1. Setup

We begin by introducing the constituent averages,

⟨R⟩ ≡ 1

M

M∑
α=1

Rα, ⟨N⟩ ≡ 1

S

S∑
i=1

N i, (A1)

where we have introduced the notation X to denote the steady-state value of a quantity X. With these quantities
defined, we can write the steady-state aMCRM as,

0 =
dNi

dt
= N i

[
g +

σc√
M

M∑
α=1

diαRα − σmδmi

]
, (A2)

0 =
dRα

dt
= Rα

[
κ−Rα −

σe√
M

S∑
i=1

Ni

(
ρdiα +

√
1− ρ2xiα

)
+ σKδKα

]
, (A3)

where

g ≡ µc ⟨R⟩ −m, κ ≡ K − µeγ
−1 ⟨N⟩ , γ ≡ M

S
. (A4)
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2. Cavity solution

The cavity method begins by introducing a new species i = 0 and a new resource α = 0. We will later treat the
new terms introduced by these variables as small perturbations. With the new species and resource, we can write the
steady-state aMCRM for the existing species i = 1, . . . , S and resources α = 1, . . . ,M as,

0 =
dNi

dt
= N i

[
µc ⟨R⟩ −

(
m− σc√

M
di0R0

)
+

σc√
M

M∑
α=1

diαRα − σmδmi

]
, (A5)

0 =
dRα

dt
= Rα

[(
K − σe√

M
N0

(
ρd0α +

√
1− ρ2x0α

))
− µeγ

−1 ⟨N⟩ −Rα

− σe√
M

S∑
i=1

N i

(
ρdiα +

√
1− ρ2xiα

)
+ σKδKα

]
. (A6)

For the new species and resource, the steady-state aMCRM says,

0 =
dN0

dt
= N0

[
g +

σc√
M

M∑
α=1

d0αRα +M−1/2σcd00R0 − σmδm0

]
, (A7)

0 =
dR0

dt
= R0

[
κ−R0 −

σe√
M

S∑
i=1

N j

(
ρdi0 +

√
1− ρ2xi0

)
− σe√

M
N0

(
ρd00 +

√
1− ρ2x00

)
+ σKδKα

]
. (A8)

Next, we will analyze the perturbed system relative to the unperturbed system. A quantity with \0 represents the
value before adding the new variables to the system. Looking to Eqs. A5 and A6, we see that the presence of the new
species and resource effectively perturbs the model parameters as,

mi → mi −
σc√
M

di0R0, Kα → Kα −
σe√
M

N0

(
ρd0α +

√
1− ρ2x0α

)
. (A9)

In the thermodynamic limit where M and S are large, we model the perturbation using linear response:

N i = N i\0 −
σe√
M

M∑
β=1

χ
(N)
iβ

(
ρd0β +

√
1− ρ2x0β

)
N0 −

σc√
M

S∑
j=1

ν
(N)
ij dj0R0, (A10)

Rα = Rα\0 −
σe√
M

M∑
β=1

χ
(R)
αβ

(
ρd0β +

√
1− ρ2x0β

)
N0 −

σc√
M

S∑
j=1

ν
(R)
αj dj0R0, (A11)

where we have defined the susceptibility matrices:

χ
(N)
iβ ≡ ∂N i

∂Kβ
, χ

(R)
αβ ≡

∂Rα

∂Kβ
, (A12)

ν
(N)
ij ≡ ∂N i

∂mj
, ν

(R)
αj ≡

∂Rα

∂mj
. (A13)

a. Self-consistency equations for species populations

With the perturbation introduced and susceptibilities defined, we will exploit the linear response approximation
to derive the self-consistency equations for the species populations. Substituting Eqs. A10, A11 into the aMCRM
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equation for the additional species [Eq. (A7)], we obtain,

0 = N0

g + σc√
M

M∑
α=1

d0αRα\0 −
σcσe

M

M∑
α,β=1

χ
(R)
αβ d0α

(
ρd0β +

√
1− ρ2x0β

)
N0

−σ2
c

M

M∑
α=1

S∑
j=1

ν
(R)
αj d0αdj0N0 +

σc√
M

d00R0 − σmδm0

 . (A14)

Taking the mean of the third term with respect to the new matrix elements d0α and x0α, we obtain〈
σcσe

M

M∑
α,β=1

χ
(R)
αβ d0α

(
ρd0β +

√
1− ρ2x0β

)
N0

〉

= N0
σcσe

M

M∑
α,β=1

χ
(R)
αβ

(
ρ ⟨d0αd0β⟩+ ⟨d0α⟩ ⟨x0β⟩

√
1− ρ2

)

= N0
σcσe

M

M∑
α,β=1

χ
(R)
αβ

(
ρδαβ + 0× 0

√
1− ρ2

)
= N0σcσeρχ, (A15)

where we have used that d0α and x0β are independent and have defined,

χ ≡ 1

M

M∑
α=1

χ(R)
αα , (A16)

to be the trace of the Rα ← Kβ susceptibility matrix divided by the number of resources. The variance of this term
is O(M−1), which can be verified by expanding its second moment. The mean of the fourth term is zero because d0α
and dj0 are uncorrelated when α = 1, . . . ,M, j = 1, . . . , S and its variance is O(M−1). Discarding terms of order

O(M−1/2) and higher, we obtain,

0 = N0

(
g − σcσeρχN0 +

σc√
M

M∑
α=1

d0αRα\0 − σmδm0

)
+O(M−1/2). (A17)

The last two terms above are a sum of many independent random variables, so, by the central limit theorem, we can
model these terms as a sum of normal random variables. The mean of these terms is,〈

σc√
M

M∑
α=1

d0αRα\0 − σmδm0

〉
=

σc√
M

M∑
α=1

⟨d0α⟩Rα\0 − σm ⟨δm0⟩

=
σc√
M

M∑
α=1

0×Rα\0 − σm × 0 = 0. (A18)

The variance of these terms is,

σ2
g ≡ Var

[
σc√
M

M∑
α=1

d0αRα\0 − σmδm0

]
=

σ2
c

M

M∑
α=1

R
2

α\0Var [d0α] + σ2
mVar [δm0]

=
σ2
c

M

M∑
α=1

R
2

α\0 + σ2
m = σ2

cqR + σ2
m, (A19)

where we have defined qR ≡M−1
∑M

α=1 R
2

α\0. Due to the self-averaging nature of the system and that the size of the

perturbation is of order O(M−1/2), we have qR ≈ ⟨R
2

0⟩. Let ZN ∼ N (0, 1) be a unit normal random variable. The
large-M limit approximate steady-state condition for the perturbing species becomes,

0 = N0

(
g − σcσeρχN0 + σgZN

)
. (A20)
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Solving for N0 and discarding invadable solutions, we obtain,

N0 = max

{
0,

g + σgZN

σcσeρχ

}
. (A21)

Additionally, observe that if χ→ 0, the cavity solution diverges; this will be discussed in further detail in SI section A5.

b. Self-consistency equations for resource abundances

Now, we repeat this process to find a self-consistency equation for the resources. We substitute the linear response
approximation for species into the aMCRM steady-state equation for the additional resource:

0 = R0

[
κ−R0 −

σe√
M

S∑
i=1

N i\0

(
ρdi0 +

√
1− ρ2xi0

)
(A22)

+
σ2
e

M

S∑
i=1

M∑
β=1

χ
(N)
iβ

(
ρdi0 +

√
1− ρ2xi0

)(
ρd0β +

√
1− ρ2x0β

)
N0

+
σeσc

M

S∑
i,j=1

ν
(N)
ij

(
ρdi0 +

√
1− ρ2xi0

)
dj0R0 −

σe√
M

N0

(
ρd00 +

√
1− ρ2x00

)
+ σKδKα

]
.

Observe that the fourth term (involving χ
(N)
iβ ) has zero mean and variance of order O(M−1); this can be seen by

recalling that di0, d0β , xi0, x0β are all independent for i, β ≥ 1. Similarly, we see that the variance of the fifth term

(involving ν
(N)
ij ) is of order O(M−1). We will ignore fluctuations of order O(M−1/2). The mean of the fifth term is,

σeσc

M

S∑
i,j=1

ν
(N)
ij

(
ρdi0 +

√
1− ρ2xi0

)
dj0R0 = R0

σeσc

M

S∑
i,j=1

ν
(N)
ij

(
ρ ⟨di0dj0⟩+

√
1− ρ2 ⟨xi0⟩ ⟨dj0⟩

)

= R0σeσc
S

M

1

S

S∑
i,j=1

ν
(N)
ij

(
ρδij +

√
1− ρ2 × 0× 0

)
= ρσeσcγ

−1νR0, (A23)

where we have defined,

ν ≡ 1

S

S∑
i=1

ν
(N)
ii , (A24)

which is the trace of the N i ← mj susceptibility matrix divided by S. Discarding terms of order O(M−1/2), we
obtain,

0 = R0

(
κ−R0 −

σe√
M

S∑
i=1

N i\0

(
ρdi0 +

√
1− ρ2xi0

)
+ ρσeσcγ

−1νR0 + σKδK0

)
+O(M−1/2). (A25)

Now, observe the third and last terms are a sum of many independent random variables, meaning we can apply the
central limit theorem and model the sum of these terms as a normal random variable. The mean of these terms is,〈

σKδK0 −
σe√
M

S∑
i=1

N i\0

(
ρdi0 +

√
1− ρ2xi0

)〉
= σK ⟨δK0⟩ −

σe√
M

S∑
i=1

N i\0

(
ρ ⟨di0⟩+

√
1− ρ2 ⟨xi0⟩

)
= σK × 0− σe√

M

S∑
i=1

N i\0

(
ρ× 0 +

√
1− ρ2 × 0

)
= 0. (A26)
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The variance is,

σ2
κ ≡ Var

[
σKδK0 −

σe√
M

S∑
i=1

N i\0

(
ρdi0 +

√
1− ρ2xi0

)]
(A27)

= σ2
KVar [δK0] +

σ2
e

M

S∑
i=1

Var
[
N i\0

(
ρdi0 +

√
1− ρ2xi0

)]
= σ2

K +
σ2
e

M

S∑
i=1

N
2

i\0
(
ρ2Var [di0] + (1− ρ2)Var [xi0]

)
= σ2

K + σ2
e

S

M

1

S

S∑
i=1

N
2

i\0 = σ2
K + γ−1σ2

eqN ,

where qN ≡ 1
S

∑S
i=1 N

2
i\0 which is approximately equal to ⟨N2

0⟩. The approximate steady-state condition for the

added resource then becomes,

0 = R0

(
κ−R0 + σκZR + ρσeσcγ

−1νR0

)
, (A28)

where ZR ∼ N (0, 1) is a standard normal random variable. Solving for R0 and discarding invadable solutions gives,

R0 = max

{
0,

κ+ σκZR

1− ρσeσcγ−1ν

}
. (A29)

3. ReLU function-transformed normal distributions

In these computations, we regularly work with normal distributions that are transformed by the ‘ReLU’ function:
ReLU(x) = max{0, x} = xΘ(x). If Z is a standard normal random variable, the PDF of ReLU(σZ + µ) is,

pReLU(σZ+µ)(z) = δ(z)Φ(−µ/σ) + 1√
2πσ

e−(z−µ)2/2σ2

Θ(z), (A30)

where,

Φ(x) =
1√
2π

∫ x

−∞
dz e−z2/2 =

1

2

(
1 + erf(x/

√
2)
)
, (A31)

is the standard normal CDF. The jth (j ≥ 1) moment is then,

Wj(µ, σ) = ⟨ReLU(σZ + µ)j⟩ = 0 +
1√
2πσ

∫ ∞

0

dz zje−(z−µ)2/2σ2

(A32)

= σj

∫ ∞

−µ/σ

dz√
2π

e−z2/2(z + µ/σ)j ,

=
2−3/2

√
π

(
√
2σ)j

[
j
µ

σ
Γ

(
j

2

)
1F1

(
1− j

2
;
3

2
;− µ2

2σ2

)
+
√
2Γ

(
j + 1

2

)
1F1

(
− j

2
;
1

2
;− µ2

2σ2

)]
,

where 1F1 is the confluent hypergeometric function of the first kind, and Γ is the gamma function. Observe that
Wj(µ/α, σ/α) = α−jWj(µ, σ). Additionally,

W0(x, 1) = 1, (A33)

W1(x, 1) =
1√
2π

e−x2/2 + xΦ(x), (A34)

W2(x, 1) =
1√
2π

xe−x2/2 + (1 + x2)Φ(x). (A35)

It follows from integration by parts,

W2(x, 1) = Φ(x) + xW1(x, 1). (A36)
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Additionally, for a random variable Θ(σZ + µ), the PDF is,

pΘ(σZ+µ)(z) =
1

2

[
1 + erf

(
µ

σ
√
2

)]
δ(z − 1) +

1

2
erfc

(
µ

σ
√
2

)
δ(z), (A37)

so the jth moment (j ≥ 1) is,

⟨Θ(σZ + µ)j⟩ = 0 +
1

2

[
1 + erf

(
µ

σ
√
2

)]
1j =

1

2

[
1 + erf

(
µ

σ
√
2

)]
= Φ(µ/σ). (A38)

4. Final self-consistency equations

Some essential quantities of interest are the expected fraction of surviving species ϕN and fraction of non-depleted
resources ϕR. These quantities are computed using the moments calculated in section A3 and Eqs. A20, A28:

ϕN =
〈
Θ(N0)

〉
= Φ(∆g) , (A39)

ϕR =
〈
Θ(R0)

〉
= Φ(∆κ) , (A40)

where ∆g = g/σg and ∆κ = κ/σκ and Θ is the Heaviside step function with the convention Θ(0) = 0. Next, we can

differentiate our expressions for N0 and R0 to find,

∂N0

∂m
=

∂

∂m

g + σgZN

σcσeρχ
Θ
(
N0

)
= − 1

σcσeρχ
Θ(N0) +

[
N0δ(N0)-term

]
=⇒

〈
∂N0

∂m

〉
= ν = − ϕN

σcσeρχ
(A41)

∂R0

∂K
=

∂

∂K

κ+ σκZR

1− ρσeσcγ−1ν
Θ(R0) =

1

1− ρσeσcγ−1ν
Θ(R0) +

[
R0δ(R0)-term

]
=⇒

〈
∂R0

∂K

〉
= χ =

ϕR

1− ρσeσcγ−1ν
(A42)

We can solve these two equations for χ, ν to obtain the relations,

ν =
γ−1ϕN/ϕR

ρσcσeγ−1(γ−1ϕN/ϕR − 1)
, χ = ϕR − γ−1ϕN . (A43)

Next, we use Eqs. A20 and A28 and invoke our assumption that the system self-averages to find,

⟨N⟩ = ⟨N0⟩ =
σg

σcσeρχ
W1(∆g, 1) =

σg

σcσeρχ

(
e−∆2

g/2

√
2π

+∆gΦ(∆g)

)
, (A44)

⟨R⟩ = ⟨R0⟩ =
σκ

1− ρσeσcγ−1ν
W1(∆κ, 1) =

σκ

1− ρσeσcγ−1ν

(
e−∆2

κ/2

√
2π

+∆κΦ(∆κ)

)
, (A45)

qN = ⟨N2

0⟩ =
(

σg

σcσeρχ

)2

W2(∆g, 1) =

(
σg

σcσeρχ

)2
(
∆ge

−∆2
g/2

√
2π

+ (1 +∆2
g)Φ(∆g)

)
, (A46)

qR = ⟨R2

0⟩ =
(

σκ

1− ρσeσcγ−1ν

)2

W2(∆κ, 1) =

(
σκ

1− ρσeσcγ−1ν

)2
(
∆κe

−∆2
κ/2

√
2π

+ (1 +∆2
κ)Φ(∆κ)

)
. (A47)

The equations A39, A40, A41, A42, A44, A45, A46, A47 constitute the cavity self-consistency equa-
tions for the aMCRM model. They are eight independent nonlinear equations to solve for eight variables:
ϕN , ϕR, χ, ν, ⟨N⟩ , ⟨R⟩ , qN , qR. These equations are solved numerically using nonlinear least squares as discussed
in SI section D3.
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FIG. A6. Comparison of cavity results to numerical simulations for various ρ and fixed σc = σe = 3.5, corresponding to
the gray dashed line in Fig. 3. (a) Average populations of species, ⟨N⟩, and abundances of resources, ⟨R⟩. (b) Standard

deviations of species populations,
√

⟨N2⟩ − ⟨N⟩2, and resource abundances,
√

⟨R2⟩ − ⟨R⟩2. (c) Fractions of surviving species,
ϕN , and non-depleted resources, ϕR. Points are means of numerical simulations, lines are cavity results. Error bars are standard
deviations of numerical simulations; some error bars are smaller than the points. A dashed line is shown at ρ⋆ = 0.72, the
critical value of ρ at which the system transitions between the stable and dynamic phases. For each value of ρ, 64 simulations
are performed with M,S = 512 resources and species.

5. Infeasibility of the cavity solution

Next, we will investigate when there may exist a solution to the cavity self-consistency equations. Observe that
Eq. (A41) implies that as χ→ 0, ν diverges; Eqs. A21, A29 indicate that N0 and R0 become singular. This is when,
numerically, there fails to exist a solution to the cavity self-consistency equations. From Eq. (A42), we see that χ→ 0
when,

ϕCSI
R − γ−1ϕCSI

N = 0⇐⇒ ϕCSI
R

ϕCSI
N

M

S
= 1 (A48)

⇓

cavity solution infeasibility boundary: # of non-depleted resources = # of surviving species. (A49)
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FIG. A7. Cavity susceptibilities for the same parameters as in Fig. A6. The susceptibilities χ, ν as defined in lines A16, A24
are shown on the left and right, respectively.

The cavity solution no longer has a solution when the ecosystem approaches the bound set by the principle of
competitive exclusion. According to this calculation, ν diverging here means that if a species becomes marginally
more fit when all niches are packed, it will disrupt the ecosystem. This relation defines a ninth equation for eight
variables, so it determines a co-dimension-one boundary in the space of parameters. This boundary can be calculated
numerically using nonlinear least squares as discussed in SI section D3. When solving the cavity self-consistency
equations numerically, we will see that there is a region of parameter space beyond this boundary where the least
squares objectives are large compared to machine error (see Fig. D15 in SI section D3).

This boundary corresponds to the transition to the “unbounded growth” phase in the Lotka–Volterra literature
(see Ref. [31]) because ⟨N⟩ → ∞ as χ→ 0 as can be seen in Eq. (A44). There is no unbounded growth in this model
due to the negative feedback structure of consumer-resource models. In the cavity solution, this can be seen through
⟨R⟩ → 0 as ν → −∞ in Eq. (A45). That is, species abundances are predicted to diverge while abundances of all
resources become zero. Additionally, as χ → 0, qR → 0, so σg = σm and g = −m, meaning ϕCSI

N = 1 − Φ(m/σm);
therefore ϕN and ϕR approach nonzero values at this boundary.

6. Comparison of cavity and simulation results

For higher reciprocity levels ρ when the system is in the stable phase, the analytic solution produced from the
cavity method matches the simulation results remarkably well. In Fig. A6, we compare the cavity results to numerical
simulations for various 0 ≤ ρ ≤ 1 and fixed σc = σe = 3.5, corresponding to the gray dashed line in Fig. 3(a). For
all predicted quantities, the chi-squared statistic is near the number of degrees of freedom, indicating that the cavity
solution is a good fit to the simulation results. The cavity susceptibilities χ, ν for this slice are shown in Fig. A7. In
this figure, we see that the infeasibility boundary occurs when χ→ 0 and ν → −∞.

In Fig. A8, we compare the cavity results to numerical simulations for the various values ρ and σc = σe ≡ σ shown
on the grid in Fig. 3(a). Again, the analytic solutions produced from the cavity method match the simulation results
remarkably well in the stable phase. Cavity susceptibilities χ, ν for this grid are shown in Fig. A9.

7. Cavity susceptibilities

The cavity susceptibilities,

χ ≡ 1

M

M∑
α=1

∂Rα

∂Kα
, ν ≡ 1

S

S∑
i=1

∂Ni

∂mi
, (A50)
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FIG. A8. Heatmap comparison of cavity predictions and simulation results. Results from 32 simulations for various values
of σ and ρ are displayed in the left column of each pane and the cavity predictions are displayed in the right column. The
instability boundary is shown as a solid black line while the infeasibility boundary is shown as a dashed black line. For the
cavity prediction plots, the parameter regions for which no cavity solution exists have a diamond pattern overlaid (c.f., Fig. D15
and SI section D3). The parameters used are those used in Fig. 3(a).

have physical significance: χ and ν are the average linear-order response of a resource’s abundance to a small change
in its carrying capacity and a species’ population to a small change in its natural mortality rate, respectively. These
susceptibilities could be measured numerically by introducing small, nonzero-mean perturbations toKα and measuring∑M

α=1 ∆Rα/
∑M

α=1 ∆Kα when the system is self-averaging.
At steady state, the full susceptibility matrices can be computed using just the knowledge of which species and

resources. Consider that the surviving species and resources satisfy the following matrix equation:[
0 c∗

(e∗)T 1

] [
N∗

R∗

]
=

[
m∗

K∗

]
, (A51)

where X∗ represents a matrix or vector with rows and/or columns corresponding to species and resource which are
not surviving removed. This block-matrix equation can be solved to find,[

N∗

R∗

]
=

[
−
(
c∗(e∗)T

)−1 (
c∗(e∗)T

)−1
c∗

(e∗)T
(
c∗(e∗)T

)−1
1− (e∗)T(c∗(e∗)T)−1c∗

] [
m∗

K∗

]
. (A52)
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FIG. A9. Heatmap of cavity susceptibilities χ, ν as defined in lines A16, A24 for various values of σ and ρ, as in Fig. A8.

Given that perturbations are sufficiently small so that no species or resources go extinct and no new species or
resources can invade, the susceptibility matrices are,

[ν
(N)
ij ] = −

(
c∗(e∗)T

)−1
, [χ

(N)
iβ ] =

(
c∗(e∗)T

)−1
c∗,

[ν
(R)
αj ] = (e∗)T

(
c∗(e∗)T

)−1
, [χ

(R)
αβ ] = 1− (e∗)T(c∗(e∗)T)−1c∗.

(A53)

Therefore,

ν = − 1

S
tr
(
c∗(e∗)T

)−1
, χ =

1

M
tr
[
1− (e∗)

T
(c∗(e∗)T)−1c∗

]
. (A54)

This means that when a steady state exists, the cavity susceptibilities can be computed exactly with knowledge

of which species and resources are surviving. Notice that (e∗)
T
(c∗(e∗)T)−1c∗ is an oblique projector because it is

idempotent. The trace of this matrix is the dimension of the range of the projector. Therefore, the infeasibility
boundary in the cavity solution occurs (or equivalently, the niches are fully packed) when the projector is full-rank.

Appendix B: Stability phase transition in the thermodynamic limit

In nonlinear dynamics, a common approach to assess the appearance of instability is to begin with an assumption of
stability and see what breaks down when the system is perturbed. In the case of the aMCRM, when there is stability,
the results from the cavity solution will be valid, so we will use these results to determine the critical threshold for
instability.

We consider perturbing all surviving species and resources, N
+

i , R
+

α , by small amounts, εη
(N)
i , εη

(R)
α , respectively,

where η
(N)
i and η

(R)
α are independent random variables all with mean zero and variance one [31]. By considering

perturbations on surviving species and resources and using cavity results (c.f., Eqs. A29, A21), we are assuming
that we are working with an uninvadable steady state. From Eqs. A17, A25, for surviving species and non-depleted
resources,

N
+

0 =
1

σcσeρχ

g + σc√
M

∑
α:Rα>0

d0αR
+

α\0 − σmδm0

, (B1)

R
+

0 =
1

1− ρσeσcγ−1ν

κ− σe√
M

∑
i:Ni>0

N
+

i\0

(
ρdi0 +

√
1− ρ2xi0

)
+ σKδK0

. (B2)
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Applying the perturbation gives,

N
+

0 =
1

σcσeρχ

g + σc√
M

∑
α:Rα>0

d0α

(
R

+

α\0 + εη(R)
α

)
− σmδm0

, (B3)

R
+

0 =
1

1− ρσeσcγ−1ν

κ− σe√
M

∑
i:Ni>0

(
N

+

i\0 + εη
(N)
i

)(
ρdi0 +

√
1− ρ2xi0

)
+ σKδK0

. (B4)

Differentiating with respect to ε yields,

dN
+

0

dε
=

1

σeρχ
√
M

∑
α:Rα>0

d0α

(
dR

+

α\0

dε
+ η(R)

α

)
, (B5)

dR
+

0

dε
= − σe/

√
M

1− ρσeσcγ−1ν

∑
i:Ni>0

(
dN

+

i\0

dε
+ η

(N)
i

)(
ρdi0 +

√
1− ρ2xi0

)
. (B6)

Because R
+

α\0, d0α, η
(R)
α are all independent, ⟨dR+

0 /dε⟩ = 0; similarly, ⟨dN+

0 /dε⟩ = 0. The first moment of the
response to the perturbation does not give useful information about the stability; therefore, we turn to the second
moment. First, we square the above quantities:

[
dN

+

0

dε

]2
=

1/M

(σeρχ)2

∑
α,β:Rα>0,Rβ>0

d0αd0β

(
dR

+

α\0

dε
+ η(R)

α

)(
dR

+

β\0

dε
+ η

(R)
β

)
, (B7)

[
dR

+

0

dε

]2
=

σ2
e/M

(1− ρσeσcγ−1ν)2

∑
i,j:Ni>0,Nj>0

(
dN

+

i\0

dε
+ η

(N)
i

)(
dN

+

j\0

dε
+ η

(N)
j

)
(B8)

×
(
ρdi0 +

√
1− ρ2xi0

)(
ρdj0 +

√
1− ρ2xj0

)
.

Averaging over all sources of randomness and using
〈[

dN0

dε

]2〉
= S−1

∑S
i=1

[
dNi\0
dε

]2
and

〈[
dR0

dε

]2〉
=

M−1
∑M

α=1

[
dRα\0

dε

]2
, which follows from the assumption that the system self averages, we obtain:

〈[
dN

+

0

dε

]2〉
=

1/M

(σeρχ)2

∑
α,β:Rα>0,Rβ>0

⟨d0αd0β⟩

(
dR

+

α\0

dε

dR
+

β\0

dε
+

dR
+

α\0

dε

〈
η
(R)
β

〉
(B9)

+
〈
η(R)
α

〉 dR
+

β\0

dε
+
〈
η(R)
α η

(R)
β

〉)

=
1/M

(σeρχ)2

∑
α,β:Rα,Rβ>0

δαβ

(
dRα\
dε

dRβ\0

dε
+ δαβ

)
(B10)

=
ϕR

(σeρχ)2

〈[dR+

0

dε

]2〉
+ 1

 , (B11)
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FIG. B10. Heatmaps of the variances of the response of a surviving species and resources to a random perturbation
(Eqs. B15, B16) as a function of the parameters σ and ρ with other parameters matching those in Fig. 3(a). The insta-
bility boundary is shown as a gray solid line, and the infeasibility boundary is shown as a gray dashed line.

〈[
dR

+

0

dε

]2〉
=

σ2
e/M

(1− ρσeσcγ−1ν)2

∑
i,j:Ni>0,Nj>0

(
dN

+

i\0

dε

dN
+

j\0

dε
+

dN
+

i\0

dε

〈
η
(N)
j

〉
(B12)

+
〈
η
(N)
i

〉 dN
+

j\0

dε
+
〈
η
(N)
i η

(N)
j

〉)
×
(
ρ2 ⟨di0dj0⟩+ ρ

√
1− ρ2 (⟨di0⟩ ⟨xj0⟩+ ⟨xi0⟩ ⟨dj0⟩) + (1− ρ2)xi0xj0

)
=

σ2
e(S/M)/S

(1− ρσeσcγ−1ν)2

∑
i,j:Ni>0,Nj>0

(
dN

+

i\0

dε

dN
+

j\0

dε
+ δij

)(
ρ2δij + (1− ρ2)δij

)
(B13)

=
σ2
eγ

−1ϕN

(1− ρσeσcγ−1ν)2

〈[dN+

0

dε

]2〉
+ 1

 . (B14)

Solving this system of equations yields:

〈[
dN

+

0

dε

]2〉
=

ϕR

(
(1− νρσcσeγ

−1)2σ−2
e + γ−1ϕN

)
[ρχ (1− νρσcσeγ−1)]

2 − γ−1ϕNϕR

, (B15)

〈[
dR

+

0

dε

]2〉
=

γ−1ϕN

(
ϕR + (ρσeχ)

2
)

[ρχ (1− νρσcσeγ−1)]
2 − γ−1ϕNϕR

. (B16)

These susceptibilities are the variance of the response of a surviving species or resource when the system is subject to
a random perturbation. The divergence of these variances represent the breakdown of the mean-field approximation.
Further, when these susceptibilities diverge, the uninvadable fixed point predicted by the mean-field approximation
becomes dynamically unstable. Therefore, when these susceptibilities are divergent, whenever invasion is attempted,
the system will exhibit dynamical fluctuations. We call the boundary in parameter space at which these susceptibilities

diverge the instability boundary. These susceptibilities diverge when 0 =
[
ρχ
(
1− νρσcσeγ

−1
)]2 − γ−1ϕNϕR. This

condition along with the cavity self-consistency equations (Eqs. A39, A40, A41, A42, A44, A45, A46, A47) determines
a co-dimension-one boundary in the space of model parameters. By using the relations in line A43, we obtain the
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FIG. B11. Log-log plot of the absolute value of the variances of the susceptibilities ⟨
(
dN+

0 /dε
)2⟩, ⟨(dR+

0 /dε
)2⟩ plotted as

a function of the distance from the instability boundary, |ρ − ρ⋆|. The data is exactly that which is used in Fig. 3(b). A fit
∝ 1/|ρ− ρ⋆| is shown for each susceptibility with dashed lines.

following relation for the boundary at which the system becomes unstable:

ϕ⋆
R

(
(ρ⋆)2ϕ⋆

R − γ−1ϕ⋆
N

)
= 0 =⇒ (ρ⋆)

2
= γ−1ϕ

⋆
N

ϕ⋆
R

(B17)

⇓

instability boundary occurs when: (ρ⋆)
2
=

(# of surviving species)⋆

(# of non-depleted resources)⋆
, (B18)

where X⋆ denotes the value of a quantity X at the instability boundary. We are able to determine the critical
level of asymmetry, ρ⋆, at which the ecosystem becomes unstable by solving a nonlinear least squares problem

(see SI section D3). The variances of the susceptibilities ⟨
(
dN+

0 /dε
)2⟩, ⟨(dR+

0 /dε
)2⟩ are shown for various values

of σ = σc = σe and ρ in Fig. B10 with the instability and infeasibility boundaries overlaid. These variances of
susceptibilities additionally have an asymptotic power law dependence on the distance from the instability boundary,
|ρ− ρ⋆|, as shown in Fig. B11.
The transition to the dynamic phase coincides in method to the transition to the “multiple attractors” phase

discussed in the random generalized Lotka–Volterra model literature. This was first described in Ref. [31].

Appendix C: Chaotic nature of dynamics

In the dynamic phase of the aMCRM, when an ecosystem is sufficiently large, the dynamics are chaotic. In
this section, we provide numerical evidence that the dynamics of the aMCRM are chaotic in the classical sense
(i.e., sensitive dependence on initial conditions) and in the sense of unpredictability (i.e., no clear patterns in the
dynamics). As shown in Fig. 4(b) in the main text, the trajectories of the abundances of the surviving species and
resources diverge from one another, indicating that the dynamics are chaotic in the classical sense. Evidence of chaos
and unpredictability in the dynamic phase is present in other numerical experiments, as well.

In Fig. C12, we show that the dynamics of the aMCRM in the dynamic phase are unpredictable in the sense that
a trajectory does not display any clear patterns in the projection onto the first three principal components of the
correlation matrix of the time series of the abundances of the surviving species and resources. Such a projection is
necessary to visualize the dynamics of the system, as they are very high-dimensional.
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FIG. C12. Projection of M + S = 256 + 256 = 512-dimensional dynamics onto the 3 highest-ranked eigenvectors of the
correlation matrix (first 3 principal components) of the time series of the abundances. The lack of clustering of the trajectories
in the projection indicates that the dynamics are chaotic and unpredictable. The parameters correspond to the gray star in
Fig. 3(a). Before plotting, the simulation was run for 104 time units to eliminate any potential transients.

1. Analysis of the Lyapunov exponents

In Fig. 4(a), we show the maximal Lyapunov exponent for simulations classified by whether they reach a steady
state for various values of ρ. To determine the Lyapunov spectrum, we use the lyapunovspectrum function in the
ChaosTools.jl Julia package which employs the ‘H2’ method of Geist, originally stated in Benettin et al. [39–42].
This algorithm is described in detail in SI section A of Ref. [41], and its applications are described in Chapter 3.2.
Conceptually, in order to compute the kth largest Lyapunov exponent, the algorithm evolves n ≥ k deviation vectors
in the tangent space of the system and computes how the shape of the n-dimensional parallelepiped spanned by the
deviation vectors evolve; the eigenvalues of the matrix describing the evolution of the parallelepiped are asymptotically
related to the Lyapunov exponents. The Jacobian of the system when the dynamical variable is considered as
(N1, . . . , NS , R1, . . . , RM ) is:

J(N1, . . . , NS , R1, . . . , RM ) =

[
∂Ṅi

∂Nj

∂Ṅi

∂Rβ

∂Ṙα

∂Nj

∂Ṙα

∂Rβ

]
=

[
δij(
∑S

i=1 ciαRα −mi) Niciβ
−ejαRα δαβ(Kα − 2Rα −

∑S
i=1 ciαNi)

]
. (C1)

The Lyapunov spectrum is computed with M = S = 512 species and resources, and the initial deviation vectors are
chosen to be 8 unit vectors in the direction of randomly chosen species and resources. The parameters passed to the
lyapunovspectrum function are the number of steps, N = 1000, the time step, ∆t = 5, and the time to wait before
starting to record the Lyapunov spectrum, Ttr = 1000. The initial conditions are Ni(0) = 1/S and Rα(0) = 1/M .

As seen in Fig. 4(a), the maximal Lyapunov exponent for a simulation that does not reach a steady state is positive
while the maximal Lyapunov exponent for a simulation that does reach a steady state is negative. A simulation is
categorized as reaching a steady state if the mean absolute value of all derivatives of the abundances at the end of
the simulation is less than 10−6. These results indicates that the dynamics are chaotic in the classical sense for the
simulations which have persistent fluctuations. The impact of system size on the probability of reaching a steady
state is discussed in SI section E.
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2. Analysis of the generalized alignment index (GALI)

FIG. C13. Generalized alignment indices (GALIs) for simulations in the dynamic and stable phases with M = S = 512
species and resources. The simulations all have the same sampled parameters; only ρ and order of the GALI are varied. For
the simulations in the dynamic phase (solid lines), the GALI asymptotically decays exponentially with time, indicating chaos,
while for the simulations in the stable phase (dashed lines), the GALI asymptotically approaches a nonzero value, indicating
the dynamics achieve a steady state. Simulation parameters for the GALI in the stable and dynamic phases correspond to the
gray dot and star in Fig. 3(a), respectively.

An alternative method to determine whether a system is chaotic is to use the generalized alignment in-
dex (GALI) [41–43]. The GALI is a measure of how vectors in the tangent space of a trajectory align with each
other. Let ŵ1(0), . . . , ŵk(0) ∈ RM+S be linearly-independent unit deviation vectors that evolve according to,

d

dt
ŵi(t) = J(x(t))ŵi(t), (C2)

where x(t) = (N1(t), . . . , NS(t), R1(t), . . . , RM (t)) and J(x(t)) is the Jacobian matrix of the system in state x(t).
These deviation vectors are normalized to have unit length at regular (small) time intervals. The order-k GALI is
defined as,

GALIk(t) = ∥ŵ1(t) ∧ ŵ2(t) ∧ · · · ∧ ŵk(t)∥ = |det(ŵ1(t), ŵ2(t), . . . , ŵk(t))|, (C3)

which is the volume of the k-dimensional parallelepiped spanned by the time-evolved deviation vectors. If the system
is chaotic, the GALI will decay exponentially with time, indicating that the deviation vectors are becoming more
aligned with each other due to the exponential divergence of nearby trajectories. If the system is not chaotic and
reaches a steady state, the GALI will asymptotically approach a nonzero value, indicating that the deviation vectors
form a nonzero volume in the tangent space because no single direction dominates the dynamics. Alternatively, if the
system is asymptotically periodic or quasi-periodic and does not reach a steady state, the GALI will decay as a power
law with time.

In Fig. C13, we show the GALI for simulations in the dynamic and stable phases for k = 2, . . . , 7 with M = S = 512
species and resources. We use the gali function from the ChaosTools.jl Julia package [42]. The simulations all have
the same sampled parameters; only ρ and the order of the GALI are varied. For the simulations in the dynamic phase
(solid lines), the GALI asymptotically decays exponentially with time, indicating chaos, while for the simulations in
the stable phase (dashed lines), the GALI asymptotically approaches a nonzero value, indicating the dynamics achieve
a steady state. The initial deviation vectors are chosen to be k unit vectors in the direction of randomly chosen species
and resources. The arguments passed to the gali function are the run time, T = 2e4, the time step, ∆t = 5., the
threshold at which to stop the simulation, threshold = 1e-22, and the order of the GALI, k.



24

3. Analysis of effective dimension of dynamics

Chaotic systems can often be characterized by their effective dimension, which is the number of degrees of freedom
that are relevant to the dynamics. One measure of the effective dimension is the Kaplan–Yorke (KY) dimension [44,
57, 58], which is the number of Lyapunov exponents that are positive. The KY dimension is the linearly interpolated
point at which the cumulative sum of the Lyapunov exponents crosses zero:

DKY = k +

∑k
i=1 λi

|λk+1|
, k = max

j

(
j∑

i=1

λi > 0

)
(C4)

We estimate the KY dimension of the aMCRM using the Lyapunov spectrum measured using the methods described
in SI section C 1 and the kaplanyorke dim function from the FractalDimensions.jl Julia package [58].

We find that the KY dimension of the aMCRM in the dynamic phase for the parameters corresponding to the gray
star in Fig. 3(a) is DKY = 15 ± 7, which is an average over 64 simulations. The number of surviving species and
resources in these simulations at the end of the simulation is S⋆ + M⋆ = 74 ± 17. The ratio of the KY dimension
to the number of surviving species and resources is DKY/(S

⋆ + M⋆) = 0.21 ± 0.09. The number of species and
resources that are transitioning between high- and low-abundance states is Mt + St = 38 ± 19, and the ratio of the
KY dimension to the number of species and resources that are transitioning between high- and low-abundance states
is DKY/(Mt + St) = 2.6 ± 1.2 ≈ O(1). From this, we hypothesize that the effective dimension of the dynamics is
approximately this number of species and resources ‘jumping’ between high- and low-abundance states. The intuition
behind this phenomenon is that the hypothesis that dynamics of the aMCRM in the dynamic phase are dominated
by the species and resources that are transitioning between high- and low-abundance states [26]. We hope to explore
this connection further in future work.
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Appendix D: Simulation and numerical methods

1. Numerical integration

Numerical integration of the differential equations is performed using the Tsit5 solver from the
DifferentialEquations.jl package [33] in the Julia programming language [34]. Tsit5 is the Tsitouras 5/4 Runge–
Kutta method, a 5th order Runge–Kutta method with an embedded 4th order method for error estimation and step
size control [35]. The solver is configured to use a relative tolerance of 10−14 and an absolute tolerance of 10−14. The
aMCRM differential equations are also effectively integrated using the VCABM solver which an adaptive order adaptive
time Adam–Moulton method [33, 36]. When using VCABM, the solver is configured to use a relative tolerance of 10−11

and an absolute tolerance of 10−11. The VCABM is often faster than Tsit5 for the aMCRM differential equations, but
is less stable for some parameter values, particularly in the dynamic phase with low ρ and high σ. Therefore, in nearly
all cases, especially those where the parameter space is explored, Tsit5 is used.

2. Surviving/depletion cutoffs, numerical instability, and small immigration

Simulating ecological dynamics often involves including very small immigration rates, λN , λR for species and
resources, respectively, to numerically regularize dynamics and ensure an uninvadable steady state is approached in
simulations. Furthermore, the inclusion of small immigration ensures that chaotic fluctuations in the dynamics do
not drive species or resources to extinction, killing chaos due to finite size effects. The equations used for numerical
simulations are,

dNi

dt
= Ni

(
M∑
α=1

ciαRα −mi

)
+ λN , (D1)

dRα

dt
= Rα (Kα −Rα)−

S∑
i=1

NieiαRα + λR. (D2)

In all our simulations, we take λN , λR = 10−10. Including this small level of immigration regularizes the dynamics in
that the simulated steady-state abundances of species and resources now have a clear gap between the abundances
of those that are surviving and those that are extinct, as shown in Fig. D14. This gap is used to define a cutoff to
identify fractions of surviving species and resources. Including this small level of immigration additionally stabilizes
the numerical integrator, leading to fewer simulations that report errors due to numerical instability. The effects of
immigration on dynamics in the random Generalized Lotka–Volterra model is discussed in detail in [26]; we expect
that many of the intuitions presented there apply to the aMCRM as well.

3. Numerically solving the cavity self-consistency equations and calculating phase boundaries

In order to solve the self-consistency equations for the cavity method, we the use nonlinear least squares method.
We define the objective function to be the sum of the squares of the differences between the left and right-hand sides
of the self-consistency equations (A39, A40, A44, A45, A46, A47, A42, A41):

L(ϕR, ϕN , ⟨N⟩, ⟨R⟩, qN , qR, χ, ν) = (LHS − RHS of Eq. (A39))2 + · · ·+ (LHS − RHS of Eq. (A41))2. (D3)

When the self-consistency equations are solved, the objective function is zero. The objective is minimized using
adaptive differential evolution solver, implemented as
BBO adaptive de rand 1 bin radiuslimited in the Julia package BlackBoxOptim.jl [37].

There are choices of parameters µc, µe, σc, σe,K, σK ,m, σm, ρ for which the objective function does not reach zero.
In Fig. D15, we plot the objective function values for various choices of ρ and σ = σe = σc; the other parameters for
this figure are those used in Fig. 3. We can see that the objective function values are very small for ρ near one and
suddenly jumps to a much larger value for ρ near zero. The cause of this increase in the objective function is the term
(LHS − RHS of Eq. (A41)) in the objective function. Observe that as χ→ 0, −ν →∞, which leads to the objective
function value blowing up. In order to find the boundary at which the objective function blows up, we simply add a
term to the objective function that is zero when χ = 0 and allow one model parameter (here, ρ) to vary:

LCSI(ϕR, ϕN , ⟨N⟩, ⟨R⟩, qN , qR, χ, ν, ρ
CSI) =L(ϕR, ϕN , ⟨N⟩, ⟨R⟩, qN , qR, χ, ν, ρ

CSI) (D4)

+ (χ− 0)2.
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FIG. D14. Log histogram of the species and resource abundances at steady state for a system with M,S = 256 and ρ = 0.9.
There is a clear gap in abundance between species/resources that are surviving and those that are extinct. The immigration
rate used is λ = 10−10.

FIG. D15. Least-squares objectives for solving the cavity self-consistency equations. The solid curve is the instability boundary,
and the dashed curve is the infeasibility boundary. The region in which the objective function is very small is the region in
which the cavity self-consistency equations are solved; the region in which the objective function is large represents invalid
solutions which are not included in plots. The parameters used are those used in Fig. 3(a).

Similarly, to find the instability boundary, we add a term to the objective function corresponding to the instability
condition (Eq. (B18)):

L⋆(ϕR, ϕN , ⟨N⟩, ⟨R⟩, qN , qR, χ, ν, ρ
⋆) =L(ϕR, ϕN , ⟨N⟩, ⟨R⟩, qN , qR, χ, ν, ρ

⋆) (D5)

+ (LHS − RHS of Eq. (B18))2.

Minimizing these objective functions while allowing one additional model parameter to vary gives the infeasibility and
instability boundaries shown in all figures in this paper.
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Appendix E: Finite size scaling analysis

In order to understand whether the aMCRM achieves a steady state in the thermodynamic limit, we must un-
derstand how finite system size and a finite simulation time impact simulation results. To assess the existence and
dynamical nature of a steady state in a simulation, we numerically calculate a time to steady state (TtSS). After
running a simulation, we iterate through the time series and find the time at which the mean absolute value of the
derivatives last dips below a threshold, 10−10. The tolerance of the solver (Tsit5 [33, 35]) is 10−14, so this threshold
is well above the numerical error of the simulation. Because we simulate to a finite time Tmax = 216 +104 = 75536, it
is not possible to distinguish between a system that will reach a steady state at some time beyond Tmax and a system
that will never reach a steady state. Furthermore, when performing these simulations, especially with large system
sizes, errors occasionally occur in the solver, and the simulation is aborted; while we do not present finite-size scaling
results in regions where the simulations are frequently aborted, a robust analysis should account for this. Here, we
develop a custom maximum likelihood estimation (MLE) technique to fit the distributions TtSS’s at different sys-
tem sizes, taking into account these two situations. We then examine the scaling of the resulting fit parameters to
determine their behavior in the thermodynamic limit.

1. Modeling simulation outcomes

To construct a MLE model, we first must model the statistical process which determines each possible outcome of
a simulation. We observe that simulation outcomes fall into three categories:

(i) The simulation reaches steady state within the maximum simulation time Tmax.

(ii) The simulation does not reach steady state within Tmax.

(iii) The solver encounters an error and the simulation aborts.

First, we represent the probability of a simulation encountering an error as perr. Next, we consider whether a
simulation could possibly reach a steady state if given enough simulation time. We represent the probability of a
simulation reach steady state in the infinite time limit as ϕSS. Finally, we define the probability density function
pSS(t) of TtSS’s for those simulations that can reach steady state when given enough time.

Using these definitions, we can now construct the probabilities for each of the cases defined above. Let T be a
random variable representing the observed outcome of a simulation with possible values T ∈ [0, Tmax] ∪ {noSS, error},
where T takes a finite value in the interval [0, Tmax] for case (i), or the special values noSS or error in cases (ii) and
(iii), respectively.

To model case (i), we note that it results in an outcome represented by a continuous numerical value, while cases
(ii) and (iii) represent categorical outcomes. For ease of derivation, we also convert T to a categorical outcome in the
prior case by artificially breaking our simulation interval into small discrete time steps of size ∆t. Later, we will take
the limit ∆t→ 0, removing the dependency of our model on this step size. The probability of a simulation completing
successfully and reaching a steady state in the time interval t < T < t+∆t with T < Tmax is approximately

P(t < T ≤ t+∆t | T < Tmax) ≈ (1− perr)ϕSS∆t pSS(t). (E1)

For case (ii), simulations do not encounter an error, but do not reach steady state within Tmax. We must consider
two separate possibilities: a simulation may never reach steady state, even if Tmax →∞, or would reach steady-state
after further simulation, T > Tmax. In the first case, the probability is simply (1−perr)(1−ϕSS). If a simulation would
eventually have reached steady-state if we had continued simulating, we must use our probability density function
pSS(t). However, we do not know exactly when the simulation would have finished, so we must sum across all discrete
time intervals greater than Tmax. The total probability for case (ii) is then

P(noSS) ≈ (1− perr)(1− ϕSS) + (1− perr)ϕSS

∞∑
n=0

∆t pSS(Tmax + n∆t)

≈ (1− perr)(1− ϕSSFSS(Tmax)),

(E2)

where we have taken the limit ∆t → 0 and simplified, defining FSS(T ) =
∫ T

0
dtpSS(t) as the cumulative distribution

function of pSS(t).
Finally, for case (iii), the probability is simply

P(error) = perr. (E3)
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2. Likelihood function

We now use the outcome probabilities in the previous section to construct a likelihood function to fit the data.
We are given N (independent) simulations resulting in observed TtSSs {T1, · · · , TN} which may take on values
Ti ∈ [0, Tmax] ∪ {noSS, error}. Our fit parameters θ include perr, ϕSS, along with the parameters that define the
probability density function pSS(t). Defining the likelihood of the data given the parameters θ as P({Ti}Ni=1|θ), the
MLE estimate of the parameters is found by minimizing the negative log-likelihood,

θ⋆ = argmax
θ

P({Ti}Ni=1|θ) = − argmin
θ

1

N
log P({Ti}Ni=1|θ). (E4)

Using our outcome probabilities, the negative log-likelihood is then

L({Ti}Ni=1; θ) =−
1

N
log P({Ti}Ni=1|θ) = −

1

N
log

N∏
i=1

P(Ti|θ) = −
1

N

N∑
i=1

log P(Ti|θ)

=− 1

N

N∑
i=1:Ti<Tmax

log [(1− perr)ϕSS∆t pSS(Ti)]

− 1

N

N∑
i=1:Ti=noSS

log [(1− perr)(1− ϕSSFSS(Tmax))]−
1

N

N∑
i=1:Ti=noSS

log perr.

(E5)

Next, we define ferr as the fraction of simulations that encounter errors, and the fSS as the fraction of simulations
that did not encounter errors and reached a steady state within time Tmax. Using these definitions, we get

L({Ti}Ni=1; θ) =−
1

N

N∑
i=1:Ti<Tmax

log pSS(Ti)− fSS log [(1− perr)ϕSS∆t]

− (1− ferr − fSS) log [(1− perr)(1− ϕSSFSS(Tmax))]− ferr log perr

=− 1

N

N∑
i=1:Ti<Tmax

log pSS(Ti)− (1− ferr − fSS) log (1− ϕSSFSS(Tmax))

− fSS log ϕSS − (1− ferr) log(1− perr)− ferr log perr − fSS log∆t.

(E6)

We note that the last term is a constant, so we may choose to ignore it and take the limit ∆t → 0 as mentioned
previously, giving us the final form for the likelihood,

L({Ti}Ni=1; θ) =−
1

N

N∑
i=1:Ti<Tmax

log pSS(Ti)− (1− ferr − fSS) log (1− ϕSSFSS(Tmax))

− fSS log ϕSS − (1− ferr) log(1− perr)− ferr log perr

(E7)

3. Fitting the model

To find the maximum likelihood estimates of the parameters, we minimize Eq. (E7) using the BFGS algorithm
implemented in the Julia package Optimization.jl [38]. We found empirically that the Fréchet distribution is a
good choice for pSS(t). The Fréchet distribution has the following forms for the cumulative distribution function and
probability density function:

FSS(t) =

{
e−(t/τ)−α

, t > 0,

0, t ≤ 0,
pSS(t) =

{
α
τ

(
t
τ

)−α−1
e−(t/τ)−α

, t > 0,

0, t ≤ 0,
(E8)

where τ is the timescale parameter and α is the shape parameter. The errors in the fitted parameters ϕSS, perr, τ, α
are computed by bootstrapping the data. That is, we randomly sample N data points from the simulation data set
with replacement and fit the model to the sampled data repeatedly, providing us with an empirical distribution for
each fit parameter.
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FIG. E16. Empirical cumulative distribution functions of T , the time to steady state, for simulations of different system sizes
in the stable phase (left) and the dynamic phase (right). The maximum likelihood estimate distributions as described in SI
section E for the time to steady state for the various system sizes are shown with dashed lines. The maximum value shown on
the horizontal axis is the maximum time simulated, Tmax = 216 + 104 = 75536.

4. Scaling of parameters with system size and discussion

The simulated data for different system sizes in the stable and dynamic phases can be visualized by analyzing
the empirical cumulative distribution functions (CDFs) of the observed times to steady state called TSS above. In
Fig. E16, we show the CDFs for the stable and dynamic phases for 4 ≤ M,S ≤ 1024 along with the CDFs for the
fitted distributions. A clear difference is apparent between the stable and dynamic phases, and the fitted distributions
match the simulated data well. A scaling collapse of the CDF based on the fitted distributions is shown in Fig. E17.

The fit parameters for the stable and dynamic phases are shown in Fig. E18. In the stable phase, the estimated
probability of reaching steady state, ϕSS remains approximately equal to 1 for all system sizes, and the estimated
timescale τ asymptotically increases with system size as a power law. In the dynamic phase, ϕSS decreases with system
size towards 0, and τ asymptotically increases with system size also as a power law, but with a larger exponent. In
both phases, α approaches 1 asymptotically from above.

We provide fits of ϕSS as a function of system sizeM using curves of the form ϕSS(M) = ϕmax−∆(1−exp(−(M/ξ)κ)).
For the dynamic phase ϕmax = 1.0, ∆ = 1.0, ξ = 278.5, and κ = 1.5; for the stable phase, ϕmax = 1.0,∆ = 0.0, κ
remains approximately equal to the value at which it is initialized in the optimization algorithm, and ξ approaches
the maximum value set in the optimization algorithm.

We also provide fits of the timescale τ as a function of system size M using power laws of the form τ(M) = bMa.
Curves are fit for data M,S ≥ 29.5. In the stable phase, a = 0.4 and b = 580; in the dynamic phase, a = 0.9 and
b = 70.
This finite size scaling is run in the range 512 ≤ M,S ≤ 1024 but is not shown in Fig. E18 because solver errors

are occasionally present. More significantly, as very few simulations reach steady state in the dynamic phase when
the system size is sufficiently large, the MLE procedure cannot clearly distinguish between cases where τ is very large
or ϕSS is very small; this ambiguity can be seen more clearly in Fig. E16. With the prior knowledge of the finite
size scaling as shown in Fig. E18 where the MLE procedure succeeds and there are no solver errors, we conclude
that at these larger system sizes, it is both the case that τ grows large (in polynomial order of system size) and ϕSS

approaches either zero or one. That fact both the timescale τ diverges and ϕSS approaches either zero at large system
size leads us to conclude that in the thermodynamic limit, all systems in the stable phase eventually reach steady
state for long enough times, while in the dynamic phase, no systems reach steady state.
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FIG. E17. Scaling collapse of TtSS CDFs. CDFs of observed TtSSs are scaled by the MLE-fitted value of ϕSS where the
horizontal axis is scaled by the MLE-fitted values of τ , α. Note that the curves collapse onto each other in both phases for
system sizes that are moderately large M,S ⪆ 24.5. This indicates that we have successfully identified the asymptotic scaling
of the form of the TtSS distribution with system size.

FIG. E18. Impact of finite size effects on the dynamics of the aMCRM. Rows correspond to different parameters describing
dynamics: the estimated probability a simulation of a given system size will reach steady state (top) and the timescale of
the time to steady state of simulations of a given system size that do reach steady state (bottom). Columns correspond to
simulation data from different phases: the stable phase (left) and the dynamic phase (right); the parameters corresponding
these simulations are marked in the phase diagram in Fig. 3 with a circle and star, respectively. The probability of reaching
steady state in the stable phase remains at 1 for all system sizes, while the probability of reaching steady state in the unstable
phase decreases to zero with increasing system size, indicating that stable dynamics are not observed within the dynamic
phase in the thermodynamic limit. The timescale of the time to steady state increases with system size in both the stable and
dynamic phases.
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Appendix F: Additional simulations

FIG. F19. Heatmap of the fraction of simulations at steady state when the sampling distributions are uniform. Parameters are
the same as in Fig. 3(a). Because the calculations are performed in the thermodynamic limit, the phase boundary is agnostic
to the choice of sampling distribution. Further details about sampling distribution and parameters are in appendix G.

FIG. F20. Example simulations of the aMCRM with (left column) µe = µc, σe = σc; (center column) µe = µc, σe = σc/2; and
(right column) µe = 10−2µc, σe = 10−2σc. The sampled random matrices and parameters are the same in each of the cases, as
is the coloring of the species and resources. The chosen values of µc, σc, and ρ correspond to the gray star in Fig. 3(a).
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Appendix G: Parameters in figures

Figure 1 (schematic) details

Species drawings are traces of images generated using Adobe Firefly Generative AI. Prompts: “simple 2D flat
unshaded vector graphics of microbes,” “simple 2D flat digital art sketches of bacteria and microbes in icon-style with
no shading.”

Figure 2 (example dynamics) simulation parameters

Both simulations have random variables diα, xiα,Kα,mi drawn from standard normal distributions. The parameters
are,

K = 1, σK = 0.1, m = 1, σm = 0.1, µc = 200, σc = 3.5, µe = 200, σe = 3.5, λN = λR = 10−10, (G1)

with M = S = 256 resources and species. For dynamics in the stable phase, ρ = 0.9, and for the dynamics in
the unstable phase, ρ = 0.5. Between the two simulations, the model parameters (δKα, δmi, diα, xiα) are sampled
once and only the level of nonreciprocity (ρ) is changed. For these choices of parameters, ρ⋆ = 0.72. The initial
conditions are Ni(0) = 1/S and Rα(0) = 1/M . Numerical integration is performed using a ‘fourth-order, five-
stage explicit Runge-Kutta method with embedded error estimator of Tsitouras’ implemented as Tsit5 in the Julia
DifferentialEquations.jl package [33, 35]

Figure 3 (phase diagram) simulation parameters

Each point in the heatmap represents an average over 32 simulations where the parameters were independently
sampled from normal distributions: diα, xiα,Kα,mi ∼ N (0, 1). The distribution parameters are,

K = 1, σK = 0.1, m = 1, σm = 0.1, µc = 200, µe = 200, λN = λR = 10−10, (G2)

with M = S = 256 resources and species. The parameters σc and σe are taken to be the same: σ ≡ σc = σe. The
dashed gray line represents a slice through the parameter space with the above parameters fixed and σ = 3.5 where
ρ varies from 0 to 1. The gray star represents the parameters σ = 3.5 and ρ = 0.5; the gray circle represents the
parameters σ = 3.5 and ρ = 0.9. The values of parameters µc, µe, σc, σe are chosen so that when M = S = 256,
⟨ciα⟩, ⟨eiα⟩ = O(1) and Var [ciα] ,Var [eiα] = O(1)2; this abates some issues involving solver errors and instabilities.
The initial conditions are Ni(0) = 1/S and Rα(0) = 1/M . Numerical integration is performed using a ‘fourth-order,
five-stage explicit Runge-Kutta method with embedded error estimator of Tsitouras’ implemented as Tsit5 in the
Julia DifferentialEquations.jl package [33, 35]. The simulations are run until 5×104 time units, and a simulation
is considered to have reached steady state if the average absolute value of all derivatives is less than 10−7 within the
last 0.05× 104 time units.
The instability phase boundary (solid black) is found by solving the cavity self-consistency equations (see SI section A
and Eq. (B18) simultaneously using nonlinear least squares, as described in SI section D3).

Figure 4 (Lyapunov dot plot and diverging trajectories) simulations details

(a) Details on the calculation and analysis of Lyapunov exponents are discussed in appendix C 1. Parameters
correspond to a slice of the phase diagram shown in Fig. 3(a) along the dashed gray line.

(b) Simulation parameters correspond to the gray star (σ = 3.5, ρ = 0.5) in Fig. 3(a). The initial conditions for
the trajectory plotted in (solid) red is the state given after evolving the system for 5 × 103 time units from initial
conditions, Ni(0) = 1/S, Rα(0) = 1/M . The initial conditions for the trajectory plotted in (dotted) blue are generated
by selecting 8 species with abundance greater than 10−3 at random and perturbing their abundances by a random
amount drawn from a uniform distribution U([−10−4, 10−4]); the highlighted species is not one of these 8 species.
The Lyapunov exponent is computed using the ‘H2’ method of Geist [39–42] for the trajectory plotted in red; see SI
section C 1 for details.
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Figure A5 (cavity distribution comparison) simulation parameters

K = 1, σK = 0.1, m = 1, σm = 0.1, µc = 8, σc = 1, µe = 8, σe = 1, ρ = 0.9 (G3)

ϕN = 0.318, ϕR = 0.729, ν = −0.858, χ = 0.412, ⟨N⟩ = 0.105, ⟨R⟩ = 0.114, ⟨N2⟩ = 0.0575, ⟨R2⟩ = 0.0258. (G4)

The uninvadable steady state is found using an iterative constrained optimization method described in [16]. Cavity
parameters are found by solving the self-consistency equations using non-linear least squares as described in appendix
D3.

Figure F19 (phase diagram with uniform sampling) simulation parameters

All parameters are identical to those in Fig. 3(a) except that the random matrices and vectors are sampled as:

diα, xiα, δKα, δmi ∼ Uniform([−
√
3,
√
3]). (G5)

This choice of distributions ensures that diα, xiα, δKα, δmi are still standard random variables and appropriate ther-
modynamic scaling are used to obtain cavity results that are identical to those in Fig. 3(a).
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