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ON THE PERTURBATIVE QUANTIZATION OF EINSTEIN-HILBERT

GRAVITY EMBEDDED IN A HIGHER DERIVATIVE MODEL II

STEFFEN POTTEL AND KLAUS SIBOLD

Abstract. In a previous paper we presented the renormalization of Einstein-Hilbert
gravity under inclusion of higher derivative terms and proposed a projection down to the
physical state space of Einstein-Hilbert. In the present paper we describe this procedure
in more detail via decomposing the original double-pole field h

µν in the bilinear field
sector into a massless and a massive spin two field. Those are associated with the poles
at zero mass resp. at non-zero mass of h in the tree approximation. We show that the
massive fields have no poles in higher orders hence do not correspond to particles. S-
matrix unitarity is violated only in tree approximation. On the way to these results
we derive finiteness properties which are valid in the Landau gauge. Those simplify
the renormalization group analysis of the model considerably. We also establish a rigid
Weyl identity which represents a proper substitute for a Callan-Symanzik equation in
flat spacetime.
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1. Introduction

Why would we add higher derivative terms (hds) to the Einstein-Hilbert action (EH) of
gravity? The answer goes back to the enormeously successful history of particle physics.
That started with Fermi’s model of four-fermion-coupling, eventually in the form of V-A
currents. It was obvious that this was at most an effective theory because it violated tree
unitarity of the S-matrix. Hence one invented massive intermediate vector bosons. Still,
this was not yet power counting renormalizable, became so, however, via the Higgs effect.
Indeed, with this realization of masses for the intermediate bosons one could prove uni-
tarity of the S-matrix: the electroweak standard model was established. The completion,
even unification, with QCD yielded a theory which withstood all experimental tests as of
yet.
In the context of gravity it was the fundamental insight by Einstein that the gravitational
field, the metric gµν , should couple to the energy-momentum-tensor (EMT) of matter.
In a perturbative version, where gµν = ηµν + hµν with h understood as “small” deviation
from flat space it is hµν which couples to the matter EMT. In a quantum field theoretic
context “smallness” of a quantum field is, of course, not a meaningful notion, but is im-
plemented here as perturbation theory which progresses in an expansion in the number of
h fields in addition to the conventional one in number of loops. The most important fact
is, however, that the EMT has canonical dimension four. If one aims at powercounting
renormalizability as a minimal prerequisite for full renormalizability, which does not only
mean “removing infinities”, but rather satisfying standard axioms, then one must assign to
h canonical dimension zero. But since renormalization brings in a rule to admit all terms
compatible with canonical dimension less or equal to four in an action, one has to admit
in the context of EH not only the standard term

´ √−gR but also
´ √−gRµνρσRµνρσ,

´ √−gRµνRµν , and
´ √−gR2 [Ste77]. Together with the cosmological term they consti-

tute a basis on the integrated level.
For the construction of the model in perturbation theory, we applied the Bogoliubov-
Parasiuk-Hepp-Zimmermann-Lowenstein (BPHZL) renormalization scheme [PS21]. The
backbone of this scheme is power counting. Important for a qualitative understanding is
the role which the different classical invariants play in this context: in order to have off-
shell IR-convergence the EH term must be present; in order to have UV-convergence the
higher derivative terms are required. This fact constrains tightly possible limits in terms
of the couplings c3κ

−2, c1, and c2. The cosmological term is irrelevant in this respect. We
suppress it by a normalization condition.

In the present paper we deepen the previous analysis by some more detailed study. As a
substitute of scaling in flat spacetime we derive a Ward identity for rigid Weyl invariance.
We show that in Landau gauge certain finiteness properties can be established which
have been known in the context of Yang-Mills theories before [BPS91]. This simplifies
considerably the renormalization group (RG) analysis. Central, however, is a discussion
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of the state space of the model. By using spin two fields which decompose and diagonalize
the sector which is bilinear in the h field, [Ste78], we can study the role, in particular the
removal of those degrees of freedom which have been introduced by the higher derivatives.
We show that the massive fields have no poles in higher orders. Potential respective
singularities would be RG dependent, hence unphysical. This implies that the violation
of unitarity of the S-matrix is restricted to the tree approximation.

2. Preliminaries

In order to make the present paper reasonably self contained we collect the main for-
mulae from paper I [PS21]. The starting point is the following action together with the
variations of the fields.

Γclass = Γclass
inv + Γgf + Γφπ + Γe.f.(2.1)

Γclass
inv =

ˆ √−g(c3κ−2R + c2R
2 + c1R

µνRµν)(2.2)

Γgf = −
1

2κ

ˆ

gµν(∂µbν + ∂νbµ)−
1

2
α0

ˆ

ηµνbµbν(2.3)

Γφπ = −1
2

ˆ

(Dµν
ρ cρ)(∂µc̄ν + ∂ν c̄µ)(2.4)

Dµν
ρ ≡ −gµλδνρ∂λ − gνλδµρ∂λ + ∂ρg

µν(2.5)

Γe.f. =

ˆ

(Kµνsh
µν + Lρsc

ρ)(2.6)

sgµν = κDµν
ρ cρ scρ = −κcλ∂λcρ sc̄ρ = bρ sbρ = 0(2.7)

hµν = gµν − ηµν(2.8)

s0h
µν = −κ(∂µcν + ∂νcµ) s1h

µν = −κ(∂λcµhλν + ∂λc
νhµλ − cλ∂λh

µν)(2.9)

Furthermore, we need the Slavnov-Taylor identity (ST). Since the s-variations of h and
c are non-linear in the fields, they are best implemented in higher orders via coupling to
external fields, hence the ST identity then reads

(2.10) S(Γ) ≡
ˆ

(
δΓ

δK

δΓ

δh
+

δΓ

δL

δΓ

δc
+ b

δΓ

δc̄
) = 0.

The b-equation of motion

(2.11)
δΓ

δbρ
= κ−1∂µhµρ − α0bρ

is linear in the quantized field b and can be integrated trivially to the original gauge fixing
term. Thus it turns out to be useful to introduce a functional Γ̄ which does no longer
depend on the b-field:

(2.12) Γ = Γgf + Γ̄.
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One finds

(2.13) κ−1∂λ
δΓ̄

δKµλ

+
δΓ̄

δc̄µ
= 0

as restriction. Hence Γ̄ depends on c̄ only via

(2.14) Hµν = Kµν −
1

2κ
(∂µc̄ν + ∂ν c̄µ)

and the ST identity takes the form

S(Γ) =
1

2
BΓ̄Γ̄ = 0(2.15)

BΓ̄ ≡
ˆ

(
δΓ̄

δH

δ

δh
+

δΓ̄

δh

δ

δH
+

δΓ̄

δL

δ

δc
+

δΓ̄

δc

δ

δL
).(2.16)

This form shows that BΓ̄ can be interpreted as a variation und thus (2.15) expresses an
invariance for Γ̄.

The free parameters of the model can be prescribed by the following normalization

conditions on the vertex functions and their coefficients γ
(2)
TT and γ

(0)
TT, resp.,

∂

∂p2
γ
(2)

TT |p=0
s=1

= c3κ
−2(2.17)

∂

∂p2
∂

∂p2
γ
(2)

TT |p
2=−µ2

s=1

= −2c1(2.18)

∂

∂p2
∂

∂p2
γ
(0)

TT |p
2=−µ2

s=1

= 2(3c2 + c1)(2.19)

Γhµν = −ηµνc0 = 0(2.20)

∂

∂pσ
Γ
Kµνcρ|p

2=−µ2

s=1

= −iκ(ηµσδνρ + ηνσδµρ − ηµνδσρ )(2.21)

∂

∂pλ
Γ
Lρcσcτ |p

2=−µ2

s=1

= −iκ(δρσηλτ − δρτηλσ).(2.22)

The first four conditions fix the couplings, whereas the last two fix the field amplitudes of
h,K and c, L, resp. Imposing the b-equation of motion (2.11) fixes α0 and the b-amplitude.

As a partial differential equation which is symmetric wrt. ST we derived the renormal-
ization group equation (RG)

(2.23) µ∂µΓ|s=1 = (−βRG
3 c3∂c3 − βRG

c1
c1∂c1 − βRG

c2
c2∂c2 + γRG

h NH + γRG
c NL)Γ|s=1 .

Here the N ’s are symmetric generalized leg counting operators

(2.24) NH ≡ Nh −NK −Nb −Nc̄ + 2α0∂α0
+ 2χ∂χ NL ≡ Nc −NL .
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3. Part I: Theory formulated in terms of h

3.1. Rigid Weyl Invariance. Here we address the issue of replacing scaling in ordinary
flat spacetime by a version appropriate for curved spacetime. In flat spacetime scaling
can be realized by the Callan-Symanzik equation (CS). In [PS21, eq. (309)] we proposed
a candidate for that purpose

(3.1) (µ∂µ − κ∂κ − 2c3∂c3 − (Nb − 2α0∂α0
) +NK +NL + βCS

1 c1∂c1 + βCS
2 c2∂c2

− γCS
h NH − γCS

c NL)Γ|s=1 = αCS[κ−2

ˆ √−gR]33 · Γ|s=1 .

This equation is correct, but since its rhs starts with order O(~1), i.e. has no contribution
in the tree approximation, it does not correspond to a CS equation in the standard sense.
Now, scaling of coordinates is anyway not a proper concept in the context of general
relativity, it rather has to be replaced by Weyl transformations of the metric tensor
δWgµν = 2σgµν (σ = const is coined “rigid”). We therefor study the identity

(3.2)
1

2σ
WW

rigΓ ≡
ˆ

(gµν
δ

δgµν
−Kµν

δ

δKµν

− c̄µ
δ

δc̄µ
− bµ

δ

δbµ
)Γ|s=1

= −c3κ−2[

ˆ √−gR]44 · Γ|s=1

Here the lhs has been chosen such that it is symmetric wrt ST (which can be checked most
easily on ST for connected Green functions), whereas the rhs just follows from the ac-
tion principle: The BRST invariants

´ √−g(RµνRµν , R
2) are invariant under rigid Weyl,

whereas the EH term is not.

When replacing the hard EH term by its soft version via appropriate Zimmermann
identities (ZI) we obtain

(3.3) WW
rigΓ|s=1 = −2σ{α̂c3κ−2[

ˆ √−gR]33 · Γ|s=1

+ [

ˆ √−g(u1R
µνRµν + u2R

2)]44 + uhNH + ucNL} · Γ|s=1.

Here α̂ = 1 + O(~), u = O(~), i.e. we have a soft term on the rhs which starts with the
tree approximation, as desired. Due to

u1

ˆ √−gRµνRµν · Γ = u1
∂

∂c1
Γ u2

ˆ

(
√−gR2) · Γ = u2

∂

∂c2
Γ(3.4)

the hard breaking terms going with u1 and u2 correspond directly to the conventional
βCS-function terms of a CS equation, hence (3.3) represents an adequate replacement of
it:

−1
2σ

WW
rigΓ|s=1 − (u1

∂

∂c1
+ u2

∂

∂c2
+ uhNH + ucNL) · Γ|s=1 = α̂c3κ

−2[

ˆ √−gR]33 · Γ|s=1 .

(3.5)
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From [PS21] one should recall that the derivatives ∂c1, ∂c2 and the soft insertion on the
rhs are symmetric wrt ST.

One can gain some more insight into the present case by going over to connected Green’s
functions via Legendre transformation and transition to general Green’s functions

(3.6)
−1
2σ

WW
rig(J)Z(J)|s=1 + (u1[

ˆ √−gRµν ]44 + u2[

ˆ √−gR2]44 − uhNH − ucNL) · Z|s=1

= α̂c3κ
−2[

ˆ √−gR]33 · Z|s=1 ,

the subsequent projection (s.b.(4.27)), where N ’s vanish under the application of

: Σ :≡ exp

{
ˆ

dxdyΦin(x)K(x− y)z−1 δ

δJ

}

(3.7)

which projects to the S-matrix, whereas all other insertions have become operators
(3.8)

([QW
rig, S

Op])− (u1[

ˆ √−gRµνRµν ]
4
4)

Op − (u2[

ˆ √−gR2]44)
Op = α̂c3κ

−2([

ˆ √−gR]33)
Op .

QW
rig denotes the charge operator of the rigid Weyl transformation. The result can be

interpreted as refering eventually to the physical quartet states (again, for details s. Sub-
section 4.4).
Hence the rigid Weyl tranformations are not a symmetry of the S-matrix: as expected
they are violated by the soft contribution originating from EH (rhs), and further by hard
anomalies going with the higher derivative terms. Obviously one can interpret those as
providing the operators

´ √−g(Rµν , R2) with anomalous Weyl weights given by the coef-
ficients u. In the deep Euclidian limit t→∞ the soft rhs vanishes. One is then tempted
to compare with the RG equation, s.b. (3.24). However there is no obvious relation be-
tween the coefficients u and β, respectively. These two equations refer to different physical
issues.

3.2. Finiteness in Landau gauge: γRG
c = γRG

h = β3 = 0. It is well-known [BPS91] that
in ordinary pure Yang-Mills theory the anomalous dimension of the vector field vanishes
as well as that of the Faddeev-Popov ghost c when working in Landau gauge. Here we
shall show that the analogue is true in the present model for the fields hµν and cµ. This
will then imply that β3 also vanishes. Obviously a tremendous impact on the model at
hand.
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In order to see this one starts from the integrated antighost equation of motion
ˆ

δΓ

δcµ
≡
ˆ

(
δΓφπ

δcµ
+

δΓe.f.

δcµ
)(3.9)

=− κ

ˆ

(
1

2
Dµν

ρ (∂µc̄ν + ∂ν c̄µ) +KµνD
µν
ρ + Lλ∂ρc

λ + ∂λ(Lρc
λ))(3.10)

=− κ

ˆ

(
1

2
Dµν(∂µc̄ν + ∂ν c̄µ)−Kµν∂ρh

µν + Lλ∂ρc
λ)(3.11)

and combines it with the gauge condition to form

ḠΓ ≡
ˆ

(
δΓ

δcρ
+ κ∂ρc̄λ

δΓ

δbλ
) =

ˆ

κ(Kµν∂ρh
µν − Lλ∂ρc

λ).(3.12)

Since this expression is linear in the quantized fields it can be naively extended to all or-
ders. It is important to note that this equation not just follows in the tree approximation,
but can be proved to hold to all orders of perturbation theory, s. Appendix A.1.
Potential counterterms, one could have been obliged to add, must be independent of bµ,
could depend on c̄ only via Hµν and satisfy the ghost equation

κ
δΓ̄

δc̄µ
+ ∂λ

δΓ̄

δKµλ

= 0.(3.13)

The candidates for this we have discussed in [PS21, eq. (258)].

∆L · Γ = fL(α0)NLΓ− χf ′
L

ˆ

Lc = −BΓ̄(fL
ˆ

Lc) NL ≡
ˆ

c
δ

δc
−
ˆ

L
δ

δL
(3.14)

In Landau gauge α0 = 0, χ = 0, hence fL is a number. To be satisfied is (3.12), but

∆L · Γ = −BΓ̄(
ˆ

Lc) = κ

ˆ

Lρc
λ∂λc

ρ + L−independent,(3.15)

would contribute a term
´

Lλ∂µc
λ to the rhs of (3.12), which would, however, change the

coefficient of the term already present. This is forbidden, hence this term is excluded as a
counterterm anb the external field L is not renormalized: γc = 0, [PS21, eq. (266)]. The
next candidate is ∆H .

∆H · Γ = fHNKΓ + χf ′
H(α0)(

ˆ

(Kh− c̄
δΓclass

δb
) + 2α0

∂

∂χ
Γclass NK ≡ Nh −NK −Nb

(3.16)

Again, in Landau gauge α0 = 0, χ = 0, fH is a number.

(3.17) ∆H = fH

ˆ

(−κKµνD
µν
ρ cρ)

This would contribute a term
´

κKµν∂ρh
µν to the rhs of (3.12), again a term which is

already present and whose coefficient must not be changed. So, this counterterm, too, is
forbidden. The field hµν is not renormalized: γh vanishes [PS21, eqs. (298), (300), (302)].
From γc = γh = 0 follows β3 = 0, [PS21, eq. (303)]. This is the result advertised in the
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heading of the present section.

Several remarks are in order. One can rather easily check in one-loop order that the
diagrams contributing to ΓKc, resp. ΓLcc are finite. That they, in fact, vanish is not so
obvious, however follows from the preceding arguments.
The vanishing of β3 is at variance with results of the literature of which we quote only
[AB85], [NA12], [Nie10]. Our result is based on using the field bµ = sc̄µ for gauge fixing.
This renders s (and subsequently BΓ̄) nilpotent and permits to construct Kugo-Ojima
[KO78] quartets which define the physical Hilbert space (s. Section 4.4) in a clear cut
fashion. The separation Γ = Γ̄+Γgf is precisely in line with this and just disentangles gauge
fixing from contributions which are independent of it. A concrete example is provided
by eq. (3.18) in the next section. That the differential operator κ∂κ has this s-invariant
extension originates from fixing the hµν-field amplitude via the external field Kµν , which
itself is related to the separation of Γ. If one does not employ the field bµ and these
normalization conditions this separation is virtually impossible. It is extremely difficult to
disantangle the renormalization of coupling c3 from renormalization of the field amplitude
for hµν . Historically there was a heated discussion on these points, just because also
the proof of unitarity depends on it. Only with this technical tool provided by the b
field one could master that problem and construct the physical state space via Kugo-
Ojima quartets. Becchi-Rouet-Stora did not use it in their first papers, but eventually
adopted it. One may compare the original paper [BRS76] with the Les Houches lectures
of Becchi [Bec85], where as concrete example the same Yang-Mills theory with complete
breakdown of the internal symmetry has been discussed.
In the present context the additional problem is to separate the renormalization of c3 and
κ. Seduced by use of an invariant renormalization scheme this has not been considered
in the past. Our scheme is not invariant. Hence one is forced to study in detail the origin
and effect of all possible counterterms, not just of invariant ones. This is admittedly
cumbersome, but it is the best possible control of all possible relations in the model.
Furthermore, in the literature one mostly expanded also in κ which however changes β
functions in a drastic manner. We return to this point in the next section.

3.3. The RG equation. We first state the relevant symmetric differential equations.
The symmetric κ equation reads

(−κ∂κ − 2c3∂c3 − (Nb − 2α0∂α0
) +NK +NL)Γ|s=1 = 0,(3.18)

hence this is a naive equation: no quantum corrections are associated with the differential
operators. In particular this means that the combination c3κ

−2 does not give rise to a
RG-running quantity, just because there is no β-function like contribution in the equation.

The RG-equation is given by

(µ∂µ + βRG
3 c3

∂

∂c3
+ βRG

2 c2
∂

∂c2
+ βRG

1 c1
∂

∂c1
− γRG

h NH + γRG
c NL)Γ|s=1 = 0 .(3.19)
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Their consistency results into

(κ∂κ + 2c3∂c3)β
RG
i = 0 i = 1, 2, 3(3.20)

(κ∂κ + 2c3∂c3)γ
RG
i = 0 i = c, h .(3.21)

For the h-two-point function this reduces to

(κ∂κ + 2c3∂c3)Γhh|s=1
= 0(3.22)

µ∂µΓhh|s=1
= (−βRG

3 c3
∂

∂c3
− βRG

2 c2
∂

∂c2
− βRG

1 c1
∂

∂c1
+ 2γRG

h )Γhh|s=1
.(3.23)

Taking into account that βRG
3 = γRG

h = γRG
c = 0 we end up with

(µ∂µ + βRG
1 c1

∂

∂c1
+ β2c2

∂

∂c2
)Γhh|s=1

= 0 .(3.24)

We read off two obvious facts: due to their non-trivial β-functions the couplings c1, c2 can
be extended to and used as running couplings in the solutions, whereas c3 and κ will not
run. Their values in the tree approximations do not have to be corrected in higher orders.
A side remark: As noted after (3.6), this equation is close in form to the rigid Weyl
identity, but describes a different physical situation.

This equation holds in particular also for their spin components γ
(r)
KL. Since the Landau

gauge, α0 = 0, has been shown to be stable, the (r = 2, 0;K = L = T) components do not
become gauge parameter dependent. Hence they depend on p2, κ, and µ. The subtraction
scheme guarantees a factor p2 −m2 ≡ p2 −M2(s − 1)2 = p2 at s = 1. Hence (at s = 1)

γ
(r)
TT = O(p2). For the subsequent integration of the RG-equation it is convenient to

separate the tree contributions from those of higher orders. We therefore define

ζ
(r)
TT = ζ

(r)
TT(
−p2
µ2

,
c3κ

−2

p2
, c1, c2) ,(3.25)

which have vanishing naive p-dimension such that

γ
(2)
TT|s=1 = p2c3κ

−2 + p2p2ζ
(2)
TT γ

(0)
TT|s=1 = −2p2c3κ−2 + p2p2ζ

(0)
TT(3.26)

Here the minus sign in the first variable of (3.25) has been introduced, because the
normalization conditions have been postulated at p2 = −µ2, a spacelike momentum; the
c3-dependence is in accordance with (3.22). We thus have to solve the equations (r = 1, 2)

(µ∂µ + βRG
2 c2

∂

∂c2
+ βRG

1 c1
∂

∂c1
)ζ

(r)
TT = 0,(3.27)

if we wish to describe the implications of the RG equation for the respective vertex
functions. The resulting linear partial differential equations are homogeneous and can be
solved via characteristics. We define the variables

t = ln(−p2

µ2
) u =

c3κ
−2

p2
i.e. uet = −c3κ

−2

µ2
(3.28)
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and the RG-equations become

(
∂

∂t
− 1

2
β1(ue

t, g1, g2)g1
∂

∂g1
− 1

2
β2(ue

t, g1, g2)g1
∂

∂g1
)ζ

(r)
TT(e

t, etu, g1, g2) = 0.(3.29)

Here the running couplings gi ← ci, i = 1, 2 have to solve

dgi
dt

= −gi
2
βRG
i i = 1, 2 (no sum)(3.30)

(Prefactor and sign originate from using µ∂µ instead of µ2∂µ2 and the explicit sign in the
definition of t.) Their solutions are given by

gi(t) = gi(0)e
− 1

2

´ t

0
dτβi(ueτ ,g1(τ),g2(τ)),(3.31)

whereas
du

dt
= 0⇒ u(t, u0, gi(0)) = u0.(3.32)

The separation of tree and higher order contributions, (3.26), in the original γ
(r)
TT deter-

mines the starting points of ζ :

ζ
(2)
TT(t, u0, g1, g2)|t=0 = −g1(0) = −c1(3.33)

ζ
(0)
TT(t, u0, g1, g2)|t=0 = 3g2(0) + g1(0) = 3c2 + c1(3.34)

A further restriction originates from the scheme, which fixes ∂p2γ
(2)
TT at p2 = 0, s = 1

and the fact that we did not admit counterterms which would change this. Hence the
dependence of ζ (r) from u = − c3κ

−2

p2
is restricted to the value u0 = − c3κ

−2

µ2 . Actually, this

is just the content of (3.32). It fits to the fact, that c3κ
−2 does not run. At this stage it

is interesting to collect the results.

γ
(2)
TT =p2p2ζ

(2)
TT = p2c3κ

−2 + p2p2ζ
(2)
TT(e

t, u0, g1(t), g2(t))(3.35)

γ
(0)
TT =p2p2ζ

(0)
TT = −2p2c3κ−2 + p2p2ζ

(0)
TT(e

t, u0, g1(t), g2(t))(3.36)

The interpretation is as follows: the c3κ
−2 terms are tree values which are not corrected

by higher orders. The ζ terms provide for the value t = 0 the tree approximation contri-
butions going with c1, c2. For t > 0 they comprise all higher order corrections expressed
in terms of the running couplings. One should note that these results hold at s = 1,
the physical value. We underline, by repeating: the separation in tree, resp. higher order

contributions in γ
(r)
TT, r = 0, 2, (3.26), together with the non-renormalization of κ−2 and c3

just means that only the higher derivatives are responsible for the running of couplings,
i.e. of c1 and c2. In this respect the EH part is only a kind of spectator.

The common understanding of running couplings and their use in phenomenology
(QCD, electroweak standard model) is that inserting them in place of a tree coupling
at a given order in perturbation theory “improves” the results of that order, i.e. in some
qualitative sense extends those to all orders. For the model under consideration, in the
literature mostly an expansion in terms of κ2 has been performed. However, we do not
follow this path because the renormalization of the electroweak standard model teaches
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us an important lesson. If one wants to ensure that there are poles for physical particles
one has to use on-shell normalization conditions, which then requires the couplings to be
realized as mass ratios. This in turn implies that even their βCS-functions can no longer
be expanded as power series in the couplings, but only in the number of loops [KW99].
(CS-β functions are, as a rule, simpler than those of the RG equation.) The reason for
this is the same as here: they are complicated polylogarithmic functions of the couplings.
Hence an expansion in terms of κ2, here, may very well be misleading. E.g. the pure
fact that after using such an expansion the β-functions come out as rational functions in
the couplings is suspicious. Relying on this outcome and concluding from there on the
asymptotic behaviour seems to be courageous.

3.4. No massive higher order zeros. Most important for the subsequent analysis is

the understanding of the zeros of γ
(r)
TT. The ones at p2 = 0 are fixed, guaranteed by the

scheme and RG invariant: they are physical. But the second zeros can not be continued
to higher orders as we shall show now.
We consider the case r = 2 up to and including one-loop.

(3.37) (γ
(2)
TT)

(≤1)
|s=1 = p2c3κ

−2 − c1p
2p2 − c

(1)
1 p2p2 + p2p2(ζ

(2)
TT)|nt

Here c
(1)
1 is the coefficient of the one-loop counterterm to the invariant

´ √−gRµνRµν ;
the subscript “nt” means “non-trivial” i.e. these are the contributions of the non-trivial
diagrams in one-loop order (the counterterm is pointlike, hence a trivial diagram). The
first zero at p2 = 0 is obvious. We claim that

(3.38) 0 = c3κ
−2 − c1p

2 − c
(1)
1 p2 + p2(ζ

(2)
TT)|nt

has no solution for p2 = c3κ
−2

c1
and the counterterm coefficient with its value as given by

the normalization condition for c1

c
(1)
1 =

1

2

∂

∂p2
∂

∂p2
(γ

(2)
TT)

(1)

|p2=−µ2,s=1(3.39)

= (ζ
(2)
TT)

(1)
|p2=−µ2,s=1 + [(2p2∂p2 +

1

2
p2p2∂p2∂

2
p)(ζ

(2)
TT)

(1)]|p2=−µ2,s=1.(3.40)

Hence (3.38) boils down to

(3.41)
c3κ

−2

c1
(−c(1)1 + (ζ

(2)
TT)|nt) = 0,

with the arguments of ζ being (− p2

µ2 ,
c3κ

−2

p2
, c1, c2)→ (− c3κ

−2

(c1µ2)
, c1, c1, c2). More explicitly

(3.42) −
(

(ζ
(2)
TT)

(1)(1,−c3κ
−2

c1µ2
, c1, c2) + [(−2µ2∂p2 +

1

2
µ2µ2∂p2∂

2
p)(ζ

(2)
TT)

(1)]|p2=−µ2,s=1

)

|nt

+

(

ζ
(2)
TT(−

c3κ
−2

c1µ2
, c1, c1, c2)

)

|nt

= 0,
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all taken at s = 1. (In this explicit form also the first bracket refers to the non-trivial
diagrams.) It is to be noted that for the ζ in the first line the p2-argument is at an
unphysical value, whereas for the ζ in the second line it is at a physical point. Therefor this
equation can not be satisfied. Hence beginning with one loop the respective propagator,

〈hh〉(2)TT, has no second pole. Obviously, this is also true for the case r = 0.
In the subsequent sections we shall determine the fields and respective propagators

which can be associated with the two zeros of the tree approximation: the field belonging
to the first zero generates massless particles, the field associated with the second does not
generate particles.

4. Part II: Theory formulated in terms of φ and Σ

4.1. Lagrange multiplier form of the bilinear action. In this section we search for
free fields which belong to the partial fractions of the double poles in the propagators 〈hh〉
as given in [PS21]. This tree approximation result can not be extended to higher orders
as we have shown in the preceding subsection. This will lead us to an interpretation and
conclusion on the fate of the different fields involved.

Starting point is the decomposition of the hµν propagators into partial fractions which
have only simple poles, as presented in [PS21, eqs. C1, C2]. We are looking for fields φµν

and Σµν whose bilinear terms in the action just yield these simple pole propagators: φ the
massless, Σ the massive ones. With this aim in mind one decomposes the field-bilinear
part of the classical invariants of EH + hds with the help of a Lagrange multiplier Zµν such
that only second derivatives of hµν and Zµν ,Σµν respectively show up. Since in [Ste78] in
an analogous context this problem has been solved we can proceed the other way round:
we start from

(4.1) hµν = φµν + Σµν Zµν = φµν − Σµν

as desired field decomposition and from

Γ(φ) = ΓEH(φ)(4.2)

=
c̃3κ

−2

4

ˆ

(−φµν
�φµν + φρ

ρ�φσ
σ − 2φµν∂µ∂νφ

λ
λ + 2φµν∂ρ∂νφ

ρ
µ)

Γ(Σ) = −ΓEH(Σ) + Γmass(Σ)(4.3)

=
c̃3κ

−2

4

ˆ

(Σµν
�Σµν − Σρ

ρ�Σσ
σ + 2Σµν∂µ∂νΣ

λ
λ − 2Σµν∂ρ∂νΣ

ρ
µ

+ a2Σ
µνΣµν + a0(Σ

λ
λ)

2)

as desired bilinear action in order to identify at a convenient stage in our conventions the
mass a2, a0 and coupling c̃3κ

−2 parameters. The relative minus sign of the two actions
just represents the negative residue sign of massive propagators in [PS21, eqs. C1, C2].
As an aside we note that the mass term is not of Fierz-Pauli type, since it will turn out
that a2 + a0 6= 0. Hence it contains some spin 0 component. (The Fierz-Pauli condition
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a2 + a0 = 0 would remove within γ
(0)
TT the second zero, hence ruin UV convergence.)

For the subsequent treatment we give here the actions in projector form. (The projectors
can be found in [PS21, App. A])

ΓEH(φ) =
c̃3κ

−2

4

ˆ

(− φµν
�(P

(2)
TT + P

(1)
SS + P

(0)
TT + P

(0)
WW)φρσ

+ φµν
�(3P

(0)
TT +

√
3(P

(0)
TW + P

(0)
WT) + P

(0)
WW)φρσ

− φµν
�(
√
3(P

(0)
TW + P

(0)
WT) + 2P

(0)
WW)φρσ

+ φµν
�(P

(1)
SS + 2P

(0)
WW)φρσ

(4.4)

Γ(Σ) =
c̃3κ

−2

4

ˆ

(Σµν(�+ a2)(P
(2)
TT + P

(1)
SS + P

(0)
TT + P

(0)
WW)Σρσ

− Σµν(−�+ a0)(3P
(0)
TT +

√
3(P

(0)
TW + P

(0)
WT) + P

(0)
WW)Σρσ

+ Σµν
�(
√
3(P

(0)
TW + P

(0)
WT) + 2P

(0)
WW)Σρσ

− Σµν
�(P

(1)
SS + 2P

(0)
WW)Σρσ)

(4.5)

In the next step we replace the fields: φ = h+Z,Σ = h−Z and go over to a total action

Γ(φ) + Γ(Σ) = Γtotal → Γ(h, Z)(4.6)

We find

Γtotal(h, Z) =
c̃3κ

−2

4

ˆ

(− 2h(P
(2)
TT(2�+ a2) + P

(1)
SS a2 + P

(0)
TT(−4�+ a2 + 3a0)

+
√
3(P

(0)
TW + P

(0)
WT)a0 + P

(0)
WW(a2 + a0))Z

+ h(P
(2)
TTa2 + P

(1)
SS a2 + P

(0)
TT(a2 + 3a0)

+
√
3P

(0)
TW + P

(0)
rmWTa0 + P

(0)
WW(a2 + a0))h

+ Z(P
(2)
TTa2 + P

(1)
SS a2 + P

(0)
TT(a2 + 3a0)

+
√
3P

(0)
TW + P

(0)
rmWTa0 + P

(0)
WW(a2 + a0))Z .

(4.7)

This action has the desired structure
´

(hDhZZ + hMh + ZDZZZ) with Z representing
the Lagrange multiplier field. This explicit form has not been presented in [Ste78].
The final form Γ(h), which can be compared with EH+hds, is now obtained by eliminating
Z via its equation of motion

δΓ

δZ
(h, Z) = 0.(4.8)
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One obtains

(P
(2)
TTa2 + P

(1)
SS a2 + P

(0)
TT(a2 + 3a0) +

√
3(P

(0)
TW + P

(0)
WT)a0 + P

(0)
WW(a2 + a0))Z

= (P
(2)
TT(2�+ a2) + P

(1)
SS a2 + P

(0)
TT(−4�+ a2 + 3a0)

+
√
3(P

(0)
TW + P

(0)
WTa0 + P

(0)
WW(a2 + a0))h .

(4.9)

Suitably projecting and equating coefficients one can solve for Z in terms of h. Inserting
into (4.7) one arrives finally at

Γtotal(h) =
c̃3κ

−2

4

ˆ

h(P
(2)
TT(−

4

a2
�(�+ a2)) + P

(0)
TT(−

8

a2 + 3a0
�(�+ (a2 + 3a0))))h .

(4.10)

This result permits identification of the parameters:

1

4
c̃3κ

−2 = c3κ
−2 a2 =

4c3κ
−2

c1
a0 = −

3c2 + 2c1
3c1(3c2 + c1)

c3κ
−2 .(4.11)

4.2. Propagators. This section is not mandatory for the understanding and use of the
Lagrange multiplier trick within EH + hds, but still instructive. The fact that one can in-
vert (to the propagators) gives the massive submodel some “stand-alone” properties which
are important when considering cohomology (in the classical approximation), s. Sect. 4.3.

Eventually the field φ will be interpreted as a standard gravitational field for a standard
EH, whereas Σ will be considered as a kind of auxiliary field whose only purpose is to
guarantee power counting renormalizability, a “shadow” field. Hence φ has the standard
transformation properties under BRST

sφµν = −κ(∂µcν + ∂νcµ + ∂λc
µφλν + ∂λc

νφµλ − cλ∂λφ
µν)(4.12)

and requires gauge fixing etc as usual (s. [PS21]). For the field Σ we could assign

sΣ = s2Σ = −κ(∂λcµΣλν + ∂λc
νΣµλ − cλ∂λΣ

µν)(4.13)

Since, however such a non-linear transformation would not survive when going on-shell
we are allowed to assume sΣ = 0 – which we will choose.

φ has the standard propagators,

〈φφ〉(2)TT =
i

c̃κ−2p2
〈φφ〉(0)TT =

−i
2c̃κ−2p2

(4.14)

〈φφ〉(1)SS =
4iα0κ

2

p2
〈φφ〉(0)WW =

4iα0κ
2

p2
〈φφ〉(0)TW = 〈φφ〉(0)WT = 0(4.15)

〈bρφµν〉 =
κ

p2
(pµθνρ + pνθµρ + pρωµν) 〈bρbσ〉 = 0(4.16)

and the standard Fock space of a massless spin 2 field. Like in the case of an abelian
vector field with ad hoc added mass term [BS59], here too, Σ has a propagator which can
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be obtained without further ado. It is determined by the postulate

ΓΣµνΣκλGΣλκΣρσ =
i

2
(δρµδ

σ
ν + δσµδ

ρ
ν) = i(P

(2)
TT + P

(1)
SS + P

(0)
TT + P

(0)
WW)ρσµν(4.17)

Like the actions we also expand the propagators in projected form

G(Σ)ρσµν =
c̃3κ

−2

4

∑

r,K,L

〈ΣΣ〉(r)K,LP
(r)ρσ
KLµν(4.18)

and insert into (4.18). One easily finds

〈ΣΣ〉(2)TT =
i

�+ a2
δ(x− y) 〈ΣΣ〉(1)SS =

i

a2
δ(x− y)(4.19)

We obtain the other propagators in two steps, since the projectors with r = 0 are not all
orthogonal to each other. We first group the terms as follows

PTT(−i+ γTT〈ΣΣ〉TT + γtf〈ΣΣ〉tf) + PWW(−i+ γWW〈ΣΣ〉WW + γtf〈ΣΣ〉tf)
= PTW(−γTT〈ΣΣ〉tf − γTT〈ΣΣ〉WW − γtf〈ΣΣ〉WW)

+ PWT(−γWW〈ΣΣ〉tf − γWW〈ΣΣ〉TT − γtf〈ΣΣ〉TT).

(4.20)

(In order to simplify the writing we have omitted the superskripts (0). “tf” means “trans-
fer”, γtf =

√
3a0.) Then we multiply the lhs with the lhs and the rhs with the rhs.

The resulting equation constitutes a kind of consistency condition which is automatically
satisfied once we impose

〈ΣΣ〉(0)TT =
i

γTT

=
i

−2�+ a2 + 3a0
δ(x− y)(4.21)

〈ΣΣ〉(0)WW =
i

γWW
=

i

a2 + a0
δ(x− y)(4.22)

The equation (4.20) enforces finally

〈ΣΣ〉(0)tf = 0.(4.23)

The propagators r = 2, 0;K = L = T are truely dynamic, the others are not.

4.3. s-cohomology for φ and Σ sectors. Looking at (4.2), (4.3), (4.4) it is clear that
one can endow the field φ with the standard transformation s = s0. The respective
action Γ(φ)2 is invariant under it and can by cohomology be extended to a complete
(in the expansion in the number of fields) Γ(φ) = ΓEH(φ) invariant under the complete
s = s0 + s1, i.e.

ΓEH =
c3κ

−2

4

ˆ √−g R(φ) .(4.24)

In order to exhaust all possibilities of s-covariance we admit now sΣ = s0Σ. Within Γ2(Σ),
(4.2), (4.3), (4.4) the mass term is not invariant under s = s0. Invariance is, however,
achieved on the mass shell, i.e. using the equation of motion for Σ. It is also obvious that
the Σ terms with (two) derivatives can be continued to all orders in the number of fields,
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hence accordingly symmetric under the complete s = s0 + s1. Together with the mass
term, this constitutes (modulo overall sign) massive spin two & some spin 0. We recall
that it is not of Fierz-Pauli type.
How does the hds version arise via cohomology? Obviously the Σ-terms without deriva-
tives (the mass terms) can be, if at all, only removed by going on-shell. Hence one should
not consider them any more when searching for hds. Instead one observes that the general
solution of

s((−ΓEH(Σ))2) = 0(4.25)

is given by

Γ = −ΓEH(Σ) +

ˆ √−g(c1RµνRµν + c2R
2) .(4.26)

The pure hds terms arise as a kind of “integration constants” when performing cohomology
with respect to s, just because they are allowed by power counting and are, of course,
invariant. The first term in (4.26) is the extension in the number of fields which we had
obtained already.
The transition to our desired solution thus requires some additional argument apart from
just cohomology. We extend (4.24) by demanding that φ gets replaced by φ + Σ = h.
And we extend hds of (4.26) by demanding the replacement Σ→ Σ + φ. The reason for
doing so is based on power counting and convergence: (4.24) can not stand alone because
it is not UV finite, neither is the massive model, and similarly the hds-terms of (4.26)
alone are not IR convergent (all by power counting [PS21]). Only the combined terms,
EH + hds, are convergent and only these combined arguments of s-cohomology and power
counting lead to existing models.
The main reason for this round-about argument is just that it is non-trivial to realize the
Lagrange multiplier construction in higher orders because of the non-linearity in terms
of the fields involved. In the tree approximation it would however go through and thus
provide insight and justification for the discussion.

4.4. Projection to Einstein-Hilbert. We start from the model constructed to all orders
in [PS21] in terms of the double pole field hµν and indicate now, how to identify the fields
φ,Σ and their use within that given model. The massive field Σ will, beginning with one
loop, no longer refer to the propagation of a stable particle: its propagator has at the very
best a complex pole. (Due to the properties of the polylogs it could also have another
singular character.) Furthermore there are no parameters available which could in accord
with the s-symmetry protect the real part of the possible singularity from being shifted in
higher orders and thus is not invariant under RG in accordance with (3.38). A clear hint
that it is unphysical, apart from its negative norm properties in the tree approximation.
We continue this discussion after having described the projection procedure to the physical
Hilbert space.

We identify the massless spin two field φµν with the massless spin two graviton field,
together with the fields c, c̄, and b as companions for building up the Kugo-Ojima [KO78]
doublets. We can proceed for φ this way because it satisfies all requirements which one



EINSTEIN-HILBERT GRAVITY EMBEDDED IN A HIGHER DERIVATIVE MODEL II 17

expects for such a field. Is has the correct covariance under s and can in all respects be
obtained from [PS21] by replacing hµν within Γeff = Γclass +Γcounter with hµν = φµν +Σµν

in the field expansion with the number of fields n greater or equal to three. (In particular,
for the counterterms,too, h = φ+Σ .) In tree approximation bilinear terms and in gauge
fixing, Faddeev-Popov, and external field terms, h is simply replaced by φ, whereas the
field Σµν comes along with the terms given in (4.3) (upon replacing the mass parameters
a2, a0 with their values given in (4.11)).
The general Green’s functions in terms of h give rise to those of φ and Σ for number
of fields n greater or equal to three by introducing respective sources jφ and jΣ, fitting
to h = φ + Σ. We go over to the S-operator by applying a projector : Σ :=: exp (Y ) :,
as mentioned before in (3.7). The free in-fields are related to their corresponding wave
function operator K as follows:

ln : Σ := Y

≡
ˆ

dxdy
(

φµν(x)Kφφ
µνρσ(x− y)z−1 δ

δjφρσ
(y)

+ φµν(x)Kφb
µνρ(x− y)z−1 δ

δjbρ
(y)

+ bρ(x)Kbφ
ραβ(x− y)z−1 δ

δjφαβ
(y)

+ bρ(x)Kbb
ρσ(x− y)z−1 δ

δjbσ
(y)

+ Σµν(x)KΣΣ
µνρσ(x− y)z−1 δ

δjΣρσ
(y)

+ cρ(x)Kcc̄
ρσ(x− y)z−1 δ

δj c̄σ
(y)

+ c̄ρ(x)K c̄c
ρσ(x− y)z−1 δ

δjcσ
(y)

)

(4.27)

The factors z−1 stand for the inverse residue of the respective propagator. (The reference
to which one, we have suppressed for notational convenience.) All fields are free in-fields
and the projector : Σ : projects down to their Fock spaces.

The Hilbert space for the φ quartets is defined in the following way [KO78]. Amongst
the states |φ, c, c̄, b〉, made up by the fields indicated, one selects those which are annihi-
lated by the BRST-charge Q: Q|phys〉 = 0. Since Σ is s-invariant their Fock space which
contains negative norm states is still part of it. All of them build up the state Vphys. Up
to the Σ subspace the norms of all other vectors is known to be non-negative.
As far as the Σ fields are concerned we now conclude that in higher orders they are
projected to zero. This is due to the fact that their original real poles in the tree ap-
proximation have been shifted on the real axis and into the complex p2 plane – a change



EINSTEIN-HILBERT GRAVITY EMBEDDED IN A HIGHER DERIVATIVE MODEL II 18

which we could not prohibit via (symmetric) counterterms, because those are not avail-
able. They have been used for fixing the symmetric invariants

´ √−g(c1RµνRµν + c2R
2).

In tree approximation there are, however, still nonvanishing contributions. One might be
tempted to put there “by hand” c1 = c2 = 0, with the argument that in tree approximation
no higher derivatives are required. But this is in conflict with the solutions gi(t) of the
RG-equation (3.30) which then vanish.
Hence one has to live with some loss of probability in tree approximation: All initial states
made up from φ which go into final states made up from Σ prohibit that positivity is re-
alized. One can consult in this context the paper [AII23], where (although with another
aim in mind) explicitly such processes have been studied and one can see that the higher
derivatives play already in tree approximation the important role of damping amplitudes.
Beginning with one-loop the Σ-states can no longer be excited as outgoing states, hence
there one has as final state the above described quartet states.

The states with vanishing norm form a linear subspace V0 of it and can thus be modded
out. The closure of this space forms the Hilbert space of the φ-quartet subspace:

H = Vphys/V0(4.28)

It implies SS† = S†S = 1, because φ and its companions form a quartet such that only
their non-negative norm states survive in the S-matrix. It is to be noted, however that
still in internal lines of diagrams the field Σ is present and plays its growth limiting role,
since there h = φ+ Σ and the propagators still have their UV-falloff with (p2)−2.
The internal lines consist of 〈φφ〉 + 〈ΣΣ〉 (+ other members of the quartet). In the
appendix we discuss how the optical theorem can be realized.

Hence the Σ fields and their interactions are not irrelevant as far as physics is concerned.
The transition amplitudes of the φ fields amongst their quartet states will in general
depend on the couplings c1 and c2 and thereby exhibit the influence of the “shadow world”
spanned by Σ’s.

5. Discussion and Conclusions

The present paper is based on the renormalization to all orders of the EH action +
higher derivatives which we described in [PS21]. The upshot of that investigation was
that using a spin two field hµν which has canonical dimension zero and a double pole
propagator permits to derive (almost) all results one is interested in: the ST identity
is established, which yields an invariant S-matrix, and parametric differential equations
exist. Redefinitions of the field h as function of itself are also under control.
In the present paper we derived some interesting finiteness properties stemming from
Landau gauge. They simplify considerably the RG equation because they tell one that
the EH coupling c3 and the paramter κ−2 do not run. The Ward identity for rigid Weyl
transformations which we also derived are the correct substitute for scaling, i.e. the CS
equation, in a genuine flat space theory.
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The only critical issue which had not been thoroughly discussed in [PS21] was the
unitarity of the S-matrix. We proposed a projection down to a Hilbert space constructed
out of Kugo-Ojima quartet states, but it was left open to which extent unitarity is indeed
realized.
In order to clarify this issue we introduced here spin two single-pole fields φµν massless, and
Σµν massive, such that the original action in order two of h is separated and diagonalized.
They just realize separately the poles which h posesses in the tree approximation. Since
the version in terms of h had been completely discussed, one only had to find out which
contributions must be attributed to which of the new fields. In the interaction and
counterterms this is just the sum h = φ + Σ : hence all previously obtained results
(perturbation theory, convergence and cohomology) can be carried over. In this sum,
in particular the UV and (off-shell) IR problems remain solved. The bilinear terms are
just what is needed to identify the state space: For φ, c, b, c̄ this is the Hilbert space as
constructed out of Kugo-Ojima quartets. For Σ – the massive field – however, and this is
the most important new aspect of the present paper, it is a result of closer inspection, that
its propagator has – beginning with one-loop – at most a (complex) pole with real part
shifted away from the free theory value and not being RG-invariant. Hence the projection
to the S-matrix yields zero beginning with one-loop. In the tree approximation however
this will not happen, hence we find a loss of probability caused by transitions of φ’s to Σ’s.
A reparametrization by trading the two coupling parameters c1 and c2 against the two
mass paramters a2 and a0 would not be compatible with s-invariance and existence of an
RG-equation and is thus forbidden. This outcome then ensures unitarity of the S-matrix,
just because the Hilbert space of the theory is spanned by the quartets of φ alone.

In general, Green’s functions, S-matrix and operator matrix elements will depend on
the couplings c1 and c2. Hence the higher derivatives are a substantial element of the
theory and in this sense there does not exist a quantized gravity model based on EH
alone.

Appendix A. Appendix

A.1. Proof of antighost equation. We give a proof of the antighost equation to all
orders of perturbation theory. Following closely [BPS91] we insert in the rhs of (3.12) a

correction term ∆̂ρ

(A.1) ḠρΓ = ∆G
ρ + ∆̂ρ

Here ∆G
ρ =
´

(κKµν∂ρg
µν−κLλ∂ρc

λ) represents the tree contribution, whereas ∆̂ρ collects
higher order corrections which are in one-loop order just local terms. Then we apply the
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constraints provided by the algebraic relations

[
δ

δb
, Ḡ] =0(A.2)

{Ḡρ, Ḡσ} =0(A.3)

{Ḡρ,Gµ} =κ∂ρ
δ

δbµ
(A.4)

ḠρS(F ) + SF (ḠρF ) =0(A.5)

for any functional F . One finds the following restrictions on ∆̂ρ

δ

δb
∆̂ρ =0(A.6)

Gµ(x)∆̂ρ =0(A.7)

Ḡρ∆̂σ + Ḡσ∆̂ρ =0(A.8)

SΓ∆̂ρ =0(A.9)

∆̂ρ has ghost number +1 and dimension 4. Hence a basis which satisfies the constraints
(A.6, A.7) is provided by

´

κLλ∂ρc
λ,
´

Hµνh
µν . Constraint (A.8) holds then automatically.

An explicit check of constraint (A.9) shows that it can not be satisfied, hence ∆̂ρ = 0 at
first order in ~, by induction then to all orders. So, the antighost equation is proven to
all orders.

A.2. Optical Theorem. The derivation of the optical theorem starts with the definition
of a transition operator T and the unitarity relation for the S-operator.

(A.10) S = 1 + iT SS† = S†S = 1 − i(T − T †) = TT †

Inserting the completeness relation Σn|n〉〈n| = I one arrives at

(A.11) −i(T − T †) = ΣnT |n〉〈n|T †.

Taking suitable matrix elements one obtains interesting bounds.
In the presence of states which have negative metric and are non-diagonal the relations,

(A.10), (A.11) are to be changed [Kug97, (3.2.32), (3.2.35)]. The complete S-matrix
describes also the scattering of fields which lead to states with negative or vanishing
norm. Unitarity becomes “pseudo”-unitarity and the completeness relation takes care of
negative norm and non-diagonality by a metric ηαβ

(A.12) Σγ,δSβγη
−1
γδ S

†
δα = ηβα

We now consider elements of the physical Hilbert space (4.28). States containing |Σ... >
are still present as vectors in Vphys, because the Σ-field is invariant under QBRST, hence
also their Fock states are. However beginning with one-loop they are projected to zero
under : Σ : as has been explained before. In tree approximation they are, however still
present. Elements contained in V0 are orthogonal to those of Vphys and have vanishing
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contribution to the matrix elements of T due to the quartet character of the states in V0.
Hence as matrix elements of T survive only such vectors which are created by the particle
representatives of the r = 2, 0;K = L = T components of φµν and tree contributions of
Σµν .

The disappearance of all contributions of the field Σµν in the matrix elements of S-
and T -operators beginning in one-loop has the effect that standard considerations of the
optical theorem can also be extended to the tree approximation, however with some loss
of positivity there since we are not allowed to put c1 = c2 = 0. This loss prevails in
all contributions brought in by the tree approximation. Apart from those the theory is
reduced to EH and there the optical theorem is valid as just explained on the quartets built
with φ, c, c̄, b. This also means that there is no problem of fitting within the non-linearity
of the optical theorem in terms of T . Even when using cutting rules for an explicit check
of unitarity one finds that, whenever internal ΣΣ lines are cut, those contributions contain
still loops multiplied by tree’s and then the loop contributions vanish. The surviving pure
tree contributions violate unitarity.
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