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Abstract

Motion capture from a limited number of body-worn sen-
sors, such as inertial measurement units (IMUs) and pres-
sure insoles, has important applications in health, human
performance, and entertainment. Recent work has focused
on accurately reconstructing whole-body motion from a
specific sensor configuration using six IMUs. While a com-
mon goal across applications is to use the minimal num-
ber of sensors to achieve required accuracy, the optimal
arrangement of the sensors might differ from application
to application. We propose a single diffusion model, Dif-
fusionPoser, which reconstructs human motion in real-time
from an arbitrary combination of sensors, including IMUs
placed at specified locations, and, pressure insoles. Un-
like existing methods, our model grants users the flexibility
to determine the number and arrangement of sensors tai-
lored to the specific activity of interest, without the need
for retraining. A novel autoregressive inferencing scheme
ensures real-time motion reconstruction that closely aligns
with measured sensor signals. The generative nature of Dif-
fusionPoser ensures realistic behavior, even for degrees-of-
freedom not directly measured. Qualitative results can be
found on our website: hitps://diffusionposer.github.io/.

1. Introduction

Portable and minimally intrusive tools for estimating hu-
man motion have important applications in health and hu-
man performance as they allow continuous monitoring of
the motions of the body and the forces in the musculoskele-
tal system [19,45]. Mobile sensing technologies also have
applications in virtual and augmented reality, and video
games [32,33]. Truly wearable sensors such as inertial mea-
surement units (IMUs) (e.g. [2]), pressure insoles (e.g. [0])
or electromagnetic sensors (e.g. [15]), have an advantage
compared to video-based motion capture, as they are ego-
centric, do not suffer from occlusion or poor lighting, and
offer an infinite measurement volume. While egocentric
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Figure 1.
fusionPoser.
assume IMUs may be attached at 13 specific locations: pelvis,
thighs, shanks, feet, arms, wrists, torso, head.

(Left) Examples of live reconstruction using Dif-
(Right) Subject instrumented with IMUs. We

video represents an alternative or supplementary modality,
it introduces potential privacy concerns. With IMU sensors
being the cheapest alternative of these mobile sensing tech-
nologies, much research has focused on motion reconstruc-
tion from these. Configurations with few sensors, i.e. sparse
configurations, are desirable for user convenience and ad-
herence. However, a sparse configuration as opposed to a
dense configuration, does not allow direct measurement of
the full body motion. Besides sparsity, sensor noise is an
important challenge. To tackle the problems of sparsity and
noise in the case of IMUs, both optimization [48] and data-
driven [11,36] methods have been used.

Prior data-driven methods that reconstruct motion from
sparse IMU sensor configurations focused on a specific
number of sensors in a specific configuration [11, 13, 36,

,52,53]. In practice, applications would benefit from a
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real-time system that is more flexible and where the user
can optimize the number of sensors and configuration to the
activity of interest.

Here we present a single diffusion generative model, Dif-
fusionPoser, that reconstructs human motion in real-time
from ad-hoc sensor configurations, i.e. any number (be-
tween one and thirteen) and combination of IMUs and/or
pressure insoles can be used.

The use of a diffusion generative model is key to allow
any combination of sensors. It results in realistic motion re-
construction in correspondence with measured signals, even
for very sparse configurations. Our generative model is also
robust to cases where sensor signals are corrupted or lost.

Two developments, that both utilize the inpainting de-
noising technique [22], differentiate our model from previ-
ous motion diffusion models such as [7, 20,42, 44] and en-
able our real-time sensor-based motion reconstruction ap-
plication:

1. We use an autoregressive inference scheme (Section
3.4.1) where at every time step the motion history is
used to generate a full motion sequence, including the
current frame of interest.

2. We use a tailored motion representation and in-
painting denoising, rather than a conditional model,
to control motion generation. The motion representa-
tion consists of contact labels, root translation, global
segment orientations and global linear accelerations of
segment-specific sites.

We demonstrate the capability of DiffusionPoser to opti-
mize sensors configurations for applications that might re-
quire different levels of accuracy for specific body regions.
We show that, in the case of using three sensors, the best
configuration instruments, the pelvis and wrists when op-
timizing whole-body reconstruction, the pelvis and thighs
when optimizing reconstruction of leg motion, and the up-
per arms and pelvis when optimizing reconstruction of the
back, neck and shoulder joints. All these configurations can
be used without retraining. We show that such flexibility
does not come at the cost of accuracy as DiffusionPoser
achieves accuracy that is on par with state-of-the-art regres-
sive models that focus on a single specific six sensor IMU
setup [11,13,52,53].

Our method is agnostic to the underlying skeleton mod-
els and we present two versions of DiffusionPoser for dif-
ferent skeletons. First, we use the SMPL body model [21].
Second, because we aim to enable biomedical research ap-
plications, we implemented DiffusionPoser for a different
and more physiologically realistic skeleton: the OpenSim
musculoskeletal model [34]. While DiffIP for the SMPL
model was trained on the available AMASS dataset we cre-
ated a new dataset specific to OpenSim models by combin-
ing three existing motion capture datasets [14,40,43].

DiffusionPoser has interesting features for health and
biomedical research applications. It reconstructs motion
from wearable IMU sensors that have extended battery lives
and are portable. It allows users to select a sensor configu-
ration while trading off comfort and specific accuracy that
suits their goal best, on-the-fly, without retraining. Finally,
DiffusionPoser runs at 20Hz making it useful for health and
performance interventions such as guidance of rehabilita-
tion exercises or training using biofeedback [46].

2. Related Work

Motion Capture using sparse IMUs. An IMU measures
3D linear acceleration, 3D angular velocity, and the direc-
tion of the magnetic North. These measurements are noisy
and expressed in the local IMU frame. Commercially avail-
able IMU systems come with proprietary sensor fusion al-
gorithms providing orientation and acceleration for use in
downstream applications (e.g., [31]). Linear accelerations
remain noisy and are therefore sometimes smoothed before
being used as reconstruction input (e.g. [13]).

Early work performing human motion reconstruction
from sparse IMUs performed database search based on four
[41] or five accelerometer signals [36]. In recent years,
several works focused on reconstructing whole-body mo-
tion from six IMU sensors placed on the wrists (2), on the
shanks (2), on the pelvis, and on the head. Sparse Iner-
tial Poser [48] relies on this configuration and does offline
motion reconstruction by optimizing a sequence of poses to
match measured signals.

Deep Inertial Poser [1 1] introduced the use of a human
motion prior: a bi-directional RNN architecture is trained
on a motion dataset. IMU signals for training were synthe-
sized from the AMASS motion dataset [23]. Other data-
driven algorithms have built on this work to improve accu-
racy and address root translation estimation. Transpose [53]
combines several RNNs to predict the full pose, including
the root motion. An extension of this work, Physics Iner-
tial Poser (PIP) [52], adds a physics layer to refine the joint
orientations and root motion predictions. Transformer Iner-
tial Poser (TIP) [13], addresses root motion estimation by
predicting stationary points on feet, hands and pelvis and
applying a correction accordingly.

A downside of the prior work, that we address with Dif-
fusionPoser, is that only one specific IMU configuration is
allowed. One other prior work performs online reconstruc-
tion from a flexible and sparse IMU configuration: IMU-
Poser [25] uses an LSTM to predict motion from different
IMU configurations including up to three sensors embed-
ded in a phone, watch, and earbuds. Compared to our work,
IMUPoser has a limited number of possible locations for
the sensors and does not reconstruct root motion.

Finally, several systems complement inertial measure-
ments with another sensory modality to improve reconstruc-



tion (e.g.: optical markers [3], lidar [30], third-person video
[24], first-person video [51], and depth camera [55]).

Diffusion for human motion reconstruction. Diffusion
models [37] are a class of deep generative models. During
training, a neural net learns the inverse mapping of samples
from the target distribution that are gradually noised (i.e.
denoising). At inference, the neural net is used to perform a
denoising process starting from pure noise, thus generating
a clean sample. A recent overview of diffusion models for
human motion generation can be found in Section 7 of [28].

A diffusion generative model can be controlled in dif-
ferent manners. One approach that has been employed in
motion generative systems is to utilize a conditional gener-
ative model. In this model, a specific condition, such as text
(e.g., [42]) or music (e.g., [44]), is provided during both
the training and inference phases. Text-to-motion genera-
tive systems that rely on diffusion [16, 42, 54] have been
shown to improve expressiveness and robustness compared
to prior generative models [1,27] based on variational au-
toencoders [17].

Similar to our work, human motion diffusion models
have been been used to reconstruct motion from differ-
ent sensory modalities such as monocular camera [8, 10],
egocentric camera [20], or position and orientation sensors
[7,12,50]. There are two important distinctions between our
work and the systems mentioned here. First, the mentioned
systems have access to a good estimate of position as in-
put, whereas we start from noisy linear acceleration signals.
Second, the prior works are conditional models for which
the sensor measurement is the condition of the generative
process. We use the sensor measurement for guidance in-
stead of using it as a condition. This allows to maintain
flexibility with respect to what sensor signals we have ac-
cess to.

Indeed, when using conditional models, we cannot use
a different condition during inference than during training.
Guidance on the other hand typically only interferes during
inference. There are several ways to do guidance [28] and
we take inspiration from [42,44] that use inpainting denois-
ing as a flexible approach to control (part of) the features of
a generated motion. Different from how inpainting denois-
ing is used in [44] to generate long sequence motions by
having small overlapping temporal patches, we generate a
continuous motion sequence in a fully autoregressive man-
ner. Each newly generate window of motion has an overlap-
ping temporal patch with the previous window that covers
all but the last frame.

3. DiffusionPoser

DiffusionPoser reconstructs whole-body human motion
in real-time based on measurements from sparse IMUs in
arbitrary configurations and/or pressure insoles.

3.1. Skeleton model and IMU instrumentation

We implemented DiffusionPoser for two body models:
SMPL [21] and OpenSim [18]. The system works identical
for both models. Training is slightly different because of
different definitions of the underlying kinematic tree. We
provide further detail on the OpenSim model in Appendix
A and focus on SMPL here.

The SMPL skeleton model is a 75 dof kinematic tree
consisting of a root segment (6 dof) and 23 additional seg-
ments connected by ball-and-socket joints (3 dof). We as-
sume that IMUs can only be attached at specific locations
to 13 of the 23 body segment (Figure 1). These specific at-
tachment sites should be respected at inference as they are
used to synthesize the training data (Section 3.3).

For the upper and lower limbs we opted to attach the
sensors in positions as distal as possible without hamper-
ing joint motion. As location within a body segment does
not influence the orientation estimate of a body, we choose
this placement to maximize the signal-to-noise ratio for the
measured linear acceleration. The root and torso IMU were
attached at locations that provide a good articulation be-
tween sensor and body segment with few soft tissue arti-
facts. Similar to prior work [13,52, 53] we will ignore the
toes, wrist and finger joints in our evaluations as in several
motion training datasets these dofs are not articulated.

3.2. Diffusion Model
3.2.1 Features

Our diffusion model generates sequences of N=61 feature
vectors. The feature vector in each frame represents the
combination of whole-body pose and IMU information in a
compact manner:

L frame = (Raa7Ap7pyab)' (1)

R € R?'*% are the global orientations of the body seg-
ments, parameterized by 6-DOF representation [56]. The
orientations of the 13 body segments that are potentially
instrumented also represent IMU orientation estimates as
there is no relative orientation between IMU and body seg-
ment after calibration. a € R*3 are the linear acceler-
ations, expressed in the world frame, of the IMU locations
on the potentially instrumented body segments. To com-
plete our whole-body motion representation we have Ap,
the 2D change in root position from one frame to the next,
and p,, the root vertical position. For the heel and toe of
each foot, we add a binary contact feature b € R?*? that
will be used to regularize generated motion (Section 3.2.3).
The full feature vector is € R1#190,

3.2.2 Diffusion Framework

Training and architecture of our diffusion framework are
similar to [42, 44]. Diffusion is modeled as a Markov nois-
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Figure 2. DiffIP transformer decoder network. Architecture of
the denoiser fo(2¢,t,h) that predicts the sample (&0) given the
noised sample z;, denoising step ¢ and the body height h. We use
the transformer decoder architecture from [47] and use the step
embedding and height embedding for cross attention as well as
self attention by concatenating them to the input embedding.

ing process with latents {@;}+—o.7, with T = 1000. The
forward noising process is defined as:

q(zi|®) ~ N(Vayz, (1 —a)I) 2

where @, € [0,1] are constants which follow a monotoni-
cally decreasing (cosine) schedule for increasing ¢, such that
xr ~ N(0,I). We learn an approximation of the reverse
diffusion process, i.e., the denoising process, by training a
transformer neural network fy (Figure 2), with parameters
6, which takes a noised version 2; of the ground truth mo-
tion x, the noise step ¢ and condition h and generates a de-
noised version & that aims to match x:

f@(’%tat»h) :iO' (3)

The condition h is subject height. Height is associated with
body segment lengths, which mathematically underlie the
relation between body orientations and body accelerations
and, body orientations and root motion.

3.2.3 Training losses

For training fy we follow DDPM [9] by sampling a diffu-
sion step ¢ from a uniform distribution U € [0, T'], randomly
sampling a motion sequence from our training dataset, nois-
ing this motion « to 2;, predicting &( and performing gra-
dient descent on our loss £

aI:Et[,(i(), w) (4)

Similar to [44], our loss is composed of a simple loss [9,42]
and several auxiliary losses:

L= £simple + ACvel + £FK + ‘Cdrift + Eslide (5)

with
N . .
Leimple = Z H:iél) _ m(z)H27 (6)
i=1
N71 A . ~ . . .
Loa= YIRSV~ RY) — (RED — RO)|2, @)
i=1
N -~ . .
Lrx =Y |[FK(RY)) - FK(RY)|]?, ®)
i=1
Lasite = 185 —pD|2 where p® =3 2pY,  (9)
i=1 j=1

N-1
Laiae = Y |IBY” - [FKe(RST) - FKa(RY”) + Ap{ ]|,

=1

(10)

Lsimple supervises the features, including contact labels
Béz), directly. L. encourages smooth motion [26]. Lk is
a kinematic loss to encourage realistic joint positions [35],
with FKy the forward kinematics functions mapping global
orientations to foot positions relative to the root. Compared
to prior work we explicitly add Lg4,¢, which penalizes drift
by accumulating the absolute root translation error across
frames. Lq,if; is required because we choose to predict Ap,
rather than p; a design choice to improve performance when
generative motion models are used autoregressively [29].
Lslide encourages the model to generate motion where foot
motion is consistent with foot contact prediction (minimiz-
ing foot velocity when in contact) [44].

3.3. Training data

We used AMASS [23] for training. IMU orientations
were synthesized as the global orientations of the body
segments. IMU linear accelerations were derived by dou-
ble differentation of selected vertex positions that were
obtained by a forward kinematic pass. To better match
measured and synthesized linear accelerations we averaged
these at the original sampling rate using a moving average
sliding window of 166ms (e.g., 11 frames at 60Hz) [13].
Finally, we resampled at 20Hz. Contact labels were anno-
tated by applying a velocity threshold (0.3m/s) for each of
the four potential contact points (heels and toes) [53].

Sampling from training data was done following a prob-
ability that was assigned to each trial based on a simple en-
ergy metric. The sampling strategy encouraged the model
to predict more diverse motion when deployed purely gen-
erative and improved reconstruction accuracy (Section 4.7).
For the energy metric, we estimated center-of-mass (COM)
position of each segment as the midpoint between joints and



calculated COM velocity. Then we calculated linear ki-

. .9
netic energy for each segment: 0.5 - Mgegment - COM
with Msegment in Appendlx D.

3.4. Inference

3.4.1 Autoregressive inference
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Figure 3. Four step autoregressive inference including denois-
ing inpainting. Motion is reconstructed frame-by-frame in real-
time following a four step process. New predictions are shifted
into history and serve as input for the reconstruction at the consec-
utive timesteps.

Inference is run at 20Hz and consists of a four step pro-
cess (Figure 3). At each timestep a new observation is made
of the features measured by the sensors. The new observa-
tion, together with the history of measured features and the
history of reconstructed motion are input to the inpainting
denoising process. The output from the inpainting denois-
ing [38] process is a prediction of unobserved features at the
current frame. The predicted features are concatenated with
the measured features. Finally, we apply a correction of the
root motion 3.4.2 and shift the new frame into the history
before a new measurement is acquired.

Our inpainting denoising algorithm 1 takes as input
2Pt which consists for frames 0 to N — 1 of the mea-
sured and reconstructed feature history. For the final frame,
frame NN, the observed features are set to the sensor mea-
surements. The unobserved features of frame NN, that we
will predict, are initialized from the reconstructions at frame
N — 1. The inpainting mask (m) covers all features for
frames 0 to N — 1 and the observed features for frame
N. x"PU are inpainted using our denoiser, which leads to
x°UPut  From x°“'P"* we take the unobserved features at
frame N and concatenate these with the measured features.

3.4.2 Root correction

We exploit the predicted contact information to correct foot
sliding artifacts and reduce root drift. The motion of points
on the feet that are predicted to be in contact during the

ALGORITHM 1: Inpainting denoising with Dif-
fusionPoser
Given : ¢, m, x"Put
T = winput
for t=T-1, T-2, ... 1 do
noise 2 ~ N (vVaixii1, (1 —ap)I)
predict &g = pg (24, ¢, ¢)
editz; = m © P + (1 —m) O 2
end
woutput =

t

transition from frame N — 1 to NV is corrected by changing
the root motion. We do this by first calculating the mean
horizontal position change between frames N — 1 and N
across the points that are predicted to be in contact. We
then subtract this mean position change from the predicted
horizontal root position change between frames N — 1 and
N. Note that this heuristic does not guarantee predicted
contact points to be static, as it only makes the mean of the
contact points to be static.

4. Evaluations

We performed several experiments and evaluations to
quantify reconstruction performance for different IMU con-
figurations, to compare DiffusionPoser to Transpose [53],
PIP [52] and TIP [13] and to demonstrate multimodality.
We show that DiffusionPoser has a comparable reconstruc-
tion accuracy to other methods, while offering users the
flexibility to select sensor setting on-the-fly. Next, we per-
formed experiments to show robustness of DiffusionPoser
to sensor signal corruption and to examine the effect of dif-
ferent denoising schemes. Finally we did several ablations.

Following [13, 52, 53] we performed evaluations using
the TotalCapture dataset with real IMU data for sensors
on the pelvis, head, wrists and shanks (‘TotalCaptureReal’)
[11,43]. Next we also used ‘TotalCaptureSynth’, a ver-
sion of the TotalCapture dataset where we synthesized all
IMU signals. ‘TotalCaptureSynth’ does not allow to eval-
uate sim-to-real error but is useful to understand the effect
of different configurations on reconstruction accuracy. We
also used DIP-IMU for additional baseline comparison [ 1].
Evaluations are done using 30 denoising steps (Section 4.6).

We report the following evaluation metrics:

Local Angular Error, LA [°]: Rotation difference between
ground-truth and reconstructed local joint angles. We use
specific LA metrics to quantify reconstruction accuracy of
the back (neck, shoulder and spine joints) and legs (hip,
knee and ankle joints).

Global Angular Error, GA [°]: Rotation difference be-
tween ground-truth and reconstructed local global segment
orientations.



Joint Position Error, JPE [cm]: Difference between cor-
responding joint positions, expressed in the root frame, of
reconstructed and ground-truth motions.

Jitter [—]: Ratio of the global jitter averaged across joints
of the reconstructed over the jitter of the ground truth mo-
tion. Global jitter of a joint was calculated as the third
derivative of absolute position using finite differences.

Root Translation Error, RE [m]: Distance between root
position of ground-truth and reconstructed motion at 2s, 5s
and 10s into the motion.

The metrics are based on Transpose, TIP and PIP. Be-
cause there is no exact correspondence between metrics
across papers, values do not exactly correspond to the orig-
inal papers. This is further explained in Appendix B.
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Figure 4. Motion reconstructions with PIP and DiffusionPoser
(Ours) for different IMU configurations of a TotalCaptureReal
sequence. Yellow: PIP with pelvis, head, wrists and shanks. Grey:
ground truth. Purple: Ours with pelvis, head, wrists and shanks.
Orange: Ours with wrists, shanks. Blue: Ours with pelvis and
wrists. Green: Ours with shanks.
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4.1. Optmizing IMU configurations across tasks

We show the capabality of DiffusionPoser to optimize
sensor configurations for specific activities by evaluating
on different metrics to quantify accuracy for: whole-body
(GA), leg kinematics (legsLA), back kinematics (backLA)
and global translation (RE10). We optimized sensor config-
urations for two, three and four IMU sensors by evaluating

the performance for a range of selected configurations on
TotalCaptureSynth. This was the only experiment where
we used TotalCaptureSynth because we did not have real
IMU data for all the potentially instrumented segments that
we wanted to test. A full table with results can be found
in Appendix C, Table 4. Table 1 shows the optimal con-
figuration when using four, three and two IMU sensors for
the different evaluation metrics. Note how instrumenting
thighs is best to reconstruct leg kinematics, whereas shanks
are preferred to improve root translation error.

Table 1. Optimal IMU configurations for four, three and two
sensors for different tasks.

# GA[°] legsLA [°] backLA [°] REI10 [m]
4 plvs, hd, plvs, hd plvs, hd thy, th;
Wy, Wy thy,th; army,arm;  shy,sh;
3  plus, plvus, plus, plus,
Wry, W] thy,th; army, arm; shy, sh;
2  armgy,arm;  plvs, shy army, arm; shy, sh;

4.2. Sim-to-real error and reconstruction quality

We evaluated real vs synthetic reconstruction quality. We
performed exhaustive evaluation for all possible IMU con-
figurations with six or fewer sensors with the potentially
instrumented segments limited to wrists, shanks, pelvis and
head. Qualitative results of reconstructions from real data
and a comparison to PIP [52] are shown in Figure 4. Ta-
ble 2 reports sim-to-real comparisons for selected configu-
rations. Quantitative results for all configurations we tested
with real IMU data are in Appendix C, Table 5.

Table 2. Sim-to-real error for selected IMU configurations.

config MU GA[°]  IJiter]  RE2[m]  REIO[m]

plvs, hd, wr,, real 14.4 2.8 0.25 0.25
wry, shy,shy  synth 7.0 2.8 0.09 0.17
plvs, hd, real 249 27 0.26 0.26
sh,., sh; synth 223 2.5 0.17 0.17

los. she sp Tl 364 2.8 0.30 0.30
PrUS, Sy S wnth - 28.1 25 021 021
" real 392 43 0.47 0.47
Sy St synth 299 3.1 0.26 0.26

Despite the many sources of sim-to-real-error our model
performs well on real data (see also Section 4.3). The fol-
lowing are sources that contribute to sim-to-real error: (1)
imperfect sensor-to-bone orientation calibration, (2) relative
motion between sensor and bone, (3) imperfect placement
of the IMU with respect to vertex positions used during
data synthesis, (4) IMU orientation estimation error by the
proprietary algorithm and (5) differences synthetic and real



Table 3. Comparison of DiffusionPoser to different baselines for TotalCaptureReal. Numbers are averages over all trials, bracketed

numbers are the metrics from the trial with the highest error.

system LA [°] GA [°] JPE [cm] Jitter [-] RE2s [m] RE5s [m] RE10s [m]
Transpose 13.9(24.3) 16.1(25.2) 6.4(12.7) 5.0(9.7) 0.19(0.98) 0.26(1.38) 0.29(1.4)

PIP 11.9(20.1) 14.4(22.7) 5.3(10.7) 1.1(1.5) 0.12(0.45) 0.17(0.60) 0.27(1.07)
TIP 12.0(20.0) 14.3(21.4) 6.2(12.1) 5.3(13.0) 0.17(0.46) 0.33(0.53) 0.32(0.98)
DiffusionPoser ~ 13.0(21.5) 14.4(23.4) 6.1(12.3) 2.8(4.5) 0.14(0.41) 0.20(0.6) 0.25(0.75)

data noise properties. We noted that (1) and (2) are substan-
tial in ‘TotalCaptureReal’.

4.3. Comparison to baselines for six IMUs

We compare DiffusionPoser to Transpose, PIP and TIP
on ‘TotalCaptureReal’ for the six IMU sensor configuration:
pelvis, head, wrists, shanks (Table 3). We reran and evalu-
ated Transpose, PIP and TIP to ensure we were making a
fair comparison starting from the exact same input data and
reporting the same evaluation metrics.

Evaluation metrics for all four systems are close. Diffu-
sionPoser is within 1.1 degrees and 1cm of the system with
the best scores for angular error and joint position error. Op-
tical motion capture will result in variations that are similar
or even larger than 1 degree for the exact same underly-
ing motion performed by the same subject due to marker
noise, differences in marker placement and parameter set-
tings of the motion capture processing pipeline [5,49]. The
jitter metric is significanlty lower in PIP than in Diffusion-
Poser. Several trials reconstructed by PIP have less jitter
than the ground truth motion, indicating that PIP could be
oversmoothing in such cases. From our videos it is clear
that our reconstructed motion smoothness is reasonable.

We performed an additional validation with real IMU
data using the DIP-IMU dataset [| 1] with comparison to
Transpose, PIP and TIP. Conclusions are the same with
evaluation metrics being even closer as for TotalCapture-
Real. Results are in Appendix Table 3.

4.4. Multimodality: Adding shoe insoles

Because we use contact information while reconstruct-
ing motion we can exploit ground truth information when
pressure insoles are worn. We performed a quantitative
analysis on ‘TotalCaptureReal’ by using ground truth con-
tact labels as part of the measured signals. Using ground
truth contact labels improved accuracy (Table 4). When
wearing IMUs on the shank the improvement from wear-
ing insoles is less because the shank IMUs provide good
information to estimate the contact label.

4.5. Dealing with signal corruption and loss

DiffusionPoser can deal with corrupted or lost signal by
relying on its generative nature. Signal loss and corrup-

Table 4. Adding insoles for ground truth contact labels im-
proves reconstruction accuracy.

config insole GA[°] Jitter[-] RE2[m] REI10[m]
plvs, hd, No 29.4 2.7 0.14 0.33
shr,sh;  Yes 29.1 2.6 0.12 0.26
plvs, hd, No 18.0 3.2 0.34 0.96
wWry, Wry Yes 16.9 3.0 0.3 0.67

tion occurs regularly in practical settings (e.g. packet loss,
out-of-range). We provide examples on our project website
where we drop the signal from all sensors for a couple of
seconds. DiffusionPoser continues to generate realistic mo-
tion in real-time. Once the signal is back, a natural transi-
sition to the actual motion is generated. Regressive models,
such as PIP [52] are not capable of such online infilling.

4.6. Reducing denoising steps and optimal spread

For DiffusionPoser to run online we sped up the denois-
ing process by reducing the number of denoising steps fol-
lowing DDIM [7, 38]. For our large base model, a NVIDIA
A4000 GPU can achieve real-time at 30 denoising steps,
but for weaker GPUs it is required to reduce to 10 or even 5
denoising steps. Here we analyzed how accuracy degrades
with reducing the number of denoising steps (Table 5) and
how these steps are best spread (Table 6).

Accuracy improved with increasing number of denois-
ing steps but saturated around 30 steps. Scaling up to 100
denoising steps only gave a marginal improvement. When
reducing the number of denoising steps to 5 we sacrificed
the jitter metric mostly.

Concerning different denoising schemes (Table 6), for
10A we only used the last 10 denoising steps. For 10B
we used the last 20 denoising steps with a spread of 2.
For 10C we started at step 100 and decayed exponen-
tially to zero. 10D has the following irregular spread:
1000/850/700/550/400/250/100/10/2/0. 'We observed a
trade-off where starting from high noise levels resulted in
slightly worse angular errors and more jitter but improved
root estimation error. This could be explained as we initial-
ized the unknown features of the last frame as a copy of the
prior frame. Since orientations are smooth, a few denoising
steps are enough for the model to make a good prediction



Table 5. Evaluation of decreasing numbers of denoising steps
for the 6 IMU configuration.

Table 7. Ablations. Transformer model size is reported between
brackets: layers/feature dimension/feedforward dimension

F£steps GA[°] Jitter[-] RE2[m] RE10[m] Ablation GA[°] Jitter[-] RE2[m] RE10[m]
5 16.0 4.4 0.17 0.32 Ours
m s 33 018 025 (8/512/2048) 14.4 2.8 0.14 0.25
model size
30 14.4 2.8 0.14 0.25 (4/512/2048) 14.9 2.7 0.11 0.22
100 14.3 2.8 0.14 0.24 model size
(8/256/1024) 15.3 2.7 0.11 0.25
Table 6. Evaluation of differently spreading denoising steps. Ours .
w/o energy metric 15.4 2.6 0.14 0.28
o : Ours
spread  GA[®] Jier(-] RE2[m] RE10[m] wlo height 145 2.8 0.14 0.27
10A 15.3 2.0 0.42 0.97 Ours
10B 15.4 21 0.42 0.89 w/0 root correction 14.4 2.15 0.32 0.54
10C 15.4 2.4 0.45 0.67
10D 15.8 3.3 0.15 0.25

of the next frame. The change in root position (Ap) is not
smooth and adding more noise allows the model to change
the initialization of the last frame more. For all other evalu-
ations in this paper we used a spacing similar to 10D as the
increase in angular error and jitter was small relative to the
gain in root estimation accuracy.

4.7. Additional experiments and ablations

We performed several additional experiments and abla-
tions (Table 7). We found that reducing the number of trans-
former layers is a more effective way to reduce model size
than reducing the feature dimension. Interestingly, and we
do not know why, root translation error was slightly better in
smaller models. We found that not using the energy metric
for sampling during training increased the GA by 1°. Next,
we found that ablating height as a condition did not change
much. This could in part be explained by the subjects in To-
talCapture having an average stature. Finally, it is clear that
using the contact label predictions to perform root motion
correction improves root translation error. Root correction
slightly increased jitter.

We performed a comparison of DiffusionPoser with a re-
gressive model that takes in an input mask to encode sensor
configuration. This was only implemented for the OpenSim
version of DiffusionPoser and we show that DiffusionPoser
is more accurate and robust than the regressive model (Ap-
pendix A, Table 2).

4.8. Live demonstration

We tested our system live with different configurations
in an indoor and outdoor setting (tennis court). Using our
system requires a quick sensor-to-world calibration. Next,
the sensors are attached at the correct body locations and a
sensor-to-bone calibration is done by standing in T-pose.

We use XSens IMU sensors and stream processed (MTw
Awinda) orientation and linear acceleration at 60Hz. We ap-
ply a moving average filter with current frame and five past
and five future frames on the acceleration and downsample
both signals to 20Hz to match our synthetic training data.

We perform indoor experiments with a mixture of mo-
tions including walking, jogging, jumping, lunges and kick-
ing and some specific gait deviations that are observed in
patient populations. Next we also perform a live demon-
stration of our system with a tennis player outdoors.

The latency between the real and visualized motion re-
sults from (1) XSens to system communication, (2) moving
average filter (83ms) and (3) our reconstruction algorithm
(45ms). We noticed that the latency of the XSens system in-
creased when the distance to the receiver station increased.
The latency of our reconstruction algorithm is similar to
TIP [13], and significantly more than PIP (16ms) [52].

5. Conclusion

DiffusionPoser allows immediate use of arbirtary sensor
configurations and thus optimizing these configurations for
specific activities. This generative model provides robust-
ness in motion prediction against sparsity, noisy and cor-
rupted sensor measurements. Our evaluations show state-
of-the-art performance when using six sensors and little
degradation in performance when using fewer sensors.

The latency of DiffusionPoser is a limitation for appli-
cations that require short latencies such as visual illusion
(<50ms according to [39]) or control of an assistive device
(e.g., 40-60ms to assist balance with an exoskeleton accord-
ing to [4]). Other future work is to extend our system to es-
timate joint torques and muscle forces. This could lead to a
breakthrough system for biomechanists and users interested
in health and performance.
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