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ABSTRACT
A new parametrization of the Hubble parameter is proposed to explore the issue of the cosmological landscape. The constraints
on model parameters are derived through the Markov Chain Monte Carlo (MCMC) method by employing a comprehensive
union of datasets such as 34 data points from cosmic chronometers (CC), 42 points from baryonic acoustic oscillations (BAO),
a recently updated set of 1701 Pantheon+ (P22) data points derived from Type Ia supernovae (SNeIa), and 162 data points
from gamma-ray bursts (GRBs). Furthermore, the models are compared by using the Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC), so that a comparative assessment of model performance can be available. Additionally,
we compare the Dainotti relation via Gaussian likelihood analysis versus new likelihoods and Calibration of the Dainotti relation
through a model-independent method. The kinematic behavior of the models is also investigated by encompassing the transition
from deceleration to acceleration and the evolution of the jerk parameter. From the analysis of the parametric models, it is
strongly indicated that the Universe is currently undergoing an accelerated phase with diagnostics of the model validating the
quintessence phase.

Key words: Methods: analytical, observational, Software: simulations, Cosmology: Cosmological parameters, transients:
gamma-ray bursts, supernovae.

1 INTRODUCTION

A pivotal contemporary challenge in astronomy involves understand-
ing the Universe’s current acceleration. This cosmic speed-up is
gauged primarily through the Hubble parameter value. Presently, a
growing cosmic tension arises due to conflicting measurements that
put forth the need for further understanding of fundamental cos-
mological factors. The Hubble constant 𝐻0, obtained from distance
ladder observations, is measured at 74.03±1.42 kms−1Mpc−1 (Riess
et al. 2019, 2016, 2018), exceeding Cosmic Microwave Background
(CMB) measurements by up to 3.4𝜎, while from the Tip of the Red
Giant (TRGB) technique (independent of Cepheid), the value of𝐻0 is
69.8± 1.9 kms−1Mpc−1 (Freedman et al. 2019) that is in agreement
with Plank data and SH0ES calibrations at 1.2𝜎 and 1.7𝜎 respec-
tively. However, using the local distance ladder with Cepheids and
type Ia supernovae, the SH0ES team determines 𝐻0 as 73.04 ± 1.04
kms−1Mpc−1 (Riess et al. 2022), creating an approximately 5𝜎 dis-
crepancy. Notably, a significant conflict emerges concerning the 𝐻0,
which gauges the Universe’s expansion rate. Presently, a tension at
the 5-6 𝜎 level exists between local measurements of 𝐻0 and those
from CMB models (Riess et al. 2021; Di Valentino et al. 2021a,b).
Computed values from H0LiCOW (Bonvin et al. 2017; Birrer et al.
2019), Gravitational Wave (GW) (Gayathri et al. 2021), and Mega-
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maser Cosmology Project (MCP) (Pesce et al. 2020) present a higher
𝐻0 range, aligned with distance ladder estimates.

In exploring diverse astronomical observations, the ΛCDM model
has demonstrated remarkable success, spanning from the early stages
of the Universe, including the epoch of Big Bang nucleosynthesis.
By employing mere free parameters, this predictive model unveils
the fundamental dynamics of our vast cosmic scale. However, despite
its success, the ΛCDM model falls short in addressing the challenge
posed by conflicting measurements of primary cosmological factors
(Abdalla et al. 2022), necessitating exploration beyond its confines
(Riess et al. 2019).

In this context, the reconstruction methodology emerges as a
promising avenue to address cosmological observations. It utilizes
rigorous statistical techniques to establish a viable kinematic model.
Recent attention has been directed toward this approach due to its
ability to effectively align theoretical models with empirical obser-
vations, all while maintaining independence from the underlying
gravity model. There are two variations of reconstruction: paramet-
ric and non-parametric. Non-parametric reconstruction involves di-
rectly deriving models from observational data using statistical pro-
cedures, while parametric reconstruction begins by defining a kine-
matic model with independent parameters and subsequently deter-
mining restricted redshift range through statistical analysis of obser-
vational data. This methodical process provides a compelling way to
conceptually address the limitations inherent in the standard model,
encompassing phenomena such as late-time acceleration, the cos-
mological constant problem, and the initial singularity. Through the
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utilization of this method, one can endeavor to enrich our under-
standing of the Universe, potentially untangling these core enigmas
surrounding acceleration and dark energy (Copeland et al. 2006;
Padmanabhan 2008; Durrer & Maartens 2008; Bamba et al. 2012).

In the study of an article (Mukherjee & Banerjee 2016), the au-
thors explored the Universe’s accelerating nature using parametric
reconstruction, with a specific focus on the jerk parameter. Likewise,
the trajectory of the Hubble parameter’s evolution can be illuminated
through the deceleration parameter (as explained by Campo et al.
(del Campo et al. 2012), allowing for precise predictions of thermal
equilibrium. Gong et al. (Gong & Wang 2007) further extended this
parametrization technique to probe the equation of state (EoS) for
dark energy. In the existing literature, numerous investigations re-
volve around parameterizing deceleration, jerk, and equation of state
(EoS) attributes (Roy et al. 2022; Boughezal et al. 2017; Mukher-
jee 2016; Pantazis et al. 2016; Jaime et al. 2018; Nair et al. 2012;
Akarsu et al. 2014; Naik et al. 2023b,a; Roman-Garza et al. 2019;
Koussour et al. 2023a,b; Arora et al. 2023; Chaudhary et al. 2024).
However, limited attention has been directed toward parameterizing
the Hubble parameter (Pacif 2020; Pacif et al. 2017), despite its fun-
damental significance in elucidating the Universe’s evolution. Given
this, we propose a parametric formulation for the Hubble parameter,
incorporating constraints on the Hubble constant as well. Our prin-
cipal aim with this approach is to reconstruct a viable model that
accommodates the accelerating Universe. Additionally, we examine
the solutions of Einstein’s field equations within the framework of
an isotropic and homogeneous spacetime.

For this endeavor, we leverage statistical analysis of observational
data to ascertain the constrained values governing the model’s param-
eters. Through the utilization of the Bayesian approach in agreement
with Markov Chain Monte Carlo (MCMC) analysis, we seek out
the best fits for the unconstrained parameters. In our examination,
we harness diverse datasets, encompassing Cosmic Chronometers
(CC), Baryonic Acoustic Oscillations (BAO), Gamma-Ray Bursts
(GRBs), and the recently released SH0ES (P22) dataset. This expan-
sive compilation includes a broad spectrum of observations, spanning
from Hubble Space Telescope (HST), Supernova Cosmology Project
(SCP), Great Observatories Origins Deep Survey (GOODS), Sloan
Digital Sky Survey (SDSS), Panoramic Survey Telescope and Rapid
Response System (Pan-STRARRS), All-Sky Automated Survey for
Supernovae (ASASSN), Swift Gamma-Ray Burst Mission (SWIFT),
Lick Observatory Supernova Search (LOSS), Carnegie Supernova
Project (CSP), Hubble Frontier Fields (HF), and more.

The layout of the article is as follows: Section 2 presents the
fundamental aspects of Friedmann-Lemaître Robertson-Walker and
also proposes the novel Hubble parameterization. Based on this,
Section 3 provides a rigorous examination of the statistical analysis
applied to the datasets. In Section 4, we undertake a comparative
evaluation of our model utilizing the Bayesian model comparison
technique. Further comparative study has to be done in Section 5
with the Dainotti relation via Gaussian likelihood analysis versus new
likelihoods and calibration of the Dainotti relation through a model-
independent method. The subsequent section 6 employs the outcomes
from the statistical approach to decipher the Universe’s behavior
within our newly constructed model. This section also explores the
physical implications of the parameterized models. Further, section 7
explores the 𝑂𝑚 diagnostics of the model. Lastly, our findings are
summarized and concluded in Section 8.

2 THE FLRW SPACETIME: UNVEILING THE
GENERALIZED ΛCDM COSMOLOGY

In the realm of cosmology, the flat Friedmann-Lemaître-Robertson-
Walker (FLRW) metric assumes a pivotal role, depicting a cosmos
that exhibits isotropy (uniformity in all directions) and homogeneity
(uniformity at every locale).

Within the framework of a flat FLRW spacetime, the metric takes
the following expression:

𝑑𝑠2 = −𝑑𝑡2 + A2 (𝑡) (𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2). (1)

In this context, the quantity represented by 𝑑𝑠2 signifies the space-
time interval, while 𝑑𝑡 corresponds to an infinitesimal increment of
cosmic time. The functionA(𝑡) denotes the scale factor, a fundamen-
tal concept encapsulating the Universe’s proportions as they evolve
through time, fairly explaining the expansion of the Universe.

Central to this concept is the association of the scale factor with
the Hubble parameter (𝐻), which characterizes the pace at which
the Universe expands. The Hubble parameter (𝐻) finds its definition
as the temporal derivative of the scale factor divided by the scale
factor itself: 𝐻 =

¤A
A , wherein the dot symbolizes differentiation

with respect to cosmic time.
Upon the incorporation of the flat FLRW metric into Einstein’s

field equations for a perfect fluid endowed with energy density 𝜌

and pressure 𝑝, it yields the Friedmann equations characterizing a
spatially flat FLRW Universe

3𝐻2 = 𝜌, (2)

2 ¤𝐻 + 3𝐻2 = −𝑝. (3)

In this groundwork, adhering to the convention 8𝜋𝐺
𝑐2 = 1, we

encounter the equation of state (EoS) parameter (𝑤), which emerges
as the quotient of pressure to energy density, denoted as 𝑤 =

𝑝
𝜌 . This

parameter exerts influence over the dynamics of energy density as
well as the expansive tendencies of the Universe. Notably, a Universe
experiences acceleration when this parameter takes on values less
than −1/3.

Moreover, the EoS parameter proves invaluable in categorizing
distinct phases of cosmic expansion: When 𝑤 = 0, it corresponds to
the epoch characterized by matter domination. A value of 𝑤 less than
-1 signifies the phantom phase, while 𝑤 values residing between −1
and −1/3 pertain to the quintessence phase.

The deceleration parameter 𝑞 emerges as another pivotal factor
characterizing the evolutionary trajectory of the Universe. Its con-
nection to the second time derivative of the scale factor within the
FLRW metric is articulated as follows 𝑞 = − ¥A

𝐻2A . The deceleration
parameter serves as a gauge of whether the Universe’s expansion rate
is either accelerating or decelerating. A positive value of 𝑞 signifies
deceleration, while a negative value denotes acceleration.

The relation between the Hubble parameter and the deceleration
parameter is encapsulated within the subsequent relationship

𝐻 (𝑧) = 𝐻0 exp
(∫ 𝑧

0
[𝑞(𝜅) + 1]𝑑 ln(𝜅 + 1)

)
. (4)

Here, 𝐻0 denotes the Hubble parameter’s value at 𝑧 = 0, while 𝑧

represents the redshift, a value correlated with the scale factor ‘A’
through 𝑧 = −1+ 1

A . This association furnishes a means to ascertain
the Hubble parameter as a function of redshift, predicated upon the
deceleration parameter.
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The Hubble parameter (HP) serves as a pivotal factor in unravel-
ing the evolution and characteristics of the Universe. Diverse physical
theories and cosmological models have been proposed to elucidate
its behavior. There are various physical arguments and cosmological
models that explain the behavior of the Hubble parameter. However,
a model-independent methodology has been proposed by (Shafieloo
et al. 2013). This methodology employs a cosmological parametriza-
tion and tackles the field equations with three unknowns: density,
pressure, and the Hubble parameter. Cosmologists have proposed
different parametrizations of cosmological parameters like HP, 𝑞,
and EoS. These endeavors aim to enhance our comprehension of
observed phenomena in the Universe, such as the transition from
deceleration to acceleration. These model parameters can be con-
strained through observational data, making parametrization a useful
tool for scrutinizing the Universe. In this work, we utilize parametric
reconstruction of the model to investigate the accelerating expansion
of the Universe. Specifically, we construct a new parametric form of
the HP which is defined as

𝐻 (𝑧) = 𝐻0
[
1 − 𝑎(1 + 𝑧)2 + (𝑧 + 𝑎) (1 +

√︁
Ω𝑀 𝑧)2

]1/2
, (5)

where 𝑎, and
√
Ω𝑀 are parameters to be constrained by observa-

tional data, and the value of 𝐻0 corresponds to the Hubble constant.
Over considering the standard ΛCDM model

ℎ(𝑧) =
[
Ω𝑀 (1 + 𝑧)3 +ΩΛ

]1/2
, (6)

where ℎ(𝑧) =
𝐻 (𝑧)
𝐻0 (𝑧) , Ω𝑀 and ΩΛ are the matter density and

cosmological constant density parameters respectively. Notably, the
provided Hubble parameter introduces additional parameters 𝑎 and
Ω𝑀 that extend the standard model. By introducing these parameters,
the equation implies a more complex expansion behavior that could
potentially provide a better fit to observed data. Hence our model
performs well across diverse observational data, which strengthens
its validity.

The term 1 − 𝑎(1 + 𝑧)2 becomes less sensitive to the magnitude
of the model parameter 𝑎. Meanwhile, the term (𝑧 + 𝑎) (1+

√
Ω𝑀 𝑧)2

shows a high sensitivity to the variations of both parameters, thereby
displaying a more pronounced dependence on model parameters,
which introduces a more complex dependence on redshift. The com-
bination of the linear and quadratic terms suggests that this part of the
expression might have a significant impact on expansion behavior.

By comparing the parametrized 𝐻 (𝑧) given by (5) and with the
standard expression (6), and solving for the model parameters 𝑎 and
Ω𝑀 , we deduce the ΛCDM equivalent of the parametrized H(z).
For this specific case, the values 𝑎 =

3Ω𝑀−2
√
Ω𝑀

Ω𝑀−1 yield the ΛCDM
equivalent of the parametrized H(z). In particular, parameter

√
Ω𝑀

in the parametrized model is explicitly related to the matter density
Ω𝑀 in the ΛCDM that causes an accelerated cosmic expansion and
parameter 𝑎 indirectly impacts the matter density by influencing
the overall expansion behavior provides a different mechanism for
cosmic acceleration, it could present an interesting alternative to the
cosmological constant inΛCDM. By analyzing how the parametrized
model’s behavior changes with variations in Ω𝑀 , we can gain a
deeper understanding of how matter density affects the expansion
rate and growth of the Universe according to this modified model.
This exploration could lead to insights into phenomena such as the
transition from deceleration to acceleration, the behavior of large-
scale structure formation, and the overall dynamics of spacetime.

The deceleration parameter, 𝑞 is a vital cosmological parameter

that characterizes the Universe’s evolution from deceleration to ac-
celeration. This transition is marked by positive and negative values
of 𝑞 corresponding to early and late-time acceleration, respectively.
This article employs observational data to predict the Universe’s cur-
rent state. The relationship between 𝑞 and the Hubble parameter 𝐻
is given by

𝑞(𝑧) = −
¤𝐻

𝐻2 − 1. (7)

A connection between cosmic time 𝑡 and redshift 𝑧 is established
𝑑

𝑑𝑡
= −(𝑧 + 1)𝐻 (𝑧) 𝑑

𝑑𝑧
. (8)

By utilizing ¤𝐻 = −(𝑧 +1)𝐻 (𝑧) 𝑑𝐻
𝑑𝑧

along with equations (4), (7), and
(8) the 𝑞 for the model can be computed as follows

𝑞(𝑧) = −
(−𝑧 − 1)

(
2
√
Ω𝑀 (𝑎 + 𝑧) (

√
Ω𝑀 𝑧 + 1) − 2𝑎(𝑧 + 1) + (

√
Ω𝑀 𝑧 + 1)2

)
2
(
(𝑎 + 𝑧) (

√
Ω𝑀 𝑧 + 1)2 − 𝑎(𝑧 + 1)2 + 1

) −1.

(9)

This equation provides an expression for 𝑞 in terms of the model’s
parameters 𝑎 and Ω𝑀 .

3 OBSERVATIONAL DATA SET’S ANALYSES AND
RESULTS

In this section, we emphasize the importance of observational cos-
mology in developing precise cosmological frameworks. To attain
this goal, it becomes of utmost importance to constrain the model
parameters, specifically 𝑎,

√
Ω𝑀 , and 𝐻0, through absolute scrutiny

of observed information. In this investigation, we make use of multi-
ple sets of observational data, encompassing Cosmic Chronometers
(CC), Baryonic Acoustic Oscillations (BAO), and the most recent
Pantheon+ compilation (P22), derived from studying Type Ia Super-
novae (SNeIa) and Gamma-Ray Burst (GRBs) occurrences.

By fitting the model parameters to these observational data sets,
we extract the mean values for our proposed model. This thorough
analysis enables us to align our model predictions with the observed
data, resulting in a more accurate and well-defined cosmological
framework. The integration of diverse observational data sets con-
tributes to the reliability and precision of our constructed cosmo-
logical model. By studying different articles (Colgáin et al. 2023b;
Colgain et al. 2022; Colgáin et al. 2023a) they used both binning and
not binning data by redshift highlighting the complexity of estimating
cosmological parameters from observational data, especially at high
redshifts. They show that while it is possible to recover Planck values
in some cases, there may be non-Gaussian behavior in the probability
density functions (PDFs) and potential challenges in accurately esti-
mating parameters at higher redshifts. The choice of how to handle
high-redshift data can impact the results and inferences drawn from
cosmological models like ΛCDM.

3.1 Cosmic Chronometer (CC) Data Observations

The CC method is a simple technique to measure the Hubble param-
eter, 𝐻 (𝑧), as a function of redshift independent of the cosmological
model. It relies on the relationship between time and redshift in an
FLRW metric and is given by

𝐻 = −(1 + 𝑧)−1𝑑𝑧/𝑑𝑡.

MNRAS 000, 1–16 (2023)
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By obtaining 𝑑𝑡 and 𝑑𝑧 with sufficient precision, 𝐻 (𝑧) can be mea-
sured in cosmology independently. While 𝛿𝑧/𝑧 ≲ 0.001 accuracy
in redshift measurement is achievable, the main challenge lies in
obtaining an estimate of the differential age evolution, 𝑑𝑡. This re-
quires the use of a ‘chronometer’. Passive stellar populations are ideal
candidates as cosmic chronometers, as they evolve on much longer
timescales compared to their age difference. This relationship allows
astronomers to infer the expansion rate of the Universe at differ-
ent points in time, providing insight into the fundamental properties
of the Universe. The methods discussed in the article (Koksbang
2021) estimate the expansion rate of the Universe, and it highlights
how their results can be affected by assumptions about the Universe’s
structure. R. Jimenez and A. Loeb (Jimenez & Loeb 2002) introduced
a technique for retrieving HP data directly by calculating 𝑑𝑧/𝑑𝑡 at a
specific value of 𝑧.

The primary advantage of the CC approach is its ability to directly
estimate the expansion history of the Universe without the need for
any prior cosmological assumptions. This characteristic makes it an
ideal framework for rigorously testing various cosmological models.
Moreover, the CC method offers a cosmology-independent way to
estimate the Universe’s expansion history. However, its main chal-
lenge lies in systematic uncertainties, arising from Stellar Population
Synthesis (SPS) model choice, stellar metallicity estimation, Star
Formation History (SFH) assumptions, and residual star formation.
Addressing these uncertainties is crucial for accurate 𝐻 (𝑧) measure-
ments.

Many recent studies have incorporated the CC data sets by analyz-
ing their covariance matrix by (Moresco et al. 2020). The covariance
matrix, denoted as𝐶𝑖 𝑗 , encompasses various contributions, including
statistical errors (𝐶𝑠𝑡𝑎𝑡

𝑖 𝑗
), errors from young components (𝐶𝑦𝑜𝑢𝑛𝑔

𝑖 𝑗
),

dependence on the chosen model (𝐶𝑚𝑜𝑑𝑒𝑙
𝑖 𝑗

), and uncertainties related
to stellar metallicity (𝐶𝑠𝑡𝑒𝑚𝑒𝑡

𝑖 𝑗
), the covariance matrix associated with

the CC method can be expressed as

𝐶𝑖 𝑗 = 𝐶𝑠𝑡𝑎𝑡
𝑖 𝑗 + 𝐶

𝑦𝑜𝑢𝑛𝑔

𝑖 𝑗
+ 𝐶𝑚𝑜𝑑𝑒𝑙

𝑖 𝑗 + 𝐶𝑠𝑡𝑒𝑚𝑒𝑡
𝑖 𝑗 . (10)

Specifically, the model covariance, 𝐶𝑚𝑜𝑑𝑒𝑙
𝑖 𝑗

, can be further broken
down into different components, each representing a distinct source
of uncertainty. These components include uncertainties from the star
formation history (𝐶𝑆𝐹𝐻

𝑖 𝑗
), the initial mass function (𝐶 𝐼𝑀𝐹

𝑖 𝑗
), the

stellar library (𝐶𝑆𝑡𝑒.𝐿𝑖𝑏
𝑖 𝑗

), and the stellar population synthesis model
(𝐶𝑆𝑃𝑆

𝑖 𝑗
). Thus, the model covariance is expressed as

𝐶𝑚𝑜𝑑𝑒𝑙
𝑖 𝑗 = 𝐶𝑆𝐹𝐻

𝑖 𝑗 + 𝐶 𝐼𝑀𝐹
𝑖 𝑗 + 𝐶𝑆𝑡𝑒.𝐿𝑖𝑏

𝑖 𝑗 + 𝐶𝑆𝑃𝑆
𝑖 𝑗 . (11)

The recent work by (Tomasetti et al. 2023) aimed to derive a new
constraint on the expansion history of the Universe by applying the
cosmic chronometers method in the context of the VANDELS survey.
Their focus is on studying the age evolution of high-redshift galaxies,
using a full-spectral-fitting approach. The sample consisted of 39
massive and passive galaxies within the redshift range of 1 to 1.5. By
employing the cosmic chronometers method on the selected sample,
they successfully obtained a new estimate of the Hubble parameter.
The derived value for 𝐻 (𝑧 = 1.26) was found to be 135± 65 km s−1

Mpc−1, taking into account both statistical and systematic errors.
This finding provides crucial insights into the expansion rate of the
Universe at that specific redshift.

In this work, we make use of 34 correlated and non-correlated
points of the CC dataset, which has redshifts ranging from 0.07 ≤ 𝑧 ≤
1.26 and can be found in references (Jimenez et al. 2003; Chimento
& Forte 2008; Stern et al. 2010; Moresco et al. 2012; Zhang et al.
2014; Moresco 2015; Moresco et al. 2016; Ratsimbazafy et al. 2017;

Table 1. CC data yield values of 𝐻 (𝑧) along with their associated 1𝜎
uncertainties, encompassing both systematic and statistical factors (Moresco
et al. 2020) These values are presented in units of km/s/Mpc. The upper block
represents the non-correlated data points of different surveys. The lower
block presents correlated data points that have been taken into consideration,
as elaborated in (Moresco et al. 2020).

Non-correlated data points
Redshift 𝑧 𝐻𝑧 measure Reference

0.07 69 ± 19.6 (Zhang et al. 2014)
0.09 69 ± 12 (Stern et al. 2010)
0.12 68.6 ± 26.2 (Zhang et al. 2014)
0.17 83 ± 8 (Stern et al. 2010)
0.2 72.9 ± 29.6 (Zhang et al. 2014)
0.27 77 ± 14 (Stern et al. 2010)
0.28 88.8 ± 36.6 (Zhang et al. 2014)
0.4 95 ± 17 (Stern et al. 2010)
0.47 89 ± 34 (Ratsimbazafy et al. 2017)
0.48 97 ± 60 (Stern et al. 2010)
0.75 98.8 ± 33.6 (Borghi et al. 2022)
0.8 113.1 ± 28.5 (Jiao et al. 2023)
0.88 90 ± 40 (Stern et al. 2010)
0.9 117 ± 23 (Stern et al. 2010)
1.3 168 ± 17 (Moresco et al. 2012)
1.43 177 ± 18 (Stern et al. 2010)
1.53 140 ± 14 (Stern et al. 2010)
1.75 202 ± 40 (Stern et al. 2010)
1.26 135 ± 65 (Tomasetti et al. 2023)

Correlated data points
Redshift 𝑧 𝐻𝑧 measure Reference

0.1791 75 ± 4 (Moresco et al. 2012)
0.1993 75 ± 5 (Moresco et al. 2012)
0.3519 83 ± 14 (Moresco et al. 2012)
0.3802 83 ± 13.5 (Moresco et al. 2016)
0.4004 77 ± 10.2 (Moresco et al. 2016)
0.4247 87.1 ± 11.2 (Moresco et al. 2016)
0.4497 87.1 ± 11.2 (Moresco et al. 2016)
0.4783 80.9 ± 9 (Moresco et al. 2016)
0.7812 105 ± 12 (Moresco et al. 2012)
0.5929 104 ± 13 (Moresco et al. 2012)
0.6797 92 ± 8 (Moresco et al. 2012)
0.8754 125 ± 17 (Moresco et al. 2012)
1.037 154 ± 20 (Moresco et al. 2012)
1.363 160 ± 33.6 (Moresco 2015)
1.965 186.5 ± 50.4 (Moresco 2015)

Borghi et al. 2022; Jiao et al. 2023). To perform MCMC analysis, we
need to evaluate the chi-square function of CC data, which is defined
as follows

𝜒2
𝐶𝐶/𝑛𝑜𝑛 𝑐𝑜𝑣

= Δ𝐴𝐶−1
1 Δ𝐴𝑇 (12)

𝜒2
𝐶𝐶/𝑐𝑜𝑣 = Δ𝐴𝐶−1

2 Δ𝐴𝑇 . (13)

Here, vector 𝐴 denotes a collection of CC data points, which have
been computed as

Δ𝐴𝑖 = [𝐻𝑚𝑜𝑑𝑒𝑙 − 𝐻𝑜𝑏𝑠 (𝑧𝑖)]1×𝑘 . (14)

Here, 𝐶−1
1 represents the inverse of the covariance matrix for

the uncorrelated data points, which is explicitly defined as 𝐶−1 =[
1/𝜎2

𝐻
(𝑧𝑖)

]
𝑘×𝑘 . In this equation, the index 𝑖 ranges from 1 to 𝑘 , and

𝜎𝐻 (𝑧𝑖) corresponds to the respective errors associated with each
data point in the observed CC data. Correspondingly, 𝐶−1

2 stands
for the inverse of the covariance matrix pertaining to correlated data
points, and its precise formulation can be found in equation (10).
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The total 𝜒2 function for the CC observational data is as follows

𝜒2
𝐶𝐶

= 𝜒2
𝐶𝐶/𝑛𝑜𝑛 𝑐𝑜𝑣

+ 𝜒2
𝐶𝐶/𝑐𝑜𝑣 . (15)

3.2 Baryonic Acoustic Oscillations (BAO) Data Observations

BAO is an important cosmological phenomenon that originated in the
early Universe. During the early stages of cosmic evolution, acoustic
density waves were imprinted in the primordial plasma due to the
interaction between baryonic matter (ordinary matter) and radiation.
These acoustic waves left a distinct signature in the density distri-
bution of baryonic matter. Over billions of years, as the Universe
expanded and evolved, these acoustic waves froze into a characteris-
tic length scale. This length scale, known as the BAO scale, serves
as a standard ruler in the Universe’s large-scale structure. It provides
a unique and robust cosmic ruler that can be used to measure the
expansion history of the Universe.

Observations of the large-scale structure of the Universe allow us
to detect the BAO peaks in the matter power spectrum. These peaks
are related to characteristic scales imprinted in the early Universe.
The standard cosmological model, cold dark matter (CDM), proposes
that quantum fluctuations during inflation seed the initial matter dis-
tribution. After inflation, the Universe becomes radiation-dominated,
with baryonic matter coupled to radiation through Thomson scatter-
ing. Sound waves emerge from overdensities, driven by radiation
pressure. During recombination, photons decouple from baryons,
and at the baryon drag epoch, the sound waves stall. As a result, each
initial overdensity evolves into a centrally peaked perturbation sur-
rounded by a spherical shell, and the radius of these shells is called
the sound horizon, 𝑟𝑑 .

The sound horizon 𝑟𝑑 can be used to determine the angular sepa-
ration, 𝛿𝜃 , and redshift separation, 𝛿𝑧 , at a specific redshift 𝑧 respec-
tively defined as follows

𝛿𝜃 = 𝑟𝑑/(1 + 𝑧)𝐷𝐴(𝑧), (16)
𝛿𝑧 = 𝑟𝑑/𝐷𝐻 (𝑧). (17)

Here, 𝐷𝐴(𝑧) is the angular diameter distance, and 𝐷𝐻 (𝑧) is the
Hubble distance at redshift 𝑧. By selecting appropriate values of 𝑟𝑑
and by constraining cosmic parameters that determine 𝐷𝐻 (𝑧)/𝑟𝑑
and 𝐷𝐴(𝑧)/𝑟𝑑 , we can estimate 𝐻 (𝑧). The ratios 𝐷𝐻 (𝑧)/𝑟𝑑 and
𝐷𝐴(𝑧)/𝑟𝑑 depend on certain cosmic parameters, such as the matter
density, dark energy density, and the equation of state of dark energy.
These parameters determine the expansion rate of the Universe at
different epochs. However, to maintain uniformity in the choice of
𝑟𝑑 , we use 𝑟𝑑 = 147.74𝑀𝑝𝑐 obtained from the Planck collaboration
to compute the observed Hubble parameter for the corresponding
distance function of each survey by (Stern et al. 2010; Zhang et al.
2014; Moresco 2015; Moresco et al. 2016; Ratsimbazafy et al. 2017;
Riess et al. 2022; Brout et al. 2022a,b; Scolnic et al. 2022).

We employ the 𝜒2 statistic to determine the mean parameter values
and constraints for a given model. The majority of the data points
utilized in our analysis are uncorrelated (Delubac et al. 2015; Gaz-
tanaga et al. 2009; Blake et al. 2012; Chuang et al. 2013; Chuang &
Wang 2013; Busca et al. 2013; Oka et al. 2014; Anderson et al. 2014;
Font-Ribera et al. 2014; Bautista et al. 2017; Wang et al. 2017; Ross
et al. 2015; Percival et al. 2010; Tojeiro et al. 2014; Seo et al. 2012;
Anderson et al. 2013; Bautista et al. 2018; Abbott et al. 2019; Hou
et al. 2020; Ata et al. 2018; Busca et al. 2013; Alam et al. 2017), so

𝜒2
𝑏𝑎𝑜/𝑛𝑜𝑛 𝑐𝑜𝑣

(Φ) =
𝑁∑︁
𝑖=1

[
(𝐻𝑚𝑜𝑑𝑒𝑙 (𝑧𝑖 ,Φ) − 𝐻𝑜𝑏𝑠 (𝑧𝑖))2

𝜎2
𝐻
(𝑧𝑖)

]
, (18)

Table 2. Parameters and their measures for the corresponding redshift along
with the associated 1𝜎 uncertainties obtained through BAO. The upper block
represents the non-correlated data points of different surveys. The lower
block presents correlated data points. The data points with a superscript
‘a’ are considered from the galaxy clustering survey while data points with
superscript ‘𝑏’ are considered from 6dFGS, SDSS, and WiggleZ surveys. For
the set of measures with ‘𝑏’, the covariance has been taken into consideration,
as elaborated in (Giostri et al. 2012).

Non-correlated data points
Redshift 𝑧 Measurement Parameter Reference

0.15 664 ± 25.0 𝐷𝑣𝑟𝑎𝑡𝑖𝑜 (Ross et al. 2015)
0.24 79.69 ± 2.99 𝐻 (𝑧) (Gaztanaga et al. 2009)
0.275 0.1390 ± 0.0037 𝑟𝑑/𝐷𝑣 (Percival et al. 2010)
0.3 81.7 ± 6.22 𝐻 (𝑧) (Oka et al. 2014)
0.31 78.18 ± 4.74 𝐻 (𝑧) (Wang et al. 2017)
0.32 1264 ± 25 𝐷𝑣𝑟𝑎𝑡𝑖𝑜 (Tojeiro et al. 2014)
0.34 83.8 ± 3.66 𝐻 (𝑧) (Gaztanaga et al. 2009)
0.36 79.94 ± 3.38 𝐻 (𝑧) (Wang et al. 2017)
0.4 82.04 ± 2.03 𝐻 (𝑧) (Wang et al. 2017)
0.43 86.45 ± 3.97 𝐻 (𝑧) (Gaztanaga et al. 2009)
0.44 84.81 ± 1.83 𝐻 (𝑧) (Chuang et al. 2013)
0.48 87.79 ± 2.03 𝐻 (𝑧) (Chuang et al. 2013)
0.52 94.35 ± 2.64 𝐻 (𝑧) (Wang et al. 2017)
0.54 9.212 ± 0.41 𝐷𝐴/𝑟𝑑 (Seo et al. 2012)
0.56 93.34 ± 2.3 𝐻 (𝑧) (Wang et al. 2017)
0.57 87.6 ± 7.8 𝐻 (𝑧) (Seo et al. 2012)
0.57 13.67 ± 0.22 𝐷𝑣/𝑟𝑑 (Chuang et al. 2013)
0.59 98.48 ± 3.18 𝐻 (𝑧) (Wang et al. 2017)
0.64 98.82 ± 2.98 𝐻 (𝑧) (Wang et al. 2017)
0.697 1499 ± 77 𝐷𝐴𝑟𝑎𝑡𝑖𝑜

(Bautista et al. 2018)
0.72 2353 ± 63 𝐷𝑣𝑟𝑎𝑡𝑖𝑜 (Abbott et al. 2019)
0.81 10.75 ± 0.43 𝐷𝐴/𝑟𝑑 (Hou et al. 2020)
0.874 16780 ± 109 𝐷𝐴𝑟𝑎𝑡𝑖𝑜

(Ata et al. 2018)
1.480 13.23 ± 0.47 𝐷𝐻/𝑟𝑑 (Busca et al. 2013)
1.52 3843 ± 147.0 𝐷𝑣𝑟𝑎𝑡𝑖𝑜 (Alam et al. 2017)
2.3 34188 ± 1188 𝐻/𝑟𝑑 (Alam et al. 2017)
2.33 244 ± 8 𝐻 (𝑧) (Alam et al. 2017)
2.34 222 ± 8.5 𝐻 (𝑧) (Delubac et al. 2015)
2.34 8.86 ± 0.29 𝐷𝐻/𝑟𝑑 (Alam et al. 2017)
2.36 226 ± 9.3 𝐻 (𝑧) (Font-Ribera et al. 2014)

Correlated data points
Redshift 𝑧 measurement parameter Reference

0.38𝑎 1512.39 𝐷𝑀 (𝑟𝑑,fid/𝑟𝑑 ) (Alam et al. 2017)
0.38𝑎 81.2087 𝐻 (𝑧) (𝑟𝑑/𝑟𝑑,fid ) (Alam et al. 2017)
0.51𝑎 1975.22 𝐷𝑀 (𝑟𝑑,fid/𝑟𝑑 ) (Alam et al. 2017)
0.51𝑎 90.9029 𝐻 (𝑧) (𝑟𝑑/𝑟𝑑,fid ) (Alam et al. 2017)
0.61𝑎 2306.68 𝐷𝑀 (𝑟𝑑,fid/𝑟𝑑 ) (Alam et al. 2017)
0.61𝑎 98.9647 𝐻 (𝑧) (𝑟𝑑/𝑟𝑑,fid ) (Alam et al. 2017)
0.106𝑏 0.336 ± 0.015 𝑟𝑑 (𝑧𝑑 )/𝐷𝑣 (𝑧) (Beutler et al. 2011)
0.2𝑏 0.1905 ± 0.0061 𝑟𝑑 (𝑧𝑑 )/𝐷𝑣 (𝑧) (Percival et al. 2010)
0.35𝑏 0.1097 ± 0.0036 𝑟𝑑 (𝑧𝑑 )/𝐷𝑣 (𝑧) (Percival et al. 2010)
0.44𝑏 0.0916 ± 0.0071 𝑟𝑑 (𝑧𝑑 )/𝐷𝑣 (𝑧) (Blake et al. 2011)
0.6𝑏 0.0726 ± 0.0034 𝑟𝑑 (𝑧𝑑 )/𝐷𝑣 (𝑧) (Blake et al. 2011)
0.73𝑏 0.0592 ± 0.0032 𝑟𝑑 (𝑧𝑑 )/𝐷𝑣 (𝑧) (Blake et al. 2011)

where 𝑁 denotes the number of non-correlated BAO data points,
𝐻𝑚𝑜𝑑𝑒𝑙 represents the theoretical value of the HP, Φ represents the
model parameters, 𝐻𝑜𝑏𝑠 represents the observed values of the HP
from BAO analysis, and 𝜎𝐻 (𝑧𝑖) represents the respective error in the
observed BAO data points.

Similarly, for the measurements of the dataset with subscript ‘𝑎’
and ‘𝑏’ in Table 2 we have utilized correlated BAO radial measure-
ments data obtained from galaxy survey and WiggleZ (Blake et al.
2011), 6dFGS (Beutler et al. 2011), SDSS (Percival et al. 2010) sur-
veys respectively. To compute the chi-square function for BAO 𝑐𝑜𝑣 ,
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we use the following equations

𝜒2
𝐵𝐴𝑂/𝑐𝑜𝑣𝑎 = Δ𝐵𝑎𝐶−1

𝑎 Δ𝐵𝑇
𝑎
, (19)

𝜒2
𝐵𝐴𝑂/𝑐𝑜𝑣𝑏 = Δ𝐵𝑏𝐶−1

𝑏
Δ𝐵𝑇

𝑏
. (20)

Here vector 𝐵 is a collection of correlated BAO data points, and for
the data points with a superscript ‘𝑎’ (of Table 2) this can be defined
as

Δ𝐵𝑎
𝑖 =

[
𝐻𝑚𝑜𝑑𝑒𝑙 − 𝐻𝑜𝑏𝑠 (𝑧𝑖)
𝐷𝐴𝑚𝑜𝑑𝑒𝑙

− 𝐷𝐴𝑜𝑏𝑠
(𝑧𝑖)

]
,

and, for data points with a superscript ‘𝑏’ (of Table 2) vector 𝐵 is
represented as

Δ𝐵𝑏
𝑖 = [𝜈𝑚𝑜𝑑𝑒𝑙 − 𝜈𝑜𝑏𝑠 (𝑧𝑖)] . (21)

Here 𝜈 = 𝐷𝐴(𝑧∗)/𝐷𝑣 (𝑧𝑖) for volume-averaged angular diameter
distance 𝐷𝑣 . Moreover, 𝐶−1

𝑎 is the inverse covariance matrix 𝐶𝑎 for
the correlated data points with superscript ’𝑎’ (Table 2), and we have
(Ryan et al. 2019)

𝐶𝑎 =



624.707 23.729 325.332 8.34963 157.386 3.57778
23.729 5.60873 11.6429 2.33996 6.39263 0.968056
325.332 11.6429 905.777 29.3392 515.271 14.1013
8.34963 2.33996 29.3392 5.42327 16.1422 2.85334
157.386 6.39263 515.271 16.1422 1375.12 40.4327
3.57778 0.968056 14.1013 2.85334 40.4327 6.25936


Similarly, the covariance matrix of the next set of correlated data points with superscript ’𝑏’ (Table 2) is given (Giostri et al. 2012)

𝐶𝑏 =



2.14085433 0.13114745 0.07552162 0.06306109 0.04998069 0.04075542
0.13114718 0.39206383 0.1057302 0.0357534 0.02833729 0.02310691
0.07552178 0.10573091 0.13466821 0.02058878 0.01631817 0.01330623
0.06306109 0.03575347 0.02058873 0.44501308 0.08922379 0.01111097
0.04998069 0.02833735 0.01631814 0.08922379 0.10890756 0.04924964
0.04075542 0.02310696 0.0133062 0.01111097 0.04924964 0.0940857


Therefore, the total chi-squared function for the BAO data set is

defined as follows

𝜒2
𝐵𝐴𝑂

= 𝜒2
𝐵𝐴𝑂/𝑛𝑜𝑛 𝑐𝑜𝑣

+ 𝜒2
𝐵𝐴𝑂/𝑐𝑜𝑣 . (22)

3.3 Pantheon+ ( P22 ) Data Observations

The Pantheon+ (P22) analysis represents an extension and improve-
ment of the original Pantheon analysis. It incorporates a larger dataset
of supernova type Ia (SNeIa), consisting of 1701 light curves from
1550 SNeIa, gathered from 18 different studies (Riess et al. 2022;
Malekjani et al. 2023; Brout et al. 2022a,b; Scolnic et al. 2022).
These SNeIa have redshifts spanning the range of 0.001 to 2.2613.
Notably, the P22 compilation includes 77 light curves corresponding
to galaxies containing Cepheid distances.

Compared to the original Pantheon compilation by (Scolnic et al.
2018), the P22 analysis introduces several significant enhancements.
Firstly, it boasts a larger sample size, particularly at low redshifts
(below 0.01). Additionally, the redshift range covered by P22 has
been extended. Moreover, the analysis addresses various systematic
uncertainties related to redshifts, peculiar velocities, photometric cal-
ibration, and intrinsic scatter models of Type Ia supernovae (SNeIa).
In the past studies (Scolnic et al. 2018), the EoS of dark energy and
the Universe’s expansion rate (𝐻0) have been analysed separately.
Nevertheless, both parameters rely on almost the same SNeIa. The
main reason for this separation is that determination of these two pa-
rameters is based on comparing SNeIa in different ranges of redshift.
For 𝐻0, supernovae in nearby galaxies with redshifts below 0.01
are compared to those in the "Hubble flow" with redshifts between
0.023 and 0.15, excluding higher redshifts. In contrast, measure-
ments of EoS usually involve supernovae up to redshifts around 2,

but exclude those with redshifts below 0.01. Consequently, only su-
pernovae within the range of 0.023 to 0.15 in redshift are commonly
analyzed for both parameters.

Further, the latest improvements in the scale and calibration of
Type Ia supernovae catalogues to constrain the specific nature and
evolution of dark energy through its effect on the expansion history
of the Universe, the Bayesian methodology is extended to compar-
ing the scattering model of the data, testing for non-gaussianity in
the Pantheon+ Hubble residuals is studied by (Lovick et al. 2023;
Dainotti et al. 2024).

The statistical and systematic covariance matrices are integrated
and utilized to constrain cosmological models expressed as follows

𝐶𝑠𝑡𝑎𝑡 + 𝐶𝑠𝑦𝑠𝑡 = 𝐶𝑠𝑡𝑎𝑡+𝑠𝑦𝑠𝑡 (23)

By minimizing the chi-square function, the model parameters can be
constrained:

𝜒2
𝑆𝑁

= Δ𝐷 (𝐶𝑠𝑡𝑎𝑡+𝑠𝑦𝑠𝑡 )−1Δ𝐷𝑇 . (24)

The vector 𝐷 represents the collection of 1701 supernova distance-
modulus residuals, which have been computed as

Δ𝐷𝑖 = 𝜇𝑖 − 𝜇𝑚𝑜𝑑𝑒𝑙 (𝑧𝑖), (25)

where 𝜇𝑖 is the distance modulus of the 𝑖𝑡ℎ SNeIa, 𝜇𝑚𝑜𝑑𝑒𝑙 (𝑧𝑖) is
the theoretical distance modulus at redshift 𝑧𝑖 , and 𝜇𝑖 = 𝑚𝑖 − 𝑀 ,
where 𝑚𝑖 is the apparent magnitude and 𝑀 is the fiducial magnitude
of SNeIa. The theoretical distance modulus is given by

𝜇𝑚𝑜𝑑𝑒𝑙 (𝑧,Φ) = 25 + 5 log10

(
𝑑𝐿 (𝑧,Φ)
1𝑀𝑝𝑐

)
. (26)
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Figure 1. A contour plot showcasing the model parameters 𝑎,
√
Ω𝑀 , and

𝐻0, derived through 𝜒2 analysis for the current model. The plot illustrates
the results of a combined analysis involving diverse datasets, highlighting the
confidence levels up to 3𝜎.

The luminosity distance, represented by the equation

𝑑𝐿 (𝑧,Φ) = 𝑐(1 + 𝑧)
∫ 𝑧

0

𝑑𝜅

𝐻 (𝜅) , (27)

describes the distance between a supernova and an observer as a
function of redshift 𝑧 and cosmological parameters Φ, with the
speed of light 𝑐 appearing as a constant. Although the parameters
𝑀 and 𝐻0 are only degenerate in the analysis of Type Ia supernovae
(SNeIa), limitations arise when considering the recently published
SH0ES results, which relax both constraints. In our analysis, we take
𝑀 = −19.253 which has been determined from SH0ES Cepheid host
distances having great constraining power on 𝐻0. In light of this, the
distance residual is expressed as

Δ𝐷′
𝑖 =

{
𝜇𝑖 − 𝜇

𝐶𝑒𝑝

𝑖
, if 𝑖 ∈ Cepheid hosts

𝜇𝑖 − 𝜇𝑚𝑜𝑑𝑒𝑙 (𝑧𝑖), otherwise
(28)

where 𝜇
𝐶𝑒𝑝

𝑖
refers to the Cepheid host-galaxy distance released

by SH0ES. When calculating the covariance matrix for the Cepheid
host-galaxy, it can be combined with the covariance matrix for SNeIa,
as described by Equation (24). This combined covariance matrix,
denoted by 𝐶𝑆𝑁

𝑠𝑡𝑎𝑡+𝑠𝑦𝑠𝑡 + 𝐶
𝑐𝑒𝑝
𝑠𝑡𝑎𝑡+𝑠𝑦𝑠𝑡 , includes both statistical and

systematic uncertainties from the P22 dataset and is used to constrain
cosmological models in the analysis, as given by

𝜒2
𝑃22 = Δ𝐷′ (𝐶𝑆𝑁

𝑠𝑡𝑎𝑡+𝑠𝑦𝑠𝑡 + 𝐶
𝑐𝑒𝑝
𝑠𝑡𝑎𝑡+𝑠𝑦𝑠𝑡 )

−1Δ𝐷′𝑇 . (29)

To take into account the constraints from the combined CC, BAO,
and P22 datasets, we utilize the total chi-square function, which is
obtained by summing up the individual chi-square functions for each
dataset

𝜒2
𝑇 = 𝜒2

𝐶𝐶
+ 𝜒2

𝐵𝐴𝑂
+ 𝜒2

𝑃22. (30)

3.4 Gamma-Ray Bursts Analysis

Gamma-ray bursts (GRBs) represent the most powerful explosions
in the Universe, exhibiting immense energy. These cosmic events
remain observable even at incredibly high redshifts. As a result,
GRBs hold the potential to study the expansion rate of the Universe
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Figure 2. A contour plot showcasing the model parameters 𝑎,
√
Ω𝑀 , and

𝐻0, derived through 𝜒2 analysis for the current model. The plot illustrates the
result of 1048 samples of the Pantheon dataset, highlighting the confidence
levels up to 3𝜎.

and explore the characteristics of dark energy. To achieve this, it
is crucial to accurately calibrate empirical correlations between the
spectral and intensity properties of these bursts (Dainotti & Amati
2018; Dainotti & Del Vecchio 2017; Parsotan & Ito 2022; Dainotti
et al. 2013a,b).

The correlation between the rest-frame 𝜈𝐹𝜈 spectrum peak energy,
the observed photon energy of the peak spectral flux, 𝐸𝑝,𝑖 , and
the isotropic-equivalent radiated energy, 𝐸𝑖𝑠𝑜, initially discovered
by (Amati et al. 2002). and subsequently confirmed and extended
through further observations, stands as one of the most fascinating
and widely discussed pieces of observational evidence in the field
of gamma-ray burst (GRBs) astrophysics. Here, is the considered
correlation:

log
(
𝐸𝑖𝑠𝑜

1 𝑒𝑟𝑔

)
= 𝑏 + 𝑎 log

[
𝐸𝑝,𝑖

300 𝑘𝑒𝑣

]
, (31)

In this correlation, where 𝑎 and 𝑏 are constants, 𝐸𝑝,𝑖 represents the
spectral peak energy in the GRBs cosmological rest frame. It is re-
lated to the observer frame quantity, 𝐸𝑝 , through the expression 𝐸𝑝,𝑖

can be derived from the observer frame quantity 𝐸𝑝,𝑖 = 𝐸𝑝 (1 + 𝑧),
where 𝑧 is the redshift. This significant correlation not only imposes
constraints on the model of the prompt emission during GRBs but
also naturally suggests the potential use of GRBs as distance indica-
tors. The isotropic equivalent energy, 𝐸𝑖𝑠𝑜, can be determined using
the bolometric fluence, Sbolo, as follows

𝐸𝑖𝑠𝑜 = 4𝜋𝑑2𝐿 (𝑧, 𝑐𝑝)𝑆𝑏𝑜𝑙𝑜 (1 + 𝑧)−1. (32)

The luminosity distance, 𝑑𝐿 , is a crucial factor in this calibration
process, representing the distance that light travels from the source
(GRBs) to the observer. Additionally, 𝑐𝑝 signifies the set of param-
eters that define the background cosmological model, such as the
density of matter and dark energy in the Universe, the Hubble con-
stant, and the curvature of space.

We analyzed a sample of 162 long GRBs ( Refer table 5 of the
article (Demianski et al. 2017)), where the redshift distribution spans
a wide range, with values ranging from 0.03 ≤ 𝑧 ≤ 9.3. Notably,
this redshift range extends well beyond the typical range observed
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for Type Ia supernovae (SNIa), which generally fall within the range
of 𝑧 ≤ 1.7. This broad coverage of redshifts in our GRBs sample
opens up new opportunities for studying cosmological phenomena
and allows us to explore the Universe’s properties at much higher
redshifts.

Numerous correlations have been documented in the literature,
many of which have found application in cosmological investigations.
The researches conducted in (Dainotti et al. 2008, 2010, 2011, 2015,
2017) have extensively explored correlations pertaining to GRBs.
(Dainotti et al. 2016) have extended this relation into three dimen-
sions, forming what is known as the fundamental plane relation. This
extension involves incorporating the prompt peak luminosity, 𝐿𝑃𝑒𝑎𝑘 .
Further extensions have been studied in (Dainotti et al. 2020; Levine
et al. 2022; Dainotti et al. 2022; Srinivasaragavan et al. 2020).

3.5 Results

In this study, we employ a MCMC approach, to scan the redshift
range of interest until the standard criteria for the convergence of the
chains are reached. In this work, we make use of different data sets,
which include both correlated and non-correlated CC and BAO data
sets, P22 data, and GRBs data. The contour plots in Figure 1 depict
the redshift ranges, that are consistent with the observational data
at different confidence levels. These plots show regions where the
model aligns well with the observed data, extending up to the 99.7%
confidence level.

The mean values and uncertainties of the model parameters
from the analysis of the BAO data are 𝑎 = 0.07 ± 0.11, Ω𝑀 =

0.2693+0.0229
−0.020 , and 𝐻0 = 68.0 ± 1.0 km s−1Mpc−1 at 68% Con-

fidence Level (CL), and from the analysis of P22, we find 𝑎 =

−0.027+0.069
−0.14 , Ω𝑀 = 0.3481+0.011

−0.013, and 𝐻0 = 73.16 ± 0.28
km s−1Mpc−1 at 68% CL. Furthermore, by combining CC and BAO
data, the parametric values are 𝑎 = 0.06±0.11, Ω𝑀 = 0.2693+0.023

−0.020,
and 𝐻0 = 68.0 ± 1.0 km s−1Mpc−1 at 68% CL. Combining CC,
BAO, and P22 data yields the parametric values 𝑎 = 0.401 ± 0.047,
Ω𝑀 = 0.2745+0.0234

−0.015 , and 𝐻0 = 74.36 ± 0.19 km s−1Mpc−1 (68%
CL), while the combined CC, BAO, and GRBs data result in 𝑎 =

0.03±0.11,Ω𝑀 = 0.2766+0.022
−0.020, and 𝐻0 = 68.0±1.1 km s−1Mpc−1

(68% CL). Finally, by combining all data (CC+BAO+P22+GRBs),
we find the mean values with 1𝜎 error as 𝑎 = 0.373 ± 0.046,
Ω𝑀 = 0.2766+0.2344

−0.015 , and 𝐻0 = 74.26 ± 0.19 km s−1Mpc−1.
These results demonstrate the compatibility of the model with

the observational data from various sources. A notable increase in
the parameter Ω𝑀 is evident for the P22 dataset. Moreover, the
Hubble parameter value is obtained around 74 for both combined
CC+BAO+P22 and CC+BAO+P22+GRBs datasets.

Figure 2 showing contours with 3𝜎 confidence level derived from
𝜒2 analysis for the current model, using 1048 samples of the Pantheon
data sets only. Moreover, this plot serves as a cross-reference to a
Figure 1. Specifically to the P22 dataset which is depicted in dark
blue color. These plots are plotted to present a comparative analysis
of the former SNeIa sample with the updated one. We obtained 𝑎 =

0.08+0.29
−0.29, Ω𝑀 = 0.284+0.168

−0.069, and 𝐻0 = 67.0+1.3
−1.1 for 1048 SNeIa

samples. Compared to 1048 SNeIa data points, the updated 1071
data points have higher constraining power of the Hubble parameter.
The CMB data points present in 1048 SNeIa data are removed in the
updated sample. The latter contains points attributed to Cephides that
are responsible for obtaining a slightly higher value of constrained
𝐻0.

In Figure 3, we display the data for 𝐻 (𝑧) along with their associ-
ated error bars for different data sets. The plotted blue line represents

the mean theoretical curves derived from our cosmological model.
To provide a comprehensive understanding of the uncertainties, we
present grey-shaded regions that indicate the error bars at various
confidence levels. Notably, we observe a remarkable agreement be-
tween the model predictions and the observed data, as the error bars
closely align with the shaded regions.

In Figure 4, we focus on the distance modulus function 𝜇(𝑧).
Here, we present an error plot for the observed distance modulus
of the 1701 SNeIa dataset. The blue line depicts the mean theoreti-
cal curves obtained from our cosmological model with constrained
model parameters by different datasets. To account for uncertainties,
the grey-shaded regions represent the error bars at an impressively
high confidence level of up to 99.7%. The agreement between the
theoretical predictions and the observed distance modulus provides
strong support for the accuracy and robustness of our model in de-
scribing the underlying cosmological processes.

4 MODEL COMPARISON: AIC AND BIC ANALYSIS

Within this section, our focus revolves around the comparison be-
tween a parametrized 𝐻 (𝑧) model and a standard ΛCDM model
(serving as the reference model). Additionally, we extend this com-
parison to encompass other parametrized models, including the EoS
and Hubble parametrized models. To facilitate this comparison, we
will employ widely recognized model selection statistics. The fun-
damental aim of a model selection statistic is to establish a delicate
balance between a model’s predictive power (often indicated by the
number of free parameters it possesses) and its capacity to accurately
conform to observed data. Therefore, in this work, we are utilizing
two such statistics, the Akaike Information Criteria (AIC) (Akaike
1974) and the Bayesian Information Criteria (BIC) (Schwarz 1978),
which have subsequently been quite widely applied to astrophysical
problems. Applying them is relatively uncomplicated since they only
demand the highest achievable likelihood within a specified model,
as opposed to evaluating the likelihood across the entire redshift
range. The AIC is formulated as

𝐴𝐼𝐶 = −2 lnLmax + 2𝑘. (33)

In this context, L represents the likelihood (where −2𝑙𝑛L is fre-
quently referred to as 𝜒2, extending its applicability to non-Gaussian
distributions), while 𝑘 denotes the count of parameters in the model.
The subscript ‘max’ indicates the requirement to determine param-
eter values that yield the utmost achievable likelihood within the
model. The best model is the one that minimizes the AIC, denotes as
𝐴𝐼𝐶∗ and the models don’t need to have a nested relationship. The
disparity between AIC𝑛 and AIC∗, denoted by Δ AIC𝑛, is employed
to gauge the degree of endorsement for the 𝑛th model. A Δ AIC𝑛

below 2 suggests the 𝑛th model is nearly on par with the best model.
If Δ AIC𝑛 ranges between 4 and 7, the support for the 𝑛th model is
notably weaker. A Δ AIC𝑛 surpassing 10 implies the 𝑛th model is
unlikely to be the best.

The BIC is formulated as

𝐵𝐼𝐶 = −2 lnLmax + 𝑘 𝑙𝑛 𝑁, (34)

where 𝑁 represents the count of data points utilized in the fitting
process. It is important to note that the BIC presupposes the indepen-
dence and identical distribution of data points. However, the validity
of this assumption depends on the specific dataset in question. For
instance, it might not be suitable for cosmic microwave anisotropy
data but could be appropriate for supernova luminosity-distance data.
To identify the best model, we seek the model with the lowest BIC
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Figure 3. The plot illustrates the evolution of 𝐻 (𝑧) up to a 3𝜎 confidence level (depicted by the gray shading) for the current model, incorporating diverse
datasets. The plot features dots representing 34 CC data points, a yellow dashed curve for the standard ΛCDM model, and a solid curve within the shaded region
depicting the evolution of 𝐻 (𝑧) for the best-fit scenario.
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Figure 4. Evolution of the distance modulus 𝜇 (𝑧) is depicted, illustrating the mean values of model parameters resulting from the combined analysis
of diverse datasets (depicted by the blue curve) with upto 3𝜎 confidence level (gray shaded region). The ΛCDM model (Ω𝜆 = 0.7, Ω𝑀 = 0.3, and
𝐻0 = 67.8𝑘𝑚𝑠−1𝑀𝑝𝑐−1) is indicated by the yellow dashed line, serving as a reference for model comparison. The red dots on the plot represent the error bar
plot comprising 1701 data points from the P22 compilation of Supernovae Type Ia dataset.

value, denoted as BIC∗. Analogous toΔAIC, we can calculateΔBIC𝑛

by subtracting the BIC value of the 𝑛th model from that of the best
model (BIC∗). Among a set of models, the magnitude of ΔBIC in-
dicates evidence against the 𝑛th model as the best choice. A ΔBIC𝑛

below 2 signifies weak evidence for the 𝑛th model compared to the
best model. Values ranging from 2 to 6 suggest positive evidence
against the 𝑛th model. When ΔBIC𝑛 falls between 6 and 10, the ev-
idence against the 𝑛th model is substantial. A ΔBIC𝑛 exceeding 10
provides very strong evidence that the 𝑛th model is unlikely to be the
best option.

Through observation, we note that the standard ΛCDM model
exhibits the lowest AIC and BIC values (refer Table 3). Hence, we
regard it as both the best and reference model. We intend to compare
our model, along with the other two parametrized models to the best
model.

Initially, we consider the HP parametrized model. The minimum
𝜒2 value for our HP parametrized model stands at 1915.7182, which
is obtained through the combined CC, BAO, P22, and GRBs data set.
By using statistical criteria, the AIC and BIC values corresponding to
our model are determined as 1921.7182 and 1938.4279, respectively.
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Further, In this study, We consider the CPL model, a well-known
parametrization (EoS) proposed in (Chevallier & Polarski 2001; Lin-
der 2003):

𝜔𝑐𝑝𝑙 (𝑧) = 𝑏 + 𝑎
𝑧

1 + 𝑧
, (35)

We proceed to carry out a statistical MCMC analysis using the
collective data from CC, BAO, P22, and GRBs datasets. The 1𝜎
constrained values for 𝑎 and 𝑏 are determined to be 1.007+0.034

−0.034 and
−0.811+0.016

−0.016, respectively, accompanied by a minimum 𝜒2 value of
1916.2266.

Continuing our examination, we turn our focus to another
parametrized model proposed by Abdulla Al Mamon (Al Mamon
2017), which we will refer to as the AAM model. The equation
defines this model

𝐻𝑎𝑎𝑚 (𝑧) = 𝐻0
[
𝑎 + (1 − 𝑎) (1 + 𝑧)𝑏

]3/2𝑏
. (36)

Upon conducting an MCMC analysis on the AMM model, we
derive the mean values within a 1𝜎 error range: 𝑎 = 0.783+0.015

−0.015 and
𝑏 = 3.31+0.18

−0.18, accompanied by a minimum 𝜒2 value of 1919.4578.
After a careful examination of the outcomes, it becomes evident

that our HP model demonstrates favorable results. This is supported
by the fact that the Δ AIC value is less than two, indicating that our
model is closely comparable to the best model (ΛCDM). Similarly,
the other two models (CPL and AAM model) under investigation,
display relatively elevated Δ AIC values compared to the ΛCDM
model. Furthermore, the analysis of the BIC yields promising find-
ings. The Δ BIC value of our HP model falls within the range of
2, highlighting its effectiveness similar to the best model (ΛCDM).
Meanwhile, the CPL and AAM models show Δ BIC results rang-
ing between 2 to 6, implying evidence against these models when
compared to the best model. These results indicate the consistency
and statistical stability of our parameterized Model with respect to
standard ΛCDM.

5 COMPARISON OF METHODOLOGIES

5.1 Dainotti relation: Gaussian likelihood analysis versus new
likelihoods

In their analysis ‘Pantheon’ from (Scolnic et al. 2018) and ‘Pan-
theon+’ from (Scolnic et al. 2022), which accounted for both statis-
tical and systematic uncertainties through covariance matrices. The
former comprised 1048 sources within the redshift range of 0.01 to
2.26, drawn from various surveys including CfA1-4, Carnegie Super-
nova Project, Pan-STARRS1, Sloan Digital Sky Survey, Supernova
Legacy Survey, and Hubble Space Telescope. The latter expanded
the dataset to 1701 SNe Ia from 18 surveys across the range of
0.001 to 2.26 redshift, featuring an enhanced treatment of systematic
uncertainties and a broader redshift span. Notably, the ‘Pantheon+’
included 753 additional SNeIa compared to the ‘Pantheon’, while the
latter had 182 SNeIa not present in the former. These enhancements
facilitated improved constraints on cosmological parameters. Both
datasets were employed to assess the impact of these changes on the
analysis of SNe Ia samples. However, we used expanded 1701 SNe
Ia data from 18 surveys across the range of 0.001 to 2.2613 redshift
only to asses the model to explore the accelerating Universe along
with different datasets.

The Gaussianity assumption in the likelihood: The study explores
the Gaussianity assumption in the likelihood of SNe Ia distance
moduli for both the Pantheon and Pantheon+ datasets within a flat
ΛCDM model with Ω𝑀 = 0.3 and 𝐻0 = 70𝑘𝑚𝑠−1𝑀𝑝𝑐−1. They
investigate normalized residuals (Δ𝜇𝑛𝑜𝑟𝑚 ) to account for statistical
and systematic uncertainties in the covariance matrix. Although they
tested different assumptions, such as varying Ω𝑀 , more specifically,
they tested the two extreme cases Ω𝑀 = 0.1 and Ω𝑀 = 1. The
Gaussianity tests consistently showed deviations from the Gaussian
distribution for both datasets. These deviations persisted even under
different cosmological assumptions, indicating that the results were
independent of the specific cosmological model assumed.

The study employs Anderson-Darling (Stephens. 1976) and
Shapiro-Wilk (S. S. Shapiro 1965) normality tests, alongside skew-
ness and kurtosis computations, to assess Gaussianity in the distri-
butions of SNeIa. These tests detect deviations from Gaussian dis-
tribution, crucially considering even small deviations due to sample
size. As sample sizes increase, these tests tend to reject normality,
especially with large datasets like those in SNe Ia studies. Hence,
skewness and kurtosis tests are included to provide additional in-
sights into distribution characteristics. Skewness measures asymme-
try, while kurtosis identifies extreme values in tails compared to a
Gaussian distribution. By examining skewness and kurtosis, along
with a combined ‘skewness+kurtosis’ test, the study aims to evaluate
the Gaussianity assumption in SNe Ia data.

Fit with the new likelihoods: The analysis extends beyond the initial
tests’ limitations, using Mathematica’s Find Distribution tool to fit
Δ𝜇𝑛𝑜𝑟𝑚 values. This tool compares distributions based on various
statistical criteria like likelihood, BIC, AIC, and goodness-of-fit tests
like Pearson 𝜒2 and Cramer Von Mises tests. The top five fitting
distributions for Pantheon and Pantheon+ samples are reported, along
with their corresponding statistical test values in their work. Higher
likelihood and lower BIC and AIC indicate better models (our model
shows the same result as compared to this). Python computes BIC
and AIC for easier interpretation. Distributions with larger p-values
in goodness-of-fit tests are preferred. The first best-fit distribution is
chosen for further analysis.

In their study, the researchers employed the logistic (L𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐)
and Student’s (L𝑠𝑡𝑢𝑑𝑒𝑛𝑡 ) likelihood functions to fit the flat ΛCDM
model to both the Pantheon and Pantheon+ datasets. By doing so,
they observed a notable reduction in the uncertainties associated
with the parameters Ω𝑀 and 𝐻0 = 70. Specifically, the uncertainties
decreased by approximately 43% and 41% for Ω𝑀 , and by around
42% and 33% for 𝐻0 = 70 when using L𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 and L𝑠𝑡𝑢𝑑𝑒𝑛𝑡 , re-
spectively, compared to traditional Gaussian likelihoods. Their work
highlights the efficacy of these alternative likelihood functions in pro-
viding more precise estimates of cosmological parameters, empha-
sizing the importance of selecting the appropriate likelihood function
tailored to the characteristics of each SNeIa dataset (more info refer
(Dainotti et al. 2024)).

5.2 Calibration of the Dainotti relation through
model-independent method

We compare our work with (Favale et al. 2024) as the authors
have calibrated Dainotti’s relation through a model-independent
method using cosmic chronometer data. In our work, we analyze
the parametrized Hubble model using 34 data points from a cosmic
chronometer along with other data. In this section, we shall look into
the corresponding work (Favale et al. 2024).
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Dainotti correlation:

log 𝐿𝑋 = 𝐶0 + 𝑎 log𝑇∗
𝑋 + 𝑏 log 𝐿peak. (37)

Here, 𝐿𝑋 represents the X-ray source rest-frame luminosity, 𝐿𝑝𝑒𝑎𝑘

stands for the peak prompt luminosity, both in units of erg S−1 de-
notes the characteristic time scale marking the end of the plateau
emission, in seconds. The stability of the results obtained across var-
ious analyses conducted in the study reinforced the validity of using
low-redshift data to calibrate the Dainotti relations. The analysis indi-
cated a preference for a two-parameter relation, with the low-redshift
data demonstrating the capability to identify a valuable set of stan-
dardizable candles. Specifically, the 20 GRBs selected within the
redshift range of 0.553 ≤ 𝑧 ≤ 1.96 were found to tightly adhere to
the fundamental plane, leading to constraints on the 2D relation that
align well with the physics governing this correlation. As a result, this
subset of GRBs holds promise for future cosmological applications.

The study underscores the significance of finding novel distance
indicators that are less susceptible to biases and systematics and
can extend the range of applicability of the cosmic distance ladder
to higher redshifts. This pursuit is crucial in cosmology and astro-
physics, where the ability to obtain unbiased cosmological distances
is essential, particularly amidst existing cosmological tensions.

Despite the promising results, the spread in observed luminosities
of GRBs remains a significant challenge due to the varied nature of
their origins, which could include a core collapse of massive stars
or mergers of compact objects like neutron stars and black holes.
Therefore, the reliability of these alternative probes and the underly-
ing relations that highlight their intrinsic properties require thorough
investigation, especially as data quality and quantity improve with
upcoming surveys such as the SVOM and THESEUS missions.

However, so many correlations are discussed in the literature in
our work we used the correlation mentioned in Equation (31) with
162 long GRBs ranging from 0.03 ≤ 𝑧 ≤ 9.3.

6 MODEL KINEMATICS OF THE UNIVERSE: FROM
DECELERATION TO ACCELERATION AND THE JERK
EVOLUTION

Observations reveal the Universe is undergoing accelerated expan-
sion due to dark energy. However, for structure formation, a deceler-
ation phase is needed at the onset of the matter-dominated era. The
cosmological model must incorporate both deceleration and acceler-
ation phases, with the 𝑞 playing a critical role. Positive 𝑞 signifies a
decelerating phase driven by gravity, while negative 𝑞 indicates the
current accelerating expansion caused by dark energy dominance.
The transition from deceleration to acceleration occurred in the past,
making 𝑞 essential for understanding the Universe’s entire evolu-
tion. The transition from deceleration to acceleration in our model
is illustrated by the evolution of the deceleration parameter in Fig-
ure 5. The combination of various cosmological data sets, including
CC, BAO, P22, and GRBs, yields consistent results for the current
𝑞 (𝑞0). Thus, the obtained values with 1𝜎 error are approximately
𝑞0 = −0.535+0.056

−0.059, 𝑞0 = −0.485+0.097
−0.043, 𝑞0 = −0.53+0.056

−0.059, 𝑞0 =

−0.697+0.028
−0.029, 𝑞0 = −0.515+0.057

−0.058, and 𝑞0 = −0.684+0.041
−0.043 across

all the combinations of data: BAO, P22, CC+BAO, CC+BAO+P22,
CC+BAO+GRBs, and CC+BAO+P22+GRBs respectively and are
consistent with the values reported in previous studies (Naik et al.
2023b,a; Basilakos et al. 2012).

The ‘transition redshift’ is a critical concept in cosmology, mark-
ing the shift from a decelerating to an accelerating Universe. It is
denoted as ‘𝑧𝑡 ’, representing the redshift value when dark energy’s

repulsive effects begin to counteract matter’s deceleration. At this
point, dark energy’s density becomes comparable to matter, lead-
ing to the Universe’s acceleration. Determining this value is vital for
understanding the interplay between dark energy and matter through-
out cosmic history. Therefore, in our model, we have calculated the
corresponding transition redshifts for various data sets, along with
their 1𝜎 errors. The values are as follows: 𝑧𝑡 = 0.677+0.110

−0.096, 𝑧𝑡 =

0.695+0.528
−0.256, 𝑧𝑡 = 0.671+0.109

−0.096, 𝑧𝑡 = 0.836+0.065
−0.061, 𝑧𝑡 = 0.656+0.109

−0.095,
and 𝑧𝑡 = 0.819+0.172

−0.135 for BAO, P22, CC+BAO, CC+BAO+P22,
CC+BAO+GRBs, and CC+BAO+P22+GRBs data sets respectively.
which is also in agreement with previous literature (Naik et al. 2023a;
Boughezal et al. 2017; Jesus et al. 2018).

In the realm of cosmology, the EoS parameter plays a pivotal role
in characterizing the behavior of dark energy, believed to drive the
observed accelerated expansion of the Universe. Our examination of
the EoS parameter within the framework of the proposed Hubble
parameter model reveals quintessence behavior. This is supported by
the obtained results: 𝑤𝑡 = −0.69+0.037

−0.039 (BAO), 𝑤𝑡 = −0.657+0.065
−0.028

(P22), 𝑤𝑡 = −0.687+0.037
−0.039 (CC+BAO), 𝑤𝑡 = −0.798+0.019

−0.02
(CC+BAO+P22), 𝑤𝑡 = −0.677+0.038

−0.039 (CC+BAO+GRBs), and 𝑤𝑡 =

−0.79+0.027
−0.029 (CC+BAO+P22+GRBs), respectively. These values

align with quintessence characteristics and are consistent with find-
ings from prior studies, such as those reported in (Sudharani et al.
2023; Linder 2003).

Considering the transition from a decelerating phase to an accel-
erating phase in the history of the Universe, it becomes important to
examine the third derivative of the scale factor A. One convenient
way to quantify this behavior is by using the dimensionless ‘jerk
parameter (j)’. Additionally, we can express the jerk parameter as a
function of redshift 𝑧(𝑡) using the deceleration parameter 𝑞(𝑧), and
it is given by the equation:

𝑗 (𝑧) = 𝑞(𝑧) (2𝑞(𝑧) + 1) + 𝑑𝑞

𝑑𝑧
(1 + 𝑧). (38)

The equation incorporates both the value of 𝑞(𝑧) and its deriva-
tive with respect to redshift 𝑧 to determine 𝑗 at different epochs in
the Universe’s evolution. Also, its current value is denoted as ‘ 𝑗0’.
The convenience of using the dimensionless jerk parameter lies in
the fact that the ΛCDM model, simplifies to 𝑗 = 1. The ΛCDM
model serves as the baseline model, and by perturbing around it,
the dimensionless jerk parameter provides a straightforward way
to gauge deviations from this standard scenario. Thus, the current
values of the jerk parameter for our constrained model with 1𝜎
CL are 𝑗0 = 1.016+0.064

−0.068, 𝑗0 = 0.912+0.275
−0.327, 𝑗0 = 1.013+0.064

−0.069,
𝑗0 = 1.115+0.035

−0.036, 𝑗0 = 1.004+0.065
−0.069, and 𝑗0 = 1.112+0.093

−0.097 across
all the combinations of data: BAO, P22, CC+BAO, CC+BAO+P22,
CC+BAO+GRBs, and CC+BAO+P22+GRBs respectively. These re-
sults are similar to the previous studies (Boughezal et al. 2017; Al Ma-
mon & Bamba 2018). By observing Figure 6, the jerk parameter for
our parametrized model is slightly deviating from 𝑗 = 1. Therefore,
our model is consistent with the standard model and is consistent
with the value reported in previous studies.

7 DIAGNOSTIC OF THE MODEL

The 𝑂𝑚(𝑧) diagnostic proves to be a potent tool for discerning be-
tween diverse dark energy (DE) or cosmological models compared
to the standard ΛCDM model. Introduced by (Sahni et al. 2008),
this diagnostic has since been extensively explored by numerous re-
searchers. The function 𝑂𝑚(𝑧) establishes a connection between the
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Figure 5. Variation of 𝑞 with respect to redshift 𝑧, depicted using mean values of model parameters, resulting from a joint analysis of various datasets: CC, P22,
CC+BAO, CC+BAO+P22, CC+BAO+GRBs, and CC+BAO+P22+GRBs (blue curve), with shaded gray regions indicating 68%, 95%, and 99.7% confidence
levels.
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Figure 6. The evolution of the jerk parameter’s trajectory concerning redshift 𝑧 is depicted using the mean values( blue line) of model parameters with shaded
gray region illustrates a confidence level of up to 3𝜎 while taking into consideration various sets of observational data.

Table 3. Comparative statistical analysis using the combined data sets for our model and other previously proposed parametrized models along with the best
model (ΛCDM) .

Models 𝜒2
𝑚𝑖𝑛

𝑎 𝑏 𝐴𝐼𝐶 𝐵𝐼𝐶 Δ𝐴𝐼𝐶 Δ𝐵𝐼𝐶

ΛCDM- model 1914.1108 −0.584+0.022
−0.018 −0.723+0.015

−0.021 1920.1108 1936.8205 − −
HP-model 1915.7182 −0.719+0.03

−0.03 1.507+0.088
−0.088 1921.7182 1938.4279 1.921 1.6074

CPL-model 1916.2266 −0.655+0.027
−0.027 0.737+0.043

−0.043 1922.2266 1938.9363 2.1158 2.1155

AAM-model 1919.4578 3.22+0.26
−0.33 2.89+0.20

−0.23 1925.4578 1942.1675 5.347 5.347
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Figure 7. Evolution of the 𝑂𝑚(𝑧) diagnostic across redshift 𝑧 for the mean
value of the constrained parameter, as inferred from combined datasets, indi-
cates a quintessence phase.

observed Hubble parameter, a measure of the Universe’s expansion
rate, and the density of matter within it. A constant 𝑂𝑚(𝑧) value at
any redshift signifies that the DE behaves akin to a cosmological con-
stant. Conversely, varying 𝑂𝑚(𝑧) with redshift suggests a dynamic
nature of DE, indicating changes in its form over time. Additionally,
the slope of 𝑂𝑚(𝑧) serves to distinguish between two distinct types
of dynamic DE models: quintessence and phantom. A positive slope
in 𝑂𝑚(𝑧) implies a phantom phase, while a negative slope suggests
a quintessence phase.

In a Universe characterized by flat spatial geometry, the Om(z)
diagnostic finds expression through the equation

𝑂𝑚(𝑧) = 𝐸2 (𝑧) − 1
(1 + 𝑧)3 − 1

, (39)

where 𝐸 (𝑧) = 𝐻 (𝑧)/𝐻0, employing the mean values
of the constrained parameters obtained from the combined
CC+BAO+P22+GRBs dataset, we depict the evolution of 𝑂𝑚(𝑧)
concerning 𝑧 in Figure 7. In the analysis, one can observe that the
mean value in Figure 7 is less than that of the ΛCDM model. Conse-
quently, the model falls into the quintessence region. We can observe
that throughout the evolution the model shows quintessence behavior.
For more information, one may look at (Escamilla-Rivera & Fabris
2016).

8 CONCLUSIONS AND PERSPECTIVES

Researchers have extensively investigated the reconstruction ap-
proach for understanding cosmic evolution. This exploration involves
two distinct methods: parametric and non-parametric reconstruction.
Currently, there exists no universally accepted gravity theory capable
of elucidating all aspects of the Universe. It is conceivable that both
of these reconstruction approaches hold their individual advantages
within this context. In this work, we introduce a cosmological model
of the FLRW Universe utilizing the parametric approach. Notably,
parametric methods have demonstrated their efficacy in elucidating
the evolutionary trajectory of the Universe, encompassing its transi-
tion from early deceleration to subsequent acceleration. As a result,
parameterization emerges as a promising avenue for effectively ex-
pounding upon and formulating future cosmological scenarios. Our
central objective in this research is to reconstruct the Hubble pa-
rameter, thereby delineating the progression of the contemporary
universe.

In this work, we comprehensively explored how parameterized

models illustrate cosmological dynamics. This investigation was fa-
cilitated by employing various observational data sets, including
BAO, CC, P22 samples, and GRBs (Including both correlated and
non-correlated data points). The utilization of Bayesian statistical
inference techniques and MCMC methods to bound the model’s pa-
rameters has enabled us to conduct precise data analysis and derive
significant insights. The optimal fits obtained from this procedure
were then employed to scrutinize the kinematic trends of the Uni-
verse. Our results reveal that the best-fit parameters of our models har-
monize well with the observed data, suggesting that these proposed
models present a credible portrayal of the Universe. The achievement
in accurately bounding the model’s parameters underscores the piv-
otal role of incorporating observational data and advanced statistical
techniques to enhance our comprehension of the Universe’s behav-
ior. The work by (Bargiacchi et al. 2023; Dainotti et al. 2023a) deals
with cosmological probes together with GRBs, SNeIa, BAO, and
Quasars. The recent studies by (Favale et al. 2024) in which Cosmic
Chronometers are applied together with GRBs.

The values of the parameters acquired from statistical simulations
exhibit notably symmetric uncertainties, where error bars symmetri-
cally enclose the mean values. Nonetheless, for P22, the error bands
at 2𝜎 and 3𝜎 levels display a slight asymmetry with a larger error
range. Within these uncertainty bounds (2𝜎 and 3𝜎), the character-
istics of the physical quantities exhibit more pronounced deviations.
Consequently, to establish a reasonable range of uncertainty, we re-
strict our study to the 1𝜎 error.

Further in this study, we perform an analysis based on the Akaike
Information Criterion (AIC) and Bayesian Information Criterion
(BIC) by contrasting our proposed model with the ΛCDM model,
considered the best model, as well as two other distinct models. The
results obtained affirm the viability and effectiveness of our model
when compared to the standard model, as outlined in the summarized
Table 3. Additionally, we compare the Dainotti relation via Gaussian
likelihood analysis versus new likelihoods and a model-independent
approach to calibrating the Dainotti relation related to the datasets
and correlation used in our analysis.

By exploring the dynamics of the model we put forth, which entails
studying the transition from deceleration and conducting an analysis
of the Jerk Parameter (j), we enhance our comprehension of how
the Universe behaves and evolves. The current values for both the
𝑞 and the 𝑗 , with uncertainties extended to a 3𝜎 confidence level,
are depicted separately in the Figure 5 and Figure 6 respectively.
Additionally, we examined the 𝑂𝑚(𝑧) diagnostics to our model and
is depicted in the Figure 7.

Moreover, our investigation has placed constraints on both the
model parameters and 𝐻0. Notably, the values we derived for the
Hubble constant are consistent with those obtained through other
research endeavors that employed reconstruction approaches (both
parametric and non-parametric) (del Campo et al. 2012; Roman-
Garza et al. 2019; Haridasu et al. 2018; Mehrabi & Rezaei 2021;
Tarrant et al. 2013; Guo et al. 2019), as well as observational tech-
niques such as the distance ladder method, TRGB technique, and
H0LiCOW (Riess et al. 2019; Freedman et al. 2019; Bonvin et al.
2017; Birrer et al. 2019; Gayathri et al. 2021; Blakeslee et al. 2021;
Kourkchi et al. 2020; Wagle et al. 2019; Wong et al. 2020; Riess et al.
2022; Anand et al. 2022; D’Amico et al. 2020; Dutcher et al. 2021).
We illustrate our constrained 𝐻0 findings in Figure 8 and place them
with the outcomes of preceding studies. Furthermore, the Hubble
constant (𝐻0) tension is a recent and most interesting challenge in
modern cosmology. Some studies are addressing these issues (Giani
et al. 2024; Dainotti et al. 2023b; Vagnozzi 2023; Montani et al.
2024).
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Figure 8. Comparing 𝐻0 values from our current study to those from various sources. The solid blue line depicts the mean of the present 𝐻0 value, while
the shaded gray band shows error bars up to 3𝜎 confidence level. Alphabetic labels correspond to studies by the authors using both reconstructed methods
and observational data: a) Anand et al. (2022), b) Riess et al. (2022), c) Blakeslee et al. (2021), d) Dutcher et al. (2021), e) Mehrabi et al. (2021), f) Wong et
al. (2020), g) Kourkch et al. (2020), h) Gayathri et al. (2020), i) Reid et al. (2019), j) Riess et al. (2019), k) Freedman et al. (2019), l) Garza et al. (2019), m)
D’Amico et al. (2019), n) Guo et al. (2019), o) Haridasu et al. (2018), p) Birrer et al. (2018), q) Bonvin et al. (2016), r) Tarrant et al. (2013), s) Campo et al.
(2012).

The current study using CC+BAO+P22+GRBs yields a present-
day Hubble parameter value of approximately 74.26𝑘𝑚 𝑠−1Mpc−1.
Conversely, when considering CC+BAO+P22 alone, we obtain an
𝐻0 value of 74.36𝑘𝑚 𝑠−1Mpc−1. Incorporating SHOES Cepheid
Calibrated Pantheon data i.e., Pantheon+ data combined with other
datasets (CC, BAO, GRB), has contributed to a slightly higher
present-day Hubble value than initially anticipated. Notably, an ob-
servation emerges solely from the Pantheon+ data, we obtain the
expected present Hubble value of around 73 units.

Overall, our assessment of the parameterized Hubble parameter,
guided by empirical data, indicates that the Universe is presently un-
dergoing an accelerated phase. Importantly, our model aligns seam-
lessly with the observed outcomes, and these discoveries are poised
to support the ongoing exploration of the Universe and its future
trajectories. In forthcoming investigations, we intend to investigate
different gravity theories via reconstructed kinematic models. We
believe that, adopting a non-parametric approach to Universe recon-
struction intriguing, as it has the potential to yield additional insights
into cosmic evolution beyond the confines of parametric models. Ex-
ploring these research avenues has the potential to yield additional
valuable results into the essence of the Universe and its evolution.
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