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Previous studies on the generalized XY model have concentrated on the equilibrium phase dia-

gram and the equilibrium nature of distinct phases under varying parameter conditions. We direct

our attention towards examining the system’s evolution towards equilibrium states across differ-

ent parameter values, specifically by varying the relative strengths of ferromagnetic and nematic

interactions. We study the kinetics of the system, using the temporal annihilation of defects at

varying temperatures and its impact on the coarsening behavior of the system. For both pure polar

and pure nematic systems, we observe temperature-dependent decay of the exponent, leading to a

decelerated growth of domains within the system. At parameter values where both ferromagnetic

and nematic interactions are simultaneously present, we show a phase diagram highlighting three

low-temperature phases—polar, nematic, and coexistence—alongside a high-temperature disordered

phase. Our study provides valuable insights into the complex interplay of interactions, offering a

comprehensive understanding of the system’s behavior during its evolution towards equilibrium.

I. INTRODUCTION

The two-dimensional (2D) XY model has attracted sub-

stantial attention due to its diverse applications in mag-

netic systems, along with its relevance to quantum liq-

uids and superconductors. The seminal work of N.D.

Mermin and H. Wagner [1] demonstrated that in the 2D

XY model, the sustainability of long-range order is in-

herently limited. Even a very small thermal fluctuations

have the profound capability to disrupt the long-range

order within the system. Instead, the system exhibits

Quasi Long Range Order (QLRO) and experiences a

Berezinskii-Kosterlitz-Thouless (BKT) transition, lead-

ing to a disordered state through the unbinding of defect

pairs. Following the works of Berezinskii, Kosterlitz [2]

and Thouless [3], this model has been studied extensively

[4–12].

The extension of the XY model to incorporate an addi-

tional nematic interaction, alongside the ferromagnetic

interaction, was introduced by Korshunov [13], Lee and

Grinstein [14]. Subsequently, this model has since be-

come a focal point of extensive research due to its sig-

nificance in liquid crystals [14–16] and superfluid 3He

films [13, 17]. In these systems, an additional nematic

interaction with periodicity 2π
q coexists with the con-

ventional magnetic interaction featuring periodicity 2π.

This gives rise to the formation of vortices character-

ized by a topological charge of 1
q alongside conventional

integer defects. For the case of q = 2, the nematic in-

teraction results in an equal probability of parallel and
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antiparallel alignment of each spin with its neighbors,

thereby competing with the parallel alignment tendency

due to the ferromagnetic interaction. The interplay be-

tween these interactions gives rise to intriguing proper-

ties of the system, as elucidated in previous studies [18–

27]. These investigations delved into various aspects of

the model, such as the phase diagram [28], the nature of

order in the system [29], the characteristics of the phase

transition [30–32], the behavior of the correlation length,

stiffness jump across the transition [33], finite-size effects

[34], and the structure of defects [35].

While equilibrium states have been extensively explored,

the kinetics of the system’s transition to equilibrium

from a random initial condition remains largely unex-

plored. As the system evolves towards the equilibrium

state, the physics of integer and half-integer defects be-

come pivotal in determining the system’s fate. There-

fore, understanding the kinetics of the system in terms

of statistics of defects is crucial for developing a com-

prehensive understanding of its behavior. In this con-

text, a fundamental question arises: How does the rela-

tive strength of ferromagnetic and nematic interactions

influence the defect annihilation and, consequently, the

coarsening kinetics of the system?

This study focuses on elucidating the statistics of de-

fects with varying temperature and relative strengths

of the two types of interactions, influencing the over-

all coarsening kinetics of the system. Unlike previ-

ous works which predominantly explored the equilibrium

phase diagram, in this study, we explore the phase dia-

gram based on the kinetics of the system. The investi-

gation encompasses extreme cases—pure ferromagnetic

and pure nematic—as well as the intermediate regime

where both interactions coexist (mixed system) for tem-

perature T < TBKT , where TBKT is BKT transition
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2temperature.

To conclude this introduction, we provide a concise

summary of our key results: (i) In the pure ferromag-

netic/nematic limit of the model, the annihilation of

the defects get notably slower with the increase of tem-

perature. (ii) in the intermediate regime (mixed sys-

tem), when both ferromagnetic and nematic interactions

are present simultaneously, the system exists in distinct

phases based on different combinations of parameters.

Particularly, when the strengths of ferromagnetic and

nematic interactions are comparable, we identify a state

where both types of defects coexist within the system.

The forthcoming organization of this paper is structured

as follows: Section II provides an elaborate discussion

of the particulars of our model. Section III delves into

the results, where we first examine the dynamic of de-

fects in a Pure Polar System in Section IIIA, followed

by an analysis of the Pure Nematic System in Section

III B. We then extend our analysis to Mixed Systems in

Section III C. Next, we illustrate the Phase Diagram in

Section IIID. Finally, our study is encapsulated in Sec-

tion IV, where we offer a comprehensive summary of our

findings.

II. METHODOLOGY

A. Model

Our model considers a square lattice with spins arranged

at unit lattice spacing. Each spin is represented by an

angle θ ranging from 0 to 2π. We express the spin as a

vector S⃗ ≡ (cos θ, sin θ), where the magnitude is normal-

ized to unity, i.e., |S⃗| = 1.

Here, the Hamiltonian of the classical XY model incorpo-

rates both ferromagnetic and nematic interactions, lead-

ing to the following modified form:

H = −∆
∑
<ij>

cos(θij)− (1−∆)
∑
<ij>

cos(2θij) (1)

Here, θij denotes the angle between spins i and j, defined

as θij = θi − θj . The summation is taken over pairs of

nearest neighbors, indicated by < ij >. The parame-

ters ∆ and (1 − ∆) correspond to the strengths of fer-

romagnetic and nematic interactions, respectively. The

limiting cases ∆ = 1 and ∆ = 0 correspond to the pure

ferromagnetic (polar) and pure nematic (apolar) cases,

respectively. For the intermediate regime, ∆ ∈ (0, 1), the

interaction of each spin with it’s neighbours has a ferro-

magnetic part and a nematic part with strengths given

by ∆ and (1 − ∆), respectively. In the rest of this pa-

per, we follow the following terminology: The spins are

referred as polar and the state of the system is referred

to as “Pure Polar” when ∆ = 1, the spins are referred

as apolar and the state of the system as “Pure Nematic”

when ∆ = 0, and “Mixed” for 0 < ∆ < 1.

While considering negative values of ∆ can be interest-

ing, we presently confine our observations to the range

∆ ∈ (0, 1) as physical systems corresponding to negative

∆ values are presently unknown to us. Also in most of

the previous studies, the equilibrium properties of the

model are explored for ∆ ∈ (0, 1) limit [18–27]. The pa-

rameter ∆ < 0 also shows interesting behaviour as found

in [36].

The system comprises spins governed by the Hamilto-

nian specified in Eq. 1, arranged on a square lattice with

dimensions L×L and subject to periodic boundary con-

ditions (PBC) in both the X and Y directions. The evo-

lution of the system is performed using the Metropolis-

Monte Carlo algorithm. The study investigates the sys-

tem’s behavior by varying the temperature (T < TBKT )

and the parameter ∆. For each ∆ value, the system is

initialized with spins randomly oriented, representing a

high-temperature state (> TBKT ). The temperature T

is then fixed to the desired value (< TBKT ), leading to

a sudden quench. The system subsequently evolves to-

wards its equilibrium state at temperature T . The study

encompasses an exploration of the kinetic of the system

towards the equilibrium state when quenched from very

high temperature as well as the properties characterizing

the resulting equilibrium state.

In our model, distances are measured in terms of the lat-

tice spacing, and we set the Boltzmann constant kB to

unity for consistency. The presented results are based on

a L = 256 system size unless stated otherwise. To ensure

statistical accuracy, data are averaged over a minimum of

100 independent realizations. Each realization involves

simulating the system for 1.5 × 104 steps for a L = 128

system, or 3×104 steps for a L = 256 system, or 7×104

steps for a L = 512 system.

We also conduct simulations for system sizes, L = 64,

128, 160 and 200 for the equilibrium phase diagram.

For this purpose, we simulate the system for a total of

4.5× 105 time steps, of which in the first 3.5× 105 time

steps, we allow the system to reach the corresponding

equilibrium state and the rest 1×105 times steps are used

for calculating various observable. For better statistics,

we perform averaging over 10-15 ensembles depending

on the system size.

B. Methods

(a) Metropolis Montecarlo Algorithm (MCA):

Our algorithm is outlined as follows:
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(a) (b)

FIG. 1. (color online) The figure illustrates defect configurations in the system with pure ferromagnetic interaction, subplot

(a), and pure nematic interaction, subplot (b). The black quivers represent the spins at each lattice point. (a) Shows the

±1 defects with red circle and blue square, respectively. Left and right hand vortices with same winding number are marked

by solid and dashed symbol, respectively. (b) shows ± 1
2
defect configurations marked with red arcs, and blue ‘Y’-shaped

structures, respectively. A part of the system of size L = 128 is shown for better resolution.

1. We choose a spin at site (i, j) and give a small

random rotation to its direction, θ(i, j) = θ(i, j) +

δ, and calculate the change in energy ∆E by the

rotation.

2. The new orientation of the spin is accepted with

probability, P = min(1, e−β∆E), where β = 1
T de-

notes the inverse temperature.

A single simulation step is considered complete when

each spin in the system is updated once. We use the

MCA to evolve the system with time and generate the

configurations. Further, we use the configuration of the

system at different times to calculate number of defects,

correlation function etc. Similar method is previously

used to study the kinetics and scaling in different sys-

tems, including: Ising model [37], q-state potts model

[38, 39] and XY−model [40].

(b) Kinetics of the system using defect statistics:

In this study, we characterize the properties of the dif-

ferent phases in terms of topological defects. First, we

briefly describe the origin and importance of defects in

a system with continuous symmetry.

Topological defects represent distinct distortions in the

state of broken symmetry within a system. In its pur-

suit of equilibrium, the system seeks to minimize its

free energy, hence favoring the ordered parallel or anti

parallel alignment of spins in ferromagnetic or nematic

settings, respectively. However, the presence of defects

introduces energy penalties. Remarkably, these defects

possess topological stability and can only be eliminated

through abrupt local changes in spin orientation. Con-

sequently, achieving a defect-free configuration incurs a

substantially higher energy cost. Thus, in two dimen-

sions, the system exhibits a preference for configurations

that include defects.

Topological defects feature a core where order is com-

pletely disrupted, while θ(x) exhibits slow variation in its

distant surroundings. These defects are classified based

on the winding number, denoted as k, which quantifies

the change in θ(x) along a closed loop encircling the de-

fect. The winding number can be positive or negative,

as well as an integer or half-integer. Defects in a system

are intimately linked to the nature of its broken sym-

metry state, which is determined by the specific particle

interactions at play. As a result, defects can be seen as

unique fingerprints of the system, providing valuable in-

sights into the characteristics of the broken symmetry

state.

Upon a sudden temperature quench from above T >

TBKT to T < TBKT , the initially disordered state of
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(a) (b)

(c) (d)

FIG. 2. (color online) The figure provides a visual representation of the evolving Pure Polar System, depicted through a

sequence of snapshots. Subplots (a)-(d) exhibit snapshots of the system at distinct time instances: 200, 1000, 2000, and 6000,

respectively. In each subplot, the black quivers represent the spins at each lattice sites. Subplots (a)-(d) highlight certain +1

and −1 defects, marked by red circles and blue squares, respectively. Left and right vortices of same charge are marked by

solid and dashed symbols; System Size L = 128 and T
TBKT

= 0.3.

the system becomes unstable, triggering the onset of or-

dering in the process of the system’s evolution towards

the low temperature equilibrium state. In this process,

defects of opposite signs interact, resulting in their an-

nihilation and the eventual emergence of a homogeneous

configuration. As time progresses, the number of defects

in the system decreases, ultimately leading to a steady

state where only a few defects remain. In two dimen-

sions, the ordering is quasi long-ranged, allowing finite

size systems to achieve a defect-free steady state. How-

ever, in an infinite size system, this process takes an infi-

nite amount of time, rendering it practically impossible

to obtain a defect-free state.

Defect Detection: The algorithm used for detection of
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FIG. 3. (color online) The figure demonstrates the temporal

evolution of the system for both the Pure Polar and Pure

Nematic cases. The left panel (subplots (a) and (c)) illus-

trates the Pure Polar case, while the right panel (subplots

(b) and (d)) depicts the Pure Nematic case. Subplots (a)

and (b) showcase the time-dependent decay of defects, Np(t)

and Nn(t), for pure polar and pure nematic systems, respec-

tively, at different temperatures on a log-log scale. In both

subplots, the black dashed line indicates a power-law decay

with an exponent of 1 in the region where the slope is cal-

culated. Subplots (c) and (d) present the variation of the

exponent with temperature for the corresponding systems,

with each data point accompanied by an error bar represent-

ing the uncertainty in the exponent values. The system size

is fixed at L = 256.

defects is the following: first, to detect the rotation of

the orientation field around each point (i, j), we evaluate

the discretized version of the integral,

I =

∮
Γ

∇⃗θ.dr⃗ =

∮
Γ

dθ

where, Γ is a closed contour around the point (i, j) tra-

versed in the counterclockwise sense.

This gives,

I =

∮
Γ

∇⃗θ.dr⃗ = 2kπ, if Γ encloses a defect core

= 0, otherwise

Where k is called the winding number, which character-

izes the type of defect. The winding number at lattice

point (i, j) is calculated as,

k =
I

2π

In the subsequent sections, the results are derived by

considering the loop Γ around each point (i, j), encom-

passing its eight neighboring points. To assess the effect

of the discrete nature of integration [41, 42]: we con-

ducted additional simulations using a larger integration

loop. We found that our results remain unaffected. How-

ever, it is essential to exercise caution, as employing an

excessively large integration loop may lead to incorrect

outcomes.

For a system with polar symmetry topologically stable

defect configurations correspond to k = ±1 whereas for

a system with nematic symmetry of spins, topologically

stable defect configurations are those with k = ± 1
2 . The

energy cost of the formation of a defect pair of winding

number ±k is ∼ k2. Hence, the formation of higher or-

der defects leads to a much larger free energy cost for the

system, and at the same time, the higher order defects

are not topologically stable in two dimensions. Hence,

even though the higher order defects may arise in the sys-

tem, they are very transient and wiped out very quickly.

Therefore, we are interested only in defects with k = ±1

and ± 1
2 in systems with polar and nematic symmetry,

respectively.

III. RESULTS

A. Pure Polar System

Topologically stable ±1 defect structures in a system

governed solely by ferromagnetic interactions are shown

in fig.1(a). These defects move through the system ex-

hibiting diffusive behavior [43, 44]. Upon collision, op-

positely charged defects annihilate, leading to the emer-

gence of a locally homogeneous, uniformly oriented state.

The fig.2 captures the temporal evolution of the system,

while the decay in the number of defects over time is

illustrated through the Np(t) vs. t plot at various tem-

peratures, as shown in fig.3(a). In this representation,

Np(t) is defined as, Np(t) =
1
2

[ −1∑
k=+1

nk(t)

]
where n±1(t)

denotes the count of k = ±1 defects at time t. Thus, Np

represents the average number of integer defects (average

of the number of positive and negative defects) in the sys-

tem at time t. Across all temperatures in the T < TBKT

regime, the Np(t) vs. t plot exhibits a power-law decay

characterized by N ∼ t−αp , where αp is the exponent

characterising the decay [45]. Previous studies of the

same have established that in a system of spins interact-

ing solely through ferromagnetic interactions, the expo-

nent αp is approximately 1 with logarithmic correction

[7, 46, 47]. However, in our study, we have observed that

αp(T ) exhibits temperature dependence. When the tem-
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(a) (b)

(c) (d)

FIG. 4. The presented figure captures the dynamic evolution of a Pure Nematic System, depicted sequentially through a set

of snapshots. Subplots (a)-(d) present snapshots of the system taken at distinct time instances: 100, 1000, 2000, and 6000,

respectively. In each subplot, the spins are represented by the black quivers. Notably, subplots (a)-(d) prominently showcase

distinct + 1
2

and − 1
2

defects, which are marked by red arcs and blue ‘Y’-shaped structures, respectively. The remaining

parameters are consistent with fig.2.

perature is significantly lower than the critical temper-

ature TBKT , αp(T ) maintains a value close to 1, which

concurs with previous research findings. But, as the tem-

perature is increased, there is a noticeable reduction in

the value of αp(T ) as shown in fig.3(c). The distinctive

trend in αp(T )’s behavior can be elucidated as follows:

The motion of defects in the system is governed by the

interplay between two fundamental factors: the cooper-

ative interaction between spins, which promotes align-

ment, and the thermal energy of the spins, which in-
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FIG. 5. (color online) The figure illustrates the behavior of the correlation function, C1(r), for the pure polar system at

two different temperatures: (a) T
TBKT

= 0.30, and (b) T
TBKT

= 0.60. Subplot (c) depicts the variation of the exponents with

temperature for the following: correlation length, L(t) ∼
(

t
ln(t)

)βp

and number of defects, Np(t)ln{Np(t)} ∼ t−γp ; System

size L = 128.

troduces randomness. At extremely low temperatures

(T ≪ TBKT ), the thermal energy is negligible com-

pared to the dominant spin interaction, resulting in the

prevalence of well-defined spin waves [48]. This regime

is characterized by a nearly constant value of αp close

to 1 (with logarithmic correction), and the cooperative

behavior of spins dominates. However, as the tempera-

ture increases, the thermal energy starts to play a more

significant role, leading to an increased frequency of ran-

dom spin flips. Moreover, elevation in temperature in-

duces transverse fluctuations in the well-ordered spin ar-

rangement, leading to a reduction in spin wave stiffness.

Consequently, the system becomes more susceptible to

a broader spectrum of spin orientation fluctuations in

terms of frequency. This alteration in spin wave stiffness

results in the localization of defects and an increased de-

fect count within the system contributes to a slowing

down of the decay rate of the defect population. As a

consequence, the Np(t) vs. t curve depicted in fig.3(a)

exhibits a flattened profile, and the decay exponent in

fig.3(c) experiences a decline. These observations signify

a transition from a regime dominated by spin waves to

one influenced by thermal effects.
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FIG. 6. (color online) The figure illustrates the behavior of the correlation function, C2(r), for the pure apolar system at

two different temperatures: (a) T
TBKT

= 0.30, and (b) T
TBKT

= 0.60. Subplot (c) depicts the variation of the exponents with

temperature for the following: correlation length, L(t) ∼
(

t
ln(t)

)βn

and number of defects, Nn(t)ln{Nn(t)} ∼ t−γn ; System

size L = 128.

B. Pure Nematic System

Stable defect configurations in a system of apolar

spins, corresponding to k = ± 1
2 [49–51], are depicted

in fig.1(b). These are known as disinclinations. The

number of defects in this system also exhibits a time-

dependent decay, as observed in the evolution shown

in fig.4. The decay follows a power law behavior

characterized by Nn ∼ t−αn , where αn represents the

exponent governing the decay [45]. Previous studies

have reported an exponent, αn ∼ 1 for this decay

(with logarithmic correction) [52–54]. However, our

study reveals the existence of a temperature dependent

exponent αn(T ). In the low-temperature regime domi-

nated by spin waves, the exponent remains close to 1,

consistent with previous findings. As the temperature

rises, the manifestation of a reduced rate of defect

annihilation becomes evident through the flattening of

the Nn(t) vs. t curve, depicted in fig.4(b). Here, Nn(t)

is defined as, Nn(t) = 1
2

 − 1
2∑

k=+ 1
2

nk(t)

, where n± 1
2
(t)

denotes the count of k = ± 1
2 defects at time t. Thus,
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(average of positive and negative defect numbers) in

the system at time t. Consequently, the exponent of

the power law decay, αn, decreases as shown in fig.4(d).

This behavior can be explained via the same argument

as given for the polar case: an increase in temperature

causes decay of reduction of spin wave and localization

of defects, finally resulting in a slower rate of defect

annihilation.

In the case of pure systems, both polar and nematic, our

results demonstrate a shift in the dominant mechanism

governing the system’s overall behavior with an increase

in temperature—from a region dominated by spin

waves to one where thermally influenced effects prevail.

This shift in the dominant mechanism contributes to

slower annihilation of defects, consequently yielding a

temperature-dependent exponent. To visually illustrate

this deceleration of the annihilation of defects, a series

of snapshots and animations are presented in our

supplementary material.

To assess the influence of the finite size of the system

on the exponent’s behavior, we conducted simulations

for system sizes L = 128, 256, and 512. Notably, the

exponents αm,p exhibited a consistent trend across

these different system sizes. Furthermore, the decel-

eration in the annihilation of defects suggests a more

sluggish evolution of the system towards its equilib-

rium, characterised by slower growth in correlation

among the spins. To delve into this phenomenon,

we calculate the equal time two point spatial corre-

lation of spin orientations in the system denoted by

C1(r, t) and C2(r, t) in the polar and nematic case,

respectively. Mathematically, these correlations are

defined as, C1(r, t) =

〈
cos(θ(r0 + r, t) − θ(r, t))

〉
and

C2(r, t) =

〈
cos(2θ(r0 + r, t)− 2θ(r, t))

〉
, where, < ... >

signify an average over the reference point r0 and mul-

tiple independent realizations. The temporal evolution

of C1(r, t) and C2(r, t) at two different temperatures are

displayed in FIG.5(a-b) and FIG.6(a-b), respectively, in

the supplementary material. The increasing correlation

over time indicates the progressive growth of domains.

The correlation lengths for the pure polar and nematic

cases, denoted as Lp(t) and Ln(t), are defined at the

0.5 crossing of C1(r, t) and C2(r, t), respectively. These

lengths, encapsulated within Lp,n(t), represent the char-

acteristic size of domains in the system at time t. In a

2D system with continuous spin symmetry, represented

by a vector order parameter, Lp,n(t) is predicted to

vary as: Lp,n(t) ∼ ( t
ln(t) )

βp,n , where βp,n denotes the

exponent for the pure polar and pure nematic systems,

respectively. The established value for these exponents

is 1
2 [55, 56].

Further, to incorporate the impact of logarithmic

corrections in the decay of the number of defects, we

examine the behavior of N(t)ln(N(t)), which is known

to behave as N(t)ln(N(t)) ∼ t−γ , where, N(t) ≡ Np(t)

and Nn(t) for pure polar and pure nematic cases,

respectively, with corresponding exponents γp and γn.

The previously established value of γ is 1[7]. However,

our observations reveal that at low temperatures both

βp,n and γp,n closely match with previously observed

values. However, with an increase in temperature, βp,n

and γp,n exhibit a decay, as illustrated in FIG.5(c) and

FIG.6(c) for the pure polar and pure nematic systems,

respectively.

The diminishing values of βp,n with increasing temper-

ature suggest a gradual slowdown in domain growth

for both pure polar and pure nematic cases. This

deceleration can be attributed to the slower annihilation

of defects.

Next, we present our findings for the mixed system,

where both types of interactions are concurrently at play.

C. Mixed System

In the mixed system, every spin concurrently interacts

with its neighbors through both ferromagnetic and

nematic pathways, with the relative strength of the two

interactions determined by ∆. The intricate interplay

between these two types of interactions can result in in-

triguing system behavior within the intermediate range

characterized by 0 < ∆ < 1, bridging the gap between

the pure polar and pure nematic phases observed in the

limiting cases. In this section, our primary exploration

focuses on understanding the system’s behavior near

the two extreme limits. We investigate how the system

responds when deviating slightly from the pure polar

or pure nematic states and explore how this response

correlates with the magnitude of the deviation.

Before presenting our results, it is important to define

the observables for the mixed system. For ∆ values

close to 1, we showcase the results for the number of

integer defects, denoted as Np(t) in the previous section.

Additionally, in this range, we examine the behavior

of the correlation function C1(r, t) and corresponding

correlation length Lmp varying as: Lmp ∼ ( t
ln(t) )

βmp ,

where βmp denotes the exponent. On the other hand,

for ∆ values close to 0, we present the results for the

number of half-integer defects, previously denoted as

Nn(t). In this range, we also investigate the behavior of

the correlation function C2(r, t) and the corresponding



10correlation length Lmn varying as: Lmn ∼ ( t
ln(t) )

βmn ,

where βmp denotes the exponent.
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FIG. 7. (color online) The figure showcases the variation of

the exponent αmp within the Polar Region with error bars

representing the uncertainty in the exponent value at each

data point. Panel (a) displays the exponent’s behavior with

temperature for various ∆ values, while panel (b) depicts

its variation with ∆ across different temperatures. The re-

maining parameters remain consistent with those presented

in fig.3.
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FIG. 8. (color online) The depicted figure illustrates the

change in the exponent αmn within the Nematic Region with

error bars representing the uncertainty in the exponent value

at each data point. Panel (a) demonstrates the exponent’s

temperature dependence for different ∆ values, while panel

(b) illustrates its variation with ∆ for different temperatures.

The rest of the parameters remain the same as depicted in

fig.3.

.

In proximity to the limit of pure polar limit, we examined

three values of ∆ = (0.8, 0.9, and 1.0). Within this range,

the system exhibited the prevalence of ±1 defects. The

temporal decay of the ±1 defect population followed a

power-law pattern, expressed as N(t) ∼ t−αmp(∆), where

αmp(∆) denotes the exponent governing the decay rate.

The temporal evolution of the defect population exhib-

ited a power-law decay, described by N(t) ∼ t−αmp(∆),

where αmp(∆) represents the exponent governing the de-

cay rate. In the low-temperature regime, the exponent

αmp(∆) closely approached 1 for all values of ∆. How-

ever, with an increase in temperature, the exponent pro-

gressively decreased, as depicted in fig. 7(a). The reduc-

tion in the magnitude of αmp(∆) can be attributed to

the shift in mechanism controlling the system’s behavior

from a region dominated by spin waves to one dominated

by temperature-induced effects, akin to the pure cases.

Additionally, a decrease in ∆ from 1.0 to 0.8 at a fixed

temperature revealed a prominent upward trend in αmp,

as illustrated in fig. 7(b).

The increasing trend of αmp with increase in ∆ can be

explained as follows: Decreasing ∆ from 1.0 brings ne-

matic interactions into play. It is well-known that creat-

ing a pair of integer defects incurs a significantly higher

energy cost compared to a pair of half-integer defects.

Consequently, the system tends to favor the formation

of a few half-integer defects at the expense of integer

defects. This results in a reduced number of integer de-

fects and a faster rate of annihilation for them, leading to

an increased αmp at higher temperatures, as depicted in

fig. 7(a). However, at lower temperatures, where the sys-

tem contains only a few defect pairs, the polar alignment

tendency far outweighs the nematic alignment tendency.

Consequently, altering the value of ∆ has minimal im-

pact on the number of defect pairs. As a consequence,

αmp remains nearly constant and close to 1 for all values

of ∆, primarily due to the dominant influence of spin

waves.

Approaching the nematic boundary, we investigated

three distinct values of ∆ = (0.2, 0.1, and 0). In this

region, the system predominantly exhibits ± 1
2 defects.

The number of ± 1
2 defects follows a power-law decay:

N ∼ t−αmn , where the exponent αmn remains close to 1

at low temperatures. As the temperature increases, αmn

decreases, as illustrated in fig. 8(a), consistent with the

behavior observed in the pure nematic case. However,

on increasing ∆ from 0 at a fixed temperature, αmn

exhibits a downward trend, as shown in fig. 8(b). The

observed behavior can be attributed to the dominance

of nematic interaction among neighboring spins at a

finite but lower ∆ values. Moreover, the lower energy

required to create a half-integer defect leads to the

formation of a large number of ± 1
2 defects at the same

temperature. As a result, the annihilation of defects

with opposite signs occurs more rapidly, leading to an

increased value of αmn, as illustrated in fig.8(b).

Moreover, to characterize the impact of ∆ variation on

domain growth in both the polar and nematic regions,

we analyze the behavior of the correlation functions and

the corresponding exponents of the correlation lengths,

as detailed at the beginning of this section. The corre-

sponding results at two distinct temperatures are illus-

trated in FIG.9. In the polar region, there is an increase

in βmp as ∆ decreases from 1. Conversely, in the nematic
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FIG. 9. (color online) The figure illustrates the behavior of the correlation function for the mixed system in the polar region

(a-d) and the apolar region (e-h). In the polar region, we show the results for the correlation function, C1(r), two values of ∆ =

0.9, 0.8 at two different temperatures : (a-b) T
TBKT

= 0.40, and (c-d) T
TBKT

= 0.65. In the apolar region, we show the results

for the correlation function, C2(r), for two values of ∆ = 0.1, 0.2 at two different temperatures : (e-f) T
TBKT

= 0.30, and (g-h)

T
TBKT

= 0.45. The correlation length, L(t), in both the polar and apolr region follows the behavior: L(t) ∼
(

t
ln(t)

)β

, where

L(t) = Lmp(t)&β = βmp for the polar region and L(t) = Lmn(t)&β = βmn for the nematic region; (I) Depicts the variation

of exponents αmp and βmp in blue and red, respectively, in the polar region. Different symbols • and ■ are used for two

different temperatures T = 0.40 and 0.65, respectively.; (J) Depicts the variation of exponents αmn and βmn in blue and red,

respectively, in the nematic region. Different symbols • and ■ are used for two different temperatures T = 0.30 and 0.45,

respectively.; System size L = 128.

region, the exponent βmn decreases with an increase in

∆ from zero. Thus, the trends observed for βmp and βmn

align seamlessly with those of αmp and αmn in the polar

and nematic regions, respectively.

Overall, these findings demonstrate the intricate inter-

play between spin interactions, temperature, and num-

ber of defects in the mixed system, unveiling fascinating

behavior in the intermediate regime of ∆ values near the

pure polar and pure nematic limit.

D. Kinetics Phase Diagram

In the previous section, we investigated the behavior of

defects in pure systems (∆ = 0 and ∆ = 1) as well as in

the mixed system (0 < ∆ < 1) near the boundaries of
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(a) (b)

FIG. 10. (color online)(a) The figure depicts the fractions, fp and fn, of ±1 and ± 1
2
defects out of total number of defects

within distinct phases at a temperature of T
TBKT

= 0.60 at time t=2000, with the ’blue’ color representing fp and ’red’ color

indicating fn. All other parameters remain consistent with those presented in fig.3; (b) The figure portrays the configuration

of the system in a coexistence state at T
TBKT

= 0.6 and ∆ = 0.50 at time t = 4000. In this visualization, spins are represented

by black quivers. A pair of ±1 defects is denoted by a red circle and blue square, while a pair of ± 1
2
defects is indicated by a

red arc and a blue ’Y’-shaped structure. The remaining parameters are consistent with fig.2.

pure polar and pure nematic interactions. By analyzing

the exponent of the power law decay of the defect pop-

ulation, we discerned the impact of temperature in the

pure systems and the effect of varying ∆ in the mixed

system.

Continuing with our analysis, we delve into the charac-

terization of various phases within the system by inves-

tigating the behavior of defects across the entire param-

eter space of ∆ and T . Our observations indicate the

existence of three distinct phases below TBKT : Polar

Phase, Nematic Phase and Coexistence Phase, alongside

the emergence of a disordered phase for temperatures

above TBKT . These phases can be explained as follows:

Polar Phase : In this phase, the system demonstrates

the emergence of integer defects, which signifies the dom-

inance of ferromagnetic interactions and, consequently,

the prevalence of integer defects. When the temperature

remains below TBKT and ∆ is nearly equal to 1, the

count of integer defects follows a power-law decay over

time. A comprehensive understanding of the exponent’s

behavior is outlined in fig. 10. Nevertheless, as the value

of ∆ experiences a slight increase, despite integer de-

fects retaining their dominance, the characteristic decay

pattern slightly deviates from the typical power-law be-

havior. As a result, calculating an exponent within this

specific region becomes unattainable.

Nematic Phase: This phase is distinguished by the

exclusive prevalence of half-integer defects. For temper-

atures below TBKT and ∆ approaching 0, the count of

half-integer defects adheres to a power-law decay. The

specifics of the exponent’s behavior are expounded upon

in fig. 11. However, with a slight increment in ∆, the

power-law decay pattern dissipates, even though the sys-

tem predominantly consists of half-integer defects. Con-

sequently, determining the exponent becomes infeasible.

Coexistence Phase: In the vicinity of ∆ = 1
2 with

a slightly elevated temperature (commencing from well

below TBKT ), where the strengths of both types of in-

teractions are comparable, the system possesses ample

thermal energy. This results in a competitive interplay

among these interactions, leading to a unique spin config-

uration wherein both polar and nematic phases coexist.

Disordered Region: This phase occurs when the tem-

perature exceeds TBKT . The thermal energy becomes

dominant and overwhelms both types of interactions, re-

sulting in a disordered arrangement of spins.

To substantiate our aforementioned categorization, we

calculate the fractions fp and fn corresponding to inte-

ger and half-integer defects, respectively. These frac-

tions are defined as follows: fp = <nI>
<nI>+<nHI>

and

fn = <nHI>
<nI>+<nHI>

. < nI > and < nHI > represent

the average numbers of integer and half-integer defects
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FIG. 11. (color online) This diagram illustrates the Phase Diagram of the system, where distinct symbols are utilized to depict

different phases, and their colors correspond to the associated exponent values as indicated by the color bar. Specifically,

the symbols ‘circle’, ‘square’, ‘triangle’, and ‘diamond’ represent the Polar, Nematic, Coexistence, and Disordered phases,

respectively. Within the Polar and Nematic regions, the filled symbols indicate sub-regions where the exponent can be

calculated, while the unfilled symbols signify parameter values where the exponent calculation is not feasible. To illustrate

the dependence of phases on system size, we present the phase diagram for two different system sizes: (a) L = 128 and (b)

L = 256. All other parameters remain consistent with those in fig.3.

in the system at a given time t, considering a specific

set of parameters (T,∆), where < .... > denotes average

over 100 independent realizations.

In fig.10(a), we present the bar graph of fp and fn
in various regions, as described above, at temperature

T
TBKT

= 0.60 at time t = 2000. When ∆ = 1 or 0.9, the

values fp ≈ 1 and fn ≈ 0 indicate the exclusive forma-

tion of ±1 defects in the system. Conversely, for ∆ = 0

or 0.1, the values fp ≈ 0 and fn ≈ 1 suggest the ex-

clusive presence of ± 1
2 defects in the system. Therefore,

as ∆ approaches 1, a polar phase is evident, while val-

ues of ∆ close to 0 signify a nematic phase. Notably, at

∆ = 0.50, both ±1 and ± 1
2 defects coexist in the system,

resulting in nearly equal values of fp and fn, indicating

almost equal probability for the formation of both types

of defects. This region is referred to as the coexistence

region.

To provide empirical evidence supporting the coexistence

of both types of defects at ∆ = 0.5, we present a snap-

shot of the system’s configuration in fig. 10(b). Within

this snapshot, spins are visually represented through

black quivers. The visual representation showcases the

co-occurrence of integer and half-integer defects. Specif-

ically marked within the snapshot is a pair of integer and

half-integer defects for reference.

The fig.11 displays the complete phase diagram of our

system, where each symbol corresponds to a specific

phase based on the given parameter values : ‘circle’,

‘square’, ‘triangle’, and ‘diamond’ represent the Polar,

Nematic, Coexistence, and Disordered phases, respec-

tively. Filled symbols indicate that the exponent of the

power law decay has been calculated and the color of

the symbol represents the value of the exponent as in-

dicated by the color bar. On the other hand, empty

symbols represent parameter values for which the expo-

nent could not be calculated. This comprehensive phase

diagram provides a visual representation of the different

phases and their corresponding exponent values in our

system.

We identify various regimes in the (T,∆) space based

on the nature (integer or half-integer) of the topological

defects for two different system sizes (L = 128&256).

The boundary of the different phases remains almost

the same for both system sizes. Importantly, we avoid

the characterization of phase transitions. Instead, we

observe that within a specific parameter range where

polar and nematic interaction strengths are comparable,

both types of defects coexist in the system. Our em-

phasis on characterizing domain growth is specifically

concentrated in the vicinity of the pure polar and

pure apolar limits, where domain growth is notably

influenced by variations in the value of ∆, as detailed in

the preceding section.

Equilibrium Phase Diagram: In Figure 12, we
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FIG. 12. (color online) The figure illustrates equilibrium

phase diagram obtained in our model. The boundary be-

tween the different phases are marked by ‘blue’ solid line for

system size L = 128. Dashed line in ‘red’ represents the

phase boundary obtained on extrapolating the data for sys-

tem sizes L = 64, 128, 160 and 200. The ‘black’ horizontal

dashed line at the bottom marks the line for T
TBKT

= 0.1

present the equilibrium phase diagram derived from

our model, revealing three distinct phases previously

identified in literature: Ferromagnetic (F), Nematic

Phase (N), and Disordered Phase (D). The classification

of these phases relies on two correlation functions,

namely C1(r, t) and C2(r, t) as discussed in Section

III C and based on their behavior we draw boundary

between different phases. The ‘blue’ solid line in Fig.12

denotes the phase boundaries for a system size of

L = 128. Notably, the boundaries between F → D and

N → D align well with previous findings. However,

the boundary between F → N, while exhibiting some

similarity, deviates noticeably from established results.

We attribute this discrepancy to a system size effect. To

substantiate our argument, we performed extrapolations

for the boundary between the F → N phases using

data from system sizes L = 64, 128, 160, and 200. The

extrapolated phase boundary is shown with red ’dashed’

lines in Fig. 12.

We can also compare the equilibrium phase diagram with

the kinetic phase diagram obtained from the kinetics of

the system as shown in Fig.11 and Fig.12. For ∆ close

to 1 and ∆ close to zero and near TBKT (order-disorder

temperature) both phase diagrams match well. It can be

observed that the coexistence phase in our kinetic phase

diagram appears for the parameter range close to the

Nematic to Ferromagnetic transition line.

IV. DISCUSSION

In this study, we investigate the attributes of a spin sys-

tem situated on a 2D square lattice, where each spin has

the flexibility to align within the range of [0, 2π]. These

spins engage with their immediate neighbors through

ferromagnetic and nematic interactions simultaneously

with the relative strength of the two determined by the

parameter ∆. Employing the Markov chain Monte Carlo

algorithm, we systematically explore the (T,∆) space to

gain insights into defect behaviors.

In the context of the generalized XY model, the preced-

ing studies have outlined a typical phase diagram fea-

turing two low-temperature phases (ferromagnetic (F)

and nematic (N)), along with a high-temperature disor-

dered phase (D). The characterization of these phases

primarily relied on the behavior of two-point correlation

functions [18, 33, 34], susceptibility [28] and the tran-

sition between phases was marked by the behavior of

the magnetization order parameter, as well as the fea-

tures of the binder cumulant [30], stiffness jump across

the transition[30, 33], behavior of specific heat [26]. The

transitions F → D andN → D were categorized as BKT

type [30, 33] , while the transition F → N is an Ising

transition [26].

However, our present work explores the annihilation of

defects and its influence on domain growth during the

transient time regime, as the system progresses towards

a steady state following the initial quench.

Our examination uncovers distinctive findings in differ-

ent regions of the (T,∆) plane, particularly within the

context of mixed systems (0 < ∆ < 1). In the scenario

of pure systems, where the parameter ∆ takes on values

of either 0 or 1, a distinct pattern emerges. As the tem-

perature increases within the moderate to high range,

without surpassing the critical temperature TBKT , the

exponent governing the power-law decay of defect count

experiences a reduction. This observation indicates a

noteworthy trend: the rate at which defects are removed

becomes slower in this temperature range. In contrast,

at lower temperatures, the exponent remains close to 1.

This results in a significant transition as temperature

changes. With increasing temperature, the system shifts

from being predominantly influenced by the spin waves

to fluctuations due to thermal noise. In essence, there

is a marked change in the dominant mechanisms that

dictate the system’s behavior.

Furthermore, when examining mixed sys-

tem—fascinating and intricate behaviors come to

the forefront. For temperatures exceeding TBKT ,
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for temperatures below TBKT , we discern three distinct

regions: In proximity to the polar limit (∆ values

close to 1), the system primarily exhibits dominance of

integer defects. Near the nematic limit (approaching

∆ = 0), half-integer defects prevail. Around ∆ ≈ 1
2 , an

intriguing coexistence region manifests, characterized

by the simultaneous presence of integer and half-integer

defects. This intriguing phase has not been previously

documented in earlier studies as per our knowledge.

Further, the equilibrium phase diagram obtained in our

study shows very good match with those obtained in

previous studies.

These findings shed light on the intricate interplay

between temperature and interaction parameters, re-

vealing diverse defect behaviors within the spin system.

The observed decrease in exponent values in pure cases

and the identification of the emergence of a novel

phase in mixed scenarios add a layer of depth to our

understanding of the system’s behavior.

The system explored in our study can be realised in

liquid crystals [14–16] and superfluid 3He films [13, 17].

Existing experimental setups, originally devised for the

pure XY model [57] and the ‘twisted nematic liquid

crystal’ [58] offer the capability to detect variations in

defect numbers, spin correlations, and other relevant

factors. The versatile nature of the experimental design

presented in [58] suggests the feasibility of employing

a similar methodology to validate the findings of our

study.
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