
Quantum phase transitions in quantum Hall and other topological systems: role of the
Planckian time

Andrey Rogachev1

1Department of Physics and Astronomy, University of Utah, Salt Lake City 84093, USA
(Dated: September 6, 2023)

Transformations between the plateau states of the quantum Hall effect (QHE) are an archetypical
example of quantum phase transitions (QPTs) between phases with non-trivial topological order
[1–4]. These transitions appear to be well-described by the single-particle network theories [5, 6].
The long-standing problem with this approach is that it does not account for Coulomb interactions.
In this paper, we show that experimental data in the quantum critical regime for both integer and
fractional QHEs can be quantitatively explained by the recently developed phenomenological model
of QPTs in interacting systems [7]. This model assumes that all effects of interactions are contained
in the life-time of fluctuations as set by the Planckian time τP = ℏ/kBT . The dephasing length is
taken as the distance traveled by a non-interacting particle along the bulk edge state over this time.
We show that the model also provides quantitative description of QPTs between the ground states
of anomalous QHE and axion and Chern insulators [8, 9]. These analyzed systems are connected in
that the QPTs occur via quantum percolation. Combining the presented results with the results of
two companion papers [7, 10], we conclude that the Planckian time is the encompassing characteristic
of QPTs in interacting systems, independent of dimensionality and microscopic physics.

Quantum phase transitions between the plateaus of
quantum Hall states have been intensively studied since
the discovery of the integer quantum Hall effect (IQHE).
This was one of the first systems where the finite size
scaling analysis was used to detect QPTs and extract
values of critical exponents [11].

In heterostructures used to study QHE, charged donors
randomly located in the remote doping layer produce a
smooth electrostatic potential in the plane of the 2d elec-
tron gas. The degenerate electrons fill this potential pro-
file and produce a disordered network illustrated in Fig.
1. The beige color marks the “puddles” filled by electrons
and the blue color the unoccupied areas corresponding
to the “hills” of the electrostatic potential. The current
carrying states propagate along the equipotential lines
separating the puddles and hills.

The QPT occurs when the system reaches the perco-

FIG. 1. Schematic picture of the quantum percolation
in IQHE. The solid arrowed line indicate edge modes on
the border of electron puddles. The red arrows indicate the
electrical field EL and the dashed circle the area within the
dephasing length Lφ.

lation threshold. A recent series of exceptionally careful
studies of IQHE in AlGaAs heterostructures [15–18] has
established that the transition mechanism is determined
by the size of a typical puddle, Lp, as compared to the

dephasing length, defined as Lφ ∼ 1/T 1/z, where z is the
dynamical critical exponent. In the so-called universal
regime, when Lp ≪ Lφ, electrons propagate along the
border of the puddles with intermittent coherent tunnel-
ing from one puddle to another. This process of quan-
tum percolation illustrated in Fig. 1 is the essence of the
Chalker-Coddington network model [12] and its gener-
alizations [5, 6, 13, 14]. Numerical studies predict that
in this regime, the correlation length exponent is in the
range ν=2.3-2.65 [5, 6]; this value agrees with majority
of experiments. The second non-universal regime corre-
sponds to Lp ∼ Lφ. In this case, one expects the scaling
behavior with a non-universal exponent ν [17, 19] or no
scaling at all.
Despite their success, the network models have a ma-

jor flaw: they do not account for Coulomb interactions.
Significant efforts have been made over past thirty years
to resolve this problem [20–24], but it is still fair to say,
following [25], that agreement between experiments and
the network models, based on the single-particle physics
and ignoring Coulomb interactions, is indeed “something
of a mystery”.
In this paper, we propose the resolution to this problem

(albeit only on a phenomenological level) by invoking the
concept of Planckian time [26, 27]. We analyze the QHE
systems using the recently developed model of QPTs [7],
which proposes that conductivity varies across the tran-
sition according to the generic exponential relation

σ(T ) =
e2

ℏLd−2
φ

gc exp

(
y − yc
yc

(
Lφ(T )

L0

)1/ν
)
. (1)

Here, y is the non-thermal parameter driving the tran-
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FIG. 2. Quantum phase transition in Quantum Hall systems. (a-b) Integer QHE: (a) The sequence structure of the
samples studied in [15–18]. (b) The resistance Rxx of the top-most Landau level versus the scaled magnetic field for the sample
with x = 0.85% (see text for details).(c) Fractional QHE [30]: Resistance Rxx versus the scaled concentration of carriers.

sition and ys is its critical value. The model is applicable
only in the quantum critical regime defined by condition
that the dephasing length is smaller than the correla-
tion length, Lφ < ξ ∼ |y − yc|−ν

. The model has the
key parameter, L0, the microscopic seeding scale of the
real space renormalization group. For many systems, it
is fairly clear what L0 is, so one can make assumptions
about the dependence of Lφ(T ) on system properties,
extract experimental L0, check if it matches the relevant
scale, and thus gain some understanding of microscopic
processes governing the transition.

We found that in all interacting systems tested
in [7, 10], agreement with the experiment occurs
if the dephasing length is chosen as the distance
travelled by a non-interacting carrier (or excitation)
over the Planckian time, τP=ℏ/kBT . Here, we show
that this approach also works for topological sys-
tems where the QPT occurs via quantum percolation.

Quantum phase transitions: IQHE and FQHE.

Integer QHE. For our analysis of the integer QHE, we
have chosen the experimental results presented in [15–17].
The sequence structure of the samples is described in [18]
and depicted in Fig. 2a. The 2d electron gas resides at
the interface between Al0.33Ga0.67As and AlxGa1−xAs on
the side of AlxGa1−xAs. Aluminum content of this layer
was varied in the range x=0-4.1%. When an Al atom sub-
stitutes Ga atom in the lattice, it produces strong atomic-
scale scattering potential. At high magnetic fields, the
fractional QHE was observed though not studied in [15].

We start with the analysis of the data for the 4-to-3
plateau-to-plateau transition in a sample with x=0.85%.
We traced the data for Rxx (B, T ) and Rxy (B, T ) vari-
ations shown in Fig.1c,d of [15]. We then used the pro-
cedure described in [4] to obtain the resistance Rxx of
the topmost Landau level. Figure 2(b) shows that this
resistance can be scaled using the values of Bc=1.395 T
and νz≈2.38 reported in [15]. Near the transition, the

data can be approximated by the exponential dependence
y=a1 exp (a2x) with a1=19500 Ω/□ and a2=10.5 K−0.42.

The value of the dynamical exponent for this sample is
z≈1. It was independently determined from the measure-
ments of the samples with different sizes [16]. The well-
accepted view in QHE literature is that the dynamical
exponent is determined by some unspecified inelastic pro-
cess. However, there are also long-standing arguments
questioning this interpretation. First of all, the exponent
z=1 disagrees with the non-interacting model, which
predicts z=2 (page 380 in [5]). Moreover, frequency-
dependent measurements on many systems show that
the transition from the frequency-dominated regime to
the temperature-dominated regime is determined by the
condition ℏω ≈ kBT [28, 29]. As pointed out early on
(page 327 in [11]), this behavior indicates that dephasing
comes not from the system-specific microscopic scatter-
ing but rather is a universal signature of the quantum
critical regime of an interacting system. This is what we
take as a starting assumption in the analysis of the data
presented in Fig.2b.

We set the time scale of the fluctuations to the Planck-
ian time τP=ℏ/kBT . Then, according to our general con-
jecture described in [7], the dephasing length is given by
the distance traveled by a non-interacting particle over
τP . From the semiclassical picture of quantum perco-
lation, this length is determined by the drift of a par-
ticle along the equipotential lines interrupted by tun-
neling events between neighboring electrostatic contours
as shown in Fig.1. Since these tunneling events are es-
sentially instantaneous, the propagation is dominated by
the drift and, to the first approximation, the dephasing
length can be given as Lφ ≈ vdrℏ/kBT . Notice that this
simple relation provides the needed dynamical exponent
z=1. We estimate the drift velocity from the semiclas-

sical relation vdr=E⃗ × B⃗/B2=EL/B, where EL is the
in-plane component of the typical electrical field at the
edge of a puddle and B ≈ Bc in the quantum critical
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regime. Then, for IQHE, the generic scaling Eq.1 takes
the specific form

Rxx = Rc exp

( (
ℏEL

kBBcL0

)1/ν
B −Bc

Bc

1

T 1/ν

)
. (2)

The minimal seeding scale of the QPT in IQHE is ex-

pected to be set by the magnetic length lm=(ℏ/eBc)
1/2

.
In the present case, it is lm ≈ 22 nm. Using this value
for L0 and experimental values of the exponent ν = 2.38
and coefficient a2, we estimate the value of the in-plane
electrical field as EL ≈ 1.0× 106 V/m.

Now we need to get an independent estimate of EL.
Notice that this field is zero when the smooth disorder
potential is either empty or completely filled by elec-
trons; the percolation threshold is reached somewhere
in between. To proceed further, we choose to ignore
the electron screening (see discussion below) and take
as an estimate of EL the maximum value of the in-plane
field produced by a single donor with the charge +e lo-
cated in the δ-doping layer, 10 nm away from 2d electron
gas. This field is shown in Fig 2(a) and Fig.1. We find
from the geometry of the sample and Coulomb’s law that
EL ≈ 4.0×105 V/m. This value agrees with experimental
EL in order of magnitude.

Let us now check if our model explains other obser-
vations reported in [15–17]. We have traced data for
Rxx (B, T ) and Rxy (B, T ) dependences for the 2-to-3
transition from Fig. 1(a,b) of [15], and repeated the anal-
ysis. We have found that the data can be scaled using
the critical field Bc = 1.90 T and universal exponent
νz=2.38. The in-plane electrical field for this transition
is EL ≈ 8.5× 105 V/m. This value confirms the assump-
tions of the model.

At low temperatures, samples with low concentration
of Al impurities reveal the power-law temperature depen-
dence for the 3-to-4 transition, (dRxy/dB) |Bc

=a0T
−κ,

with the universal value of κ ≈ 0.42. ( The exponents
κ and p used in the quantum Hall literature relate to
z and ν as κ=1/νz and p=2z.) We have extracted the
value of the proportionality constant a0 from Fig. 2 of
Ref.[17] and found that it varies very little, within 10 %,
for samples with x=0, 0.21, and 0.85%. This is what we
expect from our model. It assumes that the coefficient
a0 depends only on two sample-dependent parameters,
Bc and EL. The samples have similar carrier concentra-
tions (see Table 1 in [15]) and, hence, similar values of
Bc. The in-plane field EL is determined by the thickness
of the spacer layer, which is the same for all samples. Let
us notice that the similar values of a0 for three samples
with different concentration of the short-range impurities
suggest that while these impurities define the size of the
puddles (as was concluded in [17]), they are of secondary
importance for Lφ, which is determined mostly by the
drift along the puddles’ perimeters.

In Ref.[16], the study of the heterostructure with
x=0.85% was extended to the measurements of a series
of samples with the varied size. It was found that at

low temperatures the (dRxy/dB) |Bc
=a0T

−0.42 variation
crosses over to the temperature-independent behavior.
The “knee” point between two regimes was defined as
the saturation temperature, Ts, and it was found to scale
with the width of the samples as W=bsT

−1
s . From Fig.3

of [16] we found that bs=2.9×10−5 (m×K). The authors
of the work pointed out that the saturation occurs be-
cause the dephasing length becomes comparable with the
smallest sample size (the width in the studied case). The
dephasing length in our model depends on temperature
as Lφ ≈ vdrℏ/kBT=bφT

−1, with bφ ≈ 5.8×10−6 (m×K).
We interpret this length as a typical size of fluctuations,
which appear randomly in all positions of the sample.
At high temperatures, only fluctuations located on the
edge of the sample will be affected by the edge presence.
The crossover will be completed when the fluctuations
originating on one edge of the sample reach the other.
It is then reasonable to assume that the “knee” and Ts

correspond to the midpoint situation when Lφ ≈ W/2 or
smaller. With this assumption our model provides fairy
good semi-quantitative description of the size effect.

Fractional QHE (FQHE). Let us now consider the
study of the fractional QHE reported in [30, 31], which
gives sufficient details of the sample structure to al-
low for a quantitative analysis of the QPT. In this
study, the 2d electron gas was separated by 80-nm-thick
Al0.3Ga0.7As undoped spacer from Si-doped 30-nm-thick
AlGaAs layer. From data presented in [30, 31], we find
that only a small portion of donors is ionized, hence we
can assume that these ionized donors are located at a
distance d ≈ 80 nm from 2d electron gas. The stud-
ied transition was between the ν=1/3 Hall state and the
Hall insulator state; it was driven by gate-induced change
of the carrier concentration, n, at a fixed magnetic field
B=2.91 T. We have traced the scaled data from Fig. 3(a)
of [30] and plotted them in Fig 2(c) using zν ≈ 2.3, found
in [30]. Near the critical concentration, the data can be
approximated with the exponential fit y=a1 exp (−a2x),
with a1=20500 Ω/□ and a2=1.05±0.15 K−0.43.

As the starting point, we take the theoretical pic-
ture proposed in [14] that, microscopically, the composite
fermions propagate as undivided entities along the con-
tours of electrostatic potential essentially in the same way
as electrons and holes in the integer QHE, i.e. they repeat
the processes shown in Fig.1. In addition, in agreement
with our general conjecture [7], we assume that in the
quantum critical regime, the system is in an entangled,
strongly-interacting state so that the composite fermions
themselves are only elementary excitations living during
the Planckian time τP=ℏ/kBT . Since the drift velocity
does not depend on the particle charge, the dephasing
length for composite fermions is the same as the one
for the integer QHE discussed above, Lφ=ELℏ/kBTB,
where B=2.91 T. The scaling equation is the same as
Eq. 2, except that in the driving term, B is replaced by
n.

Similar to IQHE, we take L0 equal to the magnetic
length lm=(ℏ/eB)

0.5 ≈ 15 nm. Then, using the exper-
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imental value of a2, we find the in-plane experimental
electrical field to be EL=6000± 2000 V/m. Also similar
to IQHE, we get an independent estimate of EL as the
maximum in-plane field produced by an ionized donor
located at the distance d=80 nm away from 2d gas. We
find EL ≈ 6500 V/m, which matches closely our experi-
mental value.

The estimate of the typical in-plane electrical field is
the obvious questionable step in our analysis. In fact,
we just tried the simplest possible way of getting EL

and it happened to work well. In reality, the effect of
Coulomb interactions on IQHE presents a long-standing
problem (see [32] and references herein). The latest nu-
merical investigation of IQHE with the self-consistent
Hartree-Fock approximation suggests that even the half-
filled Landau level provides only poor screening when
compared to the picture drawn from Thomas-Fermi-like
approximations [23, 33]. This work also concludes that
“the IQH regime is dominated by many-particle physics
that seems to act towards re-establishing the behavior ex-
pected for non-interacting electrons – as often assumed
in early percolation-type models of IQHE effect.” This
statement seems to support our finding, but let us recall
that our model does not neglect Coulomb interactions,
rather it states that they are contained in the Planck-
ian time. From the success of the model, the following
questions arise: how does the model relate to the mi-
croscopic picture found in [23, 32, 33] and how do the
Coulomb interactions affect the quantum fluctuations?
If, as the theory of QPTs [11, 26] suggests, the Planckian
time is the shortest possible relaxation time, it is logical
to expect that what carriers ”see” in the quantum critical
regime is just the static unscreened Coulomb potential.

The model requires further confirmation from exper-
iments. Let us mention few obstacles that complicate
analysis of the existing data. If filtering of cryostat mea-
suring lines is not done properly, erroneous effects can be
observed [34]. Extraction of the dynamical exponent z
from non-linear conductance does not look reliable since
it can be easily mixed up with heating effects [35–37].
Scaling of the data can be accidental [37]. The samples
also need to be better characterized. It was mentioned
in [38] that the early studies of QPTs in IQHE were per-
formed on low mobility samples that “failed for various
reasons in a way that resulted in a much poorer quality
than expected”. If such failure comes from appearance
of charged defects or migrated donors in the spacer
layer, the estimate of EL obviously needs to be changed.

QPT between the states of topological insulators

Let us now discuss two examples of contemporary
topological systems undergoing QPTs. The first exam-
ple is the QPT from the anomalous-quantum-Hall state
to the axion insulator state [8]. The heterostructure used
in this experiment is based on a thin film of (Bi,Sb)2Te3
sandwiched between Cr- and V-doped magnetic layers of
the same material. Transition is driven by perpendicu-
lar magnetic field, which flips magnetic domains in two

magnetic layers. We have traced the raw data from Fig.
2(b) of this work. Then we have scaled them using the
values Bc and zν=2.6 determined in [8]; the scaled data
are presented in Fig 3(a). The second example is the
magnetic-field driven QPT between the axion insulator
and the Chern insulator in a thin film of the antiferro-
magnetic topological insulator MnBi2Te4 [9]. The scaling
plot was generated using the data shown in Fig. 4(d) of
this work and is presented in Fig. 3(b). The value of
zv=2.1 is the same as in the original work.

As Fig. 3 attests, the scaled data for topological insula-
tors follow the exponential dependence across the critical
point of the QPT; this behavior suggests that they can
be explained using the generic Eq. 1. For reference, the
coefficients in the fitting equation y=a1 exp (−a2x) are:
a1=1.1 and a2=10.5 K−1/2.6 for panel (a), and a1=0.97
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FIG. 3. Quantum phase transition in topological insu-
lators. (a) The resistance versus the scaled magnetic field for
the thin film (Bi,Sb)2Te3 studied in [8]. The inset shows the
proposed edge mode propagating along the border of two mag-
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tance versus the scaled magnetic field for thin film MnBi2Te4
studied in [9].
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and a2=19 K−1/2.1 for panel (b).
In Refs. [8, 9] and in theoretical proposals [39, 40],

the discussion of the quantum critical regime in topo-
logical insulators proceeds essentially by mimicking the
Chalker-Coddinton network model. Indeed, the picture
of the sub-micrometer magnetic domains visualized using
a scanning nanoSQUID probe in Cr-doped (Bi,Sb)2Te3
[41] is reminiscent of the array of filled and empty zones
in the random potential of the network models.

For both systems shown in Fig.3, the extracted val-
ues of the critical exponents suggest that the quantum
percolation transition takes place and that the dynam-
ical exponent z ≈ 1. This value of z, and similarity
with IQHE suggest that the dephasing length is set by
the edge states propagating into the bulk of the systems
along the walls of the magnetic domain structure over
the Planckian time.

As a trial, we propose that electrons follow the
semiclassical meandering trajectory shown in the inset
to Fig.3(a). Then, the dephasing length is given as
Lφ=vdrℏ/kBT and the drift velocity vdr relates to the
Dirac velocity of the TI Hamiltonian vD as vdr=a3vD,
where a3 is a constant somewhat smaller than one. With
these assumptions, the scaling equation becomes

Rxx = Rc exp

(
−
(
ℏa3vD
kBL0

)1/ν
B −Bc

Bc

1

T 1/ν

)
. (3)

Using the experimental values of the coefficient a2 and
vD ≈ 8× 105 m/s [42] we find that the minimal seeding
scale for axion-to-AQH transition in (Bi,Sb)2Te3 (Fig 3a)
is L0=a3 × 7.5 nm. As expected, this length is much
smaller than the submicron size of the domains visualized
in [41].

The value of L0 corresponds to the minimum length
scale on which the topological phase can exist. We have
found that it is fairly well matched by the confinement

length, Lc, defined by the condition that the energy level
spacing in 2d area confined by Lc is equal to the gap Eb

between the bulk energy bands. With Eb=0.28 eV [43],

we estimate Lc ≈ 2
√
2ℏvD/Eb ≈ 3 nm. As a compli-

mentary view of this length, let us notice that quantum
fluctuations set by the uncertainty relation in the region
confined by Lc reach the bulk gap in the system.
Using the same interacting model, we have analyzed

axion-to-Chern transition in MnBi2Te4 (Fig. 3b). With
values of the Dirac velocity vD ≈ 4×105 m/s [44] and the
bulk gap Eb=0.16 eV [45], we have found that similarly
to the previous system, the minimal seeding scale of the
QPT, L0=a3×6.3 nm, is close to the length scale set the
level spacing, Lc ≈ 4.5 nm.
In summary, we have found that the phenomenological

model incorporating the Planckian time provides a quan-
titative description of QPTs between various topological
states of the 2d electron gas. All considered transitions
belong to the universality class of quantum percolation.
In two companion papers [7, 10], we have found that

the model also works for QPTs in many other interact-
ing systems. While the dephasing length is specific for
each system, the Planckian time has emerged as the truly
universal characteristic of the quantum critical regime.
The important conclusion of our work is that the scaled

data in the quantum critical regime carry information
about microscopic processes and scales leading to QPTs.
It is, therefore, highly desirable to apply modern numer-
ical methods of the type used for IQHE in [23, 32, 33] to
analyze experimentally studied samples. The conclusion
is, in fact, very general and certainly relevant to many
other complex systems undergoing QPTs.
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