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THE FIBER OF THE PRINCIPAL MINOR MAP

ABEER AL AHMADIEH

Abstract. This paper explores the fibers of the principal minor map over a general field.
The principal minor map is the map that assigns to each n× n matrix the 2n-vector of its
principal minors. In 1984, Hartfiel and Loewy proposed a condition that was sufficient to
ensure that the fiber of the principal minor map is a single point up to diagonal equivalence.
Loewy later improved upon this condition in 1986. In this paper, we provide a necessary
and sufficient condition for the fiber to be a point up to diagonal equivalence. Addition-
ally, we establish a connection between the reducibility of a matrix and the reducibility of
its determinantal representation. Using this connection, we fully characterize the fiber of
symmetric and Hermitian matrices in the space of n× n matrices over any field F. We also
use these techniques to answer a question of Borcea, Brändén, and Liggett concerning real
stable matrices.

1. Introduction

The primary objective of this paper is to investigate the relationship between two ma-
trices with equal principal minors over a field F. It is easy to see that if two matrices are
diagonally equivalent, then their principal minors are equal. Two matrices A and B are di-
agonally equivalent if there exists an invertible diagonal matrix D such that A = DBD−1 or
A = DBTD−1. The intriguing question is to determine the conditions under which this re-
mains the sole connection between the two matrices. Reducible matrices, for instance, might
have equal principal minors without being diagonally equivalent. A matrix is reducible if
it can be written as a block upper triangular matrix after permuting some rows and the
corresponding columns. If we replace each nonzero entry with one and the diagonal entries
with zero, then a reducible matrix corresponds to the adjacency matrix of a directed graph

with at least two strongly connected components. The block diagonal matrix
(

E 0
0 G

)

, for

instance, has principal minors equal to those of all matrices of the form
(

E F

0 G

)

.

Another motivating goal of this paper is to characterize real stable matrices and answer
a question of Borcea, Brändén, and Liggett [5, Question 3.4]. An n × n complex matrix A
is real stable if its determinantal polynomial fA = det(A + diag{x1, . . . , xn}) is real stable.
A polynomial f is real stable if it has no zeros with strictly positive imaginary parts. Real
stable polynomials have many applications in different fields, see for instance [3, 4, 5, 10, 17].
In [2], the author and Vinzant prove that if fA is real stable for some complex matrix A,
then there exists a Hermitian matrix H such that fA = det(H + diag{x1, . . . , xn}). Since
the coefficients of fA are the principal minors of A, the matrices H and A share the same
principal minors. Therefore, to characterize real stable matrices, we study the structure of
matrices that have principal minors equal to that of a Hermitian matrix.

Another way of rephrasing the same problem is by considering the principal minor map.
Given an n×n matrix A with entries in a field F, let AS denote the principal minor indexed
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by S, that is the determinant of the submatrix of A indexed by the set S on the rows and
columns. The principal minor map is the map that assigns to each matrix the vector of its
principal minors, namely

ϕ : Fn×n −→ F
2n given by A −→ (AS)S⊆[n] .

where we set A∅ = 1. In this paper we are interested in studying the preimage of this map.
This problem dates back to 1980 when Engel and Schneider [9] proved that a completely
reducible matrix A that belongs to the fiber of a symmetric matrix B must be diagonally
equivalent to it. In 1984, Hartfiel and Loewy [11] considered the fibers of general matrices
over any field F. They proved that if the fiber contains an irreducible matrix A with the
property that the submatrices A[X,Xc] and A[Xc, X ] have rank at least two for any subset
X of [n] with 2 ≤ |X| ≤ n− 2, then the fiber is a point up to diagonal equivalence. Here Xc

denotes the complement of X in [n]. This result was improved in 1986 by Loewy [15], who
proved that if only one of the submatrices A[X,Xc] or A[Xc, X ] of an irreducible matrix A
has rank at least two, then the fiber of A is still a point up to diagonal equivalence. In both
papers, the authors consider the inverse of the matrix (diag{x1, . . . , xn}+ A). We say that
a matrix A has a cut X ⊂ [n] if 2 ≤ |X| ≤ n − 2 and the ranks of A[X,Xc] and A[Xc, X ]
are at most one.

In this paper we consider the fiber of any n × n matrix over a field F. While Loewy
[15] proves that an irreducible matrix with no cuts have only one preimage up to diagonal
equivalence, we show that such matrices and irreducible symmetric matrices are the only
matrices that satisfy this property.

Main Result 1 (Theorem 4.1). The fiber of a matrix over any field F under the principal
minor map consists of only one point up to diagonal equivalence if and only if the matrix is
irreducible and either it has no cuts or it is diagonally equivalent to a symmetric matrix.

Using this result, it is straightforward to check on a computer whether the fiber of a matrix
is a point up to diagonal equivalence. If that is not the case, then using the proof of the
theorem, one can generate an algorithm to produce another point in the fiber.

By relating the structure of the matrix A to the factorization of its determinantal polyno-
mial fA

fA = det(diag{x1, . . . , xn}+ A),

we characterize the fibers of symmetric and Hermitian matrices in the space of n×n matrices.
In particular, we prove that a matrix A can be written as a block upper triangular matrix
with s diagonal blocks if and only if its determinantal polynomial fA factors into s irreducible
factors. A direct consequence is that the fiber of an irreducible matrix under the principal
minor map consists only of irreducible matrices. Using this relation we characterize the fiber
of a symmetric matrix under the principal minor map in the space of n × n matrices over
any field F. Notice that a symmetric matrix is either irreducible or completely reducible.
A completely reducible matrix is a matrix that can be written as a block diagonal matrix
by permuting some rows and the corresponding columns, with each diagonal block being
irreducible.

Main Result 2 (Theorem 6.2). Let A be a symmetric matrix with entries in a field F. Then
either

(1) The matrix A is irreducible and the fiber of A consists of all matrices that are
diagonally equivalent to A, or
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(2) The matrix A can be written as a completely reducible matrix with s diagonal blocks
A1, . . . , As that are irreducible, and the fiber of A in Fn×n consists of all matrices that
can be written as block upper triangle matrices with s irreducible diagonal blocks
that are diagonally equivalent to the diagonal blocks of A.

In particular, this theorem implies that the fiber of an irreducible symmetric matrix with
entries in a field F consists of a single point up to diagonal equivalence. Notice also that
the result of Engel and Schneider [9, Theorem 3.5] follows from this theorem. Moreover, one
can conclude that the fiber of a symmetric matrix A in the space of symmetric matrices,
Symn(F), consists of matrices that are diagonally equivalent to A via a diagonal matrix with
entries equal ±1 (see for instance [18]) from the above theorem.

We also investigate the fibers of Hermitian matrices over the complex field. While the
fiber of an irreducible symmetric matrix consists of a single point, the fiber of an irreducible
Hermitian matrix can be bigger. An example illustrating this is provided in [2, Example
4.8]. However, we establish that the fiber consists solely of irreducible Hermitian matrices,
up to diagonal equivalence. This characterization, combined with the previous argument
regarding the structure of a matrix based on its determinantal polynomial factorization,
grants us a comprehensive understanding of the fiber of a Hermitian matrix. Similar to the
case of symmetric matrices, a reducible Hermitian matrix can be expressed as a completely
reducible matrix.

Main Result 3 (Theorem 7.2). Let A be a Hermitian matrix. Then either

(1) The matrix A is irreducible and the fiber of A consists of Hermitian irreducible
matrices up to diagonal equivalence, or

(2) The matrix A can be written as a completely reducible matrix with s diagonal blocks
A1, . . . , As that are irreducible and the fiber of A consists exactly of matrices that
can be written as block upper triangular matrices with s diagonal blocks that are
irreducible and Hermitian up to diagonal equivalence and that have principal minors
equal to those of one of the Ais.

This characterization along with the author’s work with Vinzant [2, Theorem 6.4] answer
a question of Borcea, Brändén, and Liggett:

Question. [5, Question 3.4] Characterize the class of all real stable n× n matrices, that is,
n× n matrices A such that det(A+ diag{x1, . . . , xn}) is real stable.

Main Result 4 (Corollary 7.3). Amatrix A is real stable if it can be written as a block upper
triangular matrix with diagonal blocks that are irreducible and Hermitian, up to diagonal
equivalence, and that have determinantal polynomials equal to the irreducible factors of the
polynomial fA = det(diag{x1, . . . , xn}+ A).

The fibers of skew symmetric matrices were addressed by Boussäıria and Cherguia [6].
They prove that if two skew symmetric matrices have equal principal minors of size at most
4, and one of the matrices is dense and does not contain any cut, then the matrices are
diagonally equivalent by a diagonal matrix with diagonal entries equal ±1.

While in this paper we focus on the preimage of the principal minor map, the image
of this map has been studied in various contexts. Holtz and Sturmfels [12] explored the
image of the space of real and complex symmetric matrices under the principal minor map.
They demonstrated that the image is both closed and invariant under the action of the
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group SL2(R)
n ⋊ Sn. They conjectured that the vanishing of polynomials in the orbit of the

hyperdeterminant, under the action of this group, defines the image of the principal minor
map over the field of complex numbers. This conjecture was resolved by Oeding [16]. In a
recent work by the author and Vinzant [1], techniques from a previous study by Kummer,
Plaumann, and Vinzant [13] were utilized to generalize this result, making it applicable to
arbitrary unique factorization domains. Moreover in [2], the author and Vinzant prove that
the image of the space of Hermitian matrices, under the principal minor map, is cut out
by the orbit of finitely many equations and inequalities under the action of SL2(R)

n
⋊ Sn.

We also examined such representations over more general fields with quadratic extensions.
However, in contrast to the Hermitian case, it was shown that for any field F, there is no
finite set of equations whose orbit under SL2(R)

n ⋊ Sn defines the image of n × n matrices
over F under the principal minor map for all values of n.

This paper is organized as follows. In Section 2, we introduce terminology and the basic
notations that we use throughout the paper. In Section 3 we state and prove the generalized
Laplace theorem, and we use it in Section 4 to construct a matrix in the fiber of an irre-
ducible matrix with a cut and consequently characterize matrices with a single point fiber. In
Section 5, we give a description of the structure of a matrix A according to its determinantal
polynomial. This description gives a characterization of the fibers of symmetric matrices in
Section 6 and of Hermitian matrices in Section 7, where a description of stable matrices is
also provided.

Acknowledgements. We are grateful to Cynthia Vinzant for the helpful comments and
discussions. We also thank Jonathan Leake and Josephine Yu for their helpful comments on
the paper.

2. Background and notation

Through out this paper we use Fn×n to denote the set of n × n matrices with entries in
the field F. Let D(n) denote that set of all matrices A such that the fiber of A consists
of matrices that are diagonally equivalent to A or AT , where AT denotes the transpose of
the matrix A. For simplicity, we use the expression diagonally equivalent by which we mean
diagonally equivalent to the matrix or to its transpose. One of the goals of this paper is to
characterize the set D(n).

We denote by Aadj the adjugate of the matrixA and by rk(A) the rank of the matrix A. The
determinantal polynomial of a matrix A is the polynomial fA = det(diag{x1, . . . , xn} + A).
Notice that a determinantal polynomial is multiaffine. A polynomial is multiaffine if it has
degree at most one in each variable.

2.1. The Rayleigh differece of a polynomial. The Rayleigh difference of a polynomial
f with respect to two variables xi and xj is given by

∆ij(f) =
∂f

∂xi

∂f

∂xj

− f
∂2f

∂xi∂xj

.

In [1] and [2], the author and Vinzant use the Rayleigh difference of a polynomial in order
to characterize multiaffine determinantal polynomials of symmetric and Hermitian matrices.
We also use them to characterize determinantal polynomials of n×n matrices as the following
theorem shows.
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Theorem 2.1 (Theorem 3.1 in [2]). Let f ∈ F[x1, . . . , xn] be multiaffine in the variables
x1, . . . , xn with its coefficient of x1 · · ·xn equals one. Then f = det(diag(x1, . . . , xn)+A) for
some A ∈ Fn×n if and only if for every i 6= j ∈ [n], the polynomials ∆ij(f) factor as the
product gij · gji where

(a) gij ∈ F[xk : k 6= i, j] is multiaffine in x1, . . . , xn and
(b) for every k ∈ [n]\{i, j}, resxk

(gij, f) = gikgkj.

In this case, we can take gij to be the (i, j)th entry of (diag(x1, . . . , xn) + A)adj, with Madj

represents the adjugate matrix of M .

We use resxk
(g, h) to denote the resultant of two polynomials g and h with respect to a

variable xk:

resxk
(g, h) = (g|xk=0) ·

∂

∂xk

h− (h|xk=0) ·
∂

∂xk

g.

Moreover, we use the Rayleigh differences to study the irreducibility of a multiaffine polyno-
mial as shown in the following lemma from [2]. We include the proof here for completeness.

Lemma 2.2 (Proposition 2.2 in [2]). If f ∈ F[x1, . . . , xn] has degree one in each of xi and
xj, then ∆ij(f) = 0 if and only if f factors into polynomial g · h with g ∈ F[xk : k 6= i] and
h ∈ F[xk : k 6= j].

Proof. By assumption we can write f = axixj + bxi + cxj + d for a, b, c, d ∈ F[xk : k 6= i, j].
Then ∆ij(f) = bc − ad. If ∆ij(f) = 0, then there is some factorization b = b1b2 and
c = c1c2 for which a = b1c1 and d = b2c2. Hence f = (b1xi + c2)(c1xj + b2). Similarly, if
f = (b1xi+c2)(c1xj+b2) for some b1, b2, c1, c2 ∈ F[xk : k 6= i, j], then ∆ij(f) = bc−ad = 0. �

Theorem 2.3. Let A be an n × n matrix in Fn×n. Let f = det(diag{x1, . . . , xn} + A) and
G = (diag{x1, . . . , xn}+ A)adj. Then

∆ij(f) = GijGji,

where Gij denotes the (i, j)th entry of G.

Proof. Let S, T ⊂ [n] be of equal cardinality. Let M(S, T ) denote the submatrix of M
obtained by dropping rows S and columns T from M . Then for any i 6= j ∈ [n],

det(M(i, i)) · det(M(j, j))− det(M) det(M({i, j}, {i, j})) = det(M(i, j)) · det(M(j, i)).

This follows from a classical equality used by Dodgson [8] as a method for computing deter-
minants. Since M = diag(x1, . . . , xn) + A, then for any subset S ⊆ [n], the principal minor

det(M(S, S)) equals the derivative of f with respect to the variables in S,
(

∏

i∈S
∂
∂xi

)

f .

Since Gij = det(M(i, j)), the equation above then gives that ∆ij(f) equals GijGji. �

3. The Generalized Laplace Expansion

In this section we give a complete proof of the generalized Laplace theorem. While the
Laplace expansion theorem states that the determinant of an n× n matrix A over any field
F can be computed by summing the products of the elements of some row or column with
their corresponding cofactors, or n − 1 × n − 1 minors, the generalized Laplace expansion
[14] computes the determinant by summing up minors of size k× k and their corresponding
n− k× n− k minors. In this section we state the theorem and we provide a proof based on
exterior algebra for completeness.
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Theorem 3.1. [The Generalized Laplace Theorem] Let A be an n × n matrix with entries
in a field F. Let S ⊂ [n] such that |S| = k with 1 ≤ k ≤ n − 1. The determinant of A is
given by:

det(A) =
∑

T⊂[n]
|T |=k

(−1)
∑

T+
∑

SAS,TASc,T c

where
∑

T =
∑

t∈T t.

To prove the theorem we use the following lemma.

Lemma 3.2. Let S and T be two subsets of [n] of size k. Let σ be the permutation of [n]
given in two line notation by

σ =

(

S Sc

T T c

)

where the elements of S, T, Sc, and T c are arranged in increasing order. Then

sgn(σ) = (−1)
∑

S+
∑

T.

Proof. First assume that S = {1, 2, . . . , k}. We will proceed by induction on k. Assume
that k = 1 and the smallest element of T is t1. Since the elements of T c are listed in
increasing order, then the sign of σ is (−1)t1−1 = (−1)t1+1. For the inductive step, t1 should
be transposed t1 − 1 + (k − 1) times, and so sgn(σ) = (−1)t1+k−2sgn(τ) where

τ =
(

1, . . . , k − 1 k, . . . , n

T1 (T1)c

)

.

Here T1 denotes the set T \ {t1}, and the elements of T1 and T c
1 are arranged in increasing

order. Applying the inductive hypothesis to τ , we infer that sgn(τ) = (−1)
∑

T1+
∑k−1

i=1
i.

Therefore,

sgn(σ) = (−1)t1+k−2(−1)T1+
∑k−1

i=1
i = (−1)

∑
T+

∑k
i=1

i.

For general S, σ can be written as the composite of two permutations σ1 and σ2 given in two

line notation by σ1 =
(

S Sc

1, . . . , k k + 1, . . . , n

)

and σ2 =
(

1, . . . , k k + 1, . . . , n
T T c

)

. Thus, the sign of σ is

the product of the signs of σ1 and σ2. Since a permutation has the same sign as its inverse,

we conclude that sgn(σ) = (−1)
∑

T+
∑k

i=1
i(−1)

∑
S+

∑k
i=1

i = (−1)
∑

T+
∑

S as desired. �

Proof of Theorem 3.1. For simplicity, we assume S = [k]. We denote by ci the ith column
of the matrix A and by ei the vector in Fn with ith entry equal to one and zero otherwise.
Then,

c1 ∧ c2 ∧ · · · ∧ cn = det(A)e1 ∧ · · · ∧ en

Let ci =
∑n

j=1 ajiej . Then the wedge product of the first k columns can be written as

c1 ∧ · · · ∧ ck =
n

∑

j=1

aj1ej ∧ · · · ∧
n

∑

j=1

ajnej =
∑

T⊂[n]
|T |=k

(
∑

j∈T

aj1ej ∧ · · · ∧
∑

j∈T

ajnek) =
∑

T⊂[n]
|T |=k

AT,SeT

where eT = et1 ∧ · · · ∧ etk and t1, . . . , tk are the elements in T arranged in increasing order.
Therefore

(c1 ∧ · · · ∧ ck) ∧ (ck+1 ∧ · · · ∧ cn) =
∑

T⊂[n]
|T |=k

AT,SeT ∧
∑

T⊂[n]
|T |=k

AT c,SceT c .
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We denote by σS,T the permutation written in two line notation as
(

S Sc

T T c

)

. Using Lemma 3.2,

sgn(σT,S) = (−1)
∑

T+
∑

S. Thus

det(A)e[n] = c1 ∧ · · · ∧ cn =
∑

T⊂[n]
|T |=k

(−1)
∑

T+
∑

SAT,SAT c,Sce[n].

Therefore det(A) =
∑

T⊂[n]
|T |=k

(−1)
∑

T+
∑

SAT,SAT c,Sc as desired. �

4. Matrices with a single point fibers

In this section we characterize D(n), the set of all matrices with a single point fiber up to
diagonal equivalence.

Theorem 4.1. Let A be an n × n matrix with entries in a field F with n ≥ 4. The matrix
A belongs to the set D(n) if and only if A is irreducible and either

(a) A is diagonally equivalent to a symmetric matrix or
(b) A does not have any cut, that is rk (A[X,Xc]) ≥ 2 or rk (A[Xc, X ]) ≥ 2 for all

X ⊂ [n], with 2 ≤ |X| ≤ n− 2.

Proof of (⇐). Follows from [15, Theorem 1] and Lemma 6.1. �

To prove the other directions, we will use the following lemma repeatedly. The reader is
referred to [11] for the proof.

Lemma 4.2. [Theorem 1 in [11]] Let A be an n×n irreducible matrix with entries in a field
F. Let M = (diag{x1, . . . , xn} + A) and G = Madj, the adjugate matrix of M . Then the
entries of G are nonzero.

Lemma 4.3. Let A be an n × n irreducible matrix with entries in a field F with n ≥ 4.
Suppose that A has a cut X ⊂ [n]. Let G = (diag{x1, . . . , xn} + A)adj. Then for all i ∈ X
and j ∈ Xc we have

Gij = (−1)iaibj

where ai ∈ F[xk : k ∈ X \ {i}], bj ∈ F[xk : k ∈ Xc \ {j}] and both are nonzero polynomials.

Proof. Since A is irreducible and has a cut X , then rk(A[X,Xc]) = rk(A[Xc, X ]) = 1. Let
M = (A + diag{x1, . . . , xn}). We denote by Xi the set X \ {i}. For S, T ⊂ [n], let MS,T

denote the determinant of the submatrix M [S, T ] indexed by S on the rows and T on the
columns. Since rk(A[X,Xc]) = 1, then for each i ∈ X there exists ai ∈ F[xk : k ∈ Xi] such
that MX,Xi∪{j} = cjai for all j ∈ Xc and for some cj ∈ F. Now using Theorem 3.1 we have:

Gij =
∑

T⊂[n]i
|T |=k

(−1)
∑

X+
∑

TMX,TM(Xc)j ,(T c)i

for i ∈ X and j ∈ Xc. Notice that for all T ⊂ [n]i such that |T ∩ Xc| ≥ 2, the submatrix
M [X, T ] is not full rank, since rk(A[X,Xc]) = 1. Thus for all such T , MX,T = 0. Therefore,
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Gij can be written as:

Gij =
∑

ℓ∈Xc

(−1)
∑

X+
∑

X−i+ℓMX,ℓ∪Xi
M(Xc)j ,(Xc)ℓ

= (−1)iai
∑

ℓ∈Xc

(−1)ℓcℓM(Xc)j ,(Xc)ℓ

using MX,ℓ∪Xi
= cℓai. Letting bj =

∑

ℓ∈Xc

(−1)ℓcℓM(Xc)j ,(Xc)ℓ,, we obtain the desired result. By

Lemma 4.2, Gij 6= 0. Therefore, ai and bj are both nonzero. �

Lemma 4.4. Let A be an n × n irreducible matrix with entries in a field F with n ≥ 4.
Consider G = (diag{x1, . . . , xn} + A)adj. If A has a cut X ⊂ [n] such that for each i ∈ X
and j ∈ Xc there exists αij ∈ F satisfying Gij = αijGji, then A is diagonally similar to a
symmetric matrix.

Proof. Lemma 4.3 implies that for all i, j ∈ X and k, ℓ ∈ Xc we have Gik/Gjk = Giℓ/Gjℓ

and Gki/Gkj = Gℓi/Gℓj . Therefore, αik/αjk = αiℓ/αjℓ. Let i, j ∈ X . We claim that
Gij = αik/αjkGji for any k ∈ Xc. Using Theorem 2.3, ∆ij(f) = GijGji. Then

resxj
(Gik, f) = GijGjk = αjkGijGkj,

by Theorem 2.1. Since Gik = αikGki, then

resxj
(Gik, f) = resxj

(αikGki, f) = αikresxj
(Gki, f) = αikGkjGji.

The two equations above now give Gij = αik/αjkGji. Using similar argument, one can prove
that Gij = αkj/αkiGji for i, j ∈ Xc. Fix i ∈ X and k ∈ Xc and let D be the diagonal matrix
such that Dkk = 1, Djj =

√
αjk if j ∈ X , and Djj =

√
αik/

√
αij if j ∈ Xc. Since for all

i, j ∈ X and k, ℓ ∈ Xc, αik/αiℓ = αjk/αjℓ, then D−1GD is a symmetric matrix and so is
DAD−1 as desired. �

If an irreducible matrix A has a cut X = [k], then Lemma 4.3 states that the matrix
G = (diag{x1, . . . , xn}+ A)adj can be written as

G =

(

P R
T Q

)

where P is a k×k submatrix, Rij = (−1)iaibj with ai ∈ F[xk : k ∈ X ] and bj ∈ F[xk : k ∈ Xc],
and Tij = (−1)jcidj with ci ∈ F[xk : xk ∈ Xc] and dj ∈ F[xk : k ∈ X ]. By switching suitable
factors between the entries Rij and Tij , we get a new matrix H . This matrix is the adjugate
of the matrix (diag{x1, . . . , xn} + B) where B is a point in the fiber of A as the following
lemma shows. We will use this operation later to find a point in the fiber of A that is not
diagonally equivalent to A.

Lemma 4.5. Let A be an n × n irreducible matrix with entries in a field F with n ≥ 4.
Assume that A has a cut X = [k]. Let

G = (diag{x1, . . . , xn}+ A)adj =

(

P R
T Q

)

where P is a k×k submatrix, Rij = (−1)iaibj with ai ∈ F[xk : k ∈ X ] and bj ∈ F[xk : k ∈ Xc],
and Tij = (−1)jcidj with ci ∈ F[xk : xk ∈ Xc] and dj ∈ F[xk : k ∈ X ]. Let H be the matrix
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defined as

H =

(

P U
V QT

)

with Uij = (−1)iaicj and Vij = (−1)jbidj. Then H = (diag{x1, . . . , xn} + B)adj for some
n× n matrix B such that det(diag{x1, . . . , xn}+ A) = det(diag{x1, . . . , xn}+B).

Proof. Let f = det(diag{x1, . . . , xn}+ A). Using Theorem 2.3 we have

∆ij(f) = GijGji = (−1)i+jaibjcjdi = HijHji,

for i ∈ X and j ∈ Xc. Thus, ∆ij(f) = HijHji, where Hij and Hji are multiaffine for all
i, j ∈ [n]. Using Theorem 2.1, it remains to show that for all k, resxk

(Hij, f) = HikHkj for all
distinct i, j ∈ [n]. We only consider the case i ∈ X , j ∈ Xc, and k ∈ X , as the other cases
follow similarly. Since bj ∈ F[xℓ : ℓ ∈ Xc] is independent of the variable xk, the resultant
resxk

(Gij, f) = resxk
((−1)iaibj , f) = (−1)ibjresxk

(ai, f). Also, using Theorem 2.1 it holds
that

resxk
(Gij , f) = GikGkj = (−1)kGikakbj .

This yields resxk
(ai, f) = (−1)i+kakGik. Since cj ∈ F[xℓ : ℓ ∈ Xc] is independent of the

variable xk, we obtain

resxk
(Hij, f) = resxk

((−1)iaicj, f) = (−1)icjresxk
(ai, f) = (−1)kcjakGik = HkjGik.

Since i, k ∈ X , then Gik = Pik = Hik. Therefore resxk
(Hij, f) = HkjHik. We apply

Theorem 2.1 and obtain the existence of a matrix B with det({x1, . . . , xn}+B) = f . �

Proof of Theorem 4.1 (⇐). First suppose that A is reducible. Then, after permuting some

rows and the corresponding columns, A can be written as
(

E F

0 G

)

, with E is a k×k submatrix.

Let H be any k×n−k matrix such that Hij = 0 if and only if Fij 6= 0 and Hij = 1 otherwise.

Let B =
(

E H

0 G

)

. If S ⊆ [k], then AS = ES = BS, and similarly if S ⊆ [k]c. Otherwise, if

S = S1 ∪ S2 with S1 ⊂ [k] and S2 ⊂ [k]c, then AS = ES1
GS2

= BS. Therefore, A and B
have the same principal minors. Notice that B is not diagonally similar to A. Therefore,
A /∈ D(n).

Now assume that A is irreducible, A is not diagonally equivalent to a symmetric matrix,
and A has a cut X = [k] ⊂ [n]. Notice that rk(A[X,Xc]) and rk(A[Xc, X ]) are nonzero since
A is irreducible. Thus rk (A[X,Xc]) = rk (A[Xc, X ]) = 1. Let M = diag{x1, . . . , xn} + A,
f = det (M), and G = Madj. Using Lemma 4.3, for all i ∈ X and j ∈ Xc the entry
Gij = (−1)iaibj for some ai ∈ F[xk : k ∈ Xi] and bj ∈ F[xk : k ∈ (Xc)j]. By Lemma 4.2,
Gij 6= 0. therefore, neither ai nor bj can be zero and so the matrix G can be written as a
block matrix

G =

(

P R
T Q

)

where P is a k × k submatrix, Rij = (−1)iaibj and Tij = (−1)jcidj with ai ∈ F[xk : k ∈ Xi],
bj ∈ F[xk : k ∈ (Xc)j ], ci ∈ F[xk : xk ∈ (Xc)i], and dj ∈ F[xk : k ∈ Xj]. Consider the matrix
H defined by

H =

(

P U
V QT

)

with Uij = (−1)iaicj and Vij = (−1)jbidj. We infer that H = (diag{x1, . . . , xn} + B)adj

where B has the same principal minors as A, by Lemma 4.3.
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We still need to check that B is not diagonally similar to A. We present a proof by con-
tradiction. Indeed, assume there is a diagonal matrix D such that B = DAD−1. Then
H = DGD−1. Let D = diag{λ1, . . . , λn} with λi ∈ F. Then Hij = λj/λiGij for all i, j ∈ [n].
In particular, Hij = (−1)iaicj = λj/λi(−1)iaibj for all i ∈ X and j ∈ Xc. Hence, bj = αjcj
for some αj ∈ F and for j ∈ Xc. If this is the case, then we switch ai and di in G instead of

bj and cj. That is we let H =
(

PT U

V Q

)

such that Uij = (−1)idibj and Vij = (−1)iaicj . Using

the same argument as the one above, we obtain a matrix C with the same principal minors
as those of A. If C is also diagonally congruent to A, then we get ai = βidi for some βi ∈ F

and for all i ∈ X . In this case, by Lemma 4.4, A is diagonally equivalent to a symmetric
matrix and this gives the desired contradiction. �

Example 4.6. Consider the 4× 4 matrix A

A =





2 −1 1 −2
1 1 −3 6
1 2 1 1
−1 −2 2 −1



.

Notice that A has a cut at X = {1, 2} since rk(A[X,Xc]) = rk(A[Xc, X ]) = 1. We compute
G = (A+ diag{x1, . . . , x4})adj and obtain

G =





p1 (x3 + 3)(x4 + 3) −(x2 − 2)(x4 + 3) (x2 − 2)(2x3 + 3)
−15− 5x3 − 4x4 − x3x4 p2 (3x1 + 7)(x4 + 3) −(3x1 + 7)(2x3 + 3)

−(x2 − 1)x4 −(2x1 + 5)x4 p3 −x1x2 + 11x1 − 4x2 + 29
(x2 − 1)(x3 + 3) (2x1 + 5)(x3 + 3) −(2x1 + 5)(x2 − 2) p4





with pi = Gii. If we switch the factors (x2 − 2) and −(3x1 + 7) in G[X,Xc] with the factors
(x2−1) and (2x1+5) in G[Xc, X ] respectively and we transpose the submatrix A[X,X ], we
get

H =





p1 −x3x4 − 5x3 − 4x4 − 15 −(x2 − 1)(x4 + 3) (x2 − 1)(2x3 + 3)
(x3 + 3)(x4 + 3) p2 −(2x1 + 5)(x4 + 3) (2x1 + 5)(2x3 + 3)
−(x2 − 2)x4 (3x1 + 7)x4 p3 −x1x2 + 11x1 − 4x2 + 29

(x2 − 2)(x3 + 3) −(3x1 + 7)(x3 + 3) −(2x1 + 5)(x2 − 2) p4





which is the adjugate of the matrix (B + diag{x1, . . . , xn}) with

B =





2 1 1 −2
−1 1 2 −4
1 −3 1 1
−1 3 2 −1



.

By computing the determinantal polynomial of A, fA = det(diag{x1, . . . , xn}+A), and that
of B, fB = det(diag{x1, . . . , xn}+B), we see that A and B have the same principal minors.
Simple computations show that B is not diagonally equivalent to A. ⋄

5. The Structure of a matrix from the factorization of its determinantal

polynomial

In this section, we relate the irreducibility of a matrix A to the irreducibility of its deter-
minantal polynomial fA = det(diag{x1, . . . , xn} + A). Moreover, we use the factors of this
determinantal polynomial in order to study the structure of the matrix.

Lemma 5.1. Let A be an n× n matrix with entries in a field F. Let f be its determinantal
polynomial

f = det (diag{x1, x2, . . . , xn}+ A) .
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Then A is irreducible if and only if f is irreducible.

Proof. (⇐=) Suppose A is reducible. Then A can be written as a block upper triangular
matrix, possibly after permuting some rows and the corresponding columns. Consequently
f factors into at least two factors.
(=⇒) Suppose A is irreducible. Let M = (A + diag{x1, . . . , xn}) and G = Madj. Then
using Lemma 4.2, we have Gij 6= 0 for all i, j ∈ [n]. Thus, Theorem 2.3 implies that
∆ij(f) = GijGji 6= 0. In view of Lemma 2.2, we conclude that f is irreducible. �

Theorem 5.2. Let A be an n× n matrix with entries in a field F. Let f be the polynomial
defined by

f = det (diag{x1, x2, . . . , xn}+ A) .

Then f factors as f1 · · · fs such that each fi is irreducible and fi ∈ F[xk : k ∈ Ti] if and only
if A can be written, after permuting some rows and the corresponding columns, as a block
upper triangular matrix with s diagonal blocks A1, . . . , As such that each Ai is irreducible
and fi = det(Ai + diag{xk : k ∈ Ti}).
Proof. ⇐= Suppose that A can be written as a block upper triangular matrix with s irre-
ducible diagonal blocks. Then f =

∏s

i=1 det(Ai + diag{xk : k ∈ Ti}) =
∏s

i=1 fi. Each fi is
irreducible in view of Lemma 5.1.
=⇒ Suppose that f is reducible and factors as f1 · · ·fs. We proceed by induction on s. The
case s = 1 follows from Lemma 5.1. For s > 1, Lemma 5.1 implies that A is reducible
and so it can be written as a block upper triangular matrix with two diagonal blocks A1

and A2. Without loss of generality, det(A1) = f1 · · · ft for t < s. Thus, A1 satisfies all
the inductive hypothesis and it can be written as a block upper triangular matrix with t
diagonal irreducible blocks, after permuting some rows and the corresponding columns of
A1. This permutation will not affect A2. The same holds for A2 and we write it as a block
upper triangular matrix with s− t + 1 diagonal blocks. This proves that A can be written
as a block upper triangular matrix with s diagonal blocks with associated determinantal
polynomials that equal the factors of f . �

Remark 5.3. Notice that Theorem 5.2 implies that any matrix can be rearranged by per-
muting some rows and the corresponding columns to form a block upper triangular matrix
with irreducible diagonal blocks. This fact was proved by Brualdi and Ryser [7, Theo-
rem 3.2.4]. They gave a purely combinatorial proof. From a graph theory perspective, the
theorem can be stated as follows:
To each n × n matrix A = (aij)1≤1i,j≤n, we associate a direct graph G with n vertices
v1, . . . , vn. There is a directed edge (i, j) from a vertex vi to a vertex vj if and only if aij 6= 0.
Suppose that G is composed of strongly connected components C1, . . . , Cs. By contracting
each component Ci into a single vertex Vi, we obtain a new graph H with s vertices V1, ..., Vs.
Directed edges are added to H such that there is a directed edge from Vi to Vj if and only
if there exists a directed edge from a vertex in Ci to a vertex in Cj . Thus, H is a directed
acyclic graph, allowing for a topological ordering of its vertices. This topological ordering
corresponds to the diagonal irreducible blocks.
This gives a very nice connection between the strongly connected components of the graph
G that corresponds to a matrix A and the factors of fA = det(diag{x1, . . . , xn}+ A).

Corollary 5.4. Let A be an n×n matrix with entries in the field F. Let f be the polynomial
defined by

f = det (diag{x1, x2, . . . , xn}+ A) .
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Suppose that f factors as f1 · · · fs such that each fi is irreducible and fi ∈ F[xk : k ∈ Ti].
Then the fiber of A consists of all matrices that can be written as block upper triangular
matrices with s diagonal irreducible blocks A1, . . . , As with det(Ai +diag{xk : k ∈ [Ti]}) = fi
for each i.

Example 5.5. Consider the 6× 6 matrix A

A =









1 −3 3 −2 −1 2
0 −3 5 1 0 2
0 0 4 0 0 −4
0 1 2 1 0 5
1 0 −1 6 2 4
0 0 2 0 0 3









.

Then the determinantal polynomial of A is given by

fA = det(diag{x1, . . . , xn}+A) = (x1x5+2x1+x5+3)(x2x4+x2−3x4−4)(x3x6+3x3+4x6+20).

According to Theorem 5.2, this matrix can be written as a block upper triangular matrix
with three irreducible diagonal blocks. Since the fiber of a 2×2 irreducible matrix is a point
up to diagonal equivalence, then Corollary 5.4 tells us that the fiber of A consists of matrices
that can be written in the following form up to permuting the diagonal blocks and up to
diagonal equivalence:









2 1
−1 1

⋆ ⋆

0 1 1
1 −3

⋆

0 0 3 2
−4 4









where ⋆ can be replaced with any 2× 2 matrix. ⋄

Corollary 5.6. Let A be an n × n irreducible matrix with entries in a field F with n ≥ 4.
The fiber of A consists of irreducible matrices.

Proof. Let f = det(A + diag{x1, . . . , xn}). By Lemma 5.1, f is irreducible. Let B be any
matrix in the fiber of A, then det(B + diag{x1, . . . , xn}) = f . Hence this later determinant
is irreducible. By Lemma 5.1, B is irreducible. �

6. The fibers of Symmetric Matrices

Lemma 6.1. Let A be an n × n symmetric matrix with n ≥ 4 and with entries in the field
F. Then A belongs to the set D(n) if and only if A is irreducible.

Proof. =⇒ If A is reducible and symmetric, then A can be written as a block diagonal matrix
with diagonal blocks that are symmetric. Let B be any block upper triangular matrix with
the same diagonal blocks where we replace all the upper blocks of the matrix with nonzero
entries. Direct computations show that A and B have equal principal minors, but B is not
diagonally equivalent to A. Therefore A /∈ D(n).
⇐= Let B be a matrix with the same principal minors as A. Then

fA = det (diag{x1, x2, . . . , xn}+ A) = det (diag{x1, x2, . . . , xn}+B) = fB.

Then ∆ij(fA) = ∆ij(fB). Notice that G = (diag{x1, . . . , xn} + A)adj is also symmetric.
Using Theorem 2.3, ∆ij(fA) = G2

ij. Let H = (diag{x1, . . . , xn}+B)adj. Then ∆ij(f) equals

G2
ij = HijHji. Since Gij and Hij are multiaffine, there exists αij ∈ F such that Hij = αijGij
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and Hji =
1
αij

Gij for 1 ≤ i < j ≤ n. Since A is irreducible, then so is f . By Lemma 2.2,

∆ij(f) 6= 0 and so αij 6= 0. Using Theorem 2.1, resxk
(Hij, f) = HikHkj. Then αij = αik

1
αjk

for 1 ≤ i < j < k ≤ n. Let D = diag{1, α12, . . . , α1n}, then B = DAD−1 and A ∈ D(n). �

Theorem 6.2. Let A be an n×n symmetric matrix with entries in a field F and with n ≥ 4.
Then either

(a) The matrix A is irreducible and the fiber of A consists of a point up to diagonal
equivalence or

(b) the matrix A can be written as a completely reducible matrix with s irreducible diag-
onal blocks in which case the fiber of A consists of all matrices that can be written
as block upper triangle matrices with s irreducible diagonal blocks that are diagonally
equivalent to the diagonal blocks of A, after permuting some rows and the correspond-
ing columns.

Proof. Part (a) of the theorem is Lemma 6.1. For (b), assume that A is completely reducible
with s irreducible diagonal blocks A1, . . . , As indexed on the rows and columns by T1, . . . , Ts

respectively with Ti ⊂ [n] and let B be a matrix in the fiber of A under the principal minor
map. Using Theorem 5.2, fA = det(diag x1, . . . , xn + A) is reducible and can be written as
f1 · · · fs where each fi = det(Ai+diag{xk : k ∈ Ti}) is irreducible. Since A and B have equal
determinantal polynomials fA = fB = det(diag x1, . . . , xn+B), then , in view of Theorem5.2,
B can be written as a block upper triangular matrix with s irreducible diagonal blocks Bi

with 1 ≤ i ≤ s and such that fi = det(Bi + diag{xk : k ∈ Ti}). Thus Bi and Ai have the
same principal minors for each i. Since Bi is symmetric and irreducible, then by Lemma 6.1
Ai is diagonally equivalent to Bi as desired. �

7. The fibers of Hermitian matrices and Determinantal Stable Polynomials

In this section we restrict to the field of complex numbers C.

Lemma 7.1. Let A be an n × n complex matrix with n ≥ 4. The fiber of A consists
of irreducible Hermitian matrices up to diagonal equivalence if and only if A is diagonally
equivalent to an irreducible Hermitian matrix.

Proof. ⇐= Suppose that A is Hermitian. Let f = det(diag{x1, . . . , xn} + A). In view of
[5, Theorem 3.2], f is real stable. Moreover, by Lemma 5.1, f is irreducible since A is
irreducible. Let B be a matrix in the fiber of A. Then det(B + diag{x1, . . . , xn}) = f . By
[2, Theorem 6.4], B is diagonally equivalent to a Hermitian irreducible matrix.
=⇒ Let B be a matrix in the fiber of A. Then B is diagonally equivalent to an irreducible
Hermitian matrix. By the above argument, A is diagonally equivalent to an irreducible
Hermitian matrix. �

Theorem 7.2. Let A be an n× n Hermitian matrix with n ≥ 4. Then either

(a) The matrix A is irreducible and the fiber of A consists of Hermitian irreducible ma-
trices up to diagonal equivalence or

(b) The matrix A can be written as a completely reducible matrix with s irreducible diag-
onal blocks, after permuting some rows and the corresponding columns, in which case
the fiber of A consists exactly of matrices that can be written as block upper triangu-
lar matrices with s diagonal blocks that are irreducible and diagonally equivalent to
Hermitian irreducible matrices and that have determinantal polynomials equal to the
factors of f .
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Proof. Similar proof as that of Theorem 6.2 �

Notice that, unlike the symmetric case, the diagonal blocks of a matrix that lies in the
fiber of a Hermitian matrix A need not be diagonally equivalent to the diagonal blocks of A.
See for instance [2, Example 4.8].

Now we are ready to answer Question 1 by Borcea, Brändén, and Liggett [5, Question 3.4]
about real stable matrices. A real polynomial f ∈ R[x1, . . . , xn] is stable if it has no zeros
with strictly positive imaginary parts. A real stable matrix A is an n × n complex matrix
with real stable determinantal polynomial i.e fA = det(diag{x1, . . . , xn}+ A) is real stable.

Corollary 7.3. Let A be an n × n complex matrix such that f = det({x1, . . . , xn} + A) is
real stable. Then

(a) If f is irreducible, then A is diagonally equivalent to an irreducible Hermitian matrix
with equal principal minors.

(b) If f factors as f1 · · ·fs where each factor fk is irreducible, then A can be written, af-
ter permuting some rows and the corresponding columns, as a block upper triangular
matrix with s diagonal blocks that are irreducible and diagonally equivalent to Hermit-
ian irreducible matrices that have determinantal polynomials equal to the irreducible
factors of f .

Proof. Part (a) of the corollary follows from [2, Theorem 6.6] and Lemma 5.1. For part
(b), Theorem 5.2 implies that A can be written as a block upper triangular matrix with
s diagonal irreducible blocks that have determinantal polynomials equal to the factors of
f . Since each fi is stable and irreducible, then by [2, Theorem 6.6] and Lemma 5.1 each
diagonal block is diagonally equivalent to an irreducible Hermitian matrix as desired. �
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