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Abstract Over the past three decades, numerous articles have been published
discussing the renowned DIRECT algorithm (DIvididing RECTangles). These
articles present innovative ideas to enhance its performance and adapt it to
various types of optimization problems. To consolidate and summarize this
progress, we have recently introduced DIRECTGO—a comprehensive collection
featuring more than fifty deterministic, derivative-free algorithmic
implementations based on the DIRECT framework. DIRECTGO empowers users to
conveniently employ diverse DIRECT-type algorithms, enabling efficient solutions
to practical optimization problems. Despite their variations, DIRECT-type
algorithms share a common algorithmic structure and typically differ only at
certain steps.

Recognizing this, we take further steps in generalization within this paper
and propose GENDIRECT—GENeralized DIRECT-type framework that encompasses
and unifies DIRECT-type algorithms under a single generalized approach.
GENDIRECT offers a practical alternative to the creation of yet another “new”
DIRECT-type algorithm that closely resembles existing ones. Instead, GENDIRECT
allows the efficient generation of known or novel DIRECT-type optimization
algorithms by assembling different algorithmic components. This approach
provides considerably more flexibility compared to both the DIRECTGO toolbox
and individual DIRECT-type algorithms. In general, GENDIRECT allows the creation
of approximately a few hundred thousand combinations of DIRECT-type
algorithms, facilitating user-friendly customization and the incorporation of new
algorithmic components for further advancements.

By modifying specific components of five highly promising DIRECT-type
algorithms found in the existing literature using GENDIRECT, the significant
potential of GENDIRECT has been demonstrated. The resulting newly developed
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improved approaches exhibit greater efficiency and enhanced robustness in
dealing with problems of varying complexity.

Keywords Derivative-free global optimization · DIRECT-type algorithms ·
Optimization software · Numerical benchmarking
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1 Introduction

Optimization problems encountered in scientific and engineering domains often
involve objective functions that can only be obtained through “black-box”
methods or simulations, lacking derivative information. For example, Google’s
internal services frequently employ black-box optimization techniques with
automated parameter tuning engines [10]. Furthermore, objective function
evaluations are becoming more computationally expensive as applications grow
in size and complexity [22]. Consequently, calculating derivatives is often
infeasible or impractical. As a result, there is a growing emphasis on the
development of derivative-free global optimization (DFGO) methods. These
methods are specifically designed to address the growing complexity and
diversity of optimization problems, where derivative information is neither
available nor practical to compute. This active development of DFGO methods
addresses the need for efficient optimization techniques in scenarios where
derivatives cannot be utilized.

This paper considers a box-constrained single-objective optimization problem

min
x∈D

f(x), (1)

where f : Rn → R is a potentially “black-box” Lipschitz-continuous objective
function with an unknown Lipschitz constant, and x ∈ Rn is the input vector of
control variables. Moreover, f can be non-linear, multi-modal, non-convex, and
non-differentiable. We assume that f can only be computed at any point of the
feasible region, which is a n-dimensional hyper-rectangle

D = [a,b] = {x ∈ Rn : aj ≤ xj ≤ bj , j = 1, . . . , n}.

However, there is no access to additional information on the objective function
f(x), such as gradients and the Hessian, as is typical for a “black-box” case.

Among the solution techniques available for a given problem (1),
population-based meta-heuristic methods have gained widespread popularity.
Numerous approaches have been proposed and developed within this
category [2]. For global optimization problems that involve costly evaluations,
model-based optimization algorithms are commonly employed. Among these
algorithms, Bayesian optimization [18] and various surrogate models [21] stand
out as the leading state-of-the-art methods for optimizing expensive ”black-box”
functions.

DIRECT [17] presents an alternative specifically tailored for “black-box” global
optimization by extending the classical Lipschitz optimization [36, 38, 39, 41],
eliminating the requirement of knowing the Lipschitz constant. In contrast to the
stochastic methods discussed above, the DIRECT-type algorithms adhere to a
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deterministic pattern. A recent comprehensive numerical benchmark study
involving various derivative-free global optimization solvers [45] highlighted that
particularly for problems with lower dimensions, DIRECT-type algorithms can
significantly outperform stochastic approaches. Furthermore, certain
combinations of hybrid local search algorithms based on DIRECT-type methods
and finite differences [42] demonstrated exceptional efficiency in solving
high-dimensional problems. Consequently, designing and developing efficient
DIRECT-type algorithms is crucial and driven by practical needs.

Inspired by these observations, we have recently introduced DIRECTGO, a
MATLAB toolbox dedicated to DFGO. The latest release of DIRECTGO includes a
comprehensive collection of 52 distinct algorithmic implementations based on the
DIRECT framework. However, recent empirical studies [50, 51] have highlighted
that even more efficient DIRECT-type algorithms can be achieved by innovatively
combining existing algorithmic steps. It seems that many authors may not spend
enough time exploring the most suitable algorithmic framework when developing
and publishing new algorithms of type DIRECT.

Therefore, this study introduces a novel framework called GENDIRECT, which
offers a GENeralized DIRECT-type approach to derivative-free global optimization.
GENDIRECT enables the construction of any known or previously unexplored DIRECT-
type algorithm. Instead of developing yet another “new” DIRECT-type algorithm,
GENDIRECT provides a rapid and effective way of combining different components
to create customized DIRECT-type algorithms.

Using GENDIRECT, users can identify and utilize the most suitable DIRECT-type
algorithm for a given optimization problem based on the latest advances in the
field. Compared to the DIRECTGO toolbox and individual DIRECT-type algorithms,
the GENDIRECT framework offers a significantly higher level of flexibility. In fact,
GENDIRECT allows the design of a few hundred thousand combinations of DIRECT-
type algorithms and facilitates user-friendly experimentation with new algorithmic
components.

GENDIRECT is implemented as a separate extension of DIRECTGO, complemented
by a dedicated graphical user interface (GUI). This GUI provides easy access to all
the features and capabilities of GENDIRECT, ensuring a seamless user experience.

The capability of GENDIRECT is showcased by selecting five highly promising
DIRECT-type algorithms from the existing literature, as identified in [45, 52]. By
leveraging GENDIRECT, specific components that were identified as weaknesses in
these algorithms are modified. As a result, some of these algorithms demonstrate
significantly improved efficiency, showcasing the potential of GENDIRECT in
optimizing and refining DIRECT-type algorithms using the most recent
DIRECTGOLib v2.0.

This work makes several significant contributions, including

1. Introduction of a novel framework called GENDIRECT, which represents a
GENeralized DIRECT-type algorithmic framework.

2. GENDIRECT provides an efficient and innovative approach to generate DIRECT-
type optimization algorithms, whether they are existing algorithms or entirely
novel ones, by combining different algorithmic components.

3. GENDIRECT allows for the creation of a few hundred thousand combinations of
DIRECT-type algorithms, facilitating user-friendly experimentation and
enabling new developments in optimization.
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4. Description of the implementation of GENDIRECT as an evolution of DIRECTGO,
complete with a separate graphical user interface (GUI) that ensures easy
access to all its features. This implementation is free and open for anyone to
use.

5. Demonstration of the potential of GENDIRECT by enhancing the efficiency of
five chosen DIRECT-type algorithms through modifications. These modifications
showcase the ability of GENDIRECT to improve algorithmic performance further.

In summary, this work contributes to the derivative-free global optimization field
by introducing GENDIRECT, a versatile framework that enables efficient algorithm
generation, offers extensive customization options, and shows improved efficiency
in established DIRECT-type algorithms.

The remainder of the paper is organized as follows. Section 2 presents a concise
overview of key advancements in the realm of DIRECT-type algorithms. Section 3
introduces and elaborates on the GENDIRECT framework. The experimental results
of the newly developed algorithms and performance evaluation utilizing GENDIRECT

are analyzed in Section 4. Lastly, Section 5 offers concluding remarks and outlines
potential avenues for future exploration in this field.

2 Background for GENDIRECT

2.1 General structure of DIRECT-type algorithms

The DIRECT algorithm was originally designed to solve global optimization
problems with box constraints (1). Despite numerous proposals, most follow a
similar algorithmic structure and involve three primary steps: selection,
sampling, and partitioning (see Algorithm 1). However, at first, DIRECT-type
algorithms typically transform a feasible region D = [a,b] into a unit
hyper-rectangle D̄ = [0, 1]n referring to the original space (D) solely to evaluate
the objective function f (as depicted in Algorithm 1, Lines 1–5).

The selection, partitioning, and sampling operations are executed within a
normalized search domain D̄. During each iteration, specific regions are identified
as potentially optimal candidates (POC) and chosen for further investigation
(see Algorithm 1, Line 7). In DIRECT-type algorithms, the objective function is
sampled and evaluated at various points within each POC, which are then
subdivided into smaller sub-regions (see Algorithm 1, Lines 9 and 10). This
selection, sampling, and subdivision process continues until a predefined limit is
reached.

The subsequent subsections provide an overview of the primary techniques
proposed for each step. Although the selection step precedes sampling and
partitioning, we will initially focus on the latter because the selection step relies
directly on the strategies employed in sampling and partitioning.

2.2 Summary of sampling and partitioning schemes

In this section, we present a brief summary of seven primary sampling and
partitioning approaches that have been proposed in existing literature
[16, 17, 33, 37, 40, 52] and implemented within the GENDIRECT framework. Table 1
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Algorithm 1: Main steps of DIRECT-type algorithms

input : Objective function (f), search domain (D), and adjustable
algorithmic options (opt): goal for the function value (fgoal),
maximal number of function evaluations (Mmax) and algorithmic
iterations (Kmax) ;

output: The best found objective value (fmin), solution point (xmin), and
record of various performance metrics: percent error (pe),
number of iterations (k), number of function evaluations (m);

Initialization step:
1 Normalize the search domain D to the unit hyper-rectangle D̄;
2 Evaluate f at initial sampling point(s) and set:

3 xmin
j =| bj − aj | x̄j + aj , j = 1, . . . , n; // referring to D

4 fmin = f(xmin);
5 Initialize performance measures: k = 1, m = 1 ;

6 while fgoal < fmin and m < Mmax and k < Kmax do
7 Selection step: Identify the set Sk of POCs;

8 foreach D̄j
k ∈ Sk do

9 Sampling step: Evaluate f at newly sampled points in D̄j
k;

10 Partitioning step: Subdivide D̄j
k ;

11 end
12 if Hybrid then
13 Run local search procedure; // only in hybrid version

14 end

15 Update fmin,xmin, and performance measures: k and m;

16 end

17 Return fmin,xmin, and performance measures (k,m).

provides an overview of these schemes, including illustrative examples from the
initial iterations. Blue-colored sub-regions indicate the POCs in the current
partition.

Although each of the seven schemes possesses distinct characteristics, they
demonstrate significant similarities. Particularly, these schemes involve sampling
new points and subdividing larger regions into smaller, non-overlapping
sub-regions. In cases where there is more than one longest side, two primary
strategies for division emerge:

– Subdivision along all dimensions with the maximum side length.
– Subdivision along a single dimension with maximum side length.

It is worth mentioning that the original DIRECT algorithm proposed subdividing
along all dimensions. However, extensive experimentation has indicated that this
approach does not consistently yield effective results.
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Table 1 Summary of sampling and partitioning schemes commonly utilized in DIRECT-type
algorithms implemented within GENDIRECT (in ascending order of the year of publication)

Notation
& Source

Partitioning and sampling scheme An example of the initialization
and two subsequent iterations

DTC [16] A hyper-rectangular partition based
on one-Dimensional Trisection, and
sampling points located at Centers.

DTDV [40] A hyper-rectangular partition based
on one-Dimensional Trisection, and
sampling points located at two
Diagonal Vertices.

DTCS [37] A simplicial partition based on
one-Dimensional Trisection, and
sampling points located at Centers of
Simplices.

DBVS [37] A simplicial partition based on
one-Dimensional Bisection, and
sampling points located at Vertices
of Simplices.

DBDP [33] A hyper-rectangular partition based
on one-Dimensional Bisection, and
sampling points located at two
Diagonal Points equidistant between
themselves and a diagonal’s vertices.

DBVD [4] A hyper-rectangular partition based
on one-Dimensional Bisection, and
sampling points located at one
Vertice and one Diagonal point with
a 2:3 diagonal distance from the
sampling vertice.

DBC [52] A hyper-rectangular partition based
on one-Dimensional Bisection, and
sampling points located at Center
points.

2.3 Selection schemes

Initially, selecting POCs is straightforward since only one candidate is available,
the entire feasible region. However, to introduce selection schemes in subsequent
iterations, we must first establish the concept of the current partition (Pk), which
in iteration k, is defined as

Pk = {D̄i
k : i ∈ Ik},

where D̄i
k are hyper-rectangles (or simplices) and Ik is the index set identifying the

current partition Pk. Then, the next partition, Pk+1, is obtained by subdividing
the selected POCs from the current partition Pk.
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When identifying POCs, two crucial aspects come into play: the D̄i
k measure

(δ̄ik) and the general quality based on the function values attained at the sample
points.

2.3.1 Evaluating goodness of candidates

The values of the objective function obtained from the sampled points Hi
k are

utilized to assess the overall quality of the candidate. We refer to this value as the
aggregated function value (F i

k), which represents the goodness of D̄i
k. In summary,

four strategies have been presented to evaluate F i
k in the literature [52] as defined

in Definition 1.

Definition 1 (Aggregated function values) Let:

– δ̄ik is a measure of D̄i
k;

– xi
m is a midpoint of D̄i

k;
– xmin is a currently best found minimum point;
– Hi

k is a representative sampling index set of all sample points within D̄i
k;

– card(Hi
k) is the cardinality of a set Hi

k.

Then:

– Midpoint value based aggregated function value:

F i
k = f(xi

m), (2)

– Minimum value based aggregated function value:

F i
k = min

j∈Hi
k

f(xj) (3)

– Mean value based aggregated function value:

F i
k =

1

card(Hi
k)

card(Hi
k)∑

j=1

f(xj) (4)

– Midpoint and minimum values based aggregated function value:

F i
k =

1

2

(
min
j∈Hi

k

f(xj) + f(xi
m)

)
(5)

The use of the F i
k evaluation strategy depends on the specific sampling

strategy being utilized. For example, in the case of the DTC and DTCS schemes,
the midpoint value-based F i

k is adopted since sampling is performed solely at a
single midpoint. However, when there are multiple sampling points per
candidate, alternative strategies have been shown to have a significant influence,
as shown in previous work [47].
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2.3.2 Measuring candidates

Depending on the sampling strategy, basically only two different ways have been
proposed to measure POCs:

δ̄ik = λdik, (6)

δ̄ik = max
j,l∈Hi

k

∥xj − xl∥2. (7)

where λ ∈ [0, 1] and dik represents the Euclidean length of the diagonal of D̄i
k

diagonal. A couple of significant points should be emphasized in this regard. First,
instead of relying solely on the Euclidean norm, alternative norms (e.g., ∥ · ∥∞)
have been observed to yield favorable results, as noted in the work [8]. Second,
different partitioning schemes have employed various values for λ. For example,
some schemes use λ = 1, which corresponds to the full length of the diagonal, as
seen in [52], while others adopt λ = 2/3, as demonstrated in [33]. However, since λ
applies uniformly to all partition elements D̄i

k and serves solely to counterbalance
the selection of POC, the choice of λ does not affect the performance of algorithms
of type DIRECT.

2.3.3 Summary of POC selection schemes

To address the identified limitations of DIRECT-type algorithms, various POC
selection schemes have been proposed. Definition 2 defines the four most widely
used and implemented selection schemes in GENDIRECT, while a summary of them
is given in Table 1.

Definition 2 (Selection schemes) Let:

– F i
k denotes the aggregated function value for D̄i

k;
– δ̄ik is a measure of D̄i

k;
– Iik ⊆ Ik represents a subset of indices that correspond to elements of Pk sharing

the same measure (δ̄ik). Additionally, Imin
k contains the indices of elements with

the smallest measure, δ̄min
k , while Imax

k — with the largest.

Then:

– Original selection: A candidate D̄j
k, j ∈ Ik is said to be potentially optimal if

there exists some rate-of-change (Lipschitz) constant L̃ > 0 such that

Fj
k − L̃δjk ≤ F i

k − L̃δik, ∀i ∈ Ik, (8)

– Aggresive selection: For each Iik (min ≤ i ≤ max) select D̄j
k, j ∈ Iik with the

lowest Fj
k , i.e.,

Fj
k ≤ F l

k, ∀l ∈ Iik. (9)

– Pareto selection: Select all candidates D̄i
k, i ∈ Ik who are not dominated, which

means that there is no other candidate D̄j
k, j ∈ Ik that satisfies the condition:

(δjk ≥ δik ∧ Fj
k < F i

k) ∨ (δjk > δik ∧ Fj
k ≤ F i

k). (10)
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– Reduced Pareto selection: Select D̄i
k with the lowest F i

k and D̄j
k with the most

extensive measure δjk, breaking ties in favor of a lower value of the aggregate
function.

In summary, aggressive selection aims to choose a comprehensive set of
candidates, ensuring that at least one candidate is selected from each group with
different diameters (δik) while prioritizing candidates with the lowest aggregated
function value. Then, the number of candidates selected through Pareto-based
criteria tends to exceed the original selection strategy. However, this approach,
which emphasizes exploring candidates of intermediate sizes, can lead to slower
convergence, particularly when dealing with less complex optimization problems.
Therefore, the primary motivation behind introducing a reduced set of
Pareto-optimal candidates was to address this issue.

It is important to note that when multiple equally good POC exist with the
same δik and F i

k, two distinct selection strategies are available:

– Select all equally good POC;
– Select only one with the highest index number.

Furthermore, selection schemes can integrate additional conditions to enhance the
balance between local and global directions. The subsequent subsection provides
a detailed examination of these conditions.

2.3.4 Additional approaches for improved local and global POC selection.

Excessive local refinement reduction techniques. To protect the algorithm
against excessive refinement around current local minima fmin, the authors in the
DIRECT literature [6,17,25] proposed incorporating one of the following conditions
along with Eq. (8) in the original selection scheme:

Fj
k − L̃δjk ≤ fmin − ε|fmin|, (11)

Fj
k − L̃δjk ≤ fmin − ε|fmin − fmedian|, (12)

Fj
k − L̃δjk ≤ fmin − ε|fmin − faverage|. (13)

Therefore, the lower Lipschitz bound of the POC must be lower than the current
minimum value (fmin) to at least some extent. The parameter ε plays a crucial
role in determining the adjustment of the lower Lipschitz bound. In the study
conducted by [17], favorable results were achieved using values of ε ranging from
10−3 to 10−7, and a default value of ε = 10−4 is suggested. To reduce the
sensitivity of the objective function to additive scaling, subtraction of the median
value (fmedian) or the average (faverage) value (as shown in Eqs. (12) and (13))
was proposed.

Restart technique for the ε parameter. In [5], an adaptive scheme is
introduced for the parameter ε to prevent wasteful function evaluations in minor
regions D̄i

k where negligible improvements are expected. The restart technique
begins with ε = 0 and is maintained until an improvement is observed. However,
if there is no improvement for five consecutive iterations, it suggests a potential
stagnation at a local optimum. To address this, the algorithm switches to
ε = 0.01. Within 50 iterations, the restart technique returns to ε = 0 if an
improvement is found or no progress is made. If another 50 iterations pass
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Table 2 Summary of selection schemes implemented in GENDIRECT

Notation &
Source

Description Illustration of POCs selection (blue points)
using DIRECT on the same sample

Original [17] Original selection strategy.
Selects POCs based on
the lower Lipschitz bound
estimates for all possible
Lipschitz constant values.

0.00 0.15 0.30 0.45 0.60

0.0

0.1

0.2

0.3

0.4

δik

F
i k

Aggressive [3] Aggressive selection
strategy. Selects at least
one candidate from each
group of different diameters.

0.00 0.15 0.30 0.45 0.60

0.0

0.1

0.2

0.3

0.4

δik

F
i k

Pareto [29] Pareto selection strategy.
Selects all candidates that
are non-dominated on size
(the higher, the better) and
aggregated function value
(the lower, the better).

0.00 0.15 0.30 0.45 0.60

0.0

0.1

0.2

0.3

0.4

δik

F
i k

Reduced
Pareto [30]

Reduced Pareto selection
strategy. Selects only two
candidates, the first and
the last point on the Pareto
front.

0.00 0.15 0.30 0.45 0.60

0.0

0.1

0.2

0.3

0.4

δik

F
i k

without improvement, this indicates a possible discovery of the global minimum,
requiring further refinement.

Multi-level candidate selection using different ε values. In [24, 26],
two alternative multi-level techniques are proposed for the candidate selection
procedure, involving three different levels:

– Level 2: The DIRECT-type algorithm is executed with the usual settings,
employing ε = 10−5.

– Level 1: The selection is limited to 90% of D̄k
i ∈ Pk, excluding 10% of the

candidates with the largest measure. In this level, ε = 10−7 is used.
– Level 0: The selection is limited to 10% of the candidates with the largest

measure, disregarding those excluded at level 1. Here, ε = 0 is used.

Both strategies are recommended in the study cycle through these levels using a
combination of the “W-cycle”: 21011012. One of the methods [26] employs a fixed
ε = 10−4 value at all levels, while the other [24] adheres to the rules mentioned
above.
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Globally-biased selection. In the works [34, 35], a two-phase approach
with global bias was introduced. The algorithm effectively determines the
adequacy of exploring a local optimum by employing the globally biased scheme.
It terminates the local phase (referred to as the “usual” phase) to prevent
wasteful function evaluations by excessive local refinement. Upon stopping the
usual phase, the algorithm seamlessly transitions into a global phase, wherein the
hyper-rectangles chosen for further exploration must meet a minimum size
requirement. This globally biased phase continues until a better minimum point
is discovered or a maximum number of “global iterations” is reached.
Subsequently, the algorithm reverts back to the usual phase. The search process
alternates between these two phases, namely, the usual phase and the
globally-biased phase, until a specified stopping condition is fulfilled.

Two-phase (Global-Local) selection. In the work [46], a two-phase
selection approach has been introduced. This approach expands the set of
previously obtained POCs by incorporating additional candidates based on their
proximity to the current best minimum point xmin. This expansion is performed
by conducting a selection process using calculated distances (instead of
aggregated function values) between the current best minimum point and all
other candidates:

F i
k = ∥xi

m − xmin∥2. (14)

By including candidates that are closer to the current minimum point, this step
facilitates faster and more extensive exploration around the current minimum
point.

2.4 Acceleration through hybridization techniques

To our knowledge, three hybridization strategies have been proposed for DIRECT-
type algorithms [14,16,27,35].

The first strategy, originally suggested by the author of the original
DIRECT [16], was later refined and improved in a work [35]. The concept behind
this strategy involves performing a local search only when the algorithm achieves
an improvement in the best current solution value, denoted fmin. The best
current solution fmin can be updated using a local search method or a more
suitable direct-type algorithm that enables faster local refinement.

The second strategy [14] operates similarly to the first one. However, instead
of performing a local search from a single starting point, this strategy employs a
clustering algorithm to identify multiple appropriate starting points. The following
steps are executed within this suggested method:

– The DIRECT-type algorithm is run for a fixed number of function evaluations,
typically set at 100n+ 1 as the default.

– The sampled points are analyzed using an adaptive clustering algorithm to
determine the optimal number of clusters. Subsequently, a local search is
performed from the best point within each cluster.

– Additionally, the DIRECT-type algorithm is run again.
– If the DIRECT-type algorithm improves fmin, a final local search is performed

from the best point.
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In the third, aggressive strategy [27], initiate a local search from the midpoint
of each POC. However, this approach has faced significant criticism for potentially
generating excessive local searches, as many starting points may converge to the
same local optimum.

3 GENDIRECT optimization software

This section describes the generalized algorithmic framework DIRECT. Fig. 1,
illustrates the main architecture of the developed GENDIRECT. Specifically, there
are three large boxes in Fig. 1, which represent the construction of the main
DIRECT-type algorithmic steps within GENDIRECT:

1. The construction of partitioning and sampling scheme.
2. The construction of the selection scheme.
3. The construction of a hybridization scheme.

The following subsections will provide a detailed exploration of how to
effectively utilize GENDIRECT using the MATLAB command line interface and the
dedicated graphical user interface (GUI).

3.1 Utilizing GENDIRECT through the command line interface.

With GENDIRECT, users can swiftly and effectively establish and solve global
optimization problems by constructing a DIRECT-type algorithm via the MATLAB

command line interface. All relevant problem information is consolidated into a
unified MATLAB structure, which is then passed to the solver to extract the
required data.

For the GENDIRECT format, the solution process begins by generating the
following structure:

alg = GENDIRECT();

The algorithm takes in a structured input that includes the optimization problem,
dimension, lower and upper bounds, and a target value (if applicable). Here is an
example code snippet illustrating how these parameters can be set:

alg.Problem.f = 'objfun'; % Objective function

alg.Problem.n = n; % Dimension

alg.Problem.x_L = zeros(n, 1); % Lower bounds

alg.Problem.x_U = ones(n, 1); % Upper bounds

alg.Problem.fgoal = 0.01; % Optimal value set as target

alg.Problem.info = false; % Extract info from problem

If the alg.Problem.info parameter is set to ‘true’, the algorithm retrieves all the
relevant information about the objective function from the ‘objfun’ problem.

As we utilize test problems provided by DIRECTGOLib v2.0 [49], the stored
information encompasses both the problem structure and the objective function.
Consequently, the algorithms automatically extract all essential details from the
given problem, including:
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DTC DTDV DTCS DBVS DBDP DBVD DBC

Select partitioning and sampling scheme:

All dimensions with the
maximum side length

One dimension with the
maximum side length

Divide POC (D̄i
k) along:

Designing partitioning and sampling

Eq. (2)Eq. (4)Eq. (3)Eq. (5)

Select Fi
k:

Using Eq. (6) Using Eq. (7)

Calculate δik:

Original
selection

Aggressive
selection

Pareto selection
Reduced

Pareto selection

Select identification of POC strategy:

Select all equally good POC
Select only the one with
the highest index number

If several equally good POC exist (the same δik and Fi
k):

Eq. (11) Eq. (12)

Eq. (13) none

Select method:

Restart
method

none

Multi-
level 1

Multi-
level 2

For ϵ control:

Use an excessive local refinement reduction technique:

noyes

Globally-biased?

noyes

Two-phase step?

Designing POC selection

Best point

Each POC

None

Each best
cluster point

Run local search starting from the:

Interior-
point

Sqp

Sqp-legacy Active-set

Select local search algorithm:

Designing hybridization

Fig. 1 A flowchart for constructing DIRECT-type algorithm in GENDIRECT.
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– The dimensionality of the problem;
– The lower and upper bounds for each variable;
– The objective function value of the known solution;
– The solution point.

For further guidance on the utilization of DIRECTGOLib v2.0, additional
information can be found in references [44,47].

Users who want to customize the default algorithmic settings should utilize the
optParam structure:

alg.optParam.maxevals = 100; % Maximal number of evaluations

alg.optParam.maxits = 100; % Maximal number of iterations

alg.optParam.showits = true; % Show iteration status

The next step involves constructing the algorithm using the procedures
described in Table 3.

After completing these steps, the algorithm is ready to solve the given problem
using the following line of code:

Results = alg.solve;

Once the algorithm completes its computations, it returns the Results structure,
which contains the optimization outcomes.

The subsequent subsections will outline the process of constructing DIRECT-
type algorithmic steps.

3.1.1 Designing partitioning and sampling scheme

To create a combination of DIRECT-type algorithms, the user needs to integrate
components that determine the division and sampling strategy of the
optimization domain. The core framework for constructing the partitioning and
sampling strategy is illustrated in the top block of Fig. 1. The subsequent
command lines illustrate how to configure the partitioning strategy of the
original DIRECT algorithm:

alg.Partitioning.Strategy = 'DTC';

alg.Partitioning.SubSides = 'All';

As a result of the given partitioning and sampling scheme in Fig. 1, there are 14
possible combinations in GENDIRECT.

3.1.2 Designing the selection scheme

Once the partitioning and sampling strategy has been established, the subsequent
task is to determine the POC selection scheme. Here is an example that illustrates
the parameter values required for performing POC selection introduced in the
original DIRECT algorithm:
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Table 3 The parameters of GENDIRECT used to construct DIRECT-type algorithms, with default
values highlighted in blue.

Step Parameter Description

P
a
rt
it
io
n
in
g Strategy Specify partitioning and sampling scheme (see Table 1): DTC,

DTDV, DTCS, DBVS, DBDP, DBVD, or DBC.

SubSides Specify subdivision strategy for multiple longest sides (see
Section 2.2): One or ALL.

AggrFuncVal Specify strategy for a aggregated function value: Midpoint
(Eq. (2)), Minimum (Eq. (3)), Mean (Eq. (4)) or MidMin (Eq. (5)).

CandMeasure Specify strategy for a measure: Diagonal (Eq. (6)), or LongSide
(Eq. (7)).

Strategy Specify selection scheme (see Table 2): Original, Aggressive,
Pareto, or RedPareto.

S
el
ec
ti
o
n EqualCand Specify behavior for equally good POC: All or One.

SolRefin Specify excessive local refinement reduction technique: Min
(Eq. (11)), Median (Eq. (12)), Average (Eq. (13)) or Off.

Ep Specify the value for ε (Eqs. (11), (12), (13)): 10−4.

ControlEp Specify control technique for ε (see Section 2.3.4): Off, Restart,
MultiLevel1 or MultiLevel2.

GloballyBiased Enable globally-biased POC selection (see Section 2.3.4): Off
or On.

TwoPhase Enable two-phase selection of POC using Distances
(Eq. (14))(see Section 2.3.4): Off or On.

H
y
b
ri
d
iz
a
ti
o
n

Strategy Specify hybridization strategy (see Section 2.4): Off, Single,
Clustering or Aggressive.

LocalSearch Specify derivative-free local search subroutine: interior-point,
sqp, sqp-legacy or active-set.

MaxIterations Specify the maximum iteration limit for a single local search
subroutine call: 1000.

MaxEvaluations Specify the maximum function evaluation limit for a single local
search subroutine call: 3000.

alg.Selection.AggrFuncVal = 'Midpoint';

alg.Selection.CandMeasure = 'Diagonal';

alg.Selection.Strategy = 'Original';

alg.Selection.EqualCand = 'All';

alg.Selection.SolRefin = 'Min';

alg.Selection.Ep = 0.0001;

alg.Selection.ControlEp = 'Off';

alg.Selection.GloballyBased = 'Off';

alg.Selection.TwoPhase = 'Off';

When the two-phase selection step is enabled, as demonstrated in the following
code snippet:



16 Linas Stripinis, Remigijus Paulavičius

alg.Selection.TwoPhase = 'On';

the algorithm uses the designed selection scheme (’alg.Selection’) to expand the
set of promising candidate solutions (POC) based on the calculated distances
obtained using Eq. (14). It is easy to calculate in Fig. 1, there are 4096 different
combinations for the selection steps of POC in GENDIRECT.

3.1.3 Designing hybridization scheme

In the third block of Fig. 1, users are required to select the desired hybridization
technique. There are only 13 possible combinations available in this block.

For example, to specify a hybridization scheme that utilizes a strategy calling
an SQP local search (parameter sqp) subroutine only when an improvement in
the best current solution is achieved (parameter Single), the following code can
be used:

alg.Hybridization.Strategy = 'Single';

alg.Hybridization.LocalSearch = 'sqp';

3.2 Utilizing GENDIRECT through the graphical user interface

GENDIRECT is also accessible through the graphical user interface (GUI) of
DIRECTGO. This GUI enables users to use GENDIRECT without requiring prior
programming or algorithmic knowledge. To access the GENDIRECT tool, users can
navigate to the MATLAB APPS menu on the toolbar. Within DIRECTGO, the
generalized DIRECT algorithm (GENDIRECT) can be selected from the algorithm
drop-down menu.

The graphical interface of the main toolbox window DIRECTGO is depicted in
Fig. 2. The GENDIRECT window is centrally located in the GUI and facilitates the
construction of the DIRECT algorithm by providing user-friendly functionalities.
For more comprehensive details of DIRECTGO, see [47].

3.3 Remarks regarding the extension of GENDIRECT

GENDIRECT comprises two primary components, as illustrated in Fig. 3. Firstly, a
function block encompasses various implementations of the steps involved in
DIRECT-type algorithms. Secondly, the control structure ensures the seamless
connection of algorithm components, facilitating the execution of the algorithm.

If a researcher intends to integrate a newly proposed step into GENDIRECT, the
function should be added to the function block. Ensuring that the implemented
function adheres to the existing code’s style is important. Subsequently, in the
control function of GENDIRECT, the newly created function should be incorporated
accordingly, allowing GENDIRECT to utilize it effectively.
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Fig. 2 A snapshot of the graphical user interface (GUI) of GENDIRECT in the DIRECTGO software
package.

Start
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Fig. 3 The framework of the generalized DIRECT algorithm system (GENDIRECT)

4 Simulation results and in-depth analysis

This section presents an analysis of the experimental results for newly developed
improved algorithms and their performance evaluation using GENDIRECT.

4.1 An overview of benchmark test problems

We employed a comprehensive set of 324 benchmark test functions to thoroughly
evaluate the newly proposed GENDIRECT algorithm. These test problems were
sourced from the latest version of the DIRECTGOLib v2.0 library [43], which is
built within the MATLAB environment. The DIRECTGOLib v2.0 integrates ten
libraries and collections of well-established and recently developed test problems.

In Table 4, we present a summary of DIRECTGOLib v2.0 and its constituent
libraries. The table provides essential details, including references, publication
years, the pool of problems, and the counts of scalable, separable, and
multi-modal problems. Specifically, the table comprises 136 test problems with
fixed dimensions and 188 test benchmarks that can be adjusted to any dimension
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size (n). For these test problems, we consider instances with variables set at
n = 2, 5, and 10. However, it is worth noting that some functions, such as certain
CEC functions [23,55], are not applicable in all dimensions.

In our study, we thoroughly examined a total of 634 test problems available
in DIRECTGOLib v2.0 to ensure comprehensive and robust evaluations of the
proposed algorithmic framework GENDIRECT.

Table 4 Compilation of test problems from various libraries in the latest version of the
DIRECTGOLib v2.0 for box-constrained global optimization.

Source Year
Problems

Total Scalable Seperable Multi-modal

Hedar, [12] 2005 31 17 8 23
Hansen et al., [11] 2009 24 24 5 14
Jamil et al., [15] 2013 167 69 49 127
Gavana, [9] 2013 193 76 64 156
Surjanovic et al., [53] 2013 50 23 11 40
Liang et al., [23] 2014 27 27 5 24
Wu et al., [55] 2017 20 20 0 19
Oldenhuis, [32] 2020 41 12 5 33
Layeb, [1] 2022 18 18 2 16
Kudela et al., [20] 2022 8 8 8 8

Stripinis et al., [43] 2023 324 188 97 261

In order to ensure that the global minimum point does not coincide with the
initial sampling point in any tested algorithm, we employ shift operations. In other
words, we randomly shift the solutions in the X-space. This involves transforming
a given point x into x̂ using the following equation:

x̂j = min {max {xj − ρjλx⃗j , aj} , bj} , j = 1, ..., n. (15)

Here, x⃗ is a randomly distributed random direction vector generated using the
Mersenne-Twister pseudorandom generator, and λ is a step size that serves two
important purposes:

– It prevents the global optima from moving outside of the feasible region.
– It allows for a more efficient placement of the solution within the problem

domain, considering that different problems may have significantly different
domain sizes.

The value of λ is calculated by solving the following linear programming problem:

max λ

s.t. x∗ + λx⃗ ≥ a

x∗ + λx⃗ ≤ b

(16)

The shift operation introduces the possibility of regions outside the original feasible
range [a,b] where, in certain instances, points with lower function values than the
global optimum within the original feasible range may exist. To tackle this issue,
the transformed vector x̂ (15) is restricted to lie within the range [a,b] using
min-max functions.



GENDIRECT: A generalized DIRECT-type algorithmic framework for DFGO 19

Nevertheless, one drawback of this approach is that the functions become “flat”
in areas where the min-max restriction is applied. These flat regions increase in
size as the value of λ increases. To address this concern, we opted to limit the
range of the randomly generated shift vector by assigning a uniformly distributed
random multiplication rate ρj ∈ [0, 0.1] to each dimension j = 1, ..., n.

For convenient access to all test problems utilized in this paper and to
replicate the random shift vectors, we created a dedicated MATLAB script in the
“Scripts/MPC” directory of the GitHub repository
(https://github.com/blockchain-group/DIRECTGO). These scripts serve as
valuable tools for reproducing the findings presented in this investigation and for
comparing and evaluating newly developed algorithms.

4.2 Setup and fundamental basis for algorithm comparison

All computations were executed on an Intel(R) CoreTM i5-10400 @ 2.90GHz
Processor running MATLAB R2023a. The algorithms’ solutions were compared
with the globally optimal solution for each problem, and we considered the solver
successful when the objective function value of a solution was within 0.01% of
the global optimum.

For all analytical test cases with a known global optimum f∗, we employed a
stopping criterion based on the percent error (pe), as defined below:

pe = 100×

{
f(x)−f∗

|f∗| , f∗ ̸= 0

f(x), f∗ = 0
(17)

The algorithms were terminated under the following conditions:

– When the (pe) became smaller than εpe = 0.01.
– When the number of function evaluations exceeded the prescribed limit

Mmax = n× 105.
– When the execution time exceeded Tmax = 30 CPU minutes. In such cases,

the final result was set to n× 105 to facilitate further processing of the result.

4.3 Algorithm design in GENDIRECT

Considering that the developed GENDIRECT software allows for a large number
of combinations, identifying the most effective ones may require a substantial
amount of time and effort. Therefore, we cannot guarantee that the algorithms
presented are the most efficient within GENDIRECT. Furthermore, the benchmark
set includes numerous distinct problems, such as discontinuous, non-differentiable,
multi-modal, non-symmetric, and plateau functions. It is improbable that a single
combination will be the most efficient for all of these diverse problem types.

According to the no-free lunch theorem for optimization [54], there exists no
universal optimization algorithm that performs optimally on all types of
optimization problems. As a result, certain modifications and additions to
specific algorithms may not enhance performance on all problems and could even
lead to a decline in performance in certain cases. Therefore, the most optimal
approach would involve leveraging machine learning-enhanced automated

https://github.com/blockchain-group/DIRECTGO
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algorithm selection techniques [19] to generate algorithms tailored to specific
problems. However, this avenue remains a part of our future work and has yet to
be explored.

To showcase the benefits of GENDIRECT software, we conducted an experiment
involving five existing DIRECT-type algorithms: 1-DTC-GL [51], HALRECT-IA [45],
MrDIRECT [26], BIRMIN [35], and DIRMIN [28]. Our aim was to improve their
average performance across a designated set of test problems by introducing new
algorithmic steps or substituting existing ones.

In Table 5, we present five variants for each of the five selected algorithms,
with their improved versions. For pure algorithms of DIRECT-type, which are
characterized by slow solution refinement, enhancing their performance was
achieved by incorporating local search techniques. On the other hand, for hybrid
methods, we made different adjustments to improve their performance.
Specifically, for the BIRMIN algorithm, our goal was to increase the number of
evaluations per iteration through enhancements, while for the DIRMIN algorithm,
we pursued the opposite approach.

Table 5 Description of used parameters for each selected algorithm and their improved
versions in GENDIRECT. The blue color indicates the parameter that has been substituted or
has been added.

Original algorithm parameters 1-DTC-GL HALRECT-IA MrDIRECT BIRMIN DIRMIN

Partitioning.Strategy ′DTC′ ′DBC′ ′DTC′ ′DBDP′ ′DTC′

Partitioning.SubSides ′One′ ′All′ ′All′ ′One′ ′All′

Selection.AggrFuncVal ′Midpoint′ ′MidMin′ ′Midpoint′ ′Min′ ′Midpoint′

Selection.CandMeasure ′Diagonal′ ′Diagonal′ ′Diagonal′ ′Diagonal′ ′Diagonal′

Selection.Strategy ′Pareto′ ′Aggressive′ ′Original′ ′Original′ ′Original′

Selection.EqualCand ′One′ ′One′ ′All′ ′One′ ′All′

Selection.SolRefin ′Off′ ′Off′ ′Min′ ′Min′ ′Min′

Selection.Ep − − 0.0001 0.0001 0.0001
Selection.ControlEp ′Off′ ′Off′ ′MultiLevel1′ ′Off′ ′Off′

Selection.GloballyBiased ′Off′ ′Off′ ′Off′ ′On′ ′Off′

Selection.TwoPhase ′On′ ′Off′ ′Off′ ′Off′ ′Off′

Hybridization.Strategy ′Off′ ′Off′ ′Off′ ′Single′ ′Aggressive′

Hybridization.LocalSearch − − − ′interior-point′ ′interior-point′

Hybridization.MaxIterations − − − 1000 1000
Hybridization.MaxEvaluations − − − 3000 3000

Improved algorithm parameters 1-DTC-GL HALRECT-IA MrDIRECT BIRMIN DIRMIN

Partitioning.Strategy ′DTC′ ′DBC′ ′DTC′ ′DBDP′ ′DTC′

Partitioning.SubSides ′One′ ′All′ ′All′ ′All′ ′All′

Selection.AggrFuncVal ′Midpoint′ ′MidMin′ ′Midpoint′ ′Min′ ′Midpoint′

Selection.CandMeasure ′Diagonal′ ′Diagonal′ ′Diagonal′ ′Diagonal′ ′LongSide′

Selection.Strategy ′Pareto′ ′Aggressive′ ′Original′ ′Pareto′ ′Original′

Selection.EqualCand ′One′ ′One′ ′All′ ′One′ ′One′

Selection.SolRefin ′Off′ ′Off′ ′Min′ ′Min′ ′Median′

Selection.Ep − − 0.0001 0.0001 0.0001
Selection.ControlEp ′Off′ ′Off′ ′MultiLevel1′ ′Off′ ′Off′

Selection.GloballyBiased ′Off′ ′Off′ ′Off′ ′On′ ′Off′

Selection.TwoPhase ′On′ ′Off′ ′Off′ ′Off′ ′Off′

Hybridization.Strategy ′Single′ ′Aggressive′ ′Clustering′ ′Single′ ′Aggressive′

Hybridization.LocalSearch ′sqp′ ′sqp′ ′sqp′ ′sqp′ ′interior-point′

Hybridization.MaxIterations 1000 1000 1000 1000 1000
Hybridization.MaxEvaluations 3000 3000 3000 3000 3000

It is essential to note that the construction of the original algorithms within
GENDIRECT may not always produce identical results to the implementations
provided in DIRECTGO [48]. The discrepancy in the results can be attributed to
the numerical tolerances used in the implementations, which play a critical role
in the outcome. For instance, authors might employ rounding on hyper-rectangle
measure sizes, enabling them to group extremely small hyper-rectangles together.
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Additionally, they might consider two function values identical if their difference
is below a certain threshold. These variations in the implementations can
significantly impact the selection of POCs.

4.4 Results and discussions

In this section, we conduct a performance evaluation of ten DIRECT-type
algorithms, five of which are newly generated with GENDIRECT. The experimental
results presented in this evaluation can also be accessed digitally in the
“Results/MPC” directory of the GitHub repository, available at
https://github.com/blockchain-group/DIRECTGO.

4.4.1 Comparison of success rates and function evaluations utilization

Table 6 provides an overview of the success rates achieved by the ten
DIRECT-type approaches considered on various subsets of the DIRECTGOLib v2.0

test problems. In particular, improvements that effectively improve the
performance of the original algorithm are highlighted in green, while those that
lead to deteriorating results are marked in red. The most remarkable
enhancements in success rates were observed in the case of the algorithm that
performed worst in this study (MrDIRECT) after applying the improvements. Its
enhanced version yielded a remarkable increase in the success rate of 15.78%.
Moreover, the most significant improvements were evident in the resolution of
uni-modal problems, where the pure MrDIRECT version failed to locate the desired
solutions within the allocated evaluation budget in 32.41% fewer instances.

Table 6 Comparison of the success rates of different algorithms in solving test problems with
various characteristics.

Algorithm
Percentage of solved problems

Overall
Separability Multi-modality Scalability
+ − + − + −

Impr. 1-DTC-GL 82.18 91.71 77.62 77.30 98.62 78.92 94.12
Orig. 1-DTC-GL 80.60 91.71 75.29 75.66 97.24 76.91 94.12

Impr. HALRECT-IA 78.08 87.32 73.66 72.19 97.93 73.69 94.12
Orig. HALRECT-IA 67.35 76.59 62.94 62.58 83.45 62.45 85.29

Impr. MrDIRECT 64.20 78.05 57.58 55.42 93.79 59.84 80.15
Orig. MrDIRECT 48.42 65.85 40.09 44.58 61.38 43.17 67.65

Impr. BIRMIN 75.08 83.90 70.86 68.30 97.93 70.68 91.17
Orig. BIRMIN 70.66 82.43 65.03 63.60 94.48 65.06 91.17

Impr. DIRMIN 76.34 84.39 72.49 70.34 96.55 71.28 94.85
Orig. DIRMIN 77.76 84.88 74.36 72.19 96.55 73.09 94.85

Among the pure DIRECT-type algorithms, the 1-DTC-GL algorithm exhibited the
lowest increase in success rates. When considering the allocated budget for function
evaluations, the improved algorithm 1-DTC-GL failed to provide a solution to the
113 problems, while the original version struggled with the 123 problems. An

https://github.com/blockchain-group/DIRECTGO
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important observation is that the original algorithm 1-DTC-GL performed quite
well, surpassing the overall performance of the improved versions of other less
efficient algorithms.

The enhancements in the hybrid algorithms resulted in increased success rates
only for the BIRMIN algorithm, whereas the success rates for the DIRMIN algorithms
exhibited a slight deterioration in most of the subsets considered. Despite the
improvement achieved in the BIRMIN algorithm, it still remained outperformed by
both versions of the DIRMIN algorithm in almost all cases.

Fig. 4 presents a box plot that compares algorithms based on function
evaluations per dimension on all test problems. An important distinction
between pure and hybrid algorithms is that pure algorithms generally require
more function evaluations, even for relatively simple optimization problems. On
the contrary, hybrid algorithms demonstrate the ability to solve such problems
quickly and efficiently. Among the algorithms, almost all hybrid algorithms
achieved similar lowest first-quartile values, indicating that these methods could
solve at least 25% of the test problems faster than pure algorithms. Specifically,
four algorithms (original and improved DIRMIN, improved BIRMIN, and improved
1-DTC-GL) were in the lowest first quartile. On the contrary, the original
HALRECT-IA and original 1-DTC-GL algorithms exhibited the worst first-quartile
performance, each requiring approximately nine and six times more function
evaluations, respectively, than the best-performing algorithm, DIRMIN.

Original

Improved

1-DTC-GL

Original

Improved

HALRECT-IA

Original

Improved

MrDIRECT

Original

Improved

BIRMIN

100 101 102 103 104 105

Original

Improved

Function evaluations / dimension

DIRMIN

Fig. 4 Box plot graphical comparison of algorithms performance based on function evaluations
per dimension across all test problems.

The improved algorithm 1-DTC-GL demonstrated the best median value,
while its pure counterpart, the original version 1-DTC-GL, had the third worst
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median value in these studies. The addition of the local search procedure to the
1-DTC-GL algorithm reduced the median value by nearly eight times, resulting in
a significant improvement in its performance. Interestingly, the median value of
the original algorithm MrDIRECT is equal to the maximum number of function
evaluation budgets (Mmax), indicating that the algorithm could not solve more
than half of the test problems. However, its improved version exhibited a
significantly higher median value. When comparing the third-quartile values,
four algorithms reached the Mmax value in the third quartile, suggesting that
these algorithms could not solve more than 25% of the problems. Only six
algorithms achieved values lower than the maximum evaluation budget. Among
these, the improved algorithm 1-DTC-GL achieved the lowest third-quartile value,
approximately half that of the second-best pure algorithm, the original algorithm
1-DTC-GL.

4.4.2 Analysis of results across different subsets of problems

The data profiles [31] depicted in Fig. 5 showcase how all algorithms perform on
test problems with various properties of DIRECTGOLib v2.0. These profiles provide
a comprehensive view of algorithm performance across different types of problems.
Meanwhile, the data profiles in Fig. 6 offer an overall ranking of the algorithms on
all test problems, providing a more focused perspective on their performance in a
broader context.

Hybridization of pure DIRECT-type algorithms significantly impacts the
results, particularly when dealing with straightforward uni-modal or separable
test problems. The inclusion of a local search procedure proves to be particularly
advantageous for uni-modal problems, as it accelerates the convergence speed to
reach optimal solutions more efficiently. On the other hand, pure DIRECT-type
algorithms might prioritize the global search and exhaust the evaluation budget
without locating the solution within the prescribed accuracy. As a result, the
curves of the improved versions of 1-DTC-GL, HALRECT-IA, and MrDIRECT

demonstrate significantly better performance than the original versions,
especially for small evaluation budgets (≤1000×n). However, it is worth noting
that the most successful pure DIRECT-type algorithm, 1-DTC-GL, eventually
achieves nearly identical performance within the maximum evaluation budget,
regardless of whether the problems are separable or uni-modal.

The improved hybrid algorithm BIRMIN exhibits slightly lower performance
within a small evaluation budget (Mmax≤n×102). However, as the evaluation
budget increases (Mmax≥n×104), the improved version outperforms the original
version. This difference in performance becomes particularly evident when the
algorithm is applied to non-separable or multi-modal test problems.

On the other hand, the curves of the two versions of the hybrid algorithm
DIRMIN are almost indistinguishable within a smaller evaluation budget
(Mmax≤2n×104). However, within a larger evaluation budget, the original
algorithm DIRMIN exhibits slightly better performance.

Based on the four graphs in Fig. 5 and the overall ranking of the algorithms
in Fig. 6, a consistent conclusion can be drawn: the performance of the improved
and original 1-DTC-GL algorithm is the most efficient or at least comparable to
the best-performing algorithm. Analyzing the curves, it is evident that the
improved algorithm 1-DTC-GL exhibits the highest efficiency rates across all
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Fig. 5 Data profiles: The horizontal axis represents the number of function evaluations per
dimension, while the vertical axis represents the fraction of solved problems

graphs compared to other algorithms within any evaluation budget in [0, n×105].
Although the original performance of 1-DTC-GL becomes competitive, it requires
a significant budget for the evaluations of functions (Mmax≥n×104). Overall, the
improved performance of the 1-DTC-GL algorithm remains competitive, requiring
fewer function evaluations to achieve the desired optimal value in most test
functions.

4.4.3 Statistical analysis of the results

To validate the results and comparisons between algorithms, as well as to
evaluate the significance of improvements achieved by GENDIRECT, we conducted
the Friedman mean rank test [7] and the non-parametric Wilcoxon signed
test [13] at a significance level of 5%. A p-value greater than 0.05 indicates that
the difference in results between methods is statistically insignificant.
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Table 7 displays the Friedman mean rank values for considered algorithms,
utilizing the founded solution values within different evaluation budgets for all
test problems. The results reveal that the improved versions consistently
outperform their original counterparts in all budgets, except for the algorithm
DIRMIN, where the original version obtained a higher rank in one specific
evaluation budget (Mmax=n×105). The improvements made to the algorithms
have resulted in performance gains ranging from small to significant, as indicated
by the higher mean rank values.

Table 7 Friedmann mean rank values with different objective function evaluation budgets.

Algorithm
Function evaluation budget (Mmax)

n×102 n×103 n×104 n×105

Impr. 1-DTC-GL 4.7610 4.6128 4.6128 4.6601
Orig. 1-DTC-GL 6.0095 5.3375 5.3375 4.7831

Impr. HALRECT-IA 5.5670 5.5229 5.5229 5.3249
Orig. HALRECT-IA 7.2752 7.1372 7.1372 6.1672

Impr. MrDIRECT 5.3730 5.2500 5.2500 5.8028
Orig. MrDIRECT 5.3730 6.8099 6.8099 7.1435

Impr. BIRMIN 4.6151 4.6562 4.6562 5.1333
Orig. BIRMIN 5.0103 5.0765 5.0765 5.6356

Impr. DIRMIN 5.4219 5.2886 5.2886 5.2492
Orig. DIRMIN 5.5938 5.3084 5.3084 5.1002

Table 8 presents the p-values obtained by comparing the improved algorithms
with their original counterparts, using the solutions found within four evaluation
budgets on all test problems. For the improved algorithm 1-DTC-GL, there is
strong statistical evidence that the improved version significantly outperforms
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the original version within a small evaluation budget (Mmax≤n×103). However,
as the evaluation budget increases (Mmax>n×103), the higher p-values suggest
that the significance of the improvement decreases and the difference between
the improved and original versions becomes less statistically significant. In
contrast, the situation is different for the other two pure DIRECT-type algorithms.
The improved versions of HALRECT-IA and MrDIRECT show no significant
improvement compared to the original versions at Mmax=n×102. However, for
larger evaluation budgets, the p-values are low, indicating that the improvements
are statistically significant.

For the BIRMIN algorithm, the p-values are low, indicating that the
improvement of the improved version of BIRMIN compared to the original version
is statistically significant in all these budgets. Regarding DIRMIN] algorithm, we
can conclude that the improved version of the algorithm is statistically better if
the evaluation budgets are Mmax=n×102 and Mmax=n×104.

Table 8 Wilcoxon signed test p-values at 5% significance level, comparing improved vs.
original algorithms across various objective function evaluation budgets.

Algorithm
Function evaluation budget (Mmax)

n×102 n×103 n×104 n×105

1-DTC-GL 6.3325×10−3 2.4241×10−8 2.6994×10−1 5.8529×10−1

HALRECT-IA 2.3254×10−1 4.0565×10−13 5.3640×10−10 3.3265×10−13

MrDIRECT 1.0000×100 2.0141×10−34 4.5374×10−40 5.9712×10−34

BIRMIN 2.5863×10−2 2.8668×10−9 1.0548×10−12 1.5552×10−15

DIRMIN 3.0296×10−8 4.6683×10−1 8.2874×10−3 4.4600×10−4

5 Conclusions and future works

This study introduces a novel generalized DIRECT-type algorithmic framework
known as GENDIRECT, for derivative-free global optimization. The proposed
framework empowers users to construct a wide range of DIRECT-type algorithms.
Such innovative work can foster the development of new DIRECT-type algorithms
and help identify the most suitable algorithm for various practical applications.

To demonstrate the efficiency of GENDIRECT, we enhanced five selected
DIRECT-type algorithms with the goal of improving their performance and solving
global optimization problems more effectively. Evaluation of these constructed
algorithms was carried out using benchmark test functions from DIRECTGOLib

v2.0. The results were analyzed both graphically and statistically to gain insight
into the algorithms’ performance. The findings concluded that the newly
developed versions of the DIRECT-type algorithms significantly outperformed
their original counterparts in most cases.

In conclusion, this paper has focused on box-constrained global optimization
problems, but the generalized DIRECT-type algorithmic framework (GENDIRECT)
could potentially be extended to handle constrained cases as well. Furthermore,
due to the numerous combinations of algorithms within GENDIRECT, manually
testing all of them becomes impractical. Therefore, future research should
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explore the automation of these processes using advanced machine-learning
techniques. By automating the algorithmic components process, optimization can
become more efficient and effective.

Data statement

DIRECTGOLib - DIRECT Global Optimization test problems Library is
designed as a continuously-growing open-source GitHub repository to which
anyone can easily contribute. The exact data underlying this article from
DIRECTGOLib v2.0 can be accessed on GitHub:

– https://github.com/blockchain-group/DIRECTGOLib,

and used under the MIT license. We welcome contributions and corrections to it.
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