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Abstract

Many important theorems in differential topology relate properties of manifolds to prop-
erties of their underlying homotopy types – defined e.g. using the total singular complex or
the Čech nerve of a good open cover. Upon embedding the category of manifolds into the
∞-topos Diff∞ of differentiable sheaves one gains a further notion of underlying homotopy
type: the shape of the corresponding differentiable sheaf.

In a first series of results we prove using simple cofinality and descent arguments that
the shape of any manifold coincides with many other notions of underlying homotopy types
such as the ones mentioned above. Our techniques moreover allow for computations, such
as the homotopy type of the Haefliger stack, following Carchedi.

This leads to more refined questions, such as what it means for a mapping differential
sheaf to have the correct shape. To answer these we construct model structures as well as
more general homotopical calculi on the ∞-category Diff∞ (which restrict to its full sub-
category of 0-truncated objects, Diff∞

≤0) with shape equivalences as the weak equivalences.
These tools are moreover developed in such a way so as to be highly customisable, with a
view towards future applications, e.g. in geometric topology.

Finally, working with the ∞-topos Diff0 of sheaves on topological manifolds, we give
new and conceptual proofs of some classical statements in algebraic topology. These in-
clude Dugger and Isaksen’s hypercovering theorem, and the fact that the Quillen adjunction
between simplicial sets and topological spaces is a Quillen equivalence.
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1 Introduction

1.1 Overview

Many important results about smooth manifolds such as the classification of compact surfaces
or the Poincaré-Hopf theorem express differential topological properties in terms of suitably
defined underlying homotopy types of smooth manifolds. Similarly, important invariants of
smooth manifolds such as their de Rham cohomology only depend on their underlying homotopy
type. Let M be a smooth manifold, then there are many ways in which to define its underlying
homotopy type, e.g., one may take

1. its smooth total singular complex;

2. its underlying topological space;

3. or to a hypercover · · ·
∐

Rd
∐

Rd M (e.g., the Čech complex of a

good open cover of M), one may associate the corresponding simplicial set obtaining by

replacing every copy of Rd by 1, · · ·
∐

1
∐

1.

Unfortunately, these constructions suffer from at least two defects: 1. They all rely on
specific models of homotopy types (i.e., simplicial sets and topological spaces). 2. Non of these
constructions are expressed in terms of a universal property.

These two defects may be remedied by thinking of underlying homotopy types in terms of
covering spaces: Let E be an ∞-topos and denote by π : E→ S the unique geometric morphism
to S. Let X be an object in E, then for any map A → B of homotopy types and any map
X → π∗B, the pullback square

E π∗A

X π∗B

⌟ (1)
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produces a covering space over X (see [Hoy18, Prop. 3.4]). Moreover, given a further pair
consisting of a homotopy type B′ and a morphism X → π∗B′, as well as a map B′ → B for
which the diagram

π∗B′

X

π∗B

commutes, the covering space E → X may be obtained via the same construction from the
morphism A ×B B′ → B′. Thus, any covering space over X obtained from B as in (1) may
be obtained from B′ in the same way, and if there exists a universal morphism X → π∗C as
above, then all covering spaces over X constructed as in (1) may be obtained from homotopy
types over C. While E(X,π∗( )) is not in general representable, it is pro-representable, so that
E ← S : π∗ admits a formal left adjoint π! : E → Pro(S), a colimit preserving functor which
associates to any object X a pro-homotopy type called its shape. In many cases, large classes
of covering spaces may be recovered from its shape (see [Hoy18, Thms. 3.13 & 4.3] and Remark
3.2.6). For example, when E is the ∞-topos of sheaves on the ∞-category of schemes w.r.t.
the étale topology, then the shape coincides with the étale homotopy type, and the category
of 0-truncated covering spaces over any scheme, can be recovered from its étale homotopy type
(see [Hoy18, §5]).

For a simpler example, consider the ∞-topos [Aop, S] of presheaves on a small ∞-category
A. In this case, the shape functor forms a true left adjoint, i.e., it factors through S ↪→ Pro(S),
and is given by colim : [Aop, S] → S. A salient property of this example is that the shape of
any representable object is contractible, and that [Aop, S] is generated under colimits by objects
of contractible shape. Moreover, for a second small ∞-category B together with a functor
u : A→ B, we obtain a triple adjunction

[Aop, S] [Bop, S]
u∗

u!

u∗

⊣
⊣ (2)

where u! : [A
op, S] → [Bop, S] always preserves shapes, and [Aop, S] ← [Bop, S] : u∗ preserves

shapes precisely when u : A→ B is initial (a.k.a. cofinal, a.k.a. coinitial, a.k.a. . . . ).
We now return to the constructions described in points 1. - 3. above. Denote by Diff r the

∞-topos of r-times differentiable sheaves — S-valued sheaves w.r.t. the usual Grothendieck
topology on the category of Cartesian spaces Rd (d ≥ 0) and r-times differentiable maps between
them. Observe that the category of r-times differentiable manifolds forms a full subcategory of
Diff r. Using the technology of fractured ∞-toposes we are able to show that the shape of Rd

coincides with the shape of its underlying topological space, which is seen to be contractible via
a simple Galois theoretic proof (see Lemma 6.1.1). Thus, Diff r is generated by a set of objects
of contractible shape, and has many of the pleasant properties of presheaf ∞-categories. For
instance, as for presheaf categories, it follows that the shape functor factors through S.

More importantly, we are able to make similar cofinality arguments for Diff r as for presheaf
∞-toposes, bringing us back to the question of calculating shapes. For example, (any number
of variants of) the functor u : ∆ → Diff r sending [n] to the standard simplex can be regarded
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as initial in a certain sense, and one obtains an adjunction

u! : [∆
op, S] Diff r : u∗⊥ (3)

in which both adjoints preserve shapes. Moreover, if r ≥ s, the forgetful functor Cartr → Carts

induces a triple adjunction

Diff r Diff s

u∗

u!

u∗

⊣
⊣ (4)

analogous to (2), where again u! and u∗ preserve shapes. If s = 0, then u! sends any manifold
to its underlying topological space.

Finally, taking a hypercover U• of M such that Un =
∐

Rd for all n ≥ 0, we observe that

π!M ≃ π! colim
[n]∈∆

(Un) ≃ colim
[n]∈∆

π!(Un) ≃ colim
[n]∈∆

π!(
∐

Rd) ≃ colim
[n]∈∆

∐
π!(R

d) ≃ colim
[n]∈∆

∐
π!1S (5)

by descent and the fact that π! : Diff r → S preserves colimits, showing that the simplicial set
associated to U• indeed calculates the correct homotopy type. Applying (3) to point 1. above,
(4) to 2., and (5) to 3., we obtain the following theorem (see §6.2):

Theorem A. The homotopy types described in points 1. - 3. above are all equivalent to the shape
of M .

As we have seen, the shape is defined for all differentiable sheaves, not just manifolds, and
one important example for which we might want to calculate the shape is given by the internal
mapping sheaf Diff r(A,X) for differentiable sheaves A and X. To illustrate why this might
be useful, consider the analogous situation in the context of compactly generated topological
spaces, where we assume that A is a CW-complex. The internal mapping space TSpc(A,X)

(consisting of the set of continuous maps equipped with the compact-open topology) is then a
model for the mapping homotopy type of the homotopy types modelled by A and X. In the
differentiable setting, when A and X are manifolds, with A closed, the set Diff r(A,X) may be
endowed with the structure of an infinite dimensional Fréchet manifold [GG73, Th. 1.11], and
it is a folk theorem that its underlying homotopy type is again equivalent to S(π!A, π!X). By
[Wal12, Lm A.1.7] the Fréchet manifold of smooth maps from M to N is canonically equivalent
to Diff r(M,N). Moreover, the shape functor π! : Diff r → S commutes with products, so that
we obtain a comparison morphism π!Diff r(A,X) → S(π!A, π!X). A differentiable sheaf A is
then said to satisfy the differentiable Oka principle if the map π!Diff r(A,X) → S(π!A, π!X)

is an isomorphism for all differentiable sheaves X (see [SS21]), and it is natural to ask for
which differentiable sheaves the differentiable Oka principle holds. We obtain the following
generalisation of the main statement of [BEBP19] (see Theorem 7.2.27).

Theorem B. Any paracompact Hausdorff C∞-manifold locally modelled on Hilbert spaces, nuc-
lear Fréchet spaces, or nuclear Silva spaces satisfies the differentiable Oka principle.

The theory leading up to the proof of Theorem A above could be viewed as a study of the
interaction of shapes with colimits—which is quite simple, as shape functors commute with all
colimits. The proof of Theorem B on the other hand boils down to showing that the shape
functor π! : Diff r → S commutes with certain pullbacks—which is more difficult. Specifically,
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one needs a method for identifying morphisms X → Y in Diff r such that any pullback along
X → Y commutes with π!. It turns out that the ∞-toposes considered in this article are such
that if they admit homotopical calculi (such as model structures) then X → Y has the desired
property whenever it is a fibration in any of these calculi. Thus, we are led to developing flexible
tools for constructing such homotopical calculi, which we do using the theory of test categories.

1.2 Applications to geometric topology

Here we discuss some of the good properties of Diff r
≤0, the topos of set valued sheaves on

manifolds, and illustrate how these might be relevant to problems in geometric topology, and
in particular to Gromov’s sheaf theoretic h-principle (these applications will not be further
discussed in the body of this article; for more details see [Aya09], [RW11], [Dot14], [Kup19]).

Let Emb∞
d denote the topological category whose objects are the d-dimensional smooth

manifolds, and where Emb∞
d (M,N) is the set of smooth embeddings of M in N , equipped with,

equivalently, the underlying topology of the Fréchet manifold Emb∞
d (M,N) or the C∞-compact-

open topology. Recall that a sheaf F on Emb∞
d valued in topological spaces is invariant if the

map Emb∞
d (M,N)× F (M)→ F (N) is continuous.

Fixing a smooth manifold N , the following are examples of invariant sheaves:

1. The sheaf Imm( , N) sending each manifold M to the space of immersions of M in N .

2. The sheaf Subm( , N) sending each manifold M to the space of submersion of M to N .

3. The sheaf Conf of configurations sending any manifold M to the space of finite subsets of
M , topologised in such a way that points may “disappear off to infinity” when M is open
(See [RW11, §3]).

An invariant sheaf F is microflexible ([RW11, Def. 5.1]) if for

(i) any polyhedron K,

(ii) any manifold M ,

(iii) compact subsets A ⊆ B ⊆M , and

(iv) subsets U ⊆ V ⊆M containing A and B, respectively,

the lifting problem
{0} ×K F (V )

[0, ε]×K [0, 1]×K F (U)

(6)

admits a solution for some 0 < ε < 1, possibly after passing to a smaller pair U ⊆ V containing
A and B, respectively. Examples 1. - 3. listed above are microflexible.

For any invariant sheaf F and any manifold M one may construct the scanning map (see
[Fra11, Lect. 17])

scan : F (M)→ Γ
(
Fr(TM)×On F (Rn)→M

)
, (7)

and F is said to satisfy the h-principle on M if the scanning map is an equivalence.
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Theorem 1.2.1 ([Fra11, Lect. 20]). Every microflexible invariant sheaf satisfies the h-principle
on any open manifold.

This is a very powerful theorem, as the study of Γ
(
Fr(TM)×On F (Rn)→M

)
is often easier

than that of F (M).

Example 1.2.2. For F = Imm( , N) (as in 1. above), the space Γ
(
Fr(TM)×On F (Rn)→M

)
can with little effort be shown to be equivalent to the space of formal immersions of M into N ,
that is, the set of bundle maps

TM TN

M N
f

which restrict to monomorphisms TxM → TfxN for all x ∈ M . The h-principle can thus be
used to prove the famed Smale-Hirsch theorem (see [Sma59] & [Hir59] for details). ⌟

Theorem 1.2.1 may be viewed as a statement that any microflexible invariant sheaf F :

(Emb∞
n )op → TSpc retains many of its exactness properties when composed with the functor

TSpc→ S, sending any topological space to its (singular) homotopy type. The geometry of the
constituent spaces of F is frequently crucial for proving microflexibility. However,

1. it is often difficult to construct suitable topologies on these spaces which exhibit this
geometry, and

2. these topologies then fail to account for natural smooth structures which one would expect
these spaces to admit.

In fact, the constituent spaces of F are oftentimes more naturally viewed as objects of Diff∞

(as already observed in [GTMW09] and [Kup19]), so that one is lead to consider sheaves of the
form F : (Emb∞

n )op → Diff∞. At a first glance, it may look as if we are introducing a new
complication by considering sheaves valued in an ∞-category rather than an ordinary category.
However, in most cases, such as in the examples 1. - 3. considered above, we obtain sheaves
valued in Diff∞

≤0. The following theorem provides a first justification for replacing TSpc with
Diff∞

≤0 (see Proposition 4.4.10 and Theorem 7.1.2).

Theorem C ([Cis03, §6.1]). The topos Diff∞
≤0 admits a model structure such that the restriction

of the shape functor π! : Diff r
≤0 → S exhibits S as a localisation of Diff r

≤0 along the weak
equivalences.

Thus, many of the techniques developed in this article may be used without knowledge of
∞-categories. Moreover, Diff∞

≤0 has excellent formal properties, which are directly relevant to
the microflexibility condition (Theorem 5.3.1 & Corollary 4.1.5):

Theorem D. Closed manifolds are categorically compact in Diff∞ (and thus in Diff∞
≤0).

Theorem E. Filtered colimits in Diff∞
≤0 are homotopy colimits.

7



To give a simple illustration of how these properties are relevant to the sheaf theoretic h-
principle, we see that the lifting condition (6) may now be replaced with

{0} ×K colim
V⊇B

F (V )

[0, ε]×K [0, 1]×K colim
U⊇A

F (U)

(8)

eliminating the necessity to gradually choose smaller and smaller open neighbourhoods V ⊇ U of
B ⊇ A. Indeed, this is close to how Gromov originally formulated the microflexibility condition
(see [Gro86, §1.4.2]) but instead using quasi-topological spaces (introduced by Spanier; [Spa63])
as a replacement for topological spaces, with the intention of obtaining well-behaved colimits (as
explained in [Gro86, §1.4.1]). Unfortunately, both theorems E and D fail for quasi-topological
spaces, as shown in Example 1.2.3 below, so that (8) does not give the correct formulation of
microflexbility in this setting.

A further use of the good formal properties of Diff∞
≤0 is suggested by Ayala in [Aya09, p. 19]:

A key step in the construction of the scanning map (7) involves carefully choosing a connection
on M and then reparametrising the resulting exponential map exp : TM →M (see [RW11, §6]).
In order to formulate an h-principle which works for any exponential function, Ayala constructs
the following variant of the scanning map given by

scan : F (M)→ Γ
(
Fr(TM)×On colim

δ>0
F
(
B̊n

δ(0)
))
. (9)

The colimit colimδ>0 F
(
B̊n

δ(0)
)

is again taken in the category of quasi-topological spaces in
[Aya09] with the expectation that it has the same homotopy type as F (Rn), but this once more
fails by Example 1.2.3. Fortunately, by Theorem E the colimit does have the correct homotopy
type when taken in Diff r

≤0. More generally, we believe that working with differentiable sheaves
throughout in [Aya09] would fix issues which arise from working with quasi-topological spaces.

Example 1.2.3. For each δ > 0 the space Conf
(
B̊n

δ (0)
)

is weakly equivalent to Sn (see Theorem
1.2.4 below). In Ayala’s variant of quasi-topological spaces (see [Aya09, Def. 2.7]) the colimit is
equivalent to the Sierpinski space, which is contractible. In other variants of quasi-topological
spaces (e.g., [SW57, §3], [Gro86, §1.4.1]) one still obtains a contractible two-point space. ⌟

Configuration spaces We conclude this subsection with a proof of the following fact, already
used in Example 1.2.3.

Theorem 1.2.4. The space Conf(Rn) is weakly equivalent to Sn for any n ≥ 0.

For any smooth manifold M we first redefine Conf(M) to be the differentiable sheaf which
associates to any Cartesian space Rd the set of embeddings C ↪→ M ×Rd such that the map
C →M is a submersion with 0-dimensional fibres. Using the smoothing argument in [GRW10,
Lm. 2.17] one can show that the singular homotopy type of Conf(M) as a topological space
coincides with its shape as a differentiable sheaf. (Note that the definition of Conf(M) as a
differential sheaf is much simpler than the definition of Conf(M) as a topological space.)

We can now prove Theorem 1.2.4 by making precise an idea originally due to Segal ([Seg79,
Prop. 3.1]):

8



Sketch of proof of Theorem 1.2.4. For every ε > 0 denote by Confε(R
n) (resp. Conf≤1(R

n)) the
subspace of Conf(Rn) consisting of those configurations containing at most one point in B̊ε(0)

(resp., all of Rn), then Conf≤1(R
n) may be exhibited as a retract of Confε(Rn) by pushing all

points outside of B̊ε(0) in any configuration in Confε(R
n) off to infinity. Moreover, Conf≤1(R

n)

is R-homotopy equivalent to Sn, as Conf≤1(R
n) is essentially the one-point-compactification of

Rn. Finally, we have colimε>0Confε(R
n) = Conf(Rn), so that

π!Conf(R
n) = π! colim

ε>0
Confε(R

n) = colim
ε>0

π!Confε(R
n) = colim

ε>0
π!S

n = π!S
n,

where the second equivalence follows from Theorem E.

1.3 Applications to the homotopy theory of topological spaces

In this section we set r = 0; in other words, we are now considering the∞-topos Diff0 of sheaves
on topological manifolds. Now, the topological realisation - total singular complex adjunction

| | : ∆̂ TSpc : s⊥ (10)

factors as
∆̂ Diff0

≤0 TSpc⊥ ⊥

where the first map is obtained from the cosimplicial diagram consisting of the standard topo-
logical simplices, and the second adjunction is obtained from the inclusion v : Cart0 ↪→ TSpc.
Thus, by Theorem A the singular homotopy type of any topological space X is given by the
shape of v∗X. This observation allows us to give simple proofs of well-known theorems relating
the descent and homotopy theory for topological spaces:

1. Lurie’s Seifert-Van Kampen theorem (see [Lur17, Th. A.3.1], Theorem 6.3.10).

2. Dugger and Isaksen’s hypercovering theorem (see [DI04, Th. 1.1], Theorem 6.3.16).

3. the fact that for any principal G-bundle P → B, the topological space B is a homotopy
quotient by the action of G on P (see Theorem 6.3.23).

As an illustration of these techniques we consider a topological space X covered by open subsets
U and V . A modern interpretation of the Seifert Van-Kampen theorem is that the square

X

U V

U ∩ V

(11)

induces a pushout square in S. To prove this, all we need to do is to observe that (11) is carried
to a pushout square in Diff0, and then the theorem follows from the fact that the shape functor
π! : Diff0 → S preserves colimits.

Our techniques also allow for a conceptual proof that the Quillen adjunction (10) is a Quillen
equivalence. As ∆̂ ← TSpc : s creates weak equivalences, it is enough to show that the unit

9



id
∆̂
→ s ◦ | | is a natural weak equivalence. Now, the adjunction (3) restricts to an adjunction

u! : ∆̂ : : Diff0
≤0 : u

∗⊥ (12)

by Proposition 4.4.23 and thus both constituent functors in (12) preserve shape equivalences,
and moreover both the unit and counit are natural equivalences. One might hope that (12)
further restricts to the adjunction (10), so that by the same argument id

∆̂
→ s ◦ | | is a natural

weak equivalence. Unfortunately, u! : ∆̂ → Diff r
≤0 does not factor through TSpc, but it does

turn out that for any simplicial set X the comparison map u!X → |X| is very close to being an
isomorphism, and can be deformed into one using a sequence of homotopies Hn : ∆n×[0, 1]→ ∆n

(see §7.1.2), and this suffices to show that id
∆̂
→ s ◦ | | is a natural weak equivalence.

Similar techniques may be used to show that for any small ordinary category A, and any
diagram X : A→ TSpc, the geometric realisation of

· · ·
∐

a0→a1→a2∈A∆2

Xa0

∐
a0→a1∈A∆1

Xa0

∐
a0∈A∆0

Xa0 = B•(X,A, ∗)

yields a model of the homotopy colimit of X, by employing the same sequence of homotopies
Hn : ∆n × [0, 1] → ∆n as above to deform the comparison map between the realisations of
B•(X,A, ∗) in Diff r and TSpc into an isomorphism.

We should like to emphasise that our results showing that Diff r and Diff r
≤0 model homotopy

types are completely independent of the homotopy theory of topological spaces, so that our new
proofs of these classical algebro-topological acts are not circular.

1.4 Organisation

This article divides into two parts:

Part I: Foundations

Part II: Differentiable sheaves.

Part I treats topos theoretic foundations and their interactions with localisations. Part II then
discusses applications of the technology of Part I to the theory of differentiable sheaves. More
specifically, both parts consist of three sections, and each section in Part II discusses applications
of the corresponding section in Part I, yielding the following dependencies of the sections in this
article:
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Part I Part II

§2 Fractured ∞-toposes §5 Basic definitions and properties of differentiable sheaves

§3 Shapes and cofinality §6 Shapes, cofinality, and differentiable sheaves

§4 Homotopy theory in
locally contractible (∞-)toposes

§7 Homotopical calculi on differentiable sheaves

We will thus give an overview of the individual sections in the order

§2 §5

§3 §6

§4 §7,

so that the discussion of each section in Part I is immediately followed by a discussion of the
corresponding section in Part II explaining its application to differentiable sheaves.

§2 Fractured ∞-toposes: A fractured ∞-topos is an ∞-topos E together with extra structure
making it possible to associate to its objects gros and petit ∞-toposes, as well as determine
the relationship between them. In §2.1, after discussing some basic definitions, we explain how
this structure may be employed to prove useful properties about E such as hypercompleteness.
Moreover, we explain how to construct fractured ∞-toposes from geometric sites in §2.2.

§5 Basic definitions and properties of differentiable sheaves: In §5 we endow Mfdr with the struc-
ture of a geometric site, so that we may equip Diff r with the structure of a fractured ∞-topos,
and immediately use this structure to show, among other things, that Diff r is local and has
enough points. Then, in §5.2 we very briefly discuss diffeological spaces with a focus on mani-
folds with corners such as the simplices. The petit∞-topos associated to any smooth manifolds
(without boundary or corners) is the ∞-topos of sheaves on its underlying topological space,
allowing us to relate properties of manifolds viewed as objects in Diff r with their underlying to-
pological spaces. In §5.3 we use this to deduce that any closed manifold is categorically compact
in Diff r from the fact that the∞-topos of sheaves on its underlying topological space is proper.
Surprisingly, the manifolds with non-empty boundary / corners from the preceding subsection
are not categorically compact in Diff r.

§3 Shapes and cofinality: As explained in §1.1 the shape of an object in an ∞-topos gives a
Galoisic notion of its underlying pro-homotopy type. In §3.1 we first define shapes of ∞-toposes
(rather than their objects), however, afterwards, while discussing the functoriality of shapes we
will arrive at the notion of shapes of objects in an ∞-topos, and reconcile the two notions by

11



noting that the shape of the final object of an ∞-topos is the same as the shape of the ∞-
topos itself. Moreover, we give a cohomological criterion for when the shape of an ∞-topos is
contractible. In §3.2 we specialise to locally contractible ∞-toposes – those ∞-toposes which
are generated under colimits by a set of objects of contractible shape (so that the shape of any
object is a homotopy type) – and in §3.2.1 provide recognition principles, for when nerve dia-
grams (such as ∆→ Diff r, giving rise to (3) in §1.1) may be used to calculate these homotopy
types. Finally, in §3.3 we see that the shape of the petit ∞-topos of any object in a fractured
∞-topos is equivalent to the shape of its gros ∞-topos, giving rise to a technique for exhibiting
a fractured ∞-topos as locally connected.

§6 Shapes, cofinality and differentiable sheaves: In §6.1 we use the techniques from §3.3 to show
that Diff r is locally contractible: Diff r is generated by the Cartesian spaces Rd, whose shape
may be calculated using its associated petit ∞-topos (which is just the ∞-topos of sheaves on
its underlying topological space or Rd) which may be shown to be contractible by combining
the cohomological criterion from §3.1 with the fact that covering spaces on Rd are trivial. In
§6.2 we use the techniques of §3.2 to prove Theorem A from §1.1. Then in §6.3 we give two more
applications of the technology developed so far: In §6.3.1 we show how Carchedi’s calculation of
the shape of the Haefliger stack seems almost inevitable using the calculus of shapes on Diff r,
and in §6.3.2 we give elementary new proofs of several Seifert - Van Kampen like theorems, such
as Dugger and Isaksen’s hypercovering theorem.

§4 Homotopy theory in locally contractible (∞-)toposes Given an ∞-category C together with
a subcategory W of weak equivalences, we discuss which (co)limits in C are preserved by the
localisation functor γ : C → W−1C, i.e, which (co)limits are homotopy (co)limits. In all of our
applications C will always be a subcategory of an∞-topos E, and γ will always be the restriction
of the shape functor π! : E→ S to C, so the relationship between homotopy limits and colimits
is not symmetric, as π! : E→ S preserves all colimits. Thus, any colimit in C which commutes
with the inclusion C ↪→ E is a homotopy colimit. In §4.1 we study which colimits are preserved
by C ↪→ E when C is the subcategory of n-truncated objects for some 0 ≤ n ≤ ∞, and in
§4.2 we study the situation when E≤0 is a local ∞-category, and C is the ordinary category
of concrete 0-truncated sheaves on E. In §4.3 we discuss how to recognise homotopy limits for
arbitrary localisations using homotopical calculi, such as model structures (on∞-categories). In
particular, we show how to recognise sharp morphisms – morphisms along which all pullbacks
are homotopy pullbacks. Finally, in §4.4 we combine the theory of test categories with the
technology of §3.2.1 to construct model structures on locally contractible ∞-toposes as well as
ordinary toposes generated by objects of contractible shape.

§7 Homotopical calculi on differentiable sheaves: In §7.1 we use the technology of §4.4 to con-
struct a plethora of model structures on Diff r and Diff r

≤0, all modelling S, and use §4.1 to
describe several families of homotopy colimits on Diff r

≤0. In §7.1.1 we show that one of these
model structures on Diff r

≤0 – the Kihara model structure – restricts to the subcategory of dif-
feological spaces Diff r

concr (which again models S), and use §4.2 to describe several classes of
homotopy colimits. With a bit of extra work, we also show that it is possible to recover the
Quillen equivalence ∆̂ TSpc⊥ in a similar fashion.

In §7.2 we finally prove Theorem B: The main idea is to show that the class of objects satis-
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fying the differentiable Oka principle is closed under various (co)limits and under ∆1-homotopy
equivalence. Then, one may show inductively that simplicial complexes built using Kihara’s
simplices satisfy the differentiable Oka principle, and that the manifolds in Theorem B are ∆1-
homotopy equivalent to such simplicial complexes. The above induction step relies on showing
that for each differentiable sheaf X and each Kihara boundary inclusion ∂∆n ↪→ ∆n the map
X∂∆n ← X∆n is sharp, which we do by exhibiting it as a squishy fibration; a notion which we
introduce in §7.2 for precisely this purpose. We conclude §7.2 by providing examples of mani-
folds which do not satisfy the differentiable Oka principle.

The article also includes three appendices collecting some necessary background material:

§A recalls some basic facts about the cube category and cubical diagrams.

§B exhibits how the definition of model structures may be implemented in the ∞-categorical
setting.

§C provides some (mostly new) results on pro-objects in ∞-categories (which are however
already well-known in the ordinary categorical setting).

We also summarise some of the most important conventions adopted in this article. For a
detailed account of our conventions, see Conventions and notation.

• Throughout the whole article, r denotes some element of N ∪ {∞}.

• Following the widely adopted precedent set by Lurie we will refer to quasi-categories as
∞-categories. (An∞-category is however still, strictly speaking, a simplicial set, and thus
we will often speak of maps from a simplicial set to an ∞-category, etc.)

• We adopt the “French” tradition of denoting the ordinary category of presheaves on any
small ordinary category A by Â. E.g., the category of simplicial sets is denoted by ∆̂.

• Canonical isomorphisms are often denoted by equality signs. (An isomorphism is canonical
if it originates from a universal property. More precisely, let u : X → C a right fibration,
and x, x′ two final objects in X, then for any morphism x → x′ the morphism ux → ux′

is a canonical isomorphism, and we may write x = x′.)

1.5 Relation to other work

The main actor in this article is arguably the shape functor π! : Diff r → S. A sketch of the
existence of this functor was first provided by Dugger in [Dug01, Prop. 8.3], and a complete
construction was first given in [Sch13, Prop. 4.4.6]. Other constructions are given in [Car16, §3],
[BEBP19, Prop. 1.3], [Bun22], [ADH21, §4.3], [Pav22].

A model structure on Diff r
≤0 in which the weak equivalence are given by the shape equi-

valences is first provided in [Cis03, §6.1]. We should like to point out that many results in this
article (in particular on locally contractible∞-toposes and cofinality) are ultimately the product
of us trying to understand [Cis03] and [Cis06] in ∞-categorical terms.

We owe a similar intellectual dept to Carchedi who has written extensively on differentiable
stacks, and whose work in [Car20] paved the way to the theory of fractured∞-toposes developed
in [Lur18].
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Early inspiration for this work also came from the article [Shu18] on the relationship between
Diff r and S in a type theoretic setting.

Theorem B is a generalisation of the main theorem of [BEBP19], but relies on a careful
analysis of the shape functor and its relationship to homotopical calculi rather than the com-
binatorics of simplicial sets. An important inspiration for adopting a more flexible attitude
towards homotopical calculi is given in [Cis19, §7], and we should like to point out that a proof
of Theorem B in the vein of this article would be significantly harder without Kihara’s simplices
([Kih20]).

Moreover, we give new and simpler proofs of classical results such as [Mil57, Lm. 5] and
[DI04, Th. 1.3]. See, in particular, the discussion of (Borel) equivariant homotopy theory in
§6.3.2.
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Part I

Foundations

2 Fractured ∞-toposes

In an ∞-topos of sheaves on a site of geometric objects such as

1. manifolds (see [Car20, §6.1] and §5.1 of this article),

2. (ordinary, derived, spectral) schemes (with either the Zariski or étale topology) (see
[DAG V, §4.2 & §4.3], [DAGVII], [Car20, §6.2], [Lur18, §2.6.4])

3. derived complex analytic spaces (see [DAG IX, §11 & §12] & [Por19]),

4. derived manifolds (see [CS19]),

it is often possible to identify a suitable class of “étale morphisms”, giving rise to the attendant
notion of Deligne-Mumford stack. In [Car20] Carchedi shows that, surprisingly, in many such
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cases the ∞-category of Deligne-Mumford stacks (with relaxed finiteness and separatedness
conditions) and étale morphisms between them form an ∞-topos. The relationship between the
two resulting ∞-toposes is axiomatised by Lurie in terms of the notion of fractured ∞-topos in
[Lur18, Def. 20.1.2.1].

In §2.1 we begin by providing a definition of fractured∞-toposes equivalent to Lurie’s which
highlights the salient properties necessary for us (in particular in §3.3). After this, we discuss
some useful properties of fractured ∞-toposes. Then, in §2.2 we discuss the notion of geometric
sites which allow us to construct fractured ∞-toposes (such as Diff r). Then, finally, in §2.3 we
prove the equivalence between our definition of fractured ∞-topos and Lurie’s.

2.1 Basic definitions and properties

Definition 2.1.1. A fractured ∞-topos is an adjunction

j! : E
corp E : j∗⊥

between ∞-toposes Ecorp and E satisfying properties (a) -(d) below:

(a) The topos E is generated under colimits by the objects in the image of j!.

(b) For every object U in Ecorp, the left adjoint in

(j!)/U : Ecorp
/U E/U : (j∗)/U⊥

is fully faithful.

(c) The functor Ecorp ← E : j∗ preserves colimits.

(d) For any pullback square
U ′ U

V ′ V

in which U → V and V ′ are in the image of j!, the map U ′ → V ′ is in the image of j!.

An object in E is referred to as corporeal if it is in the image of j!. ⌟

For the rest of this section j! : E
corp ↪→ E refers to a fixed fractured ∞-topos. Observe that

j! is faithful (but never full, unless it is an equivalence). The ∞-topos Ecorp will then often be
identified with its image under j!.

A morphism U → X in a fractured ∞-topos E is called admissible if for every pullback
diagram

U ′ U

X ′ X

in which X ′ is in Ecorp, the morphism U ′ → X ′ is in Ecorp. Thus, Ecorp may be identified with
the ∞-category of corporeal objects in E together with the admissible morphisms. Under mild
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conditions the structure of a fractured ∞-topos may be recovered from its class of admissible
morphisms (see [Lur18, Rmk. 20.3.4.6]). Axiom (d) in Definition 2.1.1 can then be thought of
as consisting of two parts:

1. Admissible morphisms are closed under pullbacks.

2. If U → V is an admissible morphism, and V is a corporeal object, then U is a corporeal
object.

For any corporeal object U the subcategory of E/U spanned by the admissible morphisms is then
equivalent to the ∞-topos E

corp
/U , so that we obtain gros and petit ∞-toposes E/U and E

corp
/U of

U , respectively.

Remark 2.1.2. In [DAG V] Lurie introduces the notion geometry (see Remark 2.2.4), which is a
site with extra structure. Lurie presents a further interpretation of the notion of fractured ∞-
topos in [Lur18, §21], namely as a “coordinate free” version of geometries (in the sense that a site
may be viewed as providing “coordinates” or generators and relations for an ∞-topos.). In the
examples 2 - 4 listed in the beginning of this section the∞-toposes are all classifying∞-toposes
for various flavours of locally ringed ∞-toposes, such as strictly Henselian or locally C∞-ringed
∞-toposes. The structure of a fractured ∞-topos then makes it possible to define locally ringed
morphisms for the various flavours of locally ringed ∞-toposes. From this perspective ∞-topos
Diff r is unusual in that we don’t know of any insightful way of thinking of it as a classifying
∞-topos. ⌟

We now conclude this subsection with some basic properties of fractured ∞-toposes, which
exhibit some ways in which Ecorp controls certain properties of E.

Proposition 2.1.3. The functor Ecorp ← E : j∗ is conservative.

Proof. Let X → Y be a morphism in E such that j∗X → j∗Y is an isomorphism, then for every
object U in Ecorp the map Ecorp(U, j∗X) → Ecorp(U, j∗Y ) is an isomorphism, so that for every
object U in Ecorp the map E(j!U,X) → E(j!U, Y ) is an isomorphism, but as any object Z can
be written as a colimit of objects in the image of j! it follows that E(Z,X) → E(Z, Y ) is an
isomorphism, so that X → Y is an isomorphism by the Yoneda lemma.

Corollary 2.1.4. If Ecorp is hypercomplete, then so is E.

Proof. Let X → Y be an∞-connected morphism in E, then j∗(X≤n → Y≤n) = (j∗X → j∗Y )≤n

as j∗ is both cocontinuous and preserves finite limits. Thus, j∗X → j∗Y is an isomorphism in
Ecorp, so that by Proposition 2.1.3 X → Y is an isomorphism.

Corollary 2.1.5. If Ecorp has enough points, then so does E.

Proof. Denote by j∗ the right adjoint to j∗ (which exists by the adjoint functor theorem), then
any point p∗ : S→ Ecorp yields a point j∗p∗ : S→ E. Let X → Y be a morphism in E such that
p∗j∗X → p∗j∗Y is an isomorphism for every point p of Ecorp, then j∗X → j∗Y is an isomorphism
by assumption, and thus also X → Y by Proposition 2.1.3.

Recall that an ∞-topos F is local if the global sections functor π∗ : F → S admits a right
adjoint, which we denote by π!.
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Proposition 2.1.6. If there exists an object ⋆ in Ecorp such that j!⋆ = 1E, and moreover
E
corp
/⋆ = S, then E is local.

Proof. As j∗/⋆ = (πE)∗ commutes with colimits, we obtain a triple adjunction

S = E
corp
/⋆ E = E/j!⋆

(j∗)/⋆

(j!)/⋆

(j∗)/⋆

where (j!)/⋆ ⊣ (j∗)/⋆ is the unique geometric morphism E→ S.

2.2 Geometric sites

We now discuss the notion of geometric site, culminating in Theorem 2.2.6, which will allow us
to exhibit Diff r as a fractured ∞-topos.

Definition 2.2.1 ([Lur18, Def. 20.2.1.1]). Let G be an ∞-category, then an admissibility
structure on G is a subcategory Gad, whose morphisms are referred to as admissible morphisms,
such that:

(a) Every equivalence in G is an admissible morphism.

(b) For any admissible morphism U → X, and any morphism X ′ → X there exists a pullback
square

U ′ U

X ′ X,

in which U ′ → X ′ is admissible.

(c) For any commutative triangle

X Y

Z

f

gh

in which g : Y → Z is admissible, the morphism f : X → Y is admissible iff h : X → Z is.

(d) Admissible morphisms are closed under retracts.

⌟

Example 2.2.2. The admissible morphisms in a fractured∞-topos form an admissibility struc-
ture. ⌟

Definition 2.2.3 ([Lur18, Def. 20.6.2.1]). A geometric site is a triple (G,Gad, τ) consisting
of

(i) a small ∞-category G,

(ii) an admissibility structure Gad on G, and
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(iii) a Grothendieck topology τ on G,

such that every covering sieve in τ contains a covering sieve generated by admissible morphisms.
⌟

Remark 2.2.4. A geometric site (G,Gad, τ) for which G is finitely complete is called a geometry
in [DAG V]. ⌟

Lemma 2.2.5 ([Lur18, Props. 20.6.1.1 & 20.6.1.3]). Let (G,Gad, τ) be a geometric site, then
there exists a Grothendieck topology on Gad in which a sieve R in Gad is a covering sieve iff the
sieve generated by R in G is a covering sieve. Any sheaf on G restricts to a sheaf on Gad.

Theorem 2.2.6 ([Lur18, Th. 20.6.3.4]). Let (G,Gad, τ) be a geometric site, and denote by E

the ∞-topos of sheaves on G, and, by Ecorp the ∞-topos of sheaves on Gad, then the restriction
functor Ecorp ← E : j∗ admits a left adjoint, and the resulting adjunction is a fractured ∞-
topos.

Remark 2.2.7. In the same way that not every ∞-topos is the category of sheaves on a site, not
every fractured ∞-topos is given as in the preceding theorem. However, it is true that every
fractured ∞-topos may be realised as the localisation of a fractured presheaf ∞-topos, and that
this presheaf ∞-topos may be obtained as in the preceding theorem with τ = ∅. See [Lur18,
Th. 20.5.3.4]. ⌟

2.3 Equivalence with Lurie’s definition of fractured ∞-toposes

Proposition 2.3.1. Definitions 2.1.1 and [Lur18, Def. 20.1.2.1] are equivalent.

Proof. Lurie defines a fractured ∞-topos to be an ∞-topos E together with a subcategory Ecorp

(which by [Lur18, Prop. 20.1.3.3] is an∞-topos) satisfying conditions (0) - (3), which we do not
repeat here.

First we prove (a) - (d) =⇒ (1) - (2):
(d) =⇒ (1): Let

U ′ U

V ′ V

be a pullback square in which U → V and V ′ → V are in Ecorp, then (1) follows from applying
(d) first to the above pullback square, and then to the pullback square obtained by switching
U → V and V ′ → V .
(a) & (c) =⇒ (2): Follows from Proposition 2.1.3.

We now prove (1) - (3) =⇒ (a) - (c): Axioms (a) and (b) follow from [Lur18, Cor. 20.1.3.4]
and [Lur18, Prop. 20.1.3.1], respectively, and axiom (c) is contained in axiom (2).

We conclude the proof by showing that (d) ⇐⇒ (0) & (3) under the assumption of (a) - (c).
Recall that we refer to the image under j! of any corporeal object U again by U .
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(d) =⇒ (3): Observe that by (b) the map j∗U → j∗V ×V U is corporeal, so that for every
corporeal object W we obtain a commutative diagram:

Ecorp(W, j∗U)

Ecorp(W, j∗V ×V U) E(W, j∗V ×V U) E(W,U)

Ecorp(W, j∗V ) E(W, j∗V ) E(W,V ).

The rightmost square is a pullback by the definition of U ×V j∗V , and the leftmost square
is a pullback square by (b). But Ecorp(W, j∗V ) → E(W,V ) is an isomorphism by the uni-
versal property of j∗V , and thus Ecorp(W, j∗V ×V U) → E(W,U) is an isomorphism, so that
Ecorp(W, j∗U)→ Ecorp(W, j∗V ×V U) is an isomorphism.
(0) & (3) =⇒ (d): The pullback square in (d) factors as

U ′ j∗U U

V ′ j∗V V.

The rightmost square is a pullback by (3), and the outer square is a pullback by assumption, so
that the leftmost square is also a pullback. The morphism U ′ → V ′ is then in the image of j!
by (0) & (3).

3 Shapes and cofinality

As explained in §1 the shape of any object in an∞-topos provides a Galois theoretic notion of its
underlying pro-homotopy type. In §3.1 we give a definition of the shape of an∞-topos, and give a
cohomological criterion for when a geometric morphism induces an equivalence of shapes. Then,
we discuss local shape equivalences – geometric morphisms satisfying an analogous property to
initial functors. In §3.2 we specialise to locally contractible ∞-toposes – those ∞-toposes for
which the shape of all objects are homotopy types. We then show how certain nerve diagrams in
locally contractible ∞-toposes satisfying a cofinality condition may be used to calculate shapes.
Finally, in §3.3 we discuss how the structure of a fractured ∞-topos interacts with the property
of being locally contractible.

Throughout this section E,F,X,Y denote ∞-toposes.

3.1 Basic definitions and properties

Observe that by [DAG XIII, Prop. 3.1.6] and [Lur09b, Prop. 5.4.7.7] the copresheaf (πX)∗ ◦ π∗
X

may be identified with an object in Pro(S), called the shape of X, and is denoted by Π∞(X).
The ∞-topos is said to have trivial shape if Π∞(X) = 1. Observe that X has trivial shape iff
X← S : π∗ is fully faithful.

Any geometric morphism f : X → Y gives to a morphism of shapes Π∞(X) → Π∞(Y) by
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composing

(πX)∗ ◦ π∗
X = X(1X, π

∗
X( )) = X(f∗1Y, π

∗
Y ◦ f∗( ))← Y(1Y, π

∗
Y( )) = (πY)∗ ◦ π∗

Y. (13)

It turns out to be surprisingly difficult to coherently extend Π∞ to a functor Top → Pro(S).
As Top admits all filtered limits (see [Lur09b, Th. 6.3.3.1]), the functor Top ← S, S/A ←[ A
extends to a functor Top ← Pro(S). In the upcoming [Mar] the shape Π∞ will be exhibited
as the left adjoint of Top ← Pro(S), thus not only showing that Π∞ can be made functorial,
but also exhibiting a universal property of Π∞, and moreover providing a version of the Seifert
- Van Kampen theorem, as Π∞ preserves colimits.

Fortunately, we will only require “local functoriality” of Π∞: The functor E← S : π∗ extends
to a functor E ← Pro(S). Tracing through the proof of [Cis19, Prop. 6.3.9] and again applying
[DAG XIII, Prop. 3.1.6] and [Lur09b, Prop. 5.4.7.7] one sees that this functor admits a left
adjoint given by X 7→ E(X,π∗( )), which we denote by (πE)! : E → Pro(S) (or π!, when E is
clear from context). Like Π∞, the functor (πE)! is also a left adjoint, yielding a second version
of the Seifert-Van Kampen theorem. The two shape functors are compatible in that we recover

(πE)! from Π∞ as the composition of E
E 7→E/E−−−−−→ Top

Π∞−−→ Pro(S).
The shape of an ∞-topos is a powerful invariant, motivating the following definition:

Definition 3.1.1. A geometric morphism f : X→ Y is called a shape equivalence if Π∞f is
an isomorphism. ⌟

Example 3.1.2. A functor A→ B between small∞-categories induces an equivalence between
homotopy types A≃

≃−→ B≃ iff the induced geometric morphism [Aop, S] [Bop, S]⊥ is a
shape equivalence. ⌟

We have the following cohomological Whitehead theorem for hypercomplete ∞-toposes:

Proposition 3.1.3. If X,Y are hypercomplete, then a geometric morphism f : X→ Y is a shape
equivalence iff the induced morphism

H i(X;E)← H i(Y;E)

is an isomorphism for all i ≥ 0 and all E, where E is a set for i = 0, a group for i = 1, and an
Abelian group for i ≥ 2.

Proof. For the if statement we want to prove that for any homotopy type K the induced map
X
(
1X, (πX)

∗(K)
)
← Y

(
1Y, (πX)

∗(K)
)

is an equivalence. First, we observe that it is enough to
show this for the special case when K is n-truncated for some n ∈ N, because for general K we
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then have
X
(
1X, (πX)

∗(K)
)
= X

(
1X, lim

i
(πX)

∗(K)≤i

)
= X

(
1X, lim

i
(πX)

∗(K≤i)
)

= lim
i
X
(
1X, (πX)

∗(K≤i)
)

= lim
i
Y
(
1X, (πY)

∗(K≤i)
)

= Y
(
1Y, lim

i
(πY)

∗(K≤i)
)

= Y
(
1Y, lim

i
(πY)

∗(K)≤i

)
= Y

(
1Y, (πY)

∗(K)
)
,

where the first and last isomorphisms follow from the hypercompleteness assumption, and the
second and penultimate isomorphisms follow from [Lur09b, 5.5.6.28].

We prove the statement for i-truncated K via induction on i: The base case i = 0 holds
by assumption. Let i > 0, and assume the statement holds for all k-truncated objects, for
0 ≤ k < i. Let K be an i-truncated homotopy type, then we obtain the commutative square

X
(
1X, (πX)

∗(K)
)

Y
(
1Y, (πY)

∗(K)
)

X
(
1X, (πX)

∗(K≤i−1)
)

Y
(
1Y, (πY)

∗(K≤i−1)
)

in which the bottom arrow is an isomorphism by the induction hypothesis. To show that
the top horizontal morphism is an equivalence it is thus enough to show that for every fibre
L of K → K≤i−1 the map X

(
1X, (πX)

∗(L)
)
← Y

(
1Y, (πY)

∗(L)
)

is an equivalence , as 1 =

X
(
1X, (πX)

∗(1)
) =←− Y

(
1Y, (πY)

∗(1)
)
= 1, and both X

(
1X, (πX)

∗( )
)

and Y
(
1Y, (πY)

∗( )
)

preserve
finite limits. We check the equivalence on connected components and on loop spaces. For every
point in L we have

ΩX
(
1X, (πX)

∗(L)
)
= X

(
1X, (πX)

∗(ΩL)
)

= Y
(
1Y, (πY)

∗(ΩL)
)

= ΩY
(
1Y, (πX)

∗(L)
)
,

where the second isomorphism follows from the induction hypothesis. On connected components
we have

π0X
(
1X, (πX)

∗(L)
)
= H i(X, L)

= H i(Y, L)

= π0 Y
(
1Y, (πY)

∗(L)
)

where the second isomorphism follows by assumption.
The only if statement is obvious.

Corollary 3.1.4. Let X be hypercomplete ∞-topos, then the shape fo X is contractible iff the
canonical map

E → H0(X, E)
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is an equivalence for all sets E, and
H i(X, G) = 0

for all i and all G, where G is a group for i = 1, and an Abelian group for all i ≥ 2.

We now discuss how geometric morphisms satisfying extra conditions interact with shapes:

Definition 3.1.5. A geometric morphism u : E → F is called essential if u∗ admits an extra
left adjoint, which we denote by u!. ⌟

Example 3.1.6. Any étale geometric morphism in essential. ⌟

Proposition 3.1.7. Let u : E → F be an essential geometric morphism, then u! preserves
shapes.

Proof. The functors (πF)! ◦ u! and (πE)! are both left adjoint to the extension of the functor π∗
E

to Pro(S)→ E.

Example 3.1.8. Let u : A → B be a functor between small ∞-categories, then the functor
u! : [A

op, S]→ [Bop, S] preserves shapes. ⌟

We now turn to a notion of cofinality in the toposic context. Let f : E→ F be a geometric
morphism, then, by [Cis19, 6.4.2] the functor (13) may be extended to a base change map

E F

Pro(S)

f∗

(πE)! (πF)!
(14)

given by

(πE)!f
∗Y = E(f∗Y,

(
πE)

∗( )
)
= E(f∗Y, f∗ ◦

(
πF)

∗( )
)
← F(Y,

(
πF)

∗( )
)
= (πF)!F

or equivalently by
Π∞(f/Y ) : Π∞(E/f∗Y )→ Π∞(F/Y ).

Definition 3.1.9. The geometric morphism f : E → F is a local shape equivalence iff the
base change map (πE)! ◦ f∗ ⇒ (πF)! from (14) is an equivalence. ⌟

Example 3.1.10. A functor A → B between small ∞-categories is initial iff the induced
geometric morphism [Aop, S] [Bop, S]⊥ is a local shape equivalence. ⌟

We conclude this subsection with some useful properties of local shape equivalences:

Proposition 3.1.11. Let f : E → F be a geometric morphism. Assume that F is generated
under small colimits by a subcategory C, and that the base change map (πE)!(f

∗F )← (πF)!F is
an isomorphism for every object F in C, then f is a local shape equivalence.

Proposition 3.1.12. Let a : E ↪→ F be a geometric embedding which is also a local shape
equivalence, then (πE)! = (πF)! ◦ a∗.

Proof. By assumption (πE)!◦a∗ = (πF)!, so the corollary follows from precomposing with a∗.
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Proposition 3.1.13. Any geometric morphism f : E→ F such that f∗ is fully faithful is a local
shape equivalence.

Proof. For every Y in F we have E
(
f∗Y, π∗

E( )
)
= E

(
f∗Y, f∗π∗

F( )
)
= F

(
Y, π∗

E( )
)
.

Corollary 3.1.14. If E has trivial shape, then πE : E→ S is a local shape equivalence.

Proposition 3.1.15. Any local ∞-topos (see §2.1) has trivial shape.

Proof. The adjunction π! ⊢ π∗ is a geometric morphism, so that π!π∗ is the direct image com-
ponent of a geometric morphism S→ S and thus equivalent to the identity. By [JM89, Lm. 1.3]
the counit of the induced adjunction Ho(π∗) : Ho(X) Ho(S) : Ho(π!)⊥ is an isomorphism,
and therefore the counit of π! ⊢ π∗ is an isomorphism.

3.2 Locally contractible toposes

We now specialise to a class of ∞-toposes, for which the theory of shapes is particularly nice.

Definition 3.2.1. An object in E is called contractible if its shape is trivial. ⌟

Proposition 3.2.2 ([MW23, Prop. 5.2.3]). The following are equivalent:

(I) The shape functor π! : E→ Pro(S) factors through S.

(II) The ∞-topos E is generated under colimits by its subcategory of contractible objects.

Proof. The implication (II) =⇒ (I) follows from the fact that the inclusion S ↪→ Pro(S)

commutes with colimits. To show (I) =⇒ (II), let E be an object or E, then π!E is the colimit
of the constant diagram 1 indexed by π!E. Thus, π∗π!E is the colimit of the constant diagram
1 indexed by π!E in E, so that E is the colimit of the diagram E ×π∗π!E 1 indexed by π!E, and
E ×π∗π!E 1 has contractible shape by [Lur17, Prop. A.1.9].

Definition 3.2.3. An ∞-topos is called locally contractible if it satisfies the equivalent con-
ditions of Proposition 3.2.2. ⌟

Remark 3.2.4. Locally contractible ∞-toposes are called locally of constant shape in [Lur17],
and locally ∞-connected in [Hoy18]. ⌟

Proposition 3.2.5 ([Lur17, Prop. A.1.11]). Assume that E is locally contractible, then the
functor (π!)/1E

: E/1E
= E→ S/π!1E

admits a fully faithful right adjoint.

Remark 3.2.6. In Proposition 3.2.5 the image of the left adjoint of (π!)/1E
: E/1E

= E → S/π!1E

is given by the subcategory of E spanned by the covering spaces of 1E.

By [Cis19, Prop. 7.11.2] we obtain the following corollary (with notation as in Proposition
3.2.7):

Corollary 3.2.7. The functor (π!)/1E
: E/1E

= E→ S/π!1E
exhibits S/π!1E

as the localisation of
E along its weak equivalences.

23



Example 3.2.8. Let A be a small ∞-category, then the constant presheaf functor [Aop, S]← S

admits both a left and a right adjoint, given by the colimit and limit functors, respectively, so
that [Aop, S] is a locally contractible∞-topos. We have colim1 = A≃, and the image of the fully
faithful right adjoint to the functor colim/1 : [Aop, S]→ S/A≃ is spanned by those presheaves on
A carrying all morphisms in A to isomorphisms. ⌟

Informally, this right adjoint functor is given by sending any map A→ π!1 in S to the map
1×π∗π!1 π∗A→ 1. For locally contractible ∞-toposes, this makes precise the idea explained in
§1.1 that π!1 is characterised by universally controlling the theory of covering spaces on 1. For
similar statements for non-locally contractible ∞-toposes, see [Hoy18].

Before moving on to nerves, we briefly discuss equivariant homotopy theory in locally con-
tractible ∞-toposes. Assume that E is locally contractible, then for any group object G in E

the ∞-category EG is an ∞-topos, as it is equivalent to E/BG. If, moreover, the shape functor
(πE)! : E→ S preserves finite products, then we see from the left square of

EG E/BG E

Sπ!G S/Bπ!G S

≃

≃

that ((πEG
)!)/1EG

is given by the functor EG → Sπ!G taking any object X to (πE)!X with its
induced (πE)!G-action. By composing the two horizontal morphisms on the top we see that the
quotient functor G/ : EG → E is the extra left adjoint of an étale geometric morphism, so that
Proposition 3.1.7 yields the following result:

Proposition 3.2.9. For any object X in EG the comparison morphism π!X/π!G→ π!(X/G) is
an isomorphism in S.

3.2.1 Nerves

We now discuss the main tool for calculating shapes in this article. Until the end of §3.2.1, E
denotes a locally contractible ∞-topos. Moreover, let A be a small ∞-category together with a
functor u : A→ E.

Proposition 3.2.10. If the image of u : A → E is spanned by contractible objects then the
functors colim : [Aop, S]→ S and (πE)! ◦ u! are canonically equivalent.

Proof. By assumption the composition of A
u−→ E

π!−→ S is equivalent to the constant functor
a 7→ 1, so the equivalence is obtained by extending by colimits.

In the following two statements C ⊆ E denotes a small subcategory spanned by contractible
objects and generating E under colimits.

Proposition 3.2.11. The shape functor (πE)! is canonically equivalent to colimc∈C E(c, ).

Proof. We observe that (π[Cop,S])!c = colimC( , c) = 1 for every object c in C, and apply first
Proposition 3.1.11 and then Proposition 3.1.12 to the geometric morphism E→ [Cop, S].
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Theorem 3.2.12. Assume that u : A → E factors (uniquely) through C ↪→ E, and that the
functor u : A→ C is initial, then the natural transformation

colim ◦u∗ → (πE)!

is an equivalence.
Moreover, both u! and u∗ preserve weak equivalences, and induce and adjoint equivalence as

indicated in the following diagram:

[Aop, S] E

S/A≃ S/π!1

u!

u∗

≃

≃

⊣
⊣

Proof. The two diagrams

[Aop, S] E [Aop, S] E

S S

u!

colim
π!

u∗

π!colim

commute, the first one by Proposition 3.2.10, and the second one by the following calculation
(obtained using Proposition 3.2.11): (πE)!X = colimc∈C E(c,X) = colima∈A E(ua,X). Thus,
both u! and u∗ preserve weak equivalences, inducing the indicated adjoint equivalence by Corol-
lary 3.2.7 and [Cis19, Prop. 7.1.14].

We will often refer to any functor u : A→ E to which we intend to apply Theorem 3.2.12 as
a nerve diagram , and the functor [Aop, S] ← E : u∗ as a nerve . In the examples considered
this article, the functor α : A→ C will usually induce a bijection on objects.

Remark 3.2.13. Let u, v : A → E be two nerve diagrams satisfying the conditions of Theorem
3.2.12 (the small subcategories C are not assumed to be the same for u and v). Any natural
transformation u→ v induces a natural transformation u∗ ← v∗, and by the universal property
of localisations we obtain a diagram

[Aop, S] E

S/A≃ S/π!1.

u∗

v∗ (15)

As the two functors S/A≃ ← Sπ!1 are equivalences they restrict to equivalences A≃ ← π!1. (This
follows e.g. from [AF20, Th. 2.39], or the fact that S/ : S→ Top is fully faithful.) The functor
from morphisms A≃ ← π!1 to colimit preserving functors [Aop

≃ , S]← [(π!1)
op, S] is fully faithful,

and thus the lower natural transformation in (15) must be a natural isomorphism. ⌟

We will repeatedly use Propositions 3.2.17 & 3.2.18 below to verify the conditions of the
above proposition.
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Definition 3.2.14. Let A be an ordinary category, admitting a final object 1, then an object
I in A with two morphisms 1 ⇒ I is called an interval in A. If A admits an initial object 0,
and the square

0 1

1 I

is a pullback, then I is separating interval . ⌟

Example 3.2.15. Let E be an ordinary topos, then the subobject classifier Ω in E canonically
has the structure of a separating interval. The first morphism 1 → Ω is given by the universal
monomorphism, and the second morphism 1→ Ω classifies the subobject 0→ 1. ⌟

Definition 3.2.16. Let A be an ordinary category equipped with an interval I, then an I-
homotopy between two maps f, g : a ⇒ a′ is a commutative diagram

1× a

I × a a′

1× a

f

g

and f and g are called I-homotopic if there exists an I-homotopy between f and g. A map
f : a→ a′ is an I-homotopy equivalence if there exists a map a← a′ : g, such that gf and fg

are I-homotopic to ida and ida′ , respectively. An object a in A is I-contractible , if the unique
morphism a→ 1 is an I-homotopy equivalence. ⌟

Proposition 3.2.17. Let (A, I) and (B, J) be pairs consisting of small ordinary categories
together with an interval, and let u : A → B be a functor carrying I to J (including the
inclusions of the final object, which u must then preserve). Assume that

(a) π! : [A
op, S]→ S preserves finite products, and that

(b) every object in B is J-contractible

then u is initial.

Proof. The functor u is initial iff for every object b in B the shape of u∗b is contractible (see
[Cis19, Cor. 4.4.31]). Let J × b→ b be an J-contraction of b, then the unit morphisms produce
a diagram

u∗b ∼= 1A × u∗b u∗u!1A × u∗b ∼= u∗(1A × b)

I × u∗b u∗u!I × u∗b ∼= u∗(J × b) u∗b,

u∗b ∼= 1A × u∗b u∗u!1A × u∗b ∼= u∗(1A × b)

id

0

showing that u∗b is I-contractible by (a).
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Proposition 3.2.18. Let (B, J) be a pair consisting of a small ordinary category together with
an interval. Let u : → B be a functor carrying the interval 1 to J (including the inclusions
of the final object, which u must then preserve). If every object in B is J-contractible then u is
initial.

Proof. The functor u is initial iff for every object b in B the shape of u∗b is contractible (see
[Cis19, Cor. 4.4.31]). We will require the following claim, which we prove below.
Claim: There exists a natural morphism X1 ⊗X2 → X1 ×X2.

Let J × b→ b be an J-contraction of b, then the unit morphisms produce a diagram

u∗b ∼= 1 ⊗ u∗b 1 × u∗b u∗u!1 × u∗b ∼= u∗(1 × b)

1 ⊗ u∗b 1 × u∗b u∗u!
1 × u∗b ∼= u∗(J × b) u∗b,

u∗b ∼= 1 ⊗ u∗b 1 × u∗b u∗u!1 × u∗b ∼= u∗(1 × b)

id

0

showing that u∗b is 1-contractible because π!(X1 ⊗ X2) ≃ π!X1 × π!X2 for all cubical sets
X1, X2 (see [Cis06, Cor. 8.4.32]).

Proof of claim: We note that for any two cubical sets X1, X2 there are canonical morphisms
X1 ⊗ X2 → Xi (i = 1, 2). To see this, note that for any k1, k2 ∈ N we have projection maps
(in Set) k1 ⊗ k2 ∼= {0, 1}k1 × {0, 1}k2 → {0, 1}ki for i = 1, 2; the canonical morphisms
X1 ⊗ X2 → Xi (i = 1, 2) are then obtained by extending by colimits, yielding the desired
morphism.

Proposition 3.2.19. With notation as in Proposition 3.2.18, if B admits products, u : → B

is monoidal, and every object in B is a finite product of J , then u is initial if J is J-contractible.

Proof. It is enough to show that if the objects b and b′ are J contractible, then so is b×b′. So let
J × b→ b and J × b′ → b′ be contractions, then the composition of J × b× b′ → J ×J × b× b′ →
b× b′ is a contraction of b× b′, where the first morphism is induced by the diagonal morphism
J → J × J .

3.3 Fractured ∞-toposes and shapes

We now prove the result that will allow us to exhibit Diff r as a locally contractible topos. This
result may be viewed as a vast generalisation of the techniques underlying [Cis03, Lm. 6.1.5].
Throughout this subsection j! : E

corp E : j∗⊥ denotes a fractured ∞-topos.

Theorem 3.3.1. For any corporeal object X the geometric morphism j! : E
corp
/X E/X : j∗⊥

is a local geometric morphism.

Proof. This is a consequence of property (b) of in the definition of fractured ∞-toposes, and
Proposition 3.1.13.

The following result could be viewed as a corollary of the above, but we note that it follows
more immediately from Proposition 3.1.7.
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Theorem 3.3.2. The functor j! : E
corp → E preserves shapes.

Thus, the cohomology of a geometric object such as a scheme with coefficients in a locally
constant sheaf is the same when computed in its big or small topos. For us, Theorem 3.3.1
provides a way of showing that a topos is locally contractible, as seen in the following corollary.

Corollary 3.3.3. Let C ⊆ Ecorp be a small subcategory, spanned by contractible objects, and
generating Ecorp under colimits, then j!C ⊆ E is a small subcategory, spanned by contractible
objects, generating E under colimits.

In other words, if Ecorp is locally contractible, then so is E.

Remark 3.3.4. By [Lur18, Rmk. 20.3.2.6] the subcategory of E/X spanned by admissible morph-
isms is an ∞-topos for any object X in E, and it can be shown that the inclusion of this
subcategory into E/X induces an equivalence on shapes. ⌟

4 Homotopy theory in locally contractible (∞-)toposes

Fix a relative ∞-category (C,W ), i.e. an ∞-category C together with a subcategory W

containing all isomorphisms. It is then natural to study the relationship between C and its
localisation W−1C; in particular, one may ask which limits in W−1C may be obtained via
constructions in C.

Definition 4.0.1. Let K be a simplicial set, then a functor p : K� → C is called a homotopy
limit of p|K : K → C if the composition of K� → C → W−1C is a limit of the composition

of K
p|K−−→ C → W−1C. A functor K� → C is a homotopy colimit if (K�)op → Cop is a

homotopy limit. ⌟

In particular, a (co)limit in C is a homotopy (co)limit iff it is carried to a (co)limit by
C →W−1C.

While at the level of generality of Definition 4.0.1 the theories of homotopy limits and colimits
are dual to each other, in this article homotopy limits and colimits have very different flavours.
This is because the localisation functors under consideration of are all of the form C → S with C

some subcategory of a locally contractible∞-topos E, and the localisation functor is simply given
by the restriction of π! to C. Thus, when C = E all colimits are homotopy colimits. When C ⊊ E

we can exhibit many colimits in C as homotopy colimits by showing that they are preserved by
the inclusion C ↪→ E. This approach is explored in §4.1 & §4.2 where C consists of n-truncated
objects and concrete objects (to which we also give a brief introduction), respectively.

Commuting limits past (π!)|C is considerably harder, and requires different techniques. To
this end we develop the basic theory of homotopical calculi (e.g., model structures) on ∞-
categories in §4.3, and then use the machinery of §3.2.1 combined with test categories to construct
homotopical calculi on locally contractible ∞-toposes in §4.4.

4.1 Colimits of n-truncated objects in ∞-toposes

Let E be a fixed ∞-topos, and n ≥ −2. In this subsection we will show that many colimits of
n-truncated objects in E are again n-truncated.
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Proposition 4.1.1. Consider a pushout square in E

X X ′

Y Y ′

for which X,X ′, Y are n-truncated, and in which the top horizontal map (and thus also the bottom
horizontal map; see [ABFJ20, Prop. 2.2.6]) is a monomorphism, then Y ′ is n-truncated.

Proposition 4.1.2. The inclusion E≤n ↪→ E commutes with filtered colimits.

Proposition 4.1.3. The inclusion E≤n ↪→ E commutes with coproducts.

Proposition 4.1.4. The subcategory of n-truncated objects is closed under retracts.

Corollary 4.1.5. Let A be a small category, and X : A→ E a functor (n ∈ N). If

1. X is a wedge in which one leg is a monomorphism,

2. A is filtered, or

3. A is discrete,

then restricted shape functor π!|E≤n
→ Pro(S) preserves the colimit of X .

Discussion of the proofs of Propositions 4.1.1 - 4.1.4 All four propositions may be
proved by first checking the statement for simplicial sets equipped with the Kan-Quillen model
structure, so that they are true in S. In any presheaf ∞-topos the statements can be checked
pointwise. The general statements then follow from the fact that left exact functors preserve
monomorphisms and truncation.

We believe that it would be conceptually pleasing to have proofs of these statements which
rely on descent (similar to e.g. [ABFJ20, Prop. 2.2.6]) rather than the fact that every ∞-topos
is a left exact localisation of a presheaf ∞-category. A proof of this form of a generalisation of
Proposition 4.1.4 was suggested to us by Bastiaan Cnossen.

Proposition 4.1.6. Let C be a finitely complete ∞-category, then n-truncated maps in C are
closed under retracts.

Proof. Let
x′ x x′

y′ y y′

be a retract diagram in which x → y is n-truncated, then we wish to show that x′ → y′ is
likewise n-truncated. For n = −2 the statement is clear, so assume that n > −2. Then we
obtain a new retract diagram

x′ x x′

x′ ×y′ x
′ x×y x x′ ×y′ x

′
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and the general statement follows by induction.

4.2 Concrete objects

Throughout this subsection E denotes an ordinary topos. Just as for ∞-toposes, E is called
local if the global sections functor admits a right adjoint, which by the same argument as for
∞-toposes is fully faithful. We first define the full subcategory Econcr of concrete objects in E

and discuss some of their basic properties, before exhibiting various colimits which are preserved
by the inclusion Econcr ↪→ E in §4.2.1.

Definition 4.2.1. An object X in E is concrete if the canonical morphism X → π!π∗X is a
monomorphism. The subcategory of E spanned by concrete objects is denoted by Econcr. ⌟

A concrete object in E may be thought of a set together with extra structure, making it into
an object in E. The functor π∗ : Econcr → Set is moreover faithful (but not full, in general). To
see this let X,Y be two concrete objects together with morphisms X ⇒ Y whose image agree
in Set(π∗X,π∗Y ), then we obtain a diagram

X π!π∗X

Y π!π∗Y ,

and we see that X ⇒ Y are equalised by the monomorphism Y ↪→ π!π∗Y . Thus a morphism
X → Y in Econcr may be viewed as a morphism π∗X → π∗Y on underlying sets, respecting the
extra structure making the sets π∗X,π∗Y into objects in Econcr. This perspective is used for
instance in Example 4.2.7.

Example 4.2.2. For any small category A which admits a final object, the topos Â is local.
To see this, observe that π∗ : Â → Set is simply given by evaluation at the final object, and
thus commutes with colimits; therefore, it admits a right adjoint by the adjoint functor theorem,
which is given by sending any set X to a 7→ Set(A(1A, a), X). Concrete objects in Â are then
referred to as concrete presheaves on A. A concrete presheaf on A is given by a set X together
with a subset of Set(A(1A, a), X) for every object a in A; these subsets are then required to be
closed under precomposing by morphisms in A.

This observation applies to the topos of simplicial sets ∆̂, with the functor π! being exhibited
by cosk0 : Set ↪→ ∆̂. The concrete objects are then those simplicial sets X such that for any
(n + 1)-tuple (x0, . . . , xn) ∈ X

(n+1)
0 there exists at most one n-simplex with precisely these

vertices. ⌟

Proposition 4.2.3. The inclusion Econcr ↪→ E admits a left adjoint.

Proof. Recall that in any topos the epimorphisms and the monomorphisms form an orthogonal
factorisation system. Let X be an object in E, then X → π!π∗X may be factored uniquely as
X ↠ X ′ ↪→ π!π∗X. Consider any map X → Y , where Y is a diffeological space, then the lifting
problem

X Y

X ′ π!π∗X π!π∗Y
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admits a unique solution, exhibiting the universality of X → X ′.

Definition 4.2.4. The left adjoint of the inclusion Econcr ↪→ E (which exists by the preceding
proposition) is called the concretisation . ⌟

Proposition 4.2.5. The category Econcr is presentable.

Proof. The pair (π!, π∗) is a geometric embedding, so that Set is a κ-accessible subcategory of
E for some regular cardinal κ, i.e. π! : Set ↪→ E commutes with κ-filtered colimits. We claim
that Econcr ↪→ E likewise commutes with κ-filtered colimits. Let A be a κ-filtered category,
and consider a functor X : A → Econcr; as filtered colimits, and a fortiori κ-filtered colimits
preserve monomorphisms, the canonical map colimX → colimπ!π∗X

∼=−→ π!π∗ colimX is a
monomorphism, so that colimX is concrete.

4.2.1 Colimits of concrete objects in a local topos

We now discuss which colimits in Econcr are preserved by the inclusion Econcr ↪→ E.

Definition 4.2.6. A monomorphism X ↪→ Y in Econcr is called an embedding if

X Y

π!π∗X π!π∗Y

is a pullback square. ⌟

Example 4.2.7. Any retract X
i
↪−→ Y

r−→→ X is an embedding. To see this, for any object Z and
any morphisms f, g making the outer square in the diagram

Z

X Y

π!π∗X π!π∗Y

ιX ιYf

g

h

commute, there exists a unique map h : π∗Z → π∗X (indicated by the dashed arrow in the
diagram), such that the triangles (ιX , f, h) and (i, g, h) commute on underlying sets. We must
show that h is in the image of Econcr(Z, Y ) ↪→ Set(π∗Z, π∗X). Indeed, h may be written as
π∗i ◦ π∗r ◦ h, and π∗r ◦ h = π∗g by assumption, so that h = π∗(r ◦ g). ⌟

Proposition 4.2.8. Consider a span

Z

X

Y
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in Econcr, where X ↪→ Y is monomorphism, and X ↪→ Z is an embedding, then the pushout of
the above diagram in the ∞-category associated to E (see [Lur09b, Prop. 6.4.5.7]) is again an
object of Econcr.

Proof. By Proposition 4.1.1 it is enough to show that the pushout in E is again in Econcr.
We must show that the map Y ⊔X Z → π!π∗(Y ⊔X Z) in

Z

X

Y ⊔X Z

Y

π!π∗Z

π!π∗X

π!π∗(Y ⊔X Z)

π!π∗Y

(16)

is a monomorphism. Let T be any object in T , and f, g : T ⇒ Y ⊔X Z, any pair of maps, then
we will show that if their compositions with Y ⊔X Z → π!π∗(Y ⊔X Z) are equal, then so are f

and g.
First, we consider the special case in which each of the morphisms f and g factor through

either Y ↪→ Y ⊔X Z or Z ↪→ Y ⊔X Z. If both maps together factor through the same inclusion,
then f = g because Y ↪→ π!π∗(Y ⊔X Z) and Z ↪→ π!π∗(Y ⊔X Z) are monomorphisms. Thus,
assume w.l.o.g. that f factors through Y and g factors through Z. Observe that the bottom
square in (16) is a pullback square by Proposition 4.1.1, [ABFJ20, Prop. 2.2.6], and the fact
that π∗ and π! preserve limits, so that we obtain a morphism T → π!π∗X from the commutative
square

π!π∗Z

T π!π∗(Y ⊔X Z)

π!π∗Y

and thus a morphism T → X from the induced commutative square

T Z

π!π∗X π!π∗Z

and the fact that X ↪→ Z is an embedding. The composition of T → X → Z yields g by
construction. To see that the composition of T → X → Y yields f we further compose with the
monomorphism Y ↪→ π!π∗(Y ⊔XZ) which is equal to f composed with the same monomorphism.
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For the general statement consider the effective epimorphism
⋃4

i=1 Ui → T , where

U1 = f∗Y ×Y ⊔XZ, g|f∗Y Y

U2 = f∗Y ×Y ⊔XZ, g|f∗Y Z

U3 = f∗Z ×Y ⊔XZ, g|f∗Z Y

U4 = f∗Z ×Y ⊔XZ, g|f∗Z Z

then the compositions of Ui → T
f−→ Y ⊔X Z and Ui → T

g−→ Y ⊔X Z factor through Y or Z

for all i. By the above discussion,
⋃4

i=1 Ui → T equalises T ⇒ Y ⊔X Z, and thus f = g, as⋃4
i=1 Ui → T is an effective epimorphism.

Lemma 4.2.9. Let F be an ∞-topos, I a filtered category, and X : I → F a diagram such that
Xi ↪→ Xj is a monomorphism for all morphisms i → j in I, then Xi → colimX is likewise a
monomorphism for all i in I.

Proof. Denote by Ii≤ the full subcategory of I spanned by those objects admitting a morphism
from i, then I≤i is again filtered, and the functor Ii≤ → I is final, so that the canonical morphism
colimk∈Ii≤ Xk → colimk∈I Xk is an isomorphism. As Ii≤ is filtered, and thus connected, the
morphism Xi ↪→ colimk∈Ii≤ Xk may be written as colimk∈Ii≤ Xi → colimk∈Ii≤ Xk, and is a
monomorphism, because filtered colimits commute with finite limits in ∞-toposes.

Proposition 4.2.10. Let I be a filtered category, and X : I → Econcr a diagram such that
Xi → Xj is a monomorphism for all morphisms i → j in I, then the colimit of X in the
∞-category associated to E (see [Lur09b, Prop. 6.4.5.7]) is again in Econcr.

Proof. By Proposition 4.1.2 it is enough to show that the colimit of X : I → E in E is again in
Econcr.

Denote by X the colimit of X : I → E. Let T be any object in T , and f, g : T ⇒ X be a pair
of morphisms, then we will show that if their compositions with X → π!π∗X are equal, then so
are f and g. By the same technique used in the last paragraph of the proof of Proposition 4.2.8
we may assume that f and g each factor through Xi → X and Xj → X respectively, and by
the filteredness of I we may assume w.l.o.g. that i = j. Consider the square

Xi X

π!π∗Xi π!π∗X

in which Xi ↪→ X is a monomorphism by Lemma 4.2.9, and therefore also π!π∗Xi ↪→ π!π∗X, as
π!π∗ preserves limits. The compositions of the lifts of f and g to T → Xi with the monomorphism
Xi ↪→ π!π∗X are equal by assumption, and thus so are f and g.

Proposition 4.2.11. Any coproduct of concrete objects in the ∞-topos associated to E (see
[Lur09b, Prop. 6.4.5.7]) is again in Econcr.

Proof. By Proposition 4.1.3 it is enough to show that any coproduct in E is again in Econcr.
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Claim: For any object E in E the map ∅→ E is an embedding.

By induction it then follows form Proposition 4.2.8 that any finite coproduct of concrete
objects is concrete. An arbitrary coproduct is the filtered colimit of all its finite subcoproducts
so that the proposition follows from Proposition 4.2.10.

Proof of claim: We must show that

∅ π!π∗∅

E π!π∗E

is a pullback. The claim will follow from showing that for any map A → π!π∗∅ we must have
A = ∅. As π∗ is a left adjoint we have π ∗∅ = ∅, so that A → π!π∗∅ = π!∅ corresponds to a
map π∗A→ ∅ so that π∗A = ∅. But then we have A→ π∗π∗A = ∅, so that A = ∅.

We then obtain the following corollary of the above propositions:

Corollary 4.2.12. Let A be a small category, and X : A→ E a functor (n ∈ N). If

1. X is a wedge in which one leg is an embedding, and the other a monomorphism,

2. A is filtered, or

3. A is discrete,

then restricted shape functor π!|Econcr → Pro(S) preserves the colimit of X .

4.3 Basic theory of homotopical calculi

Here we construct homotopy (co)limits in a general relative category (C,W ). Let us begin with
the simplest case of a homotopy (co)limit. By [Cis19, Prop. 7.1.10] the localisation functor
γ : C → W−1C is both initial and final, so that if x0 is an initial or final object of C, then
γ(x0) is an initial or final object of W−1C. Thus, if C has a final object, then W−1C admits all
finite limits iff it admits all pullbacks, and moreover admits all limits if it furthermore admits
all products. Thus we will focus on the construction of homotopy pullbacks, and assume that
C admits all finite pullbacks. This leads us to consider the following definition.

Definition 4.3.1. A morphism is sharp if pullbacks along it are homotopy pullbacks (see
Remark 4.3.5). ⌟

In order to recognise sharp morphisms, we abstract the properties of right proper model
categories.

Definition 4.3.2. An object x in C is called right proper if the canonical functor

W−1
/x C/x → (W−1C)/x

is an equivalence. The relative category (C,W ) is called right proper if all objects in C are
right proper. ⌟
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Notation 4.3.3. If an object x in C is right proper, then we will denote the ∞-category
(W−1C)/x by W−1C/x. ⌟

Remark 4.3.4. A model category is right proper in the usual sense iff its underlying relat-
ive category is right proper. This may be seen by combining [Rez98, Prop. 2.7] with [Cis19,
Cor. 7.6.13]1. ⌟

Remark 4.3.5. Let f : x′ → x be a morphism in C, then recall that it is sharp in the sense of
Rezk (see [Rez98, §2]), if for every morphism b → x and every weak equivalence a

∼−→ b there
exists a diagram

a′ b′ x′

a b x

(17)

in which all squares are pullbacks and such that a′ → b′ is a weak equivalence. If (C,W ) is right
proper, then a morphism in C is sharp in our sense iff it is sharp in the sense of Rezk.

To see this, first assume that x′ → x is sharp in our sense, then it is sharp in the sense of
Rezk, because for every diagram of the form (17) the rightmost and outer squares are homotopy
pullbacks, so that the leftmost square is a homotopy pullback. Thus, if a → b is a weak
equivalence, then a′ → b′ is a weak equivalence.

Conversely, if x′ → x is sharp in the sense of Rezk, then the functor C/x′ ← C/x : f∗ preserves
weak equivalences, so that [Cis19, Prop. 7.1.14] yields, canonically, a commutative diagram

C/x′ C/x

W−1C/x′ W−1C/x

f!

f∗

f!

f∗

⊣
⊣

The pullback of any morphism y → x along f in C thus yields the pullback of y → x along f in
W−1C. ⌟

Luckily, the main type of relative ∞-category of interest in this article is right proper:

Proposition 4.3.6. Let E be a locally contractible ∞-topos, then E together with its class W of
shape equivalences is a right proper relative ∞-category.

Proof. By Corollary 3.2.7 the comparison functor W−1
/E (E)/π!E → W−1(E/E) is given by the

functor S/π!E→π!1 → S/π!E , which is an equivalence by [Lur09b, Prop. 4.1.1.8] and the fact that
the inclusion ∆{0} → ∆1 is initial.

We now introduce our main tool for recognising sharp morphisms in a relative ∞-category.

Definition 4.3.7. A fibration structure on (C,W ) consists of a subcategory Fib ⊆ C, such
that W and Fib satisfy the following conditions:

(a) Fib contains all equivalences in C.
1Rezk’s proof of [Rez98, Prop. 2.7] can be interpreted verbatim in model ∞-categories, so that the remark is

in fact true for model ∞-categories.
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(b) W satisfies the 2-out-of-3 property.

The morphisms in W , Fib, and Fib ∩ W are called weak equivalences, fibrations, and trivial
fibrations respectively. An object x for which some (and therefore any) morphism to a final
object of C is a fibration is called fibrant. Furthermore:

(c) In any diagram
x′

y x

f

such that f is either a fibration, or trivial fibration, the pullback is again a fibration of
trivial fibration, respectively.

(d) Any morphism x → y admits a factorisation x → x′ → y such that x′ → x′ is a weak
equivalence, and x′ → y is a fibration.

An ∞-category equipped with a fibration structure is called a fibration ∞-category .
Dually, a subcategory Cof ⊆ C is a cofibration structure on C, if Cofop is a fibration

structure on (Cop,W op). An ∞-category equipped with a cofibration structure is called a
cofibration ∞-category . ⌟

Remark 4.3.8. Our notion of fibration structure is slightly stronger than the notion of∞-category
with weak equivalences and fibrations considered in [Cis19, Def. 7.4.12]. ⌟

Example 4.3.9. The classes of weak equivalences and fibrations of any ∞-model category (see
§B) form a fibration structure, which moreover satisfy the condition of Proposition 4.3.14 if it
admits all limits. All fibration structures considered in this article will be of this form (however,
see Remark 7.2.13). ⌟

From now on we assume that (C,W ) is equipped with a fibration structure Fib.

Proposition 4.3.10. Let
y′ x′

y x
f

(18)

be pullback square in C, where y and x are proper, and x′ → x is a fibration, then the square is
a homotopy pullback.

The following proof is similar to the last part of Remark 4.3.5.

Proof. Equip the relative ∞-category (C/y,W/y) with the cofibration structure in which all
morphisms are cofibrations, and (C/x,W/x) with the fibration structured induced by Fib, then,
by [Cis19, Th. 7.5.30] the derived functors of f! and f∗ exist and are canonically adjoint to each
other. As in Remark 4.3.5 the functor Lf! : W

−1C/y → W−1C/x is given by postcomposition.
Thus, Lf! gives us the lower triangle in

Rf∗x′ x′

y x
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and the counit gives us the upper triangle, exhibiting Rf∗x′ as a pullback. We now need to
show that the above square is isomorphic to the image of (18) under C →W−1C.

As x′ → x is fibrant in C/x we obtain a canonical isomorphism y′
≃−→ Rf∗x′ in W−1C/y.

Applying Lf! yields the diagram ∆2 →W−1C/x given by

y′ Rf∗x′

y x.

Denote by Cfib
/x the full subcategory of C/x spanned by the fibrant objects, and by γ : C/x →

W−1C/x and γ′ : Cfib
/x →W−1Cfib

/x the respective localisation functors. By [Cis19, Lm. 7.5.24] and
the fact that f! preserves weak equivalences, we see that under the equivalence of ∞-categories
[W−1Cfib

/x ,W
−1C/x]

≃−→ [Cfib
/x ,W

−1C/x]W the transformation obtained by whiskering the counit

Lf!Rf∗ → idW−1C/x
by the functor W−1Cfib

/x
≃−→W−1C/x corresponds to the transformation ob-

tained by whiskering f!f
∗ → idC/x

with the inclusion Cfib
/x ↪→ C/x under the natural isomorphism

γ ◦ f! ◦ f∗|Cfib
/x

≃−→ Lf! ◦Rf∗|W−1Cfib
/x
◦ γ′ yielding a diagram ∆2 →W−1C/x given by

y′ x′

Rf∗x′ x.

Corollary 4.3.11. Let (C,W,Fib) be a fibration category such that (C,W ) is right proper, then
every fibration is sharp.

Corollary 4.3.12. Let E be a locally contractible ∞-topos, and let Fib be a fibration structure
on E w.r.t. the shape equivalences, then any fibration is sharp w.r.t. the shape equivalences.

The following simple proposition offers an effective method for detecting sharp morphisms.

Proposition 4.3.13. Let (C,W ), (C ′,W ′) be relative ∞-categories with pullbacks, and let f :

C → C ′ be a functor. Assume that

(a) f preserves pullbacks,

(b) fW ⊆W ′, and

(c) the induced functor W−1C →W ′−1C ′ is an equivalence of ∞-categories,

then any morphism x→ y in C is sharp if fa→ fb is.

Proof. Any pullback along x→ y is sent to a pullback along fx→ fy which is sent to a pullback
in W ′−1C ′, so that any pullback along x→ y is sent to a pullback in W−1C.

We now discuss not necessarily finite homotopy limits.

Proposition 4.3.14 ([Cis19, Prop. 7.7.4]). If an arbitrary product of fibrant objects in C is again
fibrant, and an arbitrary product of trivial fibrations is again a trivial fibration, then arbitrary
products of fibrant objects are homotopy products.
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Remark 4.3.15. Model categories and∞-categories are frequently viewed as providing competing
foundations for homotopy theory (see [MO78400]). In reality, the axioms for model categories
can be interpreted without difficulty in the setting of ∞-categories (see §B), not just ordinary
categories, and one observes that model structures are simply tools for studying localisations.
Any∞-category may be obtained as the localisation of an ordinary relative category (see [Cis19,
Prop. 7.3.15], [BK12]), and any presentable ∞-category may be obtained as the localisation of
a combinatorial simplicial model category (see [Lur09b, Prop. A.3.7.6] & [Lur17, Th. 1.3.4.20]
& [Cis19, Th. 7.5.18]). Before the work of Joyal, Simpson, Toën, Rezk, Lurie and many others
it was simply not practical to present a given ∞-category in any other way than as an ordinary
relative category (or a simplicially enriched category). Thus, nowadays, one has a choice of
whether one wishes to work in a given ∞-category C, or whether one wishes to view C as the
localisation of some other (∞-)category D. The optimal choice of D does not necessarily have to
be an ordinary category, as seen in Mazel-Gee’s generalisation of the Goerss-Hopkins obstruction
theorem (see [MG16]), and in our applications to differentiable sheaves in this article. ⌟

4.4 Constructing homotopical calculi in locally contractible (∞-)toposes

In §4.3 we saw how fibration structures are well suited to identifying homotopy limits in (sub-
categories of) locally contractible ∞-toposes; this subsection concerns their construction using
test categories.

Throughout this subsection A denotes a small ordinary category. In Example 3.2.8 we
saw that [Aop, S] models the ∞-category S/A≃ in the sense that taking colimits produces a
localisation [Aop, S] → S/A≃ . In the special case A = ∆ something rather remarkable happens.
The restriction of the functor [∆op, S] → S/∆≃

∼−→ S to ∆̂ → S is still a localisation, exhibiting
the classical way in which homotopy types are modelled by simplicial sets. As the construction
of the model category of simplicial sets is quite involved, one might expect this phenomenon to
be particular to ∆, but it turns out to be surprisingly common. Qualitatively, categories for
which this phenomenon arise are precisely test categories.

The theory of test categories is outlined in §4.4.1, with a focus on how ordinary categories of
set-valued presheaves on test categories model slice∞-categories of S. Then in §4.4.2 we discuss
how to construct model structures on ∞-categories of homotopy-type-valued presheaves on test
categories, which may then be transferred to locally contractible ∞-toposes via the nerves of
§3.2.1.

4.4.1 Test categories

The basic ideas discussed in this subsection are essentially all due to Grothendieck, and were
first outlined in [Gro83]. A systematic account of Grothendieck’s theory is given by Maltsiniotis
in [Mal05]. The theory of test categories, and in particular its model categorical aspects, are
further developed in [Cis06].

The starting point for understanding the phenomenon discussed in the introduction of §4.4
is the following fact: Recall that the classifying space of an ∞-category is nothing but the
homotopy type obtained by inverting all its arrows, and furthermore, that the classifying space
construction is left adjoint to the inclusion of S into Cat, the∞-category of∞-categories. Then,
paralleling the situation for [∆op, S], the restriction of the classifying space functor ( )≃ to the
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(2, 1)-category Cat(1,1) of ordinary categories exhibits S as a localisation of Cat(1,1):

Cat(1,1) Cat S
( )≃

⊣

The (2, 1)-category Cat(1,1) itself is the localisation of the ordinary category of ordinary cat-
egories Cat′(1,1) (along the equivalences of categories).

The fact that S is a localisation of Cat′(1,1) has been known in essence since [Ill72, Cor. 3.3.1]
(specifically, that the category of elements of a simplicial set encodes the same homotopy type
as the simplicial set itself is shown in [Ill72, Th. 3.3.ii]. Illusie attributes the ideas presented in
[Ill72, §3.3] to Quillen; see also [Qui73]). Moreover, Thomasson shows that the relative category
Cat′(1,1) together with the weak equivalences induced by ( )≃ is right proper (see Definition
4.3.2), by exhibiting a right proper model structure on Cat′(1,1) by right transferring the Kan-
Quillen model structure (which is right proper) along the functor Ex2 ◦N : Cat′(1,1) → ∆̂ (see
[Tho80]). Thus, the category (Cat′(1,1))/A is a model for S/A≃ ; a model which turns out to
be particularly convenient for determining conditions on A such that colim : Â → S/A≃ is a
localisation. In a first instance, we will focus on the special case when A≃ = 1. Then, colim :

[Aop, S] → S factors as [Aop, S]
A/−−→ Cat

( )≃−−−→ S, which restricts to Â
A/−−→ Cat′(1,1)

( )≃−−−→ S.
Thus, A/ models the left adjoint of the adjunction colim : [Aop, S] S⊥ .

The functor A/ also admits a right adjoint given by NA : C 7→ (a 7→ Hom(A/a, C)). The
category A is a weak test category if NA sends functors C → D such that C≃ → D≃ is an
isomorphism to shape equivalence, and if the resulting adjunction W−1Â S⊥ is an adjoint
equivalence. We can now state the main definition of this subsection:

Definition 4.4.1. The category A is a local test category if A/a is a weak test category for
all a in A. The category A is a test category if it is a local test category, and if moreover
A≃ = 1. ⌟

Theorem 4.4.2 ([Cis06, Cor. 4.4.20]). If A is a local test category, then the composition of the
functors A/ : Â→ (Cat(1,1))/A → SA≃ is a localisation of Â along the shape equivalences.

Definition 4.4.3. Let A be a small ordinary category, then a presheaf X on A is called locally
aspherical if (a×X)≃ = 1 for all a ∈ A. ⌟

One of the key features of weak test categories is that they admit many characterisations,
as seen in the following theorem.

Theorem 4.4.4 ([Mal05, Th. 1.5.6] & [Cis06, Thms. 1.4.3 & 4.1.19 & 4.2.15]). The following
are equivalent:

(I) A is a local test category.

(II) The subobject classifier of Â is locally aspherical.

(III) The category Â admits a locally aspherical separating interval (see Definition 3.2.14).

(IV) Any morphism in Â with the right lifting property against all monomorphisms is a shape
equivalence.
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(V) The category Â admits a (cofibrantly generated) model structure in which the weak equi-
valences are the shape equivalences, and the cofibrations are the monomorphisms.

Proposition 4.4.5. The following are equivalent:

(I) A is sifted (see [Lur09b, Def. 5.5.8.1]).

(II) A/≃ = 1 and (A/a×a′)≃ = 1 for all a, a′ ∈ A.

(III) colim : Â→ S preserves finite products.

Proof. The implication (I) =⇒ (III) follows from [Lur09b, Lm. 5.5.8.11], and (II) is a special
case of (III), establishing (III) =⇒ (II), and (II) =⇒ (I) follows form applying [Lur09b,
Th. 4.1.3.1] to [Lur09b, Def. 5.5.8.1].

Definition 4.4.6. The category A is a strict test category if it is a local test category and
satisfies the equivalent conditions of Proposition 4.4.5. ⌟

Applying Theorem 4.4.4 to strict test categories yields the following recognition theorem.

Proposition 4.4.7. Let A be a small category admitting finite products and a representable
separating interval on Â, then A is a strict test category.

In [Mal05, §1.8] Cisinski and Maltsiniotis develop more sophisticated tools for recognising
strict test categories, and produces some surprising examples thereof, such as the monoid of
increasing functions N→ N (see [Mal05, Ex. 1.8.15]).

Test toposes We give a very brief introduction to the theory of local test toposes developed in
[Cis03]. Throughout our discussion on test toposes, E denotes an ordinary topos generated under
colimits by a set of contractible objects, by which we mean objects which have contractible shape
in the hypercompletion of the ∞-topos associated to E (in the sense of [Lur09b, Prop. 6.4.5.7]),
which we denote by E∞.

We begin with the following generalisation of Theorem 4.4.4, which we then use to give a
definition of local test toposes.

Theorem 4.4.8 ([Cis03, Th. 4.2.8]). The following are equivalent:

(I) For any object X in E the projection map X × ΩE → X is a shape equivalence.

(II) Any morphism in E with the right lifting property against all monomorphisms is a shape
equivalence;

(III) There exists a subcategory of E spanned by objects of contractible shape, which is moreover
a local test category and which generates E under colimits.

(IV) There exists a (necessarily unique as well as cofibrantly generated) model structure on E in
which the weak equivalences are the shape equivalences, and in which the cofibrations are
the monomorphisms.
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Definition 4.4.9. An ordinary topos satisfying the equivalent conditions of Theorem 4.4.8 is
called a local test topos. A local test topos with trivial shape is a test topos. A test topos,
whose shape functor commutes with finite products, is a strict test topos. On any topos, the
model structure given by Theorem 4.4.8 is referred to as the canonical model structure . ⌟

Proposition 4.4.10. Assume E is a local test topos, then E∞ is locally contractible, and the
composition E ↪→ E∞

π!−→ S/π!1E∞
is a localisation.

Proof. The proposition is equivalent to the statement that the inclusion E ↪→ E∞ induces an
equivalence of ∞-categories upon localising along shape equivalences. Let C ⊆ E be a subcat-
egory as in (III) of Theorem 4.4.8. Consider the diagram

[Cop, S] E∞

Ĉ E
⊣

⊣

then the top adjunction is a geometric embedding by [Lur18, Cor. 20.4.3.3 & Prop. 20.4.5.1],
and a local shape equivalence by Proposition 3.1.11, so that the right adjoint is shape preserving
by Proposition 3.1.12. Thus the unit and counit are natural weak equivalences, and the same
is true of the bottom adjunction, as it is a restriction of the top one, so that both adjunctions
descend to equivalences of ∞-categories after upon localising by [Cis19, Prop. 7.1.14]. The
left vertical functor induces an equivalence upon localising by Theorem 4.4.2, so that the right
vertical functor induces an equivalence upon localising by the 2-out-of-3 property.

Remark 4.4.11. Proposition 4.4.10 fails if we do not assume that E∞ is hypercomplete, because
then E∞ may no longer be generated by objects in C under colimits (see [Ane]). ⌟

Lemma 4.4.12. Let X be a 1-truncated object of E∞, then (E∞)/X is equivalent to the hyper-
completion of the ∞-topos associated to E/X .

Proof. Denote by (E/X)∞ the hypercompletion of the∞-topos associated to EX then we obtain
a commutative square

E/X (E/X)∞

E E∞.

By the universal property of (E∞)/X (see [Lur09b, Rmk. 6.3.5.8]) we may exhibit (E/X)∞ as a
subcategory of (E∞)/X . Conversely, (E∞)/X is hypercomplete by [Lur09b, Th. 6.5.3.12], so by
the universal property of (E/X)∞ the ∞-topos (E∞)/X is a subcategory of (E/X)∞.

Proposition 4.4.13 ([Cis03, Cor. 5.3.20 & Cor. 4.2.12]). Any local test topos – viewed as relative
category with its shape equivalences as weak equivalences – is proper.

Proof. By the Lemma 4.4.12 the composition of the functors EX ↪→ (E∞)/X
π!−→ E/π!X is a

localisation.

We finish with an application of Theorem 4.4.8 to equivariant homotopy theory.
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Theorem 4.4.14. Assume that E is a strict test topos, and that G is a group object in E, then
EG is a test category. A morphism in EG is a shape equivalence iff its underlying morphism in
E is, and the induced functor EG → SG is a localisation along the shape equivalences in EG.

Proof. From the equivalence of ∞-categories (E∞)G = (E∞)/BG we see that EG is equivalent
to
(
(E∞)/BG

)
≤0

. Let C be a small subcategory of E spanned by objects of contractible shape
generating E (and thus E∞) under colimits, then C/BG is an ordinary category whose objects are
of contractible shape and generate (E∞)/BG under colimits. We will check that

(
(E∞)/BG

)
≤0

satisfies (II) of Theorem 4.4.8, verifying the first part of the theorem. Let X → Y be a morphism
in
(
(E∞)/BG

)
≤0

lifting against all monomorphisms, then the underlying morphism of X → Y

in E lifts against all monomorphisms (and is thus a shape equivalence), as any lifting problem
against X → Y in E may be promoted to one in E/BG by composing with the morphism Y → BG.

Next, the induced functor EG → SG is a localisation by the following diagram:

EG (E∞)G Sπ!G

(
(E∞)/BG

)
≤0

(E∞)/BG S/Bπ!G

≃ ≃ ≃

Finally, a morphism X → Y in EG is a shape equivalence iff (πE)!X → (πE)Y is an isomorphism
in Sπ!G, iff (πE)!X → (πE)Y is an isomorphism in S, iff the underlying morphism of X → Y in
E is a shape equivalence.

4.4.2 Transferring model structures to locally contractible (∞-)toposes

Here we finally construct model structures on locally contractible ∞-toposes and test toposes
for which the weak equivalences are the shape equivalences. We begin by recalling some basic
theory of cofibrantly generated model ∞-categories, in particular, two theorems on construct-
ing and transferring cofibrantly generated model structures, respectively, which are classical in
the ordinary categorical setting. Then, for any local test category A we extend the canonical
model structure on Â to [Aop, S]. Finally, we transfer the model structure on [Aop, S] to locally
contractible ∞-toposes, and the model structure on Â to test toposes.

Definition 4.4.15. A complete and cocomplete model∞-category M is cofibrantly generated
if there exist sets I, J of morphisms in M such that

1. C = �(I�),

2. C ∩W = �(J�), and

3. I and J permit the small object argument (see [MG14, §3.5]).

⌟

Definition 4.4.16. Let M be a cofibrantly generated model ∞-category, then a relative I-
complex (J-complex) is any morphism which can be written as the transfinite composition
(see [DAG X, Def. 1.4.2]) of pushouts of morphisms in I (J). ⌟

By [DAG X, Prop. 1.4.7] any set of morphisms in a presentable∞-category admits the small
object argument.
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Warning 4.4.17. Let I be a set of morphisms in an ∞-category C satisfying the small objects
argument, then the attendant factorisation of any morphism in C into a relative I-complex
followed by a morphism in I� is not functorial. See [DAG X, Warning 1.4.8] and [MG14,
Rmk. 3.7]. ⌟

Proposition 4.4.18. Let M be a presentable ∞-category, let W ⊆ M be a subcategory, which
is closed under retracts, and satisfies the 2-out-of-3 property. Suppose that I and J are sets of
homotopy classes of maps such that

(a) �(J�) ⊆ �(I�) ∩W

(b) I� ⊆ J� ∩W

(c) and either

(c1) �(J�) = �(I�) ∩W , or

(c1) I� = J� ∩W ,

then the I and J define a cofibrantly generated model structure on M whose weak equivalences
are W .

Proof. In either case, by [DAG X, Prop. 1.4.7] the pairs (�(J�),�(I�) ∩W ) and (I�, J� ∩W )

satisfy the conditions of Proposition B.0.10.

Proposition 4.4.19. Let M be a cofibrantly generated model∞-category with generating cofibra-
tions I and generating trivial cofibrations J , let N be a presentable ∞-category, and consider
an adjunction f : M N : u⊥ . If the functor u takes relative fJ-cell complexes to weak
equivalences, then

(1) the ∞-category N admits a cofibrantly generated model structure whose weak equivalences
are those morphisms carried to weak equivalences by u, and with generating cofibrations
and trivial cofibrations given by fI and fJ respectively, and

(2) the adjunction f : M N : u⊥ is a Quillen adjunction.

Proof. The condition in the proposition precisely ensures that fI and fJ satisfy (a) of Propos-
ition 4.4.18, and the two conditions (b) and (c1) are satisfied by Proposition B.0.6.

We can now extend the canonical model structure. The following proposition generalises
[MG14, Th. 4.4].

Proposition 4.4.20. Let A be a local test category, then there exists a (necessarily unique)
cofibrantly generated model structure on [Aop, S] whose weak equivalences are the shape equival-
ences, and whose trivial fibrations are characterised by having the right lifting property against
the monomorphisms in Â.

Furthermore, if I and J are generating cofibrations and trivial cofibrations, respectively, of
the canonical model structure on Â, then these generate the model structure on [Aop, S].
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Proof. Let I and J be generating cofibrations and trivial cofibrations, respectively, of the ca-
nonical model structure on Â. Any morphism X → Y which lifts against all monomorphisms in
Â clearly lifts against I. Conversely, assume that X → Y lifts against I. Any monomorphism
may be constructed as a retract of an I-cellular map which by Lemmas 4.1.1 - 4.1.4 is again
a morphism in Â, so that X → Y lifts against all monomorphisms between objects in Â by
[DAG X, Cor. 1.4.10].

We will now verify that the set of shape equivalences W together with I, J satisfy (a), and
(b), (c2) of Proposition 4.4.18.

Proof of (a): By Lemmas 4.1.1 - 4.1.4 all colimits involved in constructing the morphisms in
�(J�) are homotopy colimits. As all morphisms in J are weak equivalences, the morphisms in
�(J�) must be weak equivalences.

Proof of (b): The inclusion I� ⊆ J� is clear as J ⊆ �(I�), so we need to show I� ⊆ W .
So, let X → Y be a morphism in I�.

First, we show that it is enough to prove the statement in the case when Y is representable.
For all objects a in A, and all maps a → Y the morphism a ×Y X → X is in I�. If these
morphisms are in W , then X → Y is in W by faithful descent, as the morphism can be written
as a colimit indexed by A/Y → A.

So, assume that Y is representable. As a morphism in A/Y is a monomorphism iff it is a
monomorphism in A, we may furthermore assume that A has a final object, and that Y is such
a final object.

As the shape of the presheaf represented by the final object in A is contractible, it is enough to
show that the shape of X is contractible. Now, the shape of X is given by (A/X)≃ ≃ Ex∞A/X ,
so that any map Sk → π!X (k ≥ 0) may be represented by a map Sdn ∂∆k → A/X for some
n ≥ 0. If n ≥ 1, then Sdn is a finite poset, and therefore a finite direct category. We will show
that for any finite direct category I and any functor I → A/X we obtain a factorisation

I≃ (A/X)≃

∗

(19)

Consider the diagram f : I → A, and take a Reedy cofibrant replacement f̃
∼−→ f in Â (see

[Cis19, Prop. 7.4.19]), then by an inductive application of [Cis19, Cor. 7.4.4] and Lemmas 4.1.1
& 4.1.2 we see that the colimit of f̃ is 0-truncated. The map I≃ → (A/X)≃ corresponds to
the map π! colim f̃ → π!X. Consider a factorisation colim f̃ → c → 1 in Â, where colim f̃ → c

is a monomorphism, and c → 1 is a trivial fibration, and thus a weak equivalence. By our
assumption on X, we obtain a lift

colim f̃ X

c

Taking the shape of this diagram yields the desired lift in (19).
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Proof of (c2): The proof of this fact for A = ∆ is given in [MG14, Prop. 7.9], and may be
interpreted verbatim in our setting.

We now finally construct model structures on locally contractible ∞-toposes and on test
toposes. Both of these theorems should be compared to Theorem 3.2.12.

Proposition 4.4.21. Let

(i) E be an ∞-topos, generated under small colimits by a small subcategory C consisting of
contractible objects (so that E is locally contractible),

(ii) A, a small ∞-category, and

(iii) u : A→ C, a functor.

Assume that

(a) u : A→ C is initial, and that

(b) [Aop, S] admits a cofibrantly generated model structure with sets I and J of, respectively,
generating cofibrations and generating trivial cofibrations, and in which the weak equival-
ences are the shape equivalences,

there exists a cofibrantly generated model structure on E such that

(1) the weak equivalences are precisely the shape equivalences,

(2) the sets u!I and u!J are generating sets for the cofibrations and trivial cofibrations, respect-
ively, and

(3) the adjunction u! : [A
op, S] E : u∗⊥ is a Quillen equivalence.

If moreover

(c) the inclusions uℓ ↪→ ud admit retracts for all morphisms ℓ ↪→ d in J ,

then

(4) all objects in the resulting model structure on E are fibrant.

Proof. We will use Proposition 4.4.19 to transfer the model structure on [Aop, S] to E. By
Theorem 3.2.12 the weak equivalences in E created by u∗ are precisely the shape equivalences.
The condition in the statement of Proposition 4.4.19 is then trivially satisfied, because the shape
functor π! : E→ S commutes with all colimits, so that we obtain a Quillen adjunction, which is
a Quillen equivalence, again by Theorem 3.2.12. Conclusion (4) is obvious.

Theorem 4.4.22. Let

(i) E be an∞-topos, generated under small colimits by a small subcategory C of E≤0 consisting
of contractible objects,

(ii) A, a local test category, and

(iii) u : A→ C, a functor.
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Assume that

(a) u : A→ C is initial,

(b) u! : [A
op, S]→ E preserves 0-truncated objects, and

(c) u! : Â→ E≤0 preserves monomorphisms,

then for any sets I and J of, respectively, generating cofibrations and generating trivial cofibra-
tions for the canonical model structure on Â, there exists a cofibrantly generated model structure
on E≤0 such that

(1) the weak equivalences are precisely the shape equivalences,

(2) the sets u!I and u!J are generating sets for the cofibrations and trivial cofibrations, respect-
ively, and

(3) the adjunction u! : Â E≤0 : u
∗⊥ is a Quillen equivalence.

If moreover

(e) the inclusions uℓ ↪→ ud admit retracts for all morphisms ℓ ↪→ d in J ,

then

(4) all objects in the resulting model structure on E≤0 are fibrant.

The proof of Theorem 4.4.22 is very similar to the proof of Proposition 4.4.21.

Proof. The shape equivalences in E≤0 are created by u∗ by Theorem 3.2.12. The conditions of
Proposition 4.4.19 are satisfied by assumptions (b) & (c) and Corollary 4.1.5, so that u! ⊣ u∗ is
a Quillen adjunction. By (b) the unit and counit of the u! : Â E≤0 : u

∗⊥ coincide with the
ones of u! : [Aop, S] E : u∗⊥ , so that u! ⊣ u∗ is a Quillen equivalence by Proposition 4.4.21.

Conclusion (4) is obvious.

We conclude this section with a discussion of some criteria for checking conditions (a) - (c)
in Theorem 4.4.22. We have already seen that condition (a) may be checked using Propositions
3.2.17 & 3.2.18. We add two simple criteria for verifying (b) & (c) of Theorem 4.4.22 in the case
when A = ∆, .

Proposition 4.4.23. Let E be an ∞-topos, and u : ∆ → E≤0, a functor, and assume that the
unique cocontinuous extension u! : [∆

op, S]→ E carries

∅ ∆{1}

∆{0} ∆1

to a pullback, then

(1) u! : [∆
op, S]→ E preserves 0-truncated objects, and the restricted functor

(2) u! : ∆̂→ E≤0 preserves monomorphisms.
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Proof. By [Cis06, Lm. 2.1.9] and the assumption in the statement of the proposition, the Čech

nerve of the map
∐n

i=0 u!∆
n−1 (d0,...,dn)−−−−−−→ u!∆

n is given by the image under u! of the Čech nerve

of
∐n

i=0∆
n−1 (d0,...,dn)−−−−−−→ ∆n, so that u!∂∆

n → u!∆
n is monomorphism for all n ≥ 0. Then

(1) follows from Propositions 4.1.1 - 4.1.3 and the way in which u!X is constructed via cell
attachments for any simplicial set X. Finally, (2) follows from the fact that the monomorphism
X → Y in ∆̂ is obtained via a sequence of cell attachments, and the fact that monomorphisms
are preserved under pushouts and filtered colimits.

The proof of the following proposition is the same as the previous proof, except that it relies
on [Cis06, Lm. 8.4.18] instead of [Cis06, Lm. 2.1.9].

Proposition 4.4.24. Let E be an ∞-topos, and u : → E≤0, a functor, and assume that
the unique cocontinuous extension u! : [

op, S] → E carries (δ0i , δ
1
i ) :

n−1 ⊔ n−1 ↪→ n to a
monomorphism for all n ≥ i ≥ 1, then

(1) u! : [
op, S]→ E preserves 0-truncated objects, and the restricted functor

(2) u! : ̂ → E≤0 preserves monomorphisms.

The asymmetry between Propositions 4.4.23 & 4.4.24 disappears in the following situation:

Corollary 4.4.25. Let E be an ∞-topos, and u : → E≤0, a monoidal functor, and assume
that the unique cocontinuous extension u! : [

op, S]→ E carries

∅ {1}

{0} 1

to a pullback, then

(1) u! : [
op, S]→ E preserves 0-truncated objects, and the restricted functor

(2) u! : ̂ → E≤0 preserves monomorphisms.

Proof. By assumption the morphism (δ01 , δ
1
1) :

n−1 ⊔ 0 ↪→ 1 is carried to a monomorphism,
and the maps (δ0i , δ

1
i ) : n−1 ⊔ n−1 ↪→ n may be rewritten as id i−1 ×(δ01 , δ11) × id n−i , so

the corollary follows from Proposition 4.4.24.

Part II

Differentiable sheaves

5 Basic definitions and properties of differentiable sheaves

We formally define the∞-topos Diff r of r-times differentiable sheaves, and apply the machinery
of §2 to exhibit Diff r as a fractured ∞-topos, and derive some of its basic properties in §5.1.
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Then, in §5.2 we collect some basic facts about diffeological spaces, and briefly discuss the
classification of diffeological bundles. Finally, in §5.3 we give our first application of the fractured
∞-topos structure on Diff r and show that closed manifolds are categorically compact in Diff r.
Moreover, we show that manifolds with non-empty boundary or corners are not categorically
compact.

5.1 Differentiable sheaves

Recall that

1. Mfdr denotes the category of r-times differentiable (2nd-countable, Hausdorff) manifolds
and r-times differentiable maps, and

2. Cartr denotes the full subcategory of Mfdr spanned by the spaces of Rn (0 ≤ n <∞).

On each of these small categories we denote by τ the Grothendieck topology in which a sieve
on a manifold is a covering sieve iff it contains a covering consisting of jointly surjective open
embeddings.

1. Mfdr
ét denotes the category of r-differentiable manifolds and r-differentiable open embed-

dings.

2. Cartrét denotes the full subcategory of Mfdr
ét spanned by the spaces for Rn (0 ≤ n <∞).

On each of these (essentially) small subcategories we denote the restriction of τ by τét.

Definition 5.1.1. An S-valued sheaf on Cartr is an r-times differentiable sheaf , and the
category thereof is denoted by Diff r. Similarly, an S-valued sheaf on Cartrét is an étale r-times
differentiable stack , and the category thereof is denoted by Diff r

ét. ⌟

We provide a new comparison theorem for ∞-toposes of sheaves on ordinary sites. See also
[Hoy14, Lm. C.3].

Proposition 5.1.2. Let C ′ be an ordinary site, and let u : C ↪→ C ′ be a small subcategory
endowed with the induced Grothendieck topology. Denote by E and E′ the ∞-toposes of sheaves
on C and C ′ , respectively. If E′ is hypercomplete, and if every object in C ′ may be covered by
objects in C, then u∗ : [Cop, S]← [(C ′)op, S] restricts to an equivalence of ∞-categories E

≃←− E′.

Proof. By the proof of [SGA 4I, Th. III.4.1] the functor u is both continuous and cocontinuous
([SGA 4I, Defs. III.1.1 & III.2.1]), so that both u∗ and u∗ preserve local equivalences of set-valued
sheaves, and we obtain an induced adjunction E E′⊥ . The counit of this adjunction is an
equivalence since u is fully faithful, and the left adjoint is conservative by [Lur18, Prop. 20.4.5.1],
so that the adjunction is an equivalence.

Combining Proposition 5.1.2 with Corollary 5.1.15 below, we obtain the following result.

Proposition 5.1.3. Denote by u : Cartr ↪→ Mfdr the canonical inclusion, then the functor
[(Manr)op, S] ← [(Cartr)op, S] : u∗ restricts to an equivalence between Diff r and the ∞-topos
of sheaves on Manr.
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Remark 5.1.4. We have opted not to use good open covers in the proof of Proposition 5.1.3, as
the question of their existence and whether they refine all open covers is subtle (as discussed at
length in [nLa23]). Moreover, arguments using good open covers may not carry over to other
settings such as real analytic or complex, which we hope to explore in the future. ⌟

Lemma 5.1.5. The triple (Mfdr,Mfdr
ét, τ) is a geometric site.

Proof. Axioms (a) - (c) are clear. To prove (d), consider the diagram

V ′ U ′ V ′

V U V,

(20)

where U ↪→ U ′ is an open subset inclusion. Axiom (d) follows from (b), after proving the
following claim:

Claim: The leftmost square in (20) is a pullback.
First, as monomorphisms have the left cancelling property, the map V → V ′ is a mono-

morphism. Let y′ ∈ V ′ ∩ U , then y′ coincides with its image under U → V , which shows that
the leftmost square induces a pullback on underlying sets. Next, consider a commutative square

V ′ U ′

W U,

then the canonical map of sets W → V is smooth, as it may be written as the composition of
W → U → V .

Applying Theorem 2.2.6 we obtain the key result of this subsection:

Theorem 5.1.6. The ∞-category Diff r is a fractured ∞-topos, whose ∞-topos of corporeal
objects is given by Diff r

ét.

Remark 5.1.7. Observe that for any smooth manifold, the ∞-topos (Diff r
ét)/M is equivalent to

the ∞-topos of sheaves on underlying topological space of M (and is thus independent of r). ⌟

By [Car16, Th. C.3] and Proposition 6.3.1, Diff∞
ét is equivalent to the ∞-topos of sheaves

on the category of smooth manifolds and local diffeomorphisms, so that the fractured ∞-topos
Diff∞ coincides with the one considered in [Car20, §6.1]. Carchedi moreover shows that Diff∞

ét

coincides with

1. the ∞-category of ∞-toposes, locally ringed in R-algebras, which can étale locally be
covered by manifolds.

2. sheaves in Diff r which may be presented by étale groupoids.

It is prima facie surprising that these two ∞-categories are ∞-toposes. These observations (in
the generality of [Car20, §5]) were key to the development of fractured ∞-toposes (see [Lur18,
Rmk. 20.0.0.2]).
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Warning 5.1.8. The functor j! : Diff r
ét → Diff r does not preserve 0-truncated objects. For

example, 1Diffr
ét

is mapped to the Haefliger stack (see §6.3.1), which is 1-truncated, but not
0-truncated. ⌟

We finish this subsection by proving some basic properties about the fractured ∞-topos
Diff r.

Proposition 5.1.9. The ∞-topos Diff r is local.

Proof. This follows immediately from Proposition 2.1.6.

Lemma 5.1.10. Let M be a connected, paracompact Hausdorff r-times differentiable manifold
M , then the covering dimension of M is ≤ dimM .

Proof. By [APG90, §II.6.2] the covering dimension of M is equal to the inductive dimension,
which is ≤ dimM .

Proposition 5.1.11. For any manifold M the ∞-topos (Diff r
ét)/M is hypercomplete.

Proof. By Lemma 5.1.10, [Lur09b, Th. 7.2.3.6], and Remark 5.1.7 the ∞-topos (Diff r
ét)/M has

homotopy dimension ≤ dimM , and is thus hypercomplete by [Lur09b, Cor. 7.2.1.12].

By [Lur17, Lm. A.3.9.] we obtain the following corollary:

Corollary 5.1.12. For any r-times differentiable manifold M the ∞-topos (Diff r
ét)/M has

enough points.

Proposition 5.1.13. The ∞-topos Diff r
ét has enough points.

Proof. By Remark 5.1.7 the adjunction x∗ : S (Diff r
ét)/M : x∗⊥ at any point x ∈ Rd

provides a point of (Diff r
ét)/Rd , and thus a point S

x∗−→ (Diff r
ét)/Rd

(Rd)∗−−−−→ Diff r
ét. Thus, Diff r

ét

has enough points, as it is generated by the spaces Rd under colimits.

By Corollary 2.1.5 we obtain the following result:

Corollary 5.1.14 ([Dug98, Ex. 4.1.2], [ADH21, Prop. A.5.3]). The topos Diff r has enough
points.

By [Lur09b, Rmk. 6.5.4.7] we obtain the following corollary:

Corollary 5.1.15. The ∞-topos Diff r is hypercomplete.

5.2 Diffeological spaces

Diffeological spaces are particularly nice (0-truncated) differentiable sheaves, which have a good
notion of underlying set. We discuss their basic properties here and briefly discuss the classific-
ation of diffeological principal bundles in §5.2.1.

Observe that since Diff r is local, so is Diff r
≤0.

Definition 5.2.1. A diffeological space X is a concrete object in Diff r
≤0. A plot of X is a

map Rn → X. The collection of all plots of X is called the diffeology of X. ⌟

50



Convention 5.2.2. Let X be a diffeological space, then plots of X are usually identified with
their images under π∗. ⌟

A diffeological space is thus a set S together with a specified set of maps π∗Rd → S for each
d ≥ 0 such that the resulting presheaf on Cartr is a sheaf.

Remark 5.2.3. A monomorphism X ↪→ Y of diffeological spaces is an embedding (see Definition
4.2.6) iff for all d ≥ 0 any map π∗R

d → π∗X is a plot iff its composition with π∗X ↪→ π∗Y is. ⌟

Definition 5.2.4. Let Y be a diffeological space, and X ⊆ π∗Y , a subset, then the subspace
diffeology on X is the unique diffeology on X in which a map π∗R

n → π∗X is a plot iff it is a
plot viewed as a map to Y . ⌟

Thus, the subspace diffeology on X is the unique diffeology making the inclusion X ⊆ Y

into an embedding.

Example 5.2.5. The standard simplex ∆n with the subspace diffeology inherited from Rn+1

is denoted by ∆n
sub, and is referred to as the closed n-simplex . ⌟

Proposition 5.2.6 ([Wat12, Lm. 2.64]). Write Rn
+ :=

{
(x1, . . . , xn) ∈ Rn x1, . . . , xn ≥ 0

}
,

and endow this set with the subspace diffeology inherited from Rn. A map f : Rn
+ → R is smooth

iff it is the restriction of a smooth map U → R, where U is an open neighbourhood of Rn
+ in

Rn.

Proof. Write s : Rn → Rn, (x1, . . . , xn) 7→ (x21, . . . , x
2
n), then f ◦ s : Rn → R is smooth,

and moreover invariant under the action (Z∗)n × Rn → Rn,
(
(σ1, . . . , σn), (x1, . . . , xn)

)
7→

(σ1x1, . . . , σnxn) . By [Sch75] there exists a smooth map f̃ : Rn → R such that f̃ ◦ s = f ◦ s.
As s restricts to a bijection on the underlying sets of Rn

+ → Rn
+, the maps f and f̃ agree on

Rn
+, so that f is a restriction of f̃ .

Corollary 5.2.7. Let M be a smooth manifold with corners, and N a smooth manifold without
corners, then a map M → N is smooth iff there exists a manifold M̃ without corners, and an
open embedding M ⊆ M̃ and a smooth map M̃ → N which restricts to M → N . In particular,
a map ∆n

sub → N is smooth iff there exists an open neighbourhood U of ∆n
sub in Rn+1 and a

smooth map U → N which restricts to ∆n
sub → N .

Example 5.2.8. Consider the unique cocontinuous functor ∆̂ → Diff r
≤0 carrying ∆n to ∆n

sub

from Example 5.2.5 then this functor carries the simplicial sets ∂∆n and Λn
k to diffeological

spaces. These diffeological spaces are not equipped with the subspace diffeology of ∆n
sub. Write

Λ2
1 := u!Λ

2
1 and Λ2

1,sub for the 1-horn of ∆2 with the subdiffeology. For any path [0, 1] → Λ2
1

passing through ∆{1} for some time t0 there must exist some open neighbourhood U of t0, which
gets constantly mapped to ∆{1}. ⌟

5.2.1 Diffeological spaces and descent

A recurring theme in this article is that many ∞-categories consisting of appropriate geometric
objects may be profitably studied by embedding them into a suitable ambient∞-topos. Applying
this strategy to diffeological space enables us to recover the main theorem of [Min23] on the
classification of diffeological principal bundles (in the sense of [IZ13, 8.11]) as Corollary 5.2.10
below. Thus result is not used in the rest of the article.
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Theorem 5.2.9. Let G be a diffeological group, then for any pullback square

P 1

B BG,

⌟

the map P → B is a diffeological principal bundle.

Proof. First, we note that P → B is 0-truncated, as it is the pullback of the 0-truncated map
1→ BG. Next, for any plot Rd → B the pullback P |Rd → Rd admits local sections and is thus
a diffeological principal G-bundle. By faithful descent, the space P is the colimit of all spaces
P |Rd . Denote by P ′ the diffeological space universally associated to P , then by [GL12, §6] the
spaces P |Rd and P ′|Rd are canonically isomorphic, so that P ′ is likewise the colimit of all spaces
P |Rd , and thus isomorphic to P .

Corollary 5.2.10. The canonical functor from the groupoid of diffeological principal G-bundles
on B to Diff r(B,BG) is an equivalence.

Proof. By [KWW22, Def. 5.1 & Rmk. 5.2] and by descent any diffeological principal G-bundle is
classified by a map B → BG. The functor from the groupoid of diffeological principal G-bundles
on B to Diff r(B,BG) is fully faithful, and by Theorem 5.2.9 it is essentially surjective.

5.3 Compact manifolds are compact

In this subsection we discuss the categorical compactness of manifolds in Diff r. We use the
fractured ∞-topos structure to show that any closed manifold is categorically compact, by
relating it to its underlying topological space, which is compact when viewed as an ∞-topos.
Then we discuss the categorical compactness of other manifolds in §5.3.1.

Theorem 5.3.1. Let M be a closed manifold, then Diff r(M, ) commutes with filtered colimits.

Proof. Let A be a small filtered ∞-category, and let X : A→ Diff r be a diagram, then

colimαDiff r(M,Xα) = colimαDiff r(j!M,Xα)

= colimαDiff r
ét(M, j∗Xα)

= colimα(Diff ét)
r
/M (M,M × j∗Xα)

→ (Diff ét)
r
/M (M, colimαM × j∗Xα)

= (Diff ét)
r
/M (M,M × j∗ colimαXα)

= Diff r
ét(M, j∗ colimαXα)

= Diff r(j!M, colimαXα)

= Diff r(M, colimαXα)

where the map in the fourth line is an isomorphism by [Lur09b, Th. 7.3.1.16 & Rmk. 7.3.1.5].
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5.3.1 On the compactness of non-closed manifolds

Proposition 5.3.2. Any non-compact manifold is not categorically compact in Diff r.

Proof. By assumption any such manifold M admits a sequence (xi) such that {xi} is a closed
subset of M , then the identity map M

id−→M = colimn∈NM \ {xi}i≥n, does not factor through
any of the manifolds M \ {xi}i≥n for n ∈ N.

Theorem 5.3.3. Any connected manifold with non-empty corners is not categorically compact
in Diff r for r ≥ 2.

Proof. By Proposition 5.3.2 it is enough to prove the theorem for (topologically) compact man-
ifolds. Moreover, as any finite coproduct of categorically compact manifolds is again compact,
we may restrict to connected manifolds. We first prove the theorem for the unique compact
1-dimensional manifold with corners, [0, 1], and then deduce the general case from this special
case.

Denote by I the collection of all finite families of r-times differentiable maps of the form
{Rdi → [0, 1]}ki=0, where each map Rdi → [0, 1] factors through either [0, 1) or (0, 1], then I

becomes a filtered poset under inclusion. For any member C = {Rdi → [0, 1]}ki=0 of I denote
by [0, 1]C the diffeological spaces consisting of the set [0, 1] together with the coarsest diffeology
making all maps in C differentiable, then by Proposition 4.2.9 colimC∈E [0, 1]C is diffeomorphic
to [0, 1]. We will show that the identity map [0, 1] → [0, 1] does not factor through [0, 1]C for
any C ∈ I, thus showing that [0, 1] is not compact.

Let us fix C ∈ I as well as f ∈ C, which we assume w.l.o.g. factors through [0, 1). After
reparametrising, we may view f as a function Rd → [0,∞). We will show that for any n > d

the smooth map σn : Rn → [0,∞), (x1, . . . , xn) 7→ x21+ · · ·+x2n does not factor through f when
restricted to any neighbourhood of 0 ∈ Rn. Thus, for sufficiently large n, σn does not locally
factor through any of the functions in C, so that [0, 1]C has a strictly coarser diffeology than
[0, 1].

So, suppose to the contrary that there exists some neighbourhood U of 0 ∈ Rd such that
σn|U factors through f via a map g : U → Rd, and assume w.l.o.g. that g(0) = 0, then as n > d

the kernel of dg|0 is non-trivial, and we may assume w.l.o.g. that (1, 0, . . . , 0) is in the kernel.
Choose ε > 0 such that (−ε, ε)× {0} × · · · × {0} ⊆ U , and write h : (−ε, ε)→ Rd for the map
x 7→ g(x, 0, . . . , 0), then, by assumption f ◦ h is given by x 7→ x2, so that (f ◦ h)′′ = 2. On the
other hand we have

(f ◦ h)′′(t) =

(
n∑

i=1

h′i(t) ∂if
(
h1(t), . . . , hn(t)

))′

=
n∑

i=1

h′′i (t) ∂if
(
h1(t), . . . , hn(t)

)
+

n∑
j=1

h′i(t)h
′
j(t) ∂i∂jf

(
h1(t), . . . , hn(t)

)
which evaluates to 0 for t = 0 because for all 1 ≤ i ≤ n we have ∂if

(
h1(0), . . . , hn(0)

)
= ∂if(0) =

0 (as f has a local minimum at 0) and h′i(0) = dg|0(1, 0, . . . , 0) = 0 by assumption, yielding a
contradiction.
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Now, let M be a manifold of dimension > 1 with non-empty corners, then by assumption M

admits at least one chart RdimM−1 × [0,∞) ↪→M . Consider the embedding

ι : [0, 1] ↪→ RdimM−1 × [0,∞), θ 7→ (cosπθ, 0, . . . , 0, sinπθ).

Denote by L the image of the embedding [0, 1]
ι−→ RdimM−1 ↪→M , and denote by f : M → R an

extension the diffeomorphism L→ [0, 1]. With notation as above, assume that f factors through
[0, 1]C ↪→ [0, 1] for some C in I, then this implies that the identity map id[0,1] : [0, 1] → [0, 1]

factors through [0, 1]C ↪→ [0, 1], as id[0,1] is equal to the composition of [0, 1]
ι−→ RdimM−1 ×

[0,∞) ↪→M
f−→ [0, 1], yielding a contradiction.

It is possible to show that the category of r-times differentiable manifolds with corners, when
equipped with the standard Grothendieck topology and open immersions, form a geometric site,
yielding a fractured∞-topos by Theorem 2.2.6, in which all topologically compact manifolds are
categorically compact by the same argument as in Theorem 5.3.1. Thus, in a sense, topologically
compact manifolds with corners become categorically compact when corners are encoded as
structure rather than as a property.

For r = 0 this geometric site yields a fractured ∞-topos, which is equivalent to Diff0, so
in this case topologically compact manifolds with corners are also compact in Diff0. We don’t
know whether or not topologically compact C1-manifolds with corners are categorically compact
in Diff1.

6 Shapes, cofinality and differentiable sheaves

We first prove in §6.1 that Diff r is a locally contractible ∞-topos compatibly with its fractured
∞-topos structure, so that we may apply the technology of §3 to Diff r: In §6.2 we prove Theorem
A from the introduction stating that various ways of extracting homotopy types from manifolds
are equivalent. Finally, in §6.3 we discuss some applications of the technology developed so far;
we give a streamlined account of Carchedi’s calculation of the shape of the Haefliger stack in
§6.3.1, and provide new, simpler proofs of classical descent theorems in algebraic topology such
as Dugger and Isaksen’s hypercovering theorem in §6.3.2.

6.1 Diff r is a locally contractible ∞-topos

Lemma 6.1.1. The shape of Rd is contractible in Diff r
ét for every d ∈ N.

Proof. The ∞-topos (Diff r
ét)/Rd is equivalent to the ∞-topos of sheaves on the underlying

topological space of Rd. We will check that (Diff r
ét)/Rd is contractible (and moreover locally

contractible) by induction on d.
The case d = 0 is clear.
Next, we check the case d = 1 using Corollary 3.1.4. Let X be a set, then H0(R, X) =

TSpc(R, X) = X, as R is connected. Let G be any group, then H1(R, G) is equivalent to
the set of isomorphism classes of principle G-bundles on R, which are constant (and thus all
equivalent) by the standard argument that covering spaces on R are constant (see e.g., [Sch14,
Lm. 5.1.2]). Finally, by Lemma 5.1.10 R has covering dimension ≤ 1, and thus cohomological
dimension ≤ 1 by the discussion following [Lur09b, Rmk. 7.2.2.19]. (Alternatively, one may
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prove that R has cohomological dimension ≤ 1 using a similar argument to the one used to
exhibit the triviality of covering spaces on R, as shown in [Sch14, Lm. 5.1.1].)

Observe that (Diff r
ét)/R is moreover locally contractible, as R has a basis given by open

intervals, which are diffeomorphic to R. Now, let d > 1, and assume that (Diff r
ét)/Rd−1 has con-

tractible shape and moreover is locally contractible, so that by Proposition 3.2.5 the adjunction
π! : (Diff r

ét)/Rd−1 S : π∗⊥ is a reflection. Then, (Diff r
ét)/Rd ← S : π∗ is a reflexive subcat-

egory, as it is equivalent to the tensor product of (Diff r
ét)/Rd−1 ← S : π∗ and (Diff r

ét)/R ← S : π∗

(see [Lur17, Ex. A.2.8]), both of which are reflexive subcategories.

Corollary 6.1.2. The ∞-topos Diff r
ét is locally contractible.

By Theorem 3.3.1 we then obtain the following corollary.

Corollary 6.1.3. The shape of Rd is contractible in Diff r for all d ∈ N.

Corollary 6.1.4. The ∞-topos Diff r is locally contractible.

Remark 6.1.5. The functor π! : Diff r → S has been shown to exist many times before, e.g. in
[Dug01, Prop. 8.3], [Sch13, §4.4], [Car16, Prop. 3.1], [BEBP19, Prop. 1.3], [Bun22], [ADH21,
§4.3], [Pav22]. All of these sources rely on some variant of the nerve or Seifert-Van Kampen the-
orem (see [Bor48], [Ler50], [Wei52], [Seg68, §4], [DI04, Th. 1.1], [Lur17, Th. A.3.1]) to implement
some version of the following argument: one shows that

1. colim : [(Cartr)op, S]→ S sends covers to colimits, and

2. constant presheaves on Cartr are sheaves,

so that the adjunction colim : [(Cartr)op, S] S : const⊥ restricts to π! : Diff r S : π∗⊥ .
We will discuss the specific argument used in [Car16] in more detail in §6.3.1.

The proofs of some variants of the nerve and Seifert-Van Kampen theorem, in particular
[DI04, Th. 1.1] and [Lur17, Th. A.3.1], are quite involved. We will obtain these practically for
free in §6.3.2. ⌟

Corollary 6.1.6. The shape functor π! : Diff r → S preserves finite products.

Proof. By Proposition 3.1.12 the shape of any sheaf in Diff r may be computed as the colimit
of the corresponding presheaf on Cartr, but Cartr has finite products, and is thus sifted.

Several of the references listed in Remark 6.1.5 moreover show (some variant of) the following
result:

Proposition 6.1.7. The shape functor π! : Diff r → S exhibits S as the localisation of Diff r

along the projection map R1 ×X → X for all differentiable sheaves X.

Proof. Denote by W the class of weak equivalences inverted by the localisation of Diff r along
the projection map R1 × X → X for all differentiable sheaves X. By Corollary 6.1.6 these
projection maps are all shape equivalences, so W is contained in the class of shape equivalence.
On the other hand, all maps Rd → 1 can be decomposed into a sequence of projection maps
Rd → Rd−1 → · · · → R → 1, and are thus in W , and therefore by the 2-out-of-3 property,
all maps in Cartr are in W . Thus, the associated sheaf functor [((Cartr)op, S] ↠ Diff r sends
shape equivalences to morphisms in W , so that every shape equivalence in Diff r is in W .
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6.2 Comparing methods of calculating underlying homotopy types of differ-
entiable sheaves

We first construct various nerve diagrams in Diff r in §6.2.1, and show that the induced nerves
all calculate shapes. Then, in §6.2.2 we show that sending any r-times differentiable manifold
to its underlying s-times differentiable manifold for r ≥ s ≥ 0 does not change its shape.

6.2.1 Nerves

Here we consider five different nerve diagrams:

A• : ∆→ Diff r
≤0

∆•
sub : ∆→ Diff r

≤0

∆• : ∆→ Diff r
≤0

• : → Diff r
≤0

• : → Diff r
≤0

In each case we will use Theorem 3.2.12 to show that the five resulting nerves all calculate
shapes.

Extended simplices

Definition 6.2.1. Consider the cosimplicial object

A• : ∆ → Cartr

[n] 7→ An :=
{

(x0, . . . , xn) ∈ Rn+1 x0 + · · ·+ xn = 1
}
,

then the spaces An for n ≥ 0 are referred to as extended simplices. Moreover we write

∂An := A•
! ∂∆

n, n ≥ 0

Λn
k := A•

! Λ
n
k , n ≥ 1, n ≥ k ≥ 0.

⌟

Proposition 6.2.2. The canonical natural transformation colim ◦ (A•)∗ → (πDiffr)! is an equi-
valence.

Proof. The image of A• is given by Cartr, and satisfies the conditions of Theorem 3.2.12 by
Corollary 6.1.3. The induced functor ∆ → Cartr is easily seen to satisfy the conditions of
Proposition 3.2.17, thus verifying the conditions of Theorem 3.2.12.

Closed simplices Consider the cosimplicial object

∆•
sub : ∆ → Diff r

≤0

[n] 7→ ∆n
sub.

Proposition 6.2.3. The canonical natural transformation colim ◦ (∆•
sub)

∗ → (πDiffr)! is an
equivalence.
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Proof. To see that the image C of A• satisfies the conditions of Theorem 3.2.12 we observe that
the collection of translations of the standard inclusion ∆d

sub ↪→ Ad form a cover of Ad (d ≥ 0),
so that we may apply [Lur18, Prop. 20.4.5.1]. The induced functor ∆→ C is then easily seen to
satisfy the conditions of Proposition 3.2.17, thus verifying the conditions of Theorem 3.2.12.

Kihara’s simplices It has been a longstanding goal to establish a model structure on diffeolo-
gical spaces (see e.g. [CW14] and [HS18]). To this end Kihara endows the standard simplices
with a new diffeology in [Kih19, § 1.2]. With this diffeology the horn inclusions admit deform-
ation retracts (see Proposition 6.2.4), allowing Kihara to mimic the construction of the model
structure on topological spaces in [Qui67, §II.3], and show that the resulting model category is
Quillen equivalent to simplicial sets with the Kan-Quillen model structure. We need Kihara’s
simplices in order to construct objects satisfying the differentiable Oka principle in §7.2.2.

For the convenience of the reader, we repeat the construction of Kihara’s simplices: For each
n ≥ 1 and each 0 ≤ k ≤ n we define the set

An
k :=

{
(x0, . . . , xn) ∈ ∆n xk < 1

}
.

We now proceed inductively: On ∆0 and ∆1 the diffeology is the subspace diffeology coming
from R1 and R2, respectively. Let n > 1, and assume that the diffeologies on the simplices ∆m

for m < n have been defined, then we define a diffeology on An
k by exhibiting this set as the

underlying set of the quotient

∆n−1 × {0} ∆n−1 × [0, 1)

1 An
k ,

where ∆n−1× [0, 1)→ An
n is given by (x0, . . . , xn−1; t) 7→ ((1− t) ·x0, . . . , (1− t) ·xn, t). Finally,

the diffeology on ∆n is determined by the map
∐n

k=0A
n
k ↠ ∆n.

Proposition 6.2.4 ([Kih19, § 8]). The horn inclusions Λn
k ↪→ ∆n for n = 2 and n ≥ k ≥ 0

admit a deformation retract.

Definition 6.2.5. We write
∆• : ∆ → Diff r

[n] 7→ ∆n

for the cosimplicial object sending each simplex ∆n to the standard n-simplex endowed with the
diffeology described above. The spaces ∆n for n ≥ 0 are referred to as Kihara’s simplices.
Moreover, we write

∂∆n := ∆•
! ∂∆

n, n ≥ 0

Λn
k := ∆•

! Λ
n
k , n ≥ 1, n ≥ k ≥ 0

⌟

The proof of the following proposition is completely analogous to the proof of Proposition
6.2.3.

Proposition 6.2.6. The canonical natural transformation colim ◦ (∆•)∗ → (πDiffr)! is an equi-
valence.

57



Extended cubes

Definition 6.2.7. We write
• : → Diff r

n 7→ Rn

for the unique symmetric monoidal functor determined by sending the morphisms δξ : 0 → 1

to 0 7→ ξ for ξ = 0, 1 (see Proposition A.0.2). The spaces n for n ≥ 0 are referred to as the
extended n-cubes. ⌟

Proposition 6.2.8. The canonical natural transformation colim ◦ ( •)∗ → (πDiffr)! is an equi-
valence.

Proof. The image of • is given by Cartr, and satisfies the conditions of Theorem 3.2.12 by Co-
rollary 6.1.3. The induced functor → Cartr is easily seen to satisfy the conditions Proposition
3.2.18, thus verifying the conditions of Theorem 3.2.12.

Closed cubes

Definition 6.2.9. We write
• : → Diff r

n 7→ [0, 1]n

for the unique symmetric monoidal functor determined by sending the morphisms δξ : 0 → 1

to 0 7→ ξ for ξ = 0, 1 (see Proposition A.0.2). The spaces n for n ≥ 0 are referred to as the
closed n-cubes. ⌟

The following proposition may be proved using an obvious adaption of the proofs of Propos-
itions 6.2.8 & 6.2.3.

Proposition 6.2.10. The canonical natural transformation colim ◦ ( •)∗ → (πDiffr)! is an
equivalence.

6.2.2 Change of regularity

Theorem 6.2.11. Let r ≥ s ≥ 0, and denote by u : Cartr → Carts the forgetful functor,
then the adjunction u∗ : [(Cartr)op, S] [(Carts)op, S] : u∗⊥ restricts to an essential geo-
metric morphism u∗ : Diff r Diff s : u∗⊥ , such that u! : Diff r → Diff s sends any r-times
differentiable manifold to its underlying s-times differentiable manifold.

Setting s = 0 we obtain the following corollary:

Corollary 6.2.12. The underlying topological space of any r-times differentiable manifold cal-
culates its shape.

The proof of Theorem 6.2.11 is similar to the proof of Proposition 5.1.2.

Proof of Theorem 6.2.11. First, by Proposition 5.1.3 we may identify Diff r and Diff s with the
∞-toposes of sheaves on Mfdr and Mfds, respectively. We again denote the forgetful functor
Mfdr →Mfds by u, which is clearly cocontinuous ([SGA 4I, Def. III.2.1]), so that u∗ preserves
sieves, which shows that u∗ restricts to a functor Diff r → Diff s. As u preserves pullbacks along
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open embeddings, u satisfies condition iii) of [SGA 4I, Prop. III.1.11], so that u! : M̂fdr → M̂fds

preserves local equivalences, so that u∗ restricts to a functor Diff r ← Diff s. The functor
u! : Diff r → Diff s is obtained by composing the restriction of u! : [(Mfdr)op, S]→ [(Mfds)op, S]

to Diff r with the sheafification functor [(Mfds)op, S]→ Diff s.

6.3 Applications

We now present two applications of the technology developed so far. In §6.3.1 we show that once
we decompose Diff r

ét into the coproduct (in Top) of the ∞-toposes Diff r
ét,d of d-dimensional

étale differentiable stacks, and moreover have Carchedi’s result that the d-th Haefliger stack
Hd is final in Diff r

ét,d (see Theorem 6.3.3), then the calculation of the shape of Hd (as an
object Diff r) follows formally from the way in which Diff r is a locally contractible ∞-topos,
compatibly with its structure as a fractured∞-topos. Then, in §6.3.2 we observe that the shape
of the sheaf on Diff0 represented by a topological space calculates its singular homotopy type,
and thus, we are able to harness the descent properties of Diff0 to prove descent theorems in
algebraic topology. We recover essentially for free Lurie’s Seifert-Van Kampen theorem (see
[Lur17, Th. A.3.1], Theorem 6.3.10), Dugger and Isaksen’s hypercovering theorem (see [DI04,
Th. 1.1], Theorem 6.3.16), and the folk theorem that the base space of any principal bundle is
a homotopy quotient (see Theorem 6.3.23).

6.3.1 The shape of the Haefliger stack

The underlying topological groupoid of Γd (defined below), now known as the Haefliger group-
oid, was introduced by Haefliger in [Hae58], with a view towards applications to the study of
foliations. Its classifying space (in the sense of [Seg68]) was first determined in [Seg78, Prop. 1.3],
and later Carchedi provided a new calculation of this classifying space in [Car16, Th. 3.7]. The
proof we present here is essentially the same as Carchedi’s, the only difference being that we
may exhibit every step of the proof as a formal manipulation in the calculus afforded by a more
systematic account of the theory of locally contractible ∞-toposes and their interactions with
fractured∞-toposes. (Incidentally, similar interactions between shapes and fractured∞-toposes
– although not in this language – are explored by Carchedi in a subsequent article, [Car21], where
GAGA like theorems are established for profinite shapes.)

Before turning to the Haefliger stack, we quickly explain how to decompose Diff r
ét,d into

a product of ∞-toposes. Denote by Cartrét,d the category of d-dimensional r-times differen-
tiable Cartesian spaces, and by Diff r

ét,d, the ∞-topos of S-valued sheaves on Cartrét,d – the
d-dimensional étale r-times differentiable stacks. Observe that Cartrét,d is equivalent to
the monoid (viewed as a category) of r-times differentiable embeddings Embr(Rd,Rd). We will
now examine how we may decompose Diff r

ét into the ∞-toposes Diff r
ét,d (d ≥ 0).

Proposition 6.3.1. Let {Ei}i∈I be a family of ∞-toposes indexed by a (small) set I.

(1) The coproduct of {Ei}i∈I in Top is given by the product of {Ei}i∈I in the ∞-categories of
∞-categories.

(2) The structure geometric morphism ιi : Ei = Ei×1Cat → Ei×
∏

i ̸=j Ej =
∏

i∈I Ei is essential
for every i ∈ I.
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(3) For any i ∈ I and any object X in Ei the geometric morphism ιi : (Ei)/X → (
∏

i∈I Ei)/(ιi)!X
is an equivalence.

(4) For any sequence of objects (Xi)i∈I ∈
∏

i∈I Ei we have (Xi)i∈I =
∐

i∈I(ιi)!Xi.

(5) Let {Ci}i∈I be a family of small ∞-categories, then

(5.1) the equivalence
∏

i∈I [C
op
i , S] = Hom

(∐
i∈I Ci, S

)
establishes a bijection∏

i∈I

{
Grothendieck topologies on Ci

}
=
{
Grothendieck topologies on

∐
i∈I

Ci

}
;

(5.2) let (τi)i∈I and τ be a pair of corresponding elements under the above bijection, then the
functors Ci →

∐
i∈I Ci are both continuous and cocontinuous ([SGA 4I, Defs. III.1.1

& III.2.1]) and the induced essential geometric morphisms ShCi,τi → Sh(
∐

i∈I Ci),τ
exhibit Sh(∐i∈I Ci),τ as the coproduct of {ShCi,τi}i∈I (in Top).

We defer the proof of the above proposition to the end of this subsection. We obtain the
following corollary:

Proposition 6.3.2. The inclusions Cartrét,d ↪→ Cartrét induce essential geometric morphisms
Diff r

ét,d → Diffd
ét,r exhibiting Diffd

ét,r as the coproduct of {Diff r
ét,d}d≥0.

Now, consider the set-valued presheaf on the topological space Rd (d ≥ 0) given by sending
U to the set of r-time differentiable embeddings of U into Rd. The étalé space of this presheaf,
denoted by Γd

0, may naturally be viewed as an object of Diff r
ét. Its underlying set consists of pairs

(x, φ) consisting of a point x ∈ Rd together with the germ of an embedding of a neighbourhood
of x into Rd. Apart from the structure map Γd

0 → Rd there exists a second étale map Γd
0 → Rd

given by sending any element (x, φ) of Γd
0 to φ(x). Composition of germs endows the simplicial

diagram [n] 7→ Γd
n := Γd

0×Rd

(n+1)×
· · · ×RdΓd

0 with the structure of a groupoid object in Diff r
ét,

called the Haefliger groupoid , and is denoted by Γd. The d-th Haefliger stack , denoted by
Hd, is then the étale differentiable stack presented by Γd. As usual, we will identity Γd and Hd

with their images under j! in Diff r. The key to calculating the shape of the Haefliger stack is
the following observation by Carchedi:

Theorem 6.3.3 ([Car19, Th. 3.3]). The d-th Haefliger stack Hd is the final object in Diff r
ét,d.

Proof. It is enough to show that Diff r
ét,d(R

d,Hd) is contractible. It is nonempty as it contains
at least one element obtained by composing the identity map Rd → Γd

0 with the cover Γd
0 → Hd.

Let f : Rd → Hd be a map, then every point Rd admits a neighbourhood U and a lift

U Γd
0

Rd Hd.
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Choosing U sufficiently small, we may assume that U 99K Γd
0 is an embedding, and there exists

a diffeomorphism between U and its image in Γd
0, corresponding to a lift

Γd
1

U Γd
0

so that U ↪→ Γd
0 is equivalent to the standard inclusion. Performing this procedure for every

point in Rd, we see that f may be represented by the identity map Rd → Γd
0. Finally, note

that the only automorphism of he identity map Rd → Γd
0 in the groupoid Diff r

ét,d(R
d,Hd) is

the identity.

Applying Proposition 6.3.1.(4) we obtain the following corollary:

Corollary 6.3.4. The final object of Diff r
ét is then given by

∐
dH

d.

We now calculate the shape of the d-th Haefliger stack (d ≥ 0).

Theorem 6.3.5 ([Seg78, Prop. 1.3] & [Car16, Th. 3.7]). For all d ≥ 0:

(πDiffr)!H
d = B Emb(Rd,Rd).

Proof. We have

(πDiffr)!H
d = (πDiffr

ét
)!H

d Th. 3.3.2
= (πDiffr

ét,d
)!H

d Props. 6.3.1 & 3.1.7

= (πDiffr
ét,d

)!

(
1Diffr

ét,d

)
Th. 6.3.3

= colim1[(Cartrét,d)
op,S] Prop. 3.2.11

= (Cartrét,d)≃ Ex. 3.2.8
= B Embr(Rd,Rd),

Remark 6.3.6. In order to obtain Segal’s original result ([Seg78, Prop. 1.3]) on the classifying
space of the underlying topological groupoid of Γd, it is enough to observe that

1. Hd is given as the colimit of (the simplicial diagram) Γd,

2. u! : Diff r → Diff0 preserves colimits,

3. applying u! to Γd produces the underlying topological groupoid of Γd (Theorem 6.2.11),
and

4. fat topological realisations are homotopy colimits (and that ∆inj → ∆ is initial).

⌟

We conclude this subsection by giving a sketch of Carchedi’s proof of Theorem 6.3.5 in
[Car16], before supplying a proof of Proposition 6.3.1. First, Carchedi constructs the shape
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functors for Diff r
ét,d and Diff r (without identifying them as such) as follows: Denote by L :

TSpc→ S the localisation functor, then the sequence of functors

Cartrét,d →Mfdr
ét,d →Mfdr → TSpc→ S

gives rise to the sequence of cocontinuous functors

[(Cartrét,d)
op, S]→ Diff r

ét,d → ShMfdr
ét,d

(= Diff r
ét,d)→ Diff r → S, (21)

as the composition Mfdr → TSpc → S preserves colimits of hypercovers by [DI04, Th. 1.1]
(and the fact that fat topological realisations are homotopy colimits), and because the functor
Mfdr

ét,d → Mfdr is cocontinuous (see [SGA 4I, Def. III.2.1]). Then, one observes that the
composition of all the functors in (21) sends Rd to 1S for all d ≥ 0, so that by cocontinuity the
composition is simply given by the colimit functor. Thus the shape of the d-th Haefliger stack
(d ≥ 0) is again given by B Embr(Rd,Rd). To obtain the comparison with Segal’s result (as in
Remark 6.3.6) it is enough to observe that the shape of the colimit of any simplicial diagram of
(not necessarily 2nd-countable, Hausdorff) manifolds is equivalent to the homotopy type of the
fat topological realisation of the underlying simplicial diagram of topological spaces, again by
[DI04, Th. 1.1] and the fact that fat topological realisations are homotopy colimits.

Proof of Proposition 6.3.1.

(1) This is Proposition [Lur09b, 6.3.2.1].

(2) The initial topos is given by 1Cat, and for any ∞-topos E the unique geometric morphism
∅ : 1Cat → E is essential, where the left adjoint to the pullback functor is given by sending
the unique object of 1Cat to the initial object of E.

(3) The functor Cat1/ → Cat taking any pointed ∞-category 1
c−→ C to C/c is right adjoint

to the cone functor, and thus preserves limits. The∞-category ({Ei}i∈I)/(ιi)!X is obtained
by taking the product of (

∏
i ̸=j Ei)/∅!1 = (

∏
i ̸=j Ei)/∅ = 1 and (Ei)/X .

(4) For any object Y ∈
∏

i∈I E we have(∏
i∈I Ei

) (∐
i∈I(ιi)!Xi, Y

)
=

∏
i∈I
(∏

i∈I Ei

)
((ιi)!Xi, Y )

=
∏

i∈I
(∏

i∈I Ei

)
(Xi, ι

∗
iY )

=
(∏

i∈I Ei

)
((Xi)i∈I , Y )

where the last isomorphism follows from [Lur09b, Lm. 6.3.3.6].

(5)

(5.1) This is an immediate consequence of statement (3) of the theorem.

(5.2) That the functors Ci →
∐

i∈I Ci are both continuous and cocontinuous again follows
from (3). The equivalence

∏
i∈I [C

op
i , S]

≃←− Hom
(∐

i∈I Ci, S
)

restricts to a fully faith-
ful functor ShCi,τi ←↩ Sh(∐i∈I Ci),τ . It remains to show that any presheaf on

∐
i∈I Ci

which is sent to an object in ShCi,τi lies in Sh(
∐

i∈I Ci),τ .
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6.3.2 Algebraic topology and descent

Let X be a topological space covered by two open sets U and V such that X,U, V, U ∪ V are
connected, then by the Seifert-Van Kampen theorem the square

π1X π1V

π1U π1U ∩ V

is a pushout (for any basepoint in U ∩ V ). In fact, more is true: Let L : TSpc → S be the
localisation functor along the Serre-Quillen weak equivalences, then the pushout square in TSpc

X V

U U ∩ V

(22)

is carried by L to a pushout square in S, i.e., (22) is a homotopy pushout (see Definition 4.0.1).
Squares such as (22) encode glueing data for topological spaces, so that the Seifert-Van Kampen
theorem reflects how descent for topological spaces interacts with their singular homotopy types.

We give a quick proof of the statement that (22) is a homotopy pushout, which will function
as a paradigm for our new proof of Theorem 6.3.10 (Lurie’s Seifert-Van Kampen theorem), as
well as the proofs of Theorem 6.3.16 (Dugger and Isaksen’s hypercovering theorem) and Theorem
6.3.23 (which states that the base space of any principal bundles is a homotopy quotient). Denote
by v : Cart0 ↪→ TSpc the inclusion of the category of Cartesian spaces into the category of
topological spaces, then v! : [(Cartr)op, S]→ TSpc sends sieves generated by covers consisting
of jointly surjective open embeddings to isomorphisms, so that we obtain an adjunction

v! : Diff0 TSpc : v∗⊥ .

Proposition 6.3.7. There exists a canonical natural equivalence:

Diff0
≤0 TSpc

S

v∗

π!

∼

In other words, for any topological space X, the shape of v∗X is canonically equivalent to
its singular homotopy type.

Proof. Observe that the standard simplex functor

∆→ TSpc
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factors as ∆
∆!−→ Diff0 v!−→ TSpc. Then, by Proposition 6.2.3 we obtain the diagram

∆̂ Diff0
≤0 TSpc

S

v∗

π!
π!

∆∗

∼

The desired natural equivalence is then obtained by whiskering.

Warning 6.3.8. Proposition 6.3.7 does not imply that the singular homotopy type of a topological
space coincides with its shape. For example, the shape of the Hawaiian earring is not even
representable. ⌟

Remark 6.3.9. Proposition 6.3.7 and the attendant Theorems 6.3.10, 6.3.16, 6.3.23 remain true
when we replace Diff0 with Diff r for r > 0, but we find this circumstance bewildering, so we
have opted to fix r = 0 until the end of this chapter. ⌟

Now, observe that the commutative square

v∗X v∗V

v∗U v∗U ∩ V

is a pushout square in Diff r (which can be seen, e.g., by pulling back along all continuous maps
Rd → v∗X (d ≥ 0)), so that (22) is a homotopy pushout square by Proposition 6.3.7 and the
fact that π! preserves colimits.

Lurie’s Seifert-Van Kampen theorem We now prove Lurie’s far reaching generalisation of
the Seifert - Van Kampen Theorem:

Theorem 6.3.10 ([Lur17, A.3.1]). Let X be a topological space, and denote by OpenX the
category of open subsets of X (ordered by inclusion). Furthermore, let A be a small category,
and χ : A → OpenX , a functor. Moreover, for each element x ∈ X denote by Ax the full
subcategory of A spanned by those objects a ∈ A such that x ∈ χ(a). If (Ax)≃ = 1S for each
x ∈ X, then the cocone A� → TSpc obtained by composing the uniqe cocone A� → OpenX on
χ with apex X with the functor OpenX → TSpc is a homotopy colimit.

The version of the Seifert - Van Kampen Theorem presented above is then obtained by
setting A = U ← U ∩ V → V , and letting χ be the inclusion A ↪→ OpenX .

Proof of Theorem 6.3.10. The composition of Diff0 u∗
←− TSpc ← OpenX sends any covering

{U ⊆ V } to a covering in Diff0 (as can be seen by pulling back the inclusions u∗U ↪→ u∗V

along all maps Rd → u∗V ), and moreover preserves finite limits, so that it preserves coving
sieves, yielding a geometric morphism (uX)∗ : Diff0 ShX : u∗X⊥ by Proposition 5.1.3 and

[Lur18, Cor. 20.4.3.2]. We must show that A� → OpenX → ShX
u∗
X−−→ Diff0 π!−→ S is a colimit.

As Diff0 is hypercomplete and u∗X preserves ∞-connective morphisms, it is enough to show
that colimχ → X is ∞-connected, which can be checked by showing that it is sent to an
isomorphism by the stalk x∗ : ShX → S for every elements x ∈ X by [Lur17, Lm. A.3.9.]. The
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left Kan extension of the constant functor 1S : Ax → S given by A
χ−→ ShX

x∗
−→ S, so that we

obtain
1S = colim(1S : Ax → S) = colimx∗χ = x∗ colimχ→ x∗X = 1S

where the first isomorphism holds by assumption.

In [Lur17] Lurie first gives a technical proof of Corollary 6.3.11, from which he derives
Theorem 6.3.10 using arguments similar to those used in the proof of Theorem 6.3.10.

Corollary 6.3.11. Let X be a topological space, and R ↪→ X, a covering sieve (in ÔpenX),
then the cocone R� → TSpc obtained by composing the colimiting cocone R� → OpenX with
OpenX → TSpc is a homotopy colimit.

Proof. Set A = R, and χ equal to the inclusion R ↪→ OpenX . For every point x ∈ X the
category Ax is filtered, and thus its classifying space is contractible.

R-epimorphisms Both Theorem 6.3.16 and Theorem 6.3.23 are most naturally expressed
in a more general form than the original statements for which we require the notion of R-
epimorphism.

Proposition 6.3.12. Let X → Y be a continuous map, then the following are equivalent:

(1) The map u∗X → u∗Y in Diff0 is an effective epimorphism.

(2) For every d ≥ 0, every continuous map Rd → Y , and every point x ∈ Rd there exists a
neighbourhood U of x and a lift

X

U Rn Y

Definition 6.3.13. A continuous map X → Y is an R-epimorphism if it satisfies the equi-
valent conditions of Proposition 6.3.12. ⌟

Dugger and Isaksen’s hypercovering theorem

Definition 6.3.14. Let X be a topological space, then a simplicial diagram U : ∆op → TSpc/X
is an R-hypercover if U∆n → U∂∆n is an R-epimorphism for all n ≥ 0. ⌟

Example 6.3.15. Any ordinary hypercover of a topological space is an R-hypercover. ⌟

Theorem 6.3.16 ([DI04, Th. 1.1]). Let X be a topological space, and U : ∆op → TSpc/X , an
R-hypercover, then the corresponding cocone U : (∆op)� → TSpc is a homotopy colimit.

Proof. The functor Diff0 ← TSpc : v∗ preserves limits, and sends R-epimorphism to effective
epimorphisms by definition. Therefore, the composition of (v∗/XU)∂∆

n ≃−→ v∗(U∂∆n
) → v∗U∆n

is an effective epimorphism for every n ≥ 1, so that v∗/XU is a hypercover. Thus, v∗U is a colimit
by descent, and we may apply Proposition 6.3.7.

65



Principal bundles Until the end of this section G denotes a topological group. Assume that
G acts on a topological space X. If the action is principal, then it is often taken for granted
that X/G is homotopically well-behaved. For an example of what what is meant by this: if in
addition to being principal, X is moreover contractible, then X/G is a model for BG. To obtain
a precise notion of this homotopical well-behavedness, we note that the localisation functor
L : TSpc → S commutes with finite products, so that we obtain an action of LG on LX. We
then say that X/G is a homotopy quotient of the action of G on X if the comparison map
LX/LG→ L(X/G) is an isomorphism. We will prove in Theorem 6.3.23 that if the action of G
on X is principal, then X/G is indeed a homotopy quotient.

Remark 6.3.17. It is often claimed, incorrectly, that X/G is a homotopy quotient for any free
action. To see that this is not the case, let G act on copy of itself equipped with the trivial
topology, then the quotient is a point. If the quotient were a homotopy quotient, it would have
to model the classifying space of G, which is only true if G itself is weakly contractible. It is true
however, that any free quotient in any strict test topos E is a homotopy quotient, as quotients
by free actions commute with the inclusion of E into its associated hypercomplete ∞-topos. ⌟

Our notion of homotopy quotient agrees with more traditional notions of homotopically well-
behaved quotients. For example, the category of topological spaces with a continuous G-action,
TSpcG, admits a model structure in which the weak equivalences are those equivariant maps
whose underlying maps of topological spaces are weak equivalences (see [M+96, Th. VI.5.2]),
and one may ask when X/G has the same weak homotopy type as X//G, where //G denotes
the derived functor of the quotient functor TSpcG → TSpc. These two notions agree by the
following proposition.

Proposition 6.3.18. The functor TSpcG → SLG is a localisation along the weak equivalences
in TSpcG.

Proof. The functor SLG ← TSpcG factors as SLG ← (∆̂)sG ← TSpcG (where sG is the
total singular complex of G), so the proposition follows from Theorem 4.4.14 and the fact that
(∆̂)sG ← TSpcG preserves weak equivalences and induces and equivalence of∞-categories upon
localisation (see [DK84, 1.7]).

Using classical methods we are only aware of a proof of X//G ∼ X/G for a principal action
under the additional (mild) assumptions that G is well pointed, and X is a compactly generated
weakly Hausdorff space: By [Rie14, 9.2.10] X//G may be computed as the topological realisation
of · · · X ×G×G X ×G X, and this topological realisation is weakly equivalent
to X/G by [May75, Props. 7.1 & 8.5] (which relies on technical pointset topological arguments).

We will now systematically investigate the relationship between principal actions and homo-
topy quotients.

Definition 6.3.19. An R-principal G-bundle is an R-epimorphism P → B together with a
fibre preserving action of G on P , such that the shearing map P × G → P ×B P is a homeo-
morphism. ⌟

Example 6.3.20. Any principal G-bundles is an R-principal G-bundle. ⌟
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Lemma 6.3.21. Let P → B be an R-principal bundle, then the diagram

Diff0
v∗G TSpcG

Diff0 TSpc

v∗P×v∗G P×G

commutes.

Proof. We will show that the natural transformation v∗P ×v∗G v∗( )→ v∗(P ×G ) – obtained
by whiskering P × : TSpc→ TSpc with v∗( )/v∗G→ v∗( /G) – is a natural isomorphism.

Pulling back X ×G P → B along P → B yields the Cartesian natural transformation

· · · X ×G×G× P X ×G× P X × P X ×G P

· · · P ×B P ×B P P ×B P P B

⌟⌟⌟

As v∗ preserves limits, we see that

· · · v∗X × v∗G× v∗G× v∗P v∗X × v∗G× v∗P v∗X × v∗P

is the Čech complex both of v∗X × v∗P → v∗(X ×G P ) and of v∗X × v∗P → v∗X ×v∗G v∗P , so
that the comparison map v∗X ×v∗G v∗P → v∗(X ×G P ) is an isomorphism by descent.

Theorem 6.3.22. Let P → B be a an R-principle G-bundle, and X, a G-space, then the
comparison map LX ×LG LP → L(X ×G P ) is an isomorphism in S.

Proof. As v∗P ×v∗G v∗X = (v∗P × v∗X)/v∗G, the theorem follows from Lemma 6.3.21 and
Propositions 3.2.9 & 6.3.7.

Setting X = 1 yields the following corollary:

Corollary 6.3.23. If P → B is an R-principal G-bundle, then B is the homotopy quotient of
the G-space P .

Corollary 6.3.24. If E → B is a R-principal G-bundle with E weakly contractible, the com-
parison map B(LG)→ LB is an isomorphism in S.

We now turn to some classical theorems in (Borel) equivariant homotopy theory. Until the
end of the section, let E → B denote a R-principal G-bundle with E weakly contractible.

Proposition 6.3.25. The functor ×G E : TSpcG → TSpc preserves weak equivalences, and
the induced functor SLG → S is canonical isomorphic to /LG.

Proof. For any topological space X the map v∗X × v∗E → v∗X is a shape equivalence, so that
the outer square in

SLG Diff0
G TSpcG

S Diff0 TSpc

/LG /v∗G E×G
∼

commutes by Lemma 6.3.21 and Proposition 3.2.9.
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In other words, the Borel construction calculates homotopy quotients. We end this part by
modelling the equivalence SLG = S/BLG in the setting of topological spaces.

Lemma 6.3.26. Any R-principal G-bundle is sharp.

Proof. As in §6.2.1 we can define an extended simplex functor A• : ∆ → TSpc, which creates
the standard weak equivalences in TSpc by combining Proposition 6.2.2 with the argument used
in the proof of Proposition 6.3.7. Let P → B be an R-principal G-bundle, then by Proposition
4.3.13 it is enough to show that (A•)∗P → (A•)∗B is a fibration in [∆op, S] (see Proposition
4.4.20). The square

(A•)!Λ
n
k P

An B

admits a lift iff the square
(A•)!Λ

n
k P |An

An An=

(23)

does. As both An and (A•)!Λ
n
k are ∆-generated, we may assume w.l.o.g., that P |An is ∆-

generated, but as P |An → An admits local sections, it is a principal G-bundle, and thus trivial,
because An is contractible. Thus, P |An → An is homeomorphic (over An) to the projection
map An ×G → An, and (6.3.2) admits a lift, as (A•)!Λ

n
k ↪→ An admits a retract. The lemma

then follows by Proposition B.0.6.

Remark 6.3.27. It is also possible to show that R-principal G-bundles are fibrations in the
Serre-Quillen model structure, but the proof is more involved. ⌟

The following result is classical in the simplicial setting (see [DDK80]); we were not able to
find a reference in the topological setting.

Proposition 6.3.28. Both constituent functors in the adjunction

×B E : TSpc/B TSpcG : ×G E⊥ (24)

preserve weak equivalences, and the induced adjunction

S/LB = W−1TSpc/B W−1TSpcG⊥

is an adjoint equivalence.

Proof. The functor ×G E preserves weak equivalences by Proposition 6.3.25, and ×B EG

preserves weak equivalences by Lemma 6.3.26. The functor ×G E induces an equivalence on
localisations by Proposition 6.3.25, which by [Cis19, Prop. 7.14] concludes the proof.

Remark 6.3.29. It is not difficult to prove Proposition 6.3.28 by showing by hand that the unit
and counit of (24) are weak natural transformations. Moreover, it is possible to show that (24)
is a Quillen adjunction, and thus, by Proposition 6.3.28, a Quillen equivalence. ⌟
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7 Homotopical calculi on differentiable sheaves

In §7.1 we implement the technology of §4.4.2 to construct numerous model structures on Diff r

and related (∞-)categories, and discuss some of their properties. Then, in §7.2 we single out
one of these model structures, the Kihara model structure, and use it to prove Theorem 7.2.27
which states that a large class of (possibly infinite dimensional) manifolds satisfies the smooth
Oka principle. We will spend the rest of this introduction explaining what the differentiable Oka
principle is, why it is interesting, and our strategy for proving Theorem 7.2.27.

In this introduction all topological spaces are assumed to belong to some convenient category,
such as compactly or ∆-generated spaces, and TSpc denotes the category of such spaces. Let
A,X be topological spaces with A, a CW complex, then TSpc(A,X) together with the compact
open topology (denoted by TSpc(A,X)) is a model for S(LA,LX), where L : TSpc→ S is the
localisation functor. This follows from the fact that the model structure on TSpc is Cartesian,
by which A× ⊣ TSpc(A, ) is a Quillen adjunction. As all objects in TSpc are fibrant, both
A × and TSpc(A, ) preserve weak equivalences, and A × ⊣ TSpc(A, ) descends to an
adjunction on homotopy categories by [Cis19, Prop. 7.1.14]:

TSpc TSpc

S S.

A×

TSpc(A, )

LA×

S(LA, )

⊣
⊣

The derived left adjoint is given by LA× by Corollary 4.3.11, and thus the derived right adjoint
must be canonically equivalent to S(LA, ).

Now, moving on to the differentiable setting, let M be a closed smooth manifold, and
N an arbitrary smooth manifold, then the set of smooth maps Diff∞(M,N) admits a ca-
nonical structure of a Fréchet manifold (see [GG73, Th. 1.11]). Via smoothing theory it is
then possible to show that the homotopy type of this Fréchet manifold is equivalent to the
homotopy type of TSpc(M,N) (where M , N now denote the underlying topological spaces
of the smooth manifolds M , N), which is equivalent to S(LM,LN), which is equivalent to
S
(
(πDiff∞)!M, (πDiff∞)!N

)
by Theorem 6.2.11. By [Wal12, Lm A.1.7] the Fréchet manifold

of smooth maps from M to N is canonically equivalent to Diff∞(M,N), so it is natural to
ask for which differentiable sheaves the internal mapping sheaf π!Diff∞(A,X) is a model for
S(π!A, π!X). More precisely (and from now on for r no longer necessarily equal to ∞), by
Corollary 6.1.6 the shape functor π! : Diff r → S commutes with finite products so that we
obtain a canonical map π!Diff r(A,X) → S(π!A, π!X) by applying π! to the evaluation map
Diff r(A,X)×A→ X, and then taking the transpose of π!Diff r(A,X)× π!A→ π!X.

Definition 7.0.1. A differentiable sheaf A satisfies the differentiable Oka principle or is
Oka cofibrant if for every r-times differentiable sheaf X the map π!Diff r(A,X)→ S(π!A, π!X)

is an equivalence. ⌟

Remark 7.0.2. This terminology is inspired by work of Sati and Schreiber (e.g., [SS21]), where
an object in Diff∞ satisfying the differentiable Oka principle is said to satisfy the smooth Oka
principle. We have chosen the term differentiable over smooth to emphasise that in our setting
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r is not necessarily equal to ∞. ⌟

In Theorem 7.2.3 we prove that a large class of (possibly infinite dimensional) manifolds sat-
isfy the differentiable Oka principle. We will now discuss our proof strategy: Having constructed
several model structures on Diff r in §7.1, we might hope to prove Theorem 7.2.3 by showing
that one of these satisfies the following three properties, so that we may argue similarly as in
TSpc:

1. The model structure is Cartesian closed.

2. All objects are fibrant.

3. All manifolds are cofibrant.

Unfortunately, unless r = 0 we are not able to get 1. and 2. simultaneously for any “reasonable”
model structure by Proposition 7.1.10.

We thus bring the theory of §4.3 to bear on our problem, which will allow us to think about
homotopical calculi in a more flexible manner than allowed by model structures. Let us assume
that we have already shown that a given differentiable sheaf A is Oka cofibrant, and that S → D

is a map between Oka cofibrant objects – which we think of as constituting a “cell inclusion” –
then, if we attach our “cell” D along a map f : S → A, a natural way of showing that A∪f D is
also cofibrant is to show that the pullback

Diff(A ∪f D,X) Diff(D,X)

Diff(A,X) Diff(S,X)

is a homotopy pullback. Thus, we would like to find morphisms S → D between objects
satisfying the differentiable Oka principle such that the morphism XD → XS is sharp for every
differentiable sheaf X.

Definition 7.0.3. A morphism S → D in Diff r is called an Oka cofibration if XD → XS is
sharp for every differentiable sheaf X. ⌟

Kihara’s simplices ∆• : ∆→ Diff r (see Definition 6.2.5) induce one of the model structures
discussed in §7.1, and our strategy is then to show that, while the Kihara model structure is
not Cartesian closed, the Kihara horn inclusions are Oka cofibrations. To accomplish this we
introduce a new class of sharp morphisms, the squishy fibrations in §7.2.1, and show that the
morphism X∆n → XΛn

k is a squishy fibration for all horn inclusions and all r-times differen-
tiable sheaves X. Then in §7.2.3 we show that a large class of (possibly infinite dimensional)
smooth manifolds are Oka cofibrant by relating them to simplicial complexes built using Kihara’s
simplices, thus proving Theorem 7.2.27.

7.1 Model structures on Diff r and related ∞-categories

In this subsection we show that Diff r
≤0 is a test category, and construct multiple model struc-

tures on Diff r and Diff r
≤0 using the technology of §4.4.2, after which we discuss some of their

properties. In §7.1.1 we show that the model structure on Diff r transferred using Kihara’s
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simplices restricts to a model structure on Diff r
concr, which is again Quillen equivalent to ∆̂,

thus recovering a theorem of Kihara. In §7.1.2 we recover Quillen’s theorem that the Quillen
adjunction ∆̂ TSpc⊥ is a Quillen equivalence by making precise how the model structure
on Diff0

concr further restricts to TSpc after “applying a mild homotopy”. Furthermore, we sketch
how this technique may be used to recover how homotopy colimits may be calculated using the
bar construction without prior cofibrant replacement.

Proposition 7.1.1. The category Cartr is a strict test category.

Proof. By Corollary 4.4.7 it is enough to observe that R together with the inclusions of {0} and
{1} is a separating interval.

Theorem 7.1.2 ([Cis03, Th. 6.1.8]). The topos Diff r
≤0 is a strict test topos.

Proof. Combine the preceding proposition with Theorem 4.4.8 and Corollary 6.1.3.

By Propositions 4.4.13 and 4.1.5 we obtain, respectively, the following two corollaries:

Corollary 7.1.3. The relative category Diff r
≤0 is proper.

Corollary 7.1.4. The following are homotopy colimits in Diff r
≤0:

1. Pushouts along monomorphisms.

2. Filtered colimits.

3. Coproducts.

We now discuss various model structures on Diff r and Diff r
≤0. For all of the nerve diagrams

discussed in §6.2.1 we have already verified that they satisfy the assumptions of Theorem 3.2.12,
so that they satisfy condition (a) of Proposition 4.4.21 and Theorem 4.4.22. The nerve diagrams
are moreover readily seen to satisfy conditions (b) and (c) of Theorem 4.4.22 using Proposition
4.4.23 and Corollary 4.4.25. We thus obtain the following proposition

Proposition 7.1.5. The pullback functors along the diagrams

A• : ∆→ Diff r
≤0

∆•
sub : ∆→ Diff r

≤0

∆• : ∆→ Diff r
≤0

• : → Diff r
≤0

• : → Diff r
≤0

of §6.2.1 all produce right transferred model structures on Diff r and Diff r
≤0 in which the weak

equivalences are the shape equivalences.

Remark 7.1.6. A new proof that the model structure on Diff r
≤0 transferred along the adjunction

(∆•
sub)! : ∆̂ Diff r

≤0 : (∆
•
sub)

∗⊥ is Quillen equivalent to the one on ∆̂ is given in [Pav22,
Th. 7.4]. His argument uses the nerve theorem in a similar way as discussed in §6.1.5. ⌟
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For us, the most important of these model structures is the following:

Definition 7.1.7. The model structures on Diff r and Diff r
≤0 transferred along the pullback

functor of the diagram ∆• : ∆ → Diff r
≤0 are both called the Kihara model structure , and

(trivial) (co)fibrations in this model structure are called Kihara (trivial) (co)fibrations. ⌟

From Proposition 6.2.4 we see:

Proposition 7.1.8. All objects in the Kihara model structure are fibrant.

From Proposition 4.3.14 we obtain the following corollary:

Corollary 7.1.9 ([BEBP19, Lm 5.10]). The shape functor π! : Diff r → S commutes with
arbitrary products.

Assume r > 0. We now exhibit the principle which shows that none of the model structures
induced from the nerves functors in §6.2.1 can simultaneously satisfy conditions 1 & 2 discussed
in the introduction of this section.

Proposition 7.1.10. In any model structure on Diff r in which the weak equivalences are the
shape equivalences, and in which {0} ↪→ R or {0} ↪→ [0, 1] is a (necessarily trivial) cofibration
the following statements cannot both be true.

1. The model structure is Cartesian.

2. All objects are fibrant.

Proof. We will prove the proposition under the assumption that {0} ↪→ [0, 1] is a cofibration;
the case when {0} ↪→ R is a cofibration is similar. Assume that both 1. & 2. hold. By 1. the
pushout product ι of ∆{0} ↪→ ∆1 is a trivial cofibration, and by 2. all trivial cofibrations admit
a retract, which is not true of ι.

Corollary 7.1.11. The Kihara model structures on Diff r and Diff r
≤0 are not Cartesian closed.

All the other model structures induced by the nerves in §3.2.12 are Cartesian closed: The A•-
and ∆•

sub-model structures by [Pav22, §8], and the •- and •-model structures by Propositions
A.0.2 & A.0.4.

Corollary 7.1.12. Not all objects are fibrant in the model structures transferred from the nerves
A•, ∆•

sub,
•, •.

7.1.1 The Kihara model structure on diffeological spaces

Here we recover Kihara’s model structure on diffeological spaces (for r =∞), and show that the
weak equivalences are the shape equivalences, and moreover that the restricted shape functor
π!|Diffr

concr
: Diff r

concr → S again exhibits S as the localisation of Diff r
concr along the weak

equivalences. Moreover we discuss several classes of colimits which are homotopy colimits in
Diff r

concr.

Proposition 7.1.13. The functor (∆•)! : ∆̂→ Diff r
≤0 factors through Diff r

concr ↪→ Diff r
≤0.
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Proof. The inclusions ∂∆n ↪→ ∆n are embeddings, so that all colimits used to construct the
realisation of any simplicial set in Diff r

≤0 are preserved by the inclusion Diff r
concr ↪→ Diff r

≤0 by
Corollary 4.2.12.

Remark 7.1.14. Observe that Proposition 7.1.13 fails for the closed simplices ∆n
sub, precisely

because the maps ∂∆n
sub ↪→ ∆n

sub are not embeddings. See [Pav22, §6] for a proof of this fact. ⌟

Theorem 7.1.15 ([Kih19, Th. 1.3] [Kih17, Th. 1.1]). There exists a cofibrantly generated model
structure on Diff r

concr, such that

(1) the weak equivalences are the shape equivalences,

(2) the generating cofibrations and trivial cofibrations are given by {∂∆n ↪→ ∆n}n≥0 and
{Λn

k ↪→ ∆n}n≥1, n≥k≥0,

(3) the adjunction ∆̂ Diff r
concr⊥ is a Quillen equivalence, and

(4) all objects in Diff r
concr are fibrant.

Proof. We shall transfer the model structure from ∆̂ using Proposition 4.4.19, and make heavy
use of (1), which follows from Proposition 6.2.6. Thus, let X be a diffeological space, and consider
a map f : Λn

k → X (n ≥ 1, n ≥ k ≥ 0), then X → X ∪f ∆n is a ∆1-deformation retract (and
thus a weak equivalence), since Λn

k ↪→ ∆n is one. The transfinite composition of {Λn
k ↪→ ∆n}-

cell-attachments is a weak equivalence by Proposition 4.2.12. Lastly, shape equivalences are
closed under retract, because isomorphisms are closed under retracts in S.

By Proposition 7.1.13 both adjoints in ∆̂ Diff r
concr⊥ preserve weak equivalences,

and the unit and counit are weak natural equivalences by Theorem 4.4.22, establishing (3).
Finally, (4) follows from the fact that all inclusions Λn

k → ∆n (n ≥ 1, n ≥ k ≥ 0) are
deformation retracts.

By Corollary 4.2.12 we obtain the following result.

Proposition 7.1.16. The following classes of colimits are homotopy colimits in Diff r
concr:

1. Pushouts of embeddings along monomorphisms.

2. Filtered colimits where all transition morphisms are monomorphisms.

3. Coproducts

7.1.2 The Quillen model structure on topological spaces

Milnor’s result from [Mil57] that the homotopy categories of CW complexes and Kan complexes
are equivalent may be seen as the starting point of abstract homotopy theory, as it lays the
groundwork for viewing homotopy types as objects in their own right, which may be presented
in many different ways. Quillen refined Milnor’s result in [Qui67] by showing that the adjunction

| | : ∆̂ TSpc : s⊥ (25)

is a Quillen equivalence, providing a systematic framework in which to transfer homotopical
arguments from one model category to the other. By [Qui67, Lms. 2.3.1 & 2.3.2] the model
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structure on TSpc is transferred from ∆̂, so we are thus in a situation similar to the one
encountered for the various cosimplicial diagrams ∆ → Diff0 and ∆ → Diff0

concr seen above,
and we will show that our techniques may be used to give a conceptual proof of why (25)
is a Quillen equivalence. Before doing so, we give a brief historical overview of work on the
equivalence of the homotopy theory of topological spaces and simplicial sets.

It appears that Givier was the first to show that the counit of (25) is a natural weak equi-
valence in [Gie50] using combinatorial arguments. In [Mil57] Milnor then shows that the unit of
(25) evaluated at any Kan complex is a weak equivalence, by providing an explicit equivalence
on the level of connected components and fundamental groups, and then noting that a relative
Hurewicz theorem gives isomorphisms of higher homotopy groups. Using a similar Hurewicz
argument, Milnor shows that the total singular complex functor s induces isomorphisms on
homotopy groups, so that Milnor is able to recover Givier’s result from his using the triangle
identities of (25). In [GZ67, §VII.1] Gabriel and Zisman provide a new proof of Milnor’s the-
orem by showing that topological realisation | | carries minimal fibrations to fibre bundles, and
thus | | also preserves fibration sequences (on homotopy categories), allowing them to obtain
isomorphisms between the homotopy groups of any Kan complex X and the topological space
|X| using Postnikov towers in the simplicial and topological contexts. Both Hovey and Goress-
Jardine (see [Hov99] and [GJ99]) begin by constructing the model structure on TSpc, and then
define weak equivalences of simplicial sets as morphisms which are sent to weak equivalences of
topological spaces. They then use Gabriel and Zisman’s minimal fibrations and Milnor’s the-
orem to construct the model structure on simplicial sets from the model structure on topological
spaces. As weak equivalences are defined via topological realisation, they must show Givier’s
result that the counit is a weak equivalence in order to apply [Hov99, Cor. 1.3.16], which they
again obtain from Milnor’s theorem.

We now turn to our proof that (25) is a Quillen equivalence: As in our setup weak equi-
valences are created by the total singular complex functor, we need to show that the unit is
a natural weak equivalence so that we may apply [Hov99, Cor. 1.3.16], i.e., we must recover
Milnor’s theorem, (which we do for all simplicial sets, not just Kan complexes). We denote by
| |Diff0

concr
: ∆̂ → Diff0

concr and | |TSpc : ∆̂ → TSpc the Yoneda extensions along the dia-
gram ∆•

sub : ∆ → Diff r
≤0 (see §6.2.1), so that | |TSpc is just the usual topological realis-

tion. Observe that the subcategory ∆TSpc ↪→ TSpc spanned by the ∆-generated topological
spaces (see [CSW14]) is exhibited as a subcategory of Diff0

concr by v∗ (see §6.3.2). As hinted
at above, one might then be tempted to implement the same strategy used for constructing
a Quillen equivalence between ∆̂ and Diff0

concr in §7.1.1, but, unfortunately, the realisation
functor | |Diff0

concr
: ∆̂ → Diff0

concr does not factor through ∆TSpc (note, however, that the
topological realisation does factor through ∆TSpc ↪→ TSpc). To see this, note for example
that the topological space |Λ2

1|TSpc is homeomorphic to [0, 1], but that by Example 5.2.8 the
object |Λ2

1|Diff0
concr

is not even a topological space. Luckily, the realisation in Diff0
concr is close

enough to the topological realisation for our above strategy to work after a slight modification.
All we need to do is to show that for any simplicial set X the morphism |X|Diff0

concr
→ |X|TSpc
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is an R-homotopy equivalence. Then, from the commutative diagram

s|X|Diff0
concr

X

s|X|TSpc

we recover Milnor’s theorem from the 2-out-of-3 property.
We have just seen that while the map on underlying sets of |X|Diff0

concr
→ |X|TSpc is a

bijection, it is not true that the map in the other direction is continuous. In order to remedy
this, we construct below a homotopy Hn : [0, 1]×∆n → ∆n (in ∆TSpc) for every n ≥ 1, which
deforms a neighbourhood of ∂∆n down to ∂∆n in such a way that the restriction of Hn to any
face ∆n−1 yields the homotopy Hn−1. For any simplicial set X these homotopies assemble to the
two homotopies HX : [0, 1]×|X|TSpc → |X|TSpc and HX : [0, 1]×|X|Diff0

concr
→ |X|Diff0

concr
. We

now prove that |X|TSpc
HX

1−−→ |X|Diff0
concr

is continuous, so that the maps |X|Diff0
concr
→ |X|TSpc

and HX
1 : |X|TSpc → |X|Diff0

concr
are then homotopy inverse to each other:

Let p : Rd → |X|TSpc be a continuous map, and let x be a point in Rd, then there exists a
unique non-degenerate simplex cx : ∆n ↪→ X with minimal n ≥ 0 such that p(x) ∈ |∆n|Diff0

concr
⊆

|X|Diff0
concr

. For every factorisation ∆n δ
↪−→ ∆m ↪→ X of cx through a non-degenerate simplex

with m > n consider the subset Uδ ⊆ |∆m|TSpc ⊂ |X|TSpc given by the interior of the set of
those points which are mapped to |∂∆m|TSpc ⊂ |X|TSpc by Hm

1 . The image U of the canonical
map

∐
δ Uδ → |X|TSpc is open, and the composition of p|p−1U : p−1U → |X|TSpc → |X|Diff0

concr

factors through |∆n|Diff0
concr

↪→ |X|Diff0
concr

.

Construction of Hn for n ≥ 0: For each n ≥ 0 consider the smooth map ∆n → R, x 7→ 1−∥x∥,
i.e., the map that radially measures the distance from any point in ∆n to the unit sphere in Rn+1,
and take its gradient, which we view as an electric field. For t ∈ [0, 1] the map Hn

t : ∆n → ∆n

is then given by viewing an element of ∆n as a charged particle, which is pushed by the electric
field for time t. If the particle hits a face of dimension k, the particle is pushed by the component
of the force field parallel to the k-dimensional face, until either t = 1 of it hits a face of even
lower dimension.

Lurie has also recently produced a proof of Milnor’s theorem in [Lur22, Tag 0142]. We re-
frame one of Lurie’s key arguments below to obtain yet another proof of Milnor’s theorem, this
time in the spirit of §6.3.2:

Claim: Let K be a finite simplicial set for which |K|Diff0
concr
→ |K|TSpc is a weak equivalence,

then for any map f : ∂∆n → K the map |K ∪f ∆n|Diff0
concr
→ |K ∪f ∆n|TSpc is likewise a weak

equivalence.

From the claim it follows inductively that |K|Diff0
concr
→ |K|TSpc is a weak equivalence for

all finite simplicial sets K. An arbitrary simplicial set X may then be written as the filtered
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colimit of its finite simplicial subsets {K ⊆ X}. By [DI04, Lm. A.3] any map Rd → |X|TSpc

factors locally through |K|TSpc for some finite simplicial subset K ⊆ X, so that the colimit
of the functor {K ⊆ X} → Diff0

concr, K 7→ |X|TSpc, is a topological space. Then for
an arbitrary simplicial set X the comparison map |X|Diff0

concr
→ |X|TSpc may be written as

colim{K⊆X} |K|Diff0
concr
→ colim{K⊆X} |K|TSpc and is thus a weak equivalence by the claim.

Proof of claim: Denote by 0 the centre of ∆n. As | |TSpc preserves colimits, K ∪f ∆n is sent to
|K|TSpc ∪f |∆n|TSpc, which can equivalently be written as the pushout

|∆n|TSpc \ {0} |K|TSpc ∪f (|∆n|TSpc \ {0})

|∆n|TSpc |K|TSpc ∪f |∆n|TSpc

which is a homotopy pushout by Lurie’s Seifert-Van Kampen theorem, Theorem 6.3.10.

Strøm homotopy colimits are Serre homotopy colimits Let A be a small ordinary
category, and X : A→ TSpc, a diagram, then it was long a folklore theorem that the topological
realisation of the simplicial topological space

· · ·
∐

a0→a1→a2∈A∆2

Xa0

∐
a0→a1∈A∆1

Xa0

∐
a0∈A∆0

Xa0 (26)

yields a model for the homotopy colimit of X. In general, in a simplicial model category
(such as TSpc) one must replace the diagram X with one which is objectwise cofibrant be-
fore applying the above construction in order to obtain a model for the homotopy colimit (see
[Rie14, Rmk. 6.3.4]), however, in TSpc this is not necessary, as proved in [DI04, Th. A.7]. Our
methods allow for a conceptual explanation for why the cofibrant replacement is not necessary.
Unfortunately, producing a rigorous proof of [DI04, Th. A.7] using our methods ends up being
considerably more involved than the original proof in [DI04], so we content ourselves with a
discussion of the special case when A = • ← • → •, in which case the geometric realisation of
(26) yields the double mapping cylinder.

Consider a span
B C

A

(27)

in TSpc, then the double mapping cylinder M may be more directly obtained as a colimit of

B ∆1 ×A C

A A
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or equivalently as the pushout of the diagram

B ⊔A (A×∆1) C ⊔A (A×∆1)

A

(which admits a natural homotopy equivalence to the diagram (27)). If we take the pushout M ′

of
v∗
(
B ⊔A (A×∆1)

)
v∗
(
C ⊔A (A×∆1)

)
v∗A

in Diff0 we obtain an object in Diff0
concr by Proposition 4.2.8, as both legs are embeddings.

Now, while the comparison map M ′ → M induces a bijection on underlying sets it is not
an isomorphism, just as was the case when comparing the realisations of any simplicial set
in Diff0

concr and TSpc. However, in a completely analogous way as we did for comparing
realisations of simplicial sets, one may use H1 to exhibit M ′ → M as a homotopy equivalence.
For general diagrams, one can again show that the realisation of (26) calculated in Diff0 is a
concrete sheaf, and then use the family of homotopies Hn, to show that the comparison map to
the topological realisation of (26) is homotopy equivalence.

Returning briefly to the question of exhibiting double mapping cylinders as homotopy pushouts,
one may alternatively mimic Lurie’s proof that ∆̂ TSpc⊥ is a Quillen equivalence: The
topological space M is the pushout of

B ⊔A A× [0, 1) (0, 2]×A ⊔A C

A× (0, 2)

(which also admits a natural homotopy equivalence to (27)), which is a homotopy pushout by
Lurie’s Seifert-Van Kampen theorem (Theorem 6.3.10). Unfortunately, we do not know how to
generalise this approach to arbitrary diagrams in TSpc.

7.2 The differentiable Oka principle

We now implement our plan for proving Theorem 7.2.27 described in the introduction of this
section. In §7.2.1 we construct the squishy fibrations, and use them to exhibit the Kihara
boundary inclusions ∂∆n ↪→ ∆n as Oka cofibrations. Then, in §7.2.2 we discuss various closure
properties – such as being closed under ∆1-homotopy equivalence – for differentiable sheaves
satisfying the differentiable Oka principle. Using the closure properties discussed in §7.2.2 we
show in §7.2.3 that simplicial complexes built using Kihara’s simplices are Oka cofibrant, and
then use an argument originally due to Segal and tom Dieck showing that a large class of (possibly
infinite dimensional) differentiable manifolds are ∆1-homotopy equivalent to such simplicial
complexes. Finally, in §7.2.4 we discuss some examples of objects not satisfying the differentiable
Oka principle such as the long line.
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7.2.1 Squishy fibrations

The squishy fibrations are defined using a cubical diagram of : → Pro(Diff r) of squishy
cubes. To construct these, we first define a precursor, the ε-squishy cubes ε : → Diff r

≤0

for all 0 < ε < 1
2 , which induce the ε-squishy model structures on Diff r and Diff r

≤0, then
the squishy cubes are obtained as the pro-limit of the ε-squishy cubes. We then show that the
squishy fibrations are sharp in Proposition 7.2.12, and prove the Kihara’s horn inclusions are
Oka cofibrations in Theorem 7.2.16.

We will make frequent use of the following ancillary function throughout §7.2.1.

Notation 7.2.1. Let 0 < α < β < 1
2 , then λβ

α : [0, 1]→ [0, 1] denotes any map such that

(a) λβ
α|[0,α] ≡ 0, λβ

α|[1−α,1] ≡ 1,

(b) λβ
α(t) = t for all t ∈

[
1
2(β + α), 1− 1

2(β + α)
]
, and

(c) λ̇β
α(t) > 0 for all t ∈ (α, 1− α).

⌟

ε-squishy intervals and cubes Throughout this subsection we fix 0 < ε < 1
2 .

Definition 7.2.2. The pushout of the span

[0, ε] ∪ [1− ε, 1] {0} ∪ {1}

1

(in Diff r) is called the ε-squishy interval and is denoted by 1
ε. For any n ∈ N the n-fold

product of 1
ε is called the ε-squishy n-cube , and is denoted by n

ε . ⌟

Proposition 7.2.3. The ε-squishy n-cube n
ε is 0-truncated for all n ∈ N.

Proof. This is an immediate consequence of Lemma 4.1.1.

By Proposition A.0.2 we obtain a cocubical diagram

•
ε : → Diff r

≤0
n 7→ n

ε .

Notation 7.2.4. We write

∂ n
ε := ( •

ε)!∂
n, n ≥ 0

n
k,ξ,ε := ( •

ε)!
n
k,ξ, n ≥ 1, n ≥ k ≥ 0, ξ = 0, 1.

⌟

Proposition 7.2.5. The ε-squishy cubes generate Diff r under colimits.

Proof. For each d ≥ 0 and for the map
∐

x∈Rd
d
ε

(
(λε

ε′ )
d+x
)
x∈Rd

−−−−−−−−−−→ Rd is an effective epi-
morphism, as it is surjective and admits local sections, so the proposition follows from [Lur18,
Prop. 20.4.5.1].
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Lemma 7.2.6. The differentiable sheaf 1
ε is 1

ε-contractible.

Proof. Set α = ε, fix any α < β < 1
2 , and write λ := λβ

α. Also, define

µ :
[
ε, 12
]
→

[
ε, 12
]

s 7→
(
1
2 − ε

)
· λ
(

1
1
2
−ε

(s− ε)
)
+ ε,

and
ν :

[
1
2 , 1− ε

]
→

[
1
2 , 1− ε

]
s 7→

(
1
2 − ε

)
· λ
(

1
1
2
−ε

(
s− 1

2

))
+ 1

2 .

Consider the map

H : [0, 1]× [0, 1] → [0, 1]

(s, t) 7→


t if 0 ≤ s ≤ ε
1

1
2
−ε

(
(λ(t)− t) · µ(s) + 1

2 t− λ(t) · ε
)

if ε ≤ s ≤ 1
2

1−ε−ν(s)
1
2
−ε

· λ(t) if 1
2 ≤ s ≤ 1− ε

0 if 1− ε ≤ s ≤ 1.

(Qualitatively, H|[0, 12 ]×[0,1] interpolates between t 7→ t and λ, and H|[ 12 ,0]×[0,1] interpolates
between λ and t 7→ 0.)

Writing 2
ε as a colimit of

({0} ∪ {1}↞ [0, ε] ∪ [1− ε, 1] ↪→ [0, 1])× ({0} ∪ {1}↞ [0, ε] ∪ [1− ε, 1] ↪→ [0, 1])

we see that we need to check that the induced map [0, 1]× [0, 1]→ 1
ε factors as 1

ε× [0, 1]→ 1
ε

and [0, 1] × 1
ε → 1

ε, and that moreover ([0, ε] ∪ [1 − ε, 1]) × ([0, ε] ∪ [1 − ε, 1]) → 1
ε factors

through ({0} ∪ {1})× ({0} ∪ {1})→ 1
ε.

The last point is clear, as well as the fact that H factors through 1
ε × [0, 1]→ [0, 1]. Thus,

we are left with showing the second property.
Observe that H(s, t) = λ(t) for s ∈

(
1
2 − δ, 12 + δ

)
and some sufficiently small δ > 0. We will

check separately that H|[0, 12+δ)×[0,1] and H|( 1
2
−δ,1]×[0,1] factor through

[
0, 12 + δ

)
× 1

ε → 1
ε and(

1
2 − δ, 1

]
× 1

ε → [0, 1], respectively. In the first case, H(s, t) ∈ [0, ε) ∪ (1 − ε, 1] for all values
t ∈ [0, ε) ∪ (1 − ε, 1], so that H|[0, 12+δ)×[0,ε) and H|[0, 12+δ)×(1−ε,1] composed with [0, 1] → 1

ε

are constant. In the second case, as λ|[0,ε) ≡ 0 and λ|(1−ε,1] ≡ 1, the map H|( 1
2
−δ,1]×[0,1] is

independent of t for all t ∈ [0, ε) ∪ (1− ε, 1].

Just as for the diagrams discussed in §6.2.1, the diagram → Diff r
≤0 induced from 1

ε via
Proposition A.0.2 satisfies the assumptions of Proposition 4.4.21 and Theorem 4.4.22, yielding
the following proposition:

Proposition 7.2.7. The pullback functors along the diagrams → Diff r
≤0 produces right trans-

ferred model structures on Diff r and Diff r
≤0 in which the weak equivalences are the shape equi-

valences.

Squishy intervals and cubes
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Definition 7.2.8. The pro-differentiable sheaf

1 := “ lim
ε>0

” 1
ε

is called the squishy interval . For any n ∈ N the n-fold product of 1 is called the squishy
n-cube , and is denoted by n. The resulting cocubical pro-object is denoted as follows:

• : → Pro(Diff r)
n 7→ n

⌟

By Proposition C.0.3 the functor • : → Pro(Diff r) may thus be extended to a colimit
preserving functor •

! : [
op, S]→ Pro(Diff r).

Notation 7.2.9. We write

∂ n := •
! ∂

n, n ≥ 0
n
k,ξ := •

!
n
k,ξ, n ≥ 1, n ≥ k ≥ 0, ξ = 0, 1.

⌟

Proposition 7.2.10. There is a canonical isomorphism

n ≃ “ lim
ε>0

” n
ε n ≥ 0.

Proof. There is an isomorphism n ≃ “ lim(ε1>0)×···×(εn>0) ”
1
ε1 × · · · ×

1
εn by the proof of

Proposition C.0.1. As the ordered set
(
0, 12
)

admits products it is sifted, and the diagonal map(
0, 12
)
→
(
0, 12
)
× · · · ×

(
0, 12
)

is initial so that the induced map “ limε>0 ”
1
ε × · · · × 1

ε →
“ lim(ε1>0)×···×(εn>0) ”

1
ε1 × · · · ×

1
εn is an isomorphism.

Squishy fibrations

Definition 7.2.11. A morphism X → Y in Diff r is called a squishy fibration if the morphism
of simplicial homotopy types ( •)∗X → ( •)∗Y is shape fibration. ⌟

Proposition 7.2.12. Any squishy fibration is sharp.

Proof. We will show that the functor satisfies the conditions of Proposition 4.3.13.
The inclusion Pro(Diff r) ←↩ Diff r preserves finite limits by [Lur09b, Prop. 5.3.5.14], and

[∆op, S]← Pro(Diff r) : ( •)∗ preserves all limits, as it is a right adjoint.
We conclude with the following two steps, which follow from Proposition 7.2.7 and the fact

that shape equivalences are closed under colimits:
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Let X → Y be a shape equivalence in Diff r then we have

Diff r( •, X)→ Diff r( •, Y )

= Diff r(colim
ε>0

•
ε, X)→ Diff r(colim

ε>0

•
ε, Y )

= colim
ε>0

Diff r( •
ε, X)→ colim

ε>0
Diff r( •

ε, Y )

= colim
ε>0

(
Diff r

( •
ε, X)→ Diff r( •

ε, Y )
)
.

Finally, the base change map colim ◦( •)∗ → π! is a natural isomorphism, as for each differen-
tiable sheaf X we have

colim ◦( •)∗X = Diff r( •, X)→ Diff r( •, Y )

= Diff r(colim
ε>0

•
ε, X)

= colim
ε>0

Diff r( •
ε, X)

= colim
ε>0

π!X

= π!X.

Remark 7.2.13. It is possible to show that the squishy fibrations together with the shape equi-
valences form a fibration structure, yielding a different proof that fibrations are sharp. ⌟

Proposition 7.2.14. The squishy fibrations are closed under arbitrary products.

Proof. This follows from the fact that the squishy fibrations may be characterised as those
morphisms which lift against all the horn inclusions n

k,ξ ↪→ n.

Lemma 7.2.15. Let 0 < ε′ < ε < 1
2 , then the triangle

1 1

1
ε

λε
ε′

commutes.

Proof. It is enough to show that composing [ε′, 1− ε′]→ 1 → 1
ε yields an epimorphism, then

the statement follows from the observation that the triangle

[ε′, 1− ε′]

1
ε

1
ε

[λε
ε′ ]
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commutes. To see this, let X be any differentiable space, then any map f : 1 → X, which
descends to a map 1

ε → X, may be obtained by glueing f |(ε′,1−ε′) : (ε′, 1 − ε′) → X with[
0, 12(ε

′ + ε)
)
→ 1

f(ε′)−−−→ X and
(
1− 1

2(ε
′ + ε), 1

]
→ 1

f(1−ε′)−−−−−→ X along their common intersec-
tion.

Theorem 7.2.16. Let X be a differentiable sheaf, then

X∆n → X∂∆n

is a squishy fibration for any n ≥ 0.

Proof. In this proof we use the following notation
(
0 < ε < 1

2

)
:

k ⋆i,ξ ∆
n :=

(
k
i,ξ ×∆n

)
⊔ k

i,ξ ×∂∆n

(
k × ∂∆n

)
k ⋆i,ξ ∆

n :=
(

k
i,ξ ×∆n

)
⊔ k

i,ξ×∂∆n

(
k × ∂∆n

)
k
ε ⋆i,ξ ∆

n :=
(

k
i,ξ,ε×∆n

)
⊔ k

i,ξ,ε ×∂∆n

(
k
ε × ∂∆n

)
We must show that for every n ≥ 1, n ≥ k ≥ 0 and ξ = 0, 1

k ⋆i,ξ ∆
n X

n ×∆n

(28)

admits a lift. The horizontal map is represented by a map

k ⋆i,ξ ∆
n → X

which factors through k
ε ⋆i,ξ ∆

n for some 0 < ε < 1
2 . Fix 0 < ε′ < ε, and write λ := λε′ . To

prove the statement we define maps µ, ν : k ×∆n → k ×∆n such that the digram

k ⋆i,ξ ∆
n k ⋆i,ξ ∆

n

k ×∆n k ×∆n k ×∆n k ×∆n k ×∆nλk×id∆n µ ν λk×id∆n

(
λk×id∆n | k

⋆i,ξ∆
n

)2

commutes and admits a diagonal lift. (Qualitatively, the first instance of λk× id∆n ensures that
the resulting lift factors through k

ε′×∆n, µ is a first approximation to the desired retract, next
ν completes the retraction in the “∆n-direction”, and, finally, the second instance of λk × id∆n

completes the retract in the “ k-direction”.) Recall, that by Lemma 7.2.15 the map λk × id∆n :
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k×∆n → k×∆n descends to the identity map id : k
ε ×∆n → k

ε ×∆n, so that the diagram

k ⋆i,ξ ∆
n k ⋆i,ξ ∆

n k
ε ⋆i,ξ ∆

n

k ×∆n

induces a commutative diagram

k
ε′ ⋆i,ξ ∆

n k
ε ⋆i,ξ ∆

n

k
ε′ ×∆n

and thus a commutative diagram

k
ε′ ⋆i,ξ ∆

n X

k
ε′ ×∆n

which descends to a lift of (28).

Construction of µ and ν: In order to ease the notational burden we will only define µ and ν for
i = k and ξ = 1.
To define µ, I require an auxiliary smooth function ρ : k−1 ×∆n → 1, such that

(a) ρ(t1, . . . , tk, s0, . . . , sn) = 1 if t1, . . . , tk > 2
3 · ε

′ or s0 + · · ·+ sn > 2
3 ;

(b) ρ(t1, . . . , tk, s0, . . . , sn) = 0 if t1, . . . , tk < 1
3 · ε

′ and s0 + · · ·+ sn < 1
3 .

Then, we define

µ : k ×∆n → k ×∆n

((t1, . . . , tk), s) 7→ ((t1, . . . , tk−1, ρ(t1, . . . , tk−1, s) · tk), s).

Using partition of unity one can patch together the retractions ∆n → Λn
k2
, 1 ≤ k2 ≤ n to obtain

a retract σ :
{

(s0, . . . , sn) ∈ ∆n s0 + · · ·+ sn > 1
3

}
→ ∂∆n. Now, let τ : 1 → 1 be a

smooth map such that

(a) τ(t) = 1 for t > 2
3 · ε

′, and

(b) τ(t) = 0 for t < 1
3 · ε

′.

Then, we define

ν : k ×∆n → k ×∆n

((t1, . . . , tk), s) 7→ ( (t1, . . . , tk), id∆n +( id∆n +τ(tk) · (σ − id∆n) )(s) ).

Proof of smoothness of lift: By construction, it is clear that the lift is smooth at any point which
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gets mapped to k×∆n \
(

k−1×{0}
)
×∂∆n. Points which get mapped to

(
k−1×{0}

)
×∂∆n

admit a neighbourhood which gets mapped to
(

k−1×{0}
)
×∆n, which concludes the proof.

Remark 7.2.17. The proof of Theorem 7.2.16 does not imply that the maps k⋆i,ξ∆
n ↪→ n×∆n

admits a retract; only that they lift against all objects in Diff r. ⌟

7.2.2 Closure properties Oka cofibrant objects

Oka cofibrant objects are closed under various operations.

Proposition 7.2.18. The subcategory Diff r of Oka cofibrant objects is closed under arbitrary
coproducts.

Proof. For any collection {Ai}i∈I of Oka cofibrant objects and any differentiable sheaf X we
have

π!Diff r
(∐

i∈I Ai, X
)

= π!
∏

i∈I Diff r (Ai, X)

=
∏

i∈I π!Diff r (Ai, X)

=
∏

i∈I S(π!Ai, π!X)

= S
(∐

i∈I π!Ai, π!X
)

= S
(
π!
∐

i∈I Ai, π!X
)

where the second isomorphism follows from Corollary 7.1.9.

Proposition 7.2.19. Let A : N→ Diff r be a diagram such that each object Ai is Oka cofibrant,
and such that Ai → Ai+1 is a cofibration in the Kihara model structure for all i ∈ N, then colimA

is Oka cofibrant.

Proof. Let X be any differentiable sheaf, then

π!Diff r(colimA,X) = π! limDiff r(A,X)

= colim ( •)∗(limDiff r(A,X))

= colim lim ( •)∗(Diff r(A,X))

= lim colim ( •)∗(Diff r(A,X))

= limπ!Diff r(A,X)

= lim S(π!A, π!X)

= S(colimπ!A, π!X)

= S(π! colimA, π!X),

where the fourth isomorphism follows from [MG21, Prop. 1.23].

Proposition 7.2.20. The subcategory Diff r of Oka cofibrant stacks is closed under finite products.

Proof. Let A,B be Oka cofibrant stacks, and let X be any differentiable sheaf, then one obtains
the following series of canonical equivalences:

π!Diff r(A×B,X) = π!Diff r(A,Diff r(B,X))

= S(π!A, π!Diff r(B,X))

= S(π!A, S(π!B, π!X))

= S(π!A× π!B, π!X)

= S(π!(A×B), π!X).
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Lemma 7.2.21. The map X → Diff r(∆1, X) is a ∆1-homotopy equivalence for every object X
in Diff r.

Proof. The ∆1-homotopy inverse is constructed using the inclusion ∆{0} ↪→ ∆1. The compos-
ition of Hom(∆{0}, X) → Hom(∆1, X) → Hom(∆{0}, X) composes to the identity, so we are
left with showing that the composition of Hom(∆1, X) → Hom(∆{0}, X) → Hom(∆1, X) is
∆1-homotopic to the identity.

Such a homotopy is given by the transpose of the diagram

∆{0} ×∆1 ×X∆1
∆1 ×X∆{0}

∆1 ×∆1 ×X∆1
∆1 ×X∆1

X

∆{1} ×∆1 ×X∆1

ζ×id ev

ev

where ζ : ∆1 × ∆1 → ∆1 is given by (s, t) 7→ s · t (here we identify ∆1 with [0, 1]), so we
are left with showing that it commutes. The bottom part commutes because the morphisms
∆{1}×∆1×X∆1 → ∆1×∆1×X∆1 ζ×id−−−→ ∆1×X∆1 compose to the identity. The composition
of ∆{0} × ∆1 × X∆1 → ∆1 × ∆1 × X∆1 ζ×id−−−→ ∆1 × X∆1 is equivalent to the composition of
∆1×X∆1 → ∆1×X∆{0} → ∆1×X∆1 , so that we are left with proving that the square obtained
after composing with the evaluation in

∆1 ×X∆{0}

∆1 ×X∆1
∆1 ×X∆1

X

∆{0} ×X∆1

ev

commutes, but this follows from the more general observation that for any map A → B the
square

B ×XB

A×XB X

A×XA

commutes, which is true because both the top and the bottom composition transpose to the
map XB → XA; the top one from the general formula of obtaining a transpose using the counit,
and the bottom composition by naturality.
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Proposition 7.2.22. The ∞-category of Oka cofibrant objects is closed under ∆1-homotopy
equivalence.

Proof. Let A be Oka cofibrant, and A → B, a ∆1-homotopy equivalence, then we obtain a
commutative diagram

π!Diff r(A,X) S(π!A, π!X)

π!Diff r(B,X) S(π!B, π!X)

in which we must show that the vertical arrows are isomorphisms, which in turn follows from
showing that the functors S(π! , π!X) and π!Diff r( , X) send ∆1-homotopic maps to equivalent
maps. For S(π! , π!X) this is clear, as π! preserves products and π!∆

1 = 1, for π!Diff r( , X)

this follows from Lemma 7.2.21.

Remark 7.2.23. Proposition 7.2.22 remains true for other intervals than ∆1, such as R or 1
ε

for 0 < ε < 1
2 . ⌟

7.2.3 Proof of the differentiable Oka principle

Throughout §7.2.3 we fix r = ∞, as we cite [Kih20, Prop. 9.5 & Th. 11.20] (see Lemma 7.2.25
and Theorem 7.2.27) which are both stated in the smooth setting. (We are confident that
[Kih20, Prop. 9.5] also holds for r <∞, but the classes of manifolds in [Kih20, Th. 11.20] would
probably need to be modified, as smoothness plays an important role in the theory of infinite
dimensional manifolds).

Let X be a diffeological space, and let U = {Uα}α∈A be a cover of X then there exists a
Diff∞

concr-enriched category XU with

ObjXU =
∐

σ Uσ

MorXU =
∐

σ⊇τ Uσ

where σ, τ denote non-empty finite subsets of A such that Uσ :=
⋂

α∈σ Uα ̸= ∅. The topological
realisation of (the nerve of) XU is denoted by BXU . The space BXU may be constructed in
stages using the pushouts

∐
σn⊋···⊋σ0

Uσn × ∂∆n BX
(n−1)
U

∐
σn⊋···⊋σ0

Uσn ×∆n BX
(n)
U

(29)

At each stage one can construct inductively an obvious commutative square obtained by replacing
BX

(n)
U by X in (29), thus producing a canonical map BXU → X. As the pushouts at each step

satisfy the conditions Proposition 4.2.8, each stage BX
(n)
U is a diffeological space; the object

BXU is then a diffeological space by Proposition 4.2.10, as it is a filtered colimit of diffeological
spaces along monomorphisms.
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Definition 7.2.24. A covering on a diffeological space is called numerable if it admits a
subordinate partition of unity. ⌟

The original formulation of the following lemma in the setting of topological spaces is due to
Segal [Seg68, §4] and tom Dieck [tD71, Th. 4]. Translating these results into the smooth setting
is very technical, and is carried out by Kihara in [Kih20, §9].

Lemma 7.2.25 ([Kih20, Prop. 9.5]). Let X be a diffeological space, and let U be a numerable
cover of X, then the canonical map BXU → X is a ∆1-homotopy equivalence.

Theorem 7.2.26. Let X be a diffeological space, and let U be a numerable cover of X. If each
member of U is Oka cofibrant, then so is X.

Proof. By Lemma 7.2.25 and Proposition 7.2.22 the space X is Oka cofibrant iff BXU is. We
will show that each stage BX

(n)
U is Oka cofibrant, and then conclude that BXU is Oka cofibrant

by Proposition 7.2.19. The diffeological space BX
(0)
U is Oka cofibrant by Proposition 7.2.18.

Applying Diff∞( , X) to the square (29) yields the pullback

Diff∞(BX
(n)
U , X)

∏
σn⊋···⊋σ0

Diff∞(Uσn , X)∆
n

Diff∞(BX
(n−1)
U , X)

∏
σn⊋···⊋σ0

Diff∞(Uσn , X)∂∆
n

in which the vertical morphism to the right is sharp as it is a squishy fibration by Theorem
7.2.16 and Proposition 7.2.14.

For finite dimensional Hausdorff 1st countable manifolds the following theorem was first
proved in [BEBP19].

Theorem 7.2.27. Any paracompact Hausdorff C∞-manifold locally modelled on Hilbert spaces,
nuclear Fréchet spaces, or nuclear Silva spaces satisfies the differentiable Oka principle.

Proof. The content of [Kih20, Th. 11.20] is precisely that the manifolds considered in the state-
ment of the theorem are diffeological spaces satisfying the condition in Theorem 7.2.26.

The infinite dimensional manifolds considered in Theorem 7.2.27 include many interesting
examples, such as the Diff∞(M,N) or the manifold of submanifolds of N diffeomorphic to M ,
for M,N smooth finite dimensional paracompact Hausdorff manifolds without corners and M

compact.

7.2.4 Counterexamples

There are many directions in which it is not possible to extend Corollary 7.2.27.

Example 7.2.28. BZ = π!Diff r(1, S1) = π!Diff r(π∗BZ, S1) ̸= S(BZ, BZ) = Z. ⌟

One must be careful when dropping the Hausdorfness requirement:
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Example 7.2.29. Denote by R•• the real line with two origins, then

BZ = π!Diff r(R, S1)

= π!Diff r(R••, S
1)

̸= S(π!R••, π!S
1)

= S(BZ, BZ)

= Z.

⌟

Example 7.2.30. Denote by R|| the space obtained by glueing two copies of R along the
subspace (−∞,−1)∪(1,∞), then R|| is A1-homotopy equivalent to S1, so that it is Oka cofibrant.
In particular,

π!Diff r(R||, S
1) = π!Diff r(S1, S1) = S(π!S

1, π!S
1) = S(π!R||, π!S

1).

⌟

Non-paracompact manifolds may not be Oka cofibrant:

Example 7.2.31. Let L denote the long line. It has trivial shape but is not contractible. Thus
S(π!L, π!L) = S(1, 1) = 1, while Diff r(L,L) has at least two path components. ⌟

Appendix

A The cube category

Here we discuss some background material on the cube category.

Definition A.0.1. The cube category is the subcategory of Set whose objects are given by
{0, 1}n (n ≥ 0), and whose morphisms are generated by the maps

δξi : n−1 → n

(x1, . . . , xn−1) 7→ (x1, . . . , xi−1, ξ, xi, . . . , xn−1)

for n ≥ i ≥ 1 and ε = 0, 1, and

σi :
n+1 → n

(x1, . . . , xn+1) 7→ (x1, . . . , xi−1, xi+1, . . . , xn+1)

for n ≥ 0 and n ≥ i ≥ 1. The category of cubical sets is the category ̂ of presheaves on . ⌟

The cube category admits a (strict) monoidal structure given by ( m, n) 7→ m+n which
extends to cubical sets via Day convolution. This monoidal structure is denoted by ⊗.

We denote by ≤1 the full subcategory of spanned by 0, 1.

Proposition A.0.2 ([Cis06, Prop. 8.4.6]). Let M be a monoidal category, then the restriction
functor

[ ,M ]→ [ ≤1,M ]
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induces an equivalence of categories between the full subcategory of [ ,M ] spanned by monoidal
functors, and the full subcategory of [ ≤1,M ] spanned by functors sending 0 to the monoidal
unit of M .

Definition A.0.3. For every n ≥ 0 the boundary of n is the subobject ∂ n := ∪(j,ζ)Imδζj
⊂

n, and for every n ≥ i ≥ 1 and ξ = 0, 1 the (i, ξ)-th horn of n is the subobject n
i,ξ :=

∪(j,ζ )̸=(i,ξ)Imδζj
⊂ n. ⌟

Proposition A.0.4 ([Cis06, Lm. 8.4.36]). For m ≥ 1, n ≥ k ≥ 1 and ε = 0, 1 the universal
morphisms determined by the pushouts of the spans contained in the commutative squares

n
i,ε⊗∂ m n ⊗ ∂ m ∂ m ⊗ n

i,ε ∂ n ⊗ m

n
i,ε⊗ m n ⊗ m m ⊗ n

i,ε
n ⊗ m

recover the canonical inclusions n+m
i,ε ↪→ n+m and n+m

i+m,ε ↪→
n+m and the universal morph-

ism determined by the pushout of the span contained in the commutative square

∂ m ⊗ ∂ n ∂ m ⊗ n

m ⊗ ∂ n m ⊗ n

recovers the inclusion ∂ m+n ↪→ m+n.

Theorem A.0.5 ([Cis06, Cor. 8.4.13 or Prop. 8.4.27]). The cube category is a test category.

Theorem A.0.6 ([Cis06, Th. 8.4.38]). The maps

(i) ∂ n ↪→ n (n ≥ 0), and

(ii) n
i,ε ↪→ n (n ≥ i ≥ 1, ε = 0, 1)

generate, respectively, the cofibrations and acyclic cofibrations of the test model structure on̂.
B Model structures on ∞-categories

Here we collect some basic definitions and facts about model ∞-categories. The proofs are the
same as in the ordinary categorical case. As we are not aware of any references in which more
involved diagrammatic arguments are carried out with full coherence in the∞-categorical setting
(i.e., not in homotopy categories), we have spelled these out in complete detail in Proposition
B.0.9, to serve as an illustration of such arguments.

Definition B.0.1. Let C be an ∞-category, and let f : a → b, g : x → y be morphisms in C,
then f has the left lifting property w.r.t. g, and g has the right lifting property w.r.t. f if
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every commutative square
a x

b y

f g

may be extended to a 3-simplex
a x

b y.

f g

In this case we write f � g. More generally, if L,F are two collections of morphisms in C, we
write L�R if f �g for all f ∈ L and g ∈ R. Finally, we write L� for the collection of morphism
g such that f � g for all f ∈ L, and �R for the collections of morphisms g such that f � g for
all g ∈ R. ⌟

Definition B.0.2. Let C be an ∞-category, then a pair (L,R) of collections of morphisms in
C form a weak factorisation system if

(a) L = �R,

(b) L� = R, and

(c) any morphism a→ x may be factored as

q

a x

with a→ q ∈ L and q → x ∈ R.

⌟

Remark B.0.3. Note, that we do not require the factorisation of a→ x in Definition B.0.2 to be
either unique nor functorial. ⌟

Remark B.0.4. Observe that both classes of a weak factorisation system contain all isomorphisms
and are closed under composition (and therefore also under homotopy). ⌟

Proposition B.0.5 ([DAG X, Prop. 1.4.9]). Let C be an ∞-category, and (L,R) a weak fac-
torisation system, then both classes are closed under retracts, and the left class is closed under
transfinite compositions of pushouts of morphisms in L.

Proposition B.0.6. Let C, D be ∞-categories equipped with the weak factorisation systems
(L,R) and (L′, R′), respectively, then for any adjunction f : C D : g⊥ we have

fL ⊆ L′ ⇐⇒ R ⊇ gR′.

Proof. Let a → b and x → y morphisms in C and D, respectively, then we we want to show
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that the transpose of the lift in any square

a gx

b gy

(30)

gives a lift
fa x

fb y

(31)

and vice vera. In the ∞-categorical setting this requires a little bit of care, because lifts of
squares correspond to extensions

∆{0,1,3}∪{0,2,3} C,D

∆3

which must be transported back and forth between C and D. We use some elementary facts
about the Joyal model structure and the calculus of simplices to accomplish this. Recall that
the datum of exhibiting f and g as adjoint is given by a weak equivalence A

∼−→ B in the Joyal
model structure

C∆1
A B D∆1

C∂∆1
C ×D D∂∆1(id,g)

⌟

(f,id)

⌟

∼

Recalling that ∆{0,1,3}∪∆{0,2,3} ≃ ∆1×∆1, exponentiating the above diagram by ∆1 yields the
lower half of the following diagram:

C∆3
A′ B′ D∆3

C∆{0,1,3}∪∆{0,2,3}
A∆1

B∆1
D∆{0,1,3}∪∆{0,2,3}

C∆{0,1}∪∆{2,3}
C∆{0,1} ×D∆{2,3}

D∆{0,1}∪∆{2,3}(id,g)

⌟

(f,id)

⌟

∼

⌟

∼
⌟

On fibres over ((a → b), (x → y)) the weak equivalence A∆1 ∼−→ B∆1 yields an equivalence
between the spaces of squares of the form (30) and (31). On fibres over equivalent squares
in the spaces A∆1 |((a→b),(x→y)) ∼ B∆1 |((a→b),(x→y)) the weak equivalence A′ ∼−→ B′ yields an
equivalence between the respective spaces of lifts.

Lemma B.0.7 (Retract argument). Let C be an ∞-category with two sets of maps L,R such
that L� ⊇ R (L ⊆ �R). Assume that every morphisms in C factors as a morphism in L followed
by a morphism in R, and that R (L) is closed under retracts, then L� = R (L = �R).

91



Proof. We will prove that if R is closed under retracts, then L� = R. The other statement is
dual. Assume that x→ y is in L�, then we may factor it into a morphism x→ z in L followed
by a morphism z → y and consider the diagram

x x

z y

id

which admits a lift by assumption, yielding the retract

x z x

y y yid id

Definition B.0.8. Let (M,W ) be a relative∞-category with finite limits and colimits, in which
W satisfies the 2-out-of-3 property. A model structure on M is a pair (C,F ) of collections
of morphisms in M such that (C ∩W,F ) and (C,F ∩W ) form weak factorisation systems. A
relative ∞-category with finite limits and colimits equipped with a model structure is called a
model ∞-category . The morphisms in C (resp. C ∩W ) are called (trivial) cofibrations,
and the morphisms in F (resp. F ∩W ) are called (trivial) fibrations. ⌟

We give two equivalent characterisations of model structures.

Proposition B.0.9. Let (M,W ) be a relative ∞-category with finite limits and colimits, in
which W satisfies the 2-out-of-3 property, then a pair (C,F ) of collections of morphisms in M

is a model structure iff

(a) W,C,F are closed under retracts,

(b) (W ∩ C) � F , C � (W ∩ F ), and

(c) any morphisms in M factors both as a morphism in W ∩C followed by a morphism in F ,
as well as a morphism in C followed by a morphism in W ∩ F .

Proof. The proof works exactly the same as in the ordinary categorical case, except that we
need to keep track of composition data.

We first prove that if the pair (C,F ) satisfies the axioms of Definition B.0.8, then it satisfies
properties (a) - (c). The classes C and F are closed under retracts by Proposition B.0.5, and (b)
& (c) follow by definition. Thus, we are left with showing that W is closed under retracts. To
this end we will compile the proof of [JT07, Prop. 7.8] in the ∞-categorical setting (we advise
the reader to consult [JT07, Prop. 7.8] if they are not already familiar with the argument). The
gap map of the pushout product of ∂∆1 ↪→ ∆1 and Λ2

1 ↪→ ∆2 is inner anodyne (see [Cis19,
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Cor. 3.2.4]), so that the datum of a retract is determined up to contractible choice by a diagram

• • •

• x y.

ℓ

f w

r

f

id

id

(32)

We assume that w is in W , and want to show that f is likewise in W . At first, we also assume
that f is a fibration, and then we deduce the general case from this special case. We begin by
factoring w into a trivial cofibration u followed by a fibration v. This corresponds to glueing the
2-simplex

•

•

x

w

u

v

to the above diagram, i.e., we obtain the diagram

• • •

•

• x y.

ℓ

id

u

v

w f

r

id

f

As the inclusions ∆{0,1,3}∪{1,2,3} ↪→ ∆3 and ∆{0,1,2}∪{0,2,3} ↪→ ∆3 are inner anodyne, we may
extend the above diagram to an equivalent one, containing two new 3-simplices as indicated,

• • •

•

• x y

id

u

v

w f

r

id

f

ℓ

93



from which we remove w to obtain

• • •

•

• x y

u

v

f

ℓ

f

r

id

id

(33)

(which is again equivalent to the previous one, by an argument involving inner anodyne exten-
sions). The commutative square with sides u and f admits a lift, giving rise to the diagram

• • •

•

• x y

u

v

f

ℓ

f

r

id

id

s

(34)

(Again thinking about inner anodyne inclusions, we see that we do not have to include the
3-simplex exhibiting the composition of u, s, f .) Mapping Λ3

1 to

• • •

•
u

ℓ

id

s

we may extend (34) by a 3-simplex via Λ3
1 ↪→ ∆3, from which we may remove ∆{1} to obtain

the diagram

• • •

• x y

s

f v

r

f

id

id

exhibiting f as the retract of a trivial fibration, so that f is a trivial fibration, and thus a weak
equivalence. (Observe that only in this last step did we throw away information, that cannot be
recovered using anodyne extensions.)

We now show that f in the diagram (32) is a weak equivalence without the assumption that
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it is a fibration. Consider the outer square of (32):

• •

• y

id

f

id

f

Factoring f into a trivial cofibration g followed by a fibration h, yields the diagram

• •

• z

• y

g

h

id

g

h

id

id
f f

Completing the diagram (32) and the above diagram to diagrams indexed by ∆1 ×∆2 we can
glue them along the face ∆1 ×∆{0,2} yielding a diagram with the following shape:

We wish to exhibit the objects x, y, z as apices of cocones on • g←− • ℓ−→ • together with cocone
morphisms x→ y ← z. In the bottom left we have two 3-simplices exhibiting, respectively, the
compositions of • f−→ • ℓ−→ x

r−→ y and • g−→ • h−→ • ℓ−→ x, which are glued together along
the faces ∆{0,1,3} and ∆{0,2,3}, yielding an inner anodyne inclusion ∆{0,2,3,4} ∪∆{0,1,2,4} ⊆ ∆4.
Restricting along ∆{0,1,3,4} produces a 3-simplex whitnessing the composition of • f−→ • ℓg−→ x

r−→
y. Performing the same procedure yields a 3-simplex exhibiting the composition of • ℓ−→ • gr−→
z

h−→ y. These two 3-simplices together with the 3-simplices exhibiting the compositions of
• ℓ−→ • w−→ x

r−→ y and • g−→ • id−→ y
h−→ z glued along their common faces produce the desired

cocone morphisms x → y ← z. Denote by c the (apex of the) colimit of • g←− • ℓ−→ •, then we
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obtain a square of cocones whose apices yield the lower right square in the diagram

• • •

• c z

• x y

g g

hh

id

id

together with a 2-simplex exhibiting the composition of • → c → z to id, which we have not
indicated. The lower left and upper right squares are obtained from glueing 2-simplices coming
from the diagram of cocones constructed as well as the two 4-simplices constructed above. The
morphism g is a weak equivalence by assumption, as it is a trivial cofibration, and h is a weak
equivalence, as it is a fibration, so that we may apply the argument from the beginning of the
proof.

Conversely, assume that (C,F ) satisfies (a) - (c), then we only need to show that ((C∩W ), F )

and (C, (F ∩ W )) form weak factorisation systems, which follows from the retract argument
(Lemma B.0.7).

Proposition B.0.10. Let (M,W ) be a relative ∞-category with finite limits and colimits, in
which W satisfies the 2-out-of-3 property, then a pair (C,F ) of collections of morphisms in M

forms a model structure iff

(a) the pair ((C ∩W ), F ) (resp. (C,F ∩W )) forms a weak factorisation sytem,

(b) any morphisms in M factors as a morphism in C (resp. �F ) followed by a morphism in
C� (resp. F ), and

(c) C� ⊆ F ∩W (resp. �F ⊆ C ∩W ).

Proof. Consider a morphism x → y in F ∩W , then we must show that it lies in C�. First,
factor x→ y as a morphism x→ y′ in C, followed by a morphism y′ → y in C�. By assumption
y′ → y is in W , so that by the 2-out-of-3 property x→ y′ is in W , and the lifting problem

x x

y′ y

admits a solution y′ → x, as x→ y is in F . Then y′ → x may be used to construct a retract

x y′ x

y y y,

so that x→ y is contained in C� by Proposition B.0.5.
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C Pro-objects in ∞-categories

Here we collect some useful properties of pro-objects in ∞-categories used in §7.2.1.

Proposition C.0.1. Let C be an ∞-category admitting finite products, then Pro(C) admits
finite products.

Proof. Let x0, . . . , xn be objects in Pro(C) then for each 0 ≤ i ≤ n there exists a filtered small
ordinary category Ai and a functor xi• : Ai → C such that xi ≃ “ lim

α∈Ai

”xiα (see [Lur09b,

Prop. 5.3.1.16]). The category A0 × · · · ×An is filtered, and we claim that “ lim
α∈A0×···×An

”x0• ×
· · · × xn• pro-represents the product of x0, . . . , xn. To see this, let y be any objects of C, then
the isomorphisms

Pro(C)(“ lim
A0×···×An

”x0• × · · · × xn•, y) ≃ limA0×···×An C(x0• × · · · × xn•, y)

≃ limA0×···×An C(x0•, y)× · · · × C(xn•, y)

≃ limA0 · · · limAn C(x0•, y)× · · · × C(xn•, y)

≃ limA0 · · · limAn−1 C(x0•, y)× · · · × C(xn−1•, y)× C(xn, y)

· · ·
≃ limA0 C(x0•, y)× C(x1, y)× · · · × C(xn, y)

≃ C(x0, y)× · · · × C(xn, y)

are natural in y.

Lemma C.0.2. Let I be a set, and for each element i ∈ I consider a small filtered category Ai

and a functor Xi : Ai → S, then the canonical morphism

colim
(αi)∈

∏
Ai

∏
i∈I

Xi,αi →
∏
i∈I

colim
αi∈Ai

Xi,αi (35)

is an equivalence.

Proof. By [KS06, Prop. 3.1.11.ii] the statement is true in Set. Then, by [Cis19, Cor. 7.9.9] we
may lift the functors Xi : Ai → S to functors Ai → ∆̂, which we may then compose with the Ex∞

functor to obtain functors valued in Kan complexes. The morphism in ∆̂ corresponding to (35)
is then an isomorphism, and the statement follows from the fact that Kan complexes as well as
weak equivalences are closed under filtered colimits (see [Cis19, Lm. 3.1.24 & Cor. 4.1.17]).

Proposition C.0.3. Let C be an accessible ∞-category admitting finite limits and coproducts,
then the ∞-category Pro(C) is cocomplete.

Proof. We show that Pro(C) admits pushouts and small coproducts.

Pro(C) admits pushouts: Recall that Pro(C) may be identified with the full subcategory of
[C, S]op spanned by the left exact functors f : C → S such that C/f is accessible by [DAG XIII,
Prop. 3.1.6]. Consider a pullback square

p f

g h

⌟

97



of functors in [C, S] with f, g, h in Pro(C). As limits of functors are computed pointwise, p :

C → S commutes with finite limits. Moreover, the above diagram induces a homotopy pullback
diagram

Cop
/p Cop

/f

Cop
/g Cop

/h

in ∆̂ w.r.t. the Joyal model structure. The morphisms Cop
/f → Cop

/g and Cop
/h → Cop

/g are colimit
preserving, so that C/p is accessible by [Lur09b, Prop. 5.4.6.6].

Pro(C) admits small coproducts: Let I be a small set, and consider a family of objects x• :

I → Pro(C), then for each i there exists a filtered small ordinary category Ai and a functor
xi• : Ai → C such that xi ≃ “ lim

α∈Ai

”xiα (see [Lur09b, Prop. 5.3.1.16]). By Lemma C.0.2 we

obtain the canonical isomorphisms∐
i∈I

xi ≃
∐
i∈I

“ lim
αi∈Ai

”xiαi ≃ “ lim
(αi)∈

∏
Ai

”
∐
i∈I

xiαi ,

in Pro(C), as limits and colimits in presheaf categories are computed pointwise.

Conventions and notation

Linguistic conventions In order to facilitate readability we use the following contractions:

• We write “iff” instead of “if and only if”.

• We write “w.l.o.g.” instead of “without loss of generality”.

• We write “w.r.t.” instead of “with respect to”.

Editorial conventions

• Propositions stated without proof are marked with the symbol “2”.

Mathematical conventions

• The term ∞-category means quasi-category.

• We identify ordinary categories with their nerves, and consequently do not notationally
distinguish between ordinary categories and their nerves.

• [ , ] denotes the internal hom in ∆̂, the category of simplicial sets.

• Let C,D be ∞-categories, and W ⊆ C, a subcategory, then [C,D]W denotes the subcat-
egory of [C,D] spanned by those functors sending every morphism in W to an isomorphism.

• Let X be a simplicial set, then X≃ denotes the classifying space of X, given e.g. by Ex∞A.

• ∞-categories (including ordinary categories) are denoted by C, D, . . .
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• Let C be an ∞-category and let x, y ∈ C be two objects, then the homotopy type of
morphisms from x to y is denoted by C(x, y).

• A final object in an ∞-category C is denoted by 1C , or simply by 1, when C is clear from
context.

• For any Cartesian closed ∞-category C and any two objects x, y in C the internal hom
object in C is denoted by C(x, y) or sometimes yx.

• For any ∞-category C we denote its subcategory of n-truncated objects by C≤n.

• For any ∞-category C with finite products and any group object G in C, we denote CG

the category of G-objects in C.

• For A any small ordinary category Â denotes the category of (set-valued) presheaves on
A.

• For any two categories C,D, an arrow C ↪→ D denotes a fully faithful functor.

• We use the following notation for various ∞-categories:

– ∆ denotes the category of simplices. Its objects are denoted by ∆n or [n], depending
on context.

– denotes the category of cubes.

– S denotes the ∞-categories of homotopy types.

– Cat denotes the ∞-category of ∞-categories.

– Cat(1,1) denotes the (2, 1)-category of ordinary categories.

– Cat′(1,1) denotes the relative ordinary category of ordinary categories, with weak
equivalences given by equivalences of ordinary categories.

– Cat denotes the ∞-category of ∞-categories.

– Top denotes the ∞-category of ∞-toposes.

– Let X be a topological space, then OpenX denotes the locale of open subsets of X.

– Set denotes the category of sets.

– TSpc denotes the category of topological spaces.

– ∆TSpc is the full subcategory of TSpc spanned by the ∆-generated topological
spaces.

– Mfdr denotes the category of r-times differentiable smooth manifolds and smooth
maps.

– Cartr denotes the full subcategory of Mfdr spanned by the spaces of Rn (0 ≤ n <

∞).

– Diff r denotes, equivalently, the ∞-category of sheaves on Mfdr or Cartr.

• We denote ∞-toposes by E,F, . . ., when they are thought of as ambient settings in which
to do geometry, and by X,Y, . . ., when they are thought of as geometric objects in their
own right.
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