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Abstract— Legged robots exhibit significant potential across
diverse applications, including but not limited to hazardous
environment search and rescue missions and the exploration
of unexplored regions both on Earth and in outer space.
However, the successful navigation of these robots in dynamic
environments heavily hinges on the implementation of efficient
collision avoidance techniques. In this research paper, we em-
ploy Collision Cone Control Barrier Functions (C3BF) to ensure
the secure movement of legged robots within environments
featuring a wide array of static and dynamic obstacles. We
introduce the Quadratic Program (QP) formulation of C3BF,
referred to as C3BF-QP, which serves as a protective filter layer
atop a reference controller to ensure the robots’ safety during
operation. The effectiveness of this approach is illustrated
through simulations conducted on PyBullet.

I. INTRODUCTION

In recent years, the field of robotics has seen a significant
rise in the development and utilization of legged robots.
These machines, designed to mimic the movements of an-
imals and humans, have shown great promise in various
applications, ranging from search and rescue missions in haz-
ardous environments to exploration of uncharted territories
on Earth and beyond. The need for legged robots has become
increasingly apparent as they offer distinct advantages over
their wheeled or tracked counterparts in terms of adaptability
and maneuverability. However, as the complexity and versa-
tility of these robots grow, so does the demand for real-time
safe navigation in dynamic and unpredictable environments.

However, the increased complexity of legged robots and
their deployment in dynamic, unpredictable environments
necessitates the development of real-time safe navigation
systems. Ensuring the safety of both the robots and their
operators is paramount, as these machines can encounter
unforeseen obstacles, difficult terrains, and changing con-
ditions. In this context, real-time safe navigation becomes a
critical research area, aiming to enable legged robots to make
dynamic decisions and adapt to their surroundings while
avoiding collisions, maintaining stability, and achieving their
objectives.

The Collision Cone Control Barrier Functions Based
Quadratic Program (C3BF-QP) [1]–[3]represents a fusion of
Control Barrier Functions [4] [5] and Collision Cones [6],
[7], [8]. It operates dynamically in real-time, serving as an
additional layer of protection above the reference controller,
ensuring the safety of robots. In this research paper, we
demonstrate the practical implementation of C3BF-QP on
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Fig. 1: Quadruped (left) and Bipedal (right) Legged Robots

both Quadruped and Bipedal robots, assessing its efficacy in
diverse environmental contexts.

A. Organisation

The rest of this paper is organized as follows. Preliminaries
explaining the concept of control barrier functions (CBFs),
collision cone CBFs and controller design are introduced
in section II. The application of the above CBFs on the
Quadrupeds and Bipeds to avoid obstacles of various shapes
is discussed in section III. The Simulation setup and results
will be discussed in section IV. Finally, we present our
conclusion in section V.

II. PRELIMINARIES

In this section, first, we will formally introduce Control
Barrier Functions (CBFs) and their importance for real-time
safety-critical control. Finally, we will introduce Collision
Cone CBF approach.

A. Control barrier functions (CBFs)

Having described the vehicle models, we now formally
introduce Control Barrier Functions (CBFs) and their appli-
cations in the context of safety. We have the nonlinear control
system in affine form:

ẋ = f(x) + g(x)u (1)

where x ∈ D ⊆ Rn is the state of system, and u ∈ U ⊆ Rm
the input for the system. Assume that the functions f : Rn →
Rn and g : Rn → Rn×m are continuously differentiable.
Given a Lipschitz continuous control law u = k(x), the
resulting closed loop system ẋ = fcl(x) = f(x) + g(x)k(x)
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yields a solution x(t), with initial condition x(0) = x0. Con-
sider a set C defined as the super-level set of a continuously
differentiable function h : D ⊆ Rn → R yielding,

C = {x ∈ D ⊂ Rn : h(x) ≥ 0} (2)
∂C = {x ∈ D ⊂ Rn : h(x) = 0} (3)

Int (C) = {x ∈ D ⊂ Rn : h(x) > 0} (4)

It is assumed that Int (C) is non-empty and C has no isolated
points, i.e. Int (C) ̸= ϕ and Int (C) = C. The system is
safe w.r.t. the control law u = k(x) if ∀ x(0) ∈ C =⇒
x(t) ∈ C ∀t ≥ 0. We can mathematically verify if
the controller k(x) is safeguarding or not by using Control
Barrier Functions (CBFs), which is defined next.

Definition 1 (Control barrier function (CBF)): Given the
set C defined by (2)-(4), with ∂h

∂x (x) ̸= 0 ∀x ∈ ∂C, the
function h is called the control barrier function (CBF)
defined on the set D, if there exists an extended class K
function κ such that for all x ∈ D:

sup︸︷︷︸
u∈U

Lfh(x) + Lgh(x)u︸ ︷︷ ︸
ḣ(x,u)

+κ (h(x))

≥0 (5)

where Lfh(x) = ∂h
∂xf(x) and Lgh(x) = ∂h

∂xg(x) are the Lie
derivatives.

Given this definition of a CBF, we know from [5] and [9]
that any Lipschitz continuous control law k(x) satisfying the
inequality: ḣ + κ(h) ≥ 0 ensures safety of C if x(0) ∈ C,
and asymptotic convergence to C if x(0) is outside of C.

B. Safety Filter Design

Having describe the CBF, we can now describe the
Quadratic Programming (QP) formulation of CBFs. CBFs
act as safety filters which take the desired input udes(x, t)
and modify this input in a minimal way:

u∗(x, t) = min
u∈U⊆Rm

∥u− udes(x, t)∥2

s.t. Lfh(x) + Lgh(x)u+ κ (h(x)) ≥ 0
(6)

This is called the Control Barrier Function based Quadratic
Program (CBF-QP). The CBF-QP control u∗ can be obtained
by solving the above optimization problem using KKT
conditions and is given by

usafe(x, t) =

{
0 for ψ(x, t) ≥ 0

− Lgh(x)
Tψ(x,t)

Lgh(x)Lgh(x)T
for ψ(x, t) < 0

(7)

where ψ(x, t) := ḣ (x, uref (x, t)) + κ (h(x)). The sign
change of ψ yields a switching type of a control law.

C. Collision Cone CBF (C3BF) candidate

The concept of a collision cone is a critical element when
assessing the potential for collision between two objects.
Specifically, it defines a set that enables the prediction
of collision likelihood between these objects based on the

direction of their relative velocity. In essence, the collision
cone for a pair of objects delineates the directions in which,
if either object were to move, a collision between them
would occur. Throughout the remainder of this paper, we will
consider obstacles as ellipses and simplify the ego-vehicle to
a single point. As such, the term collision cone will pertain
to this scenario, with the center of the ego-vehicle serving
as the reference point.

Let’s consider a scenario involving an ego-vehicle, de-
scribed by system (1), and a dynamic obstacle such as a
pedestrian or another vehicle. This configuration is visually
depicted in Figure 2. To assess potential collisions, we
approximate the obstacle as an ellipse and draw two tangents
from the center of the ego-vehicle to a conservative circle
that encompasses the ellipse, accounting for the dimensions
of the ego-vehicle (where r = max(c1, c2) +

Widthvehicle

2 ).
For a collision to become a possibility, the relative velocity
of the obstacle must be directed toward the ego-vehicle. This
implies that the relative velocity vector should not point into
the pink shaded region denoted as EHI in Figure 2, which
takes the shape of a cone. This cone represents a set of
unsafe directions for the relative velocity vector, denoted as
C. When a function h : D ⊆ Rn → R satisfying Definition:
1 defined on C, it ensures that a Lipschitz continuous
control law derived from the resulting QP (6) for the system
guarantees collision avoidance, even if the reference uref
attempts to guide the objects towards a collision course.
This innovative approach, avoiding the pink cone region,
introduces the concept of Collision Cone Control Barrier
Functions (C3BFs).
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Collision Cone Obstacle Ellipse

Fig. 2: Construction of collision cone for an elliptical obsta-
cle considering the ego-vehicle’s dimensions (width: w).

III. COLLISION CONE CBFS ON LEGGED ROBOTS

Having described Collision Cone CBF candidate, we will
see their application on legged robots in this section.

In this paper, we will focus on two types of legged
robots: Quadruped Robots, characterized by their four-legged
configuration, and Biped Robots, which possess a two-
legged structure. These legged robots are equipped with
fundamental controllers such as the Convex MPC controller
[10] for Quadruped robots and the ZMP Walking Using
Preview Controller [11] [12] [13] for Biped Robots. These



controllers enable the robots to accurately track velocities or
accelerations in the x, y, z and yaw directions.

Legged robots must navigate while avoiding collisions
with both vertical and horizontal obstacles, requiring the
utilization of two independent Control Barrier Functions
(CBFs) corresponding to each type of obstacle. Furthermore,
it is possible to simplify the consideration of all other obsta-
cles by decomposing them into their vertical and horizontal
components. In the subsequent subsections, we will elaborate
on the derivation of strategies for interacting with these
obstacles.

A. Collision Avoidance - Vertical Obstacles

When addressing collision avoidance concerning vertical
obstacles, specifically movement within the x-y plane, these
robots can be modeled as unicycle model (acceleration con-
trol), as demonstrated in [1]. The unicycle model is shown
as follows:


ẋp
ẏp
θ̇
v̇
ω̇

 =


v cos θ
v sin θ
ω
0
0

+


0 0
0 0
0 0
1 0
0 1


[
a
α

]
(8)

We first obtain the relative position vector between the
body center of the robot and the center of the obstacle.
Therefore, we have

prel :=

[
cx − (xp + l cos(θ))
cy − (yp + l sin(θ))

]
(9)

Here l is the distance of the body center from the differential
drive axis and θ is the yaw angle. We obtain its velocity as

vrel :=

[
ċx − (v cos(θ)− l sin(θ) ∗ ω)
ċy − (v sin(θ) + l cos(θ) ∗ ω)

]
. (10)

From [1], we have the following CBF candidate:

hver(x, t) =< prel, vrel > +∥prel∥∥vrel∥ cosϕ (11)

where, ϕ is the half angle of the cone, the expression of

cosϕ is given by
√

∥prel∥2−r2
∥prel∥ (see Fig. 2).

The constraint simply ensures that the angle between
prel, vrel is less than 180◦ − ϕ.

Having introduced Collision Cone CBF candidates in II-
C, the next step is to formally verify that they are, indeed,
valid CBFs. We have the following result.

Theorem 1: Given the above model, the proposed CBF
candidate (11) with prel, vrel defined by (9), (10) is a valid
CBF defined for the set D.

Proof: Similar to the Proof in [1, Theorem 1].

B. Collision Avoidance - Horizontal Obstacles

When addressing collision avoidance concerning horizon-
tal obstacles, specifically movement within the x-z plane,
these robots can be modeled as follows (assuming yaw to be
near zero):


ẋp
żp
ẍp
z̈p

 =


ẋp
żp
0
0

+


0 0
0 0
1 0
0 1

[
a
az

]
(12)

We first obtain the relative position vector between the
body center of the robot and the center of the obstacle.
Therefore, we have

prel :=

[
cx − xp
cz − zp

]
(13)

Here l is the distance of the body center from the differential
drive axis and θ is the yaw angle. We obtain its velocity as

vrel :=

[
ċx − v
ċz − vz

]
. (14)

From [1], we have the following CBF candidate:

hhor(x, t) =< prel, vrel > +∥prel∥∥vrel∥ cosϕ (15)

where, ϕ is the half angle of the cone, the expression of

cosϕ is given by
√

∥prel∥2−r2
∥prel∥ (see Fig. 2).

The constraint simply ensures that the angle between
prel, vrel is less than 180◦ − ϕ.

Having introduced Collision Cone CBF candidates in II-
C, the next step is to formally verify that they are, indeed,
valid CBFs. We have the following result.

Theorem 2: Given the above model, the proposed CBF
candidate (15) with prel, vrel defined by (13), (14) is a valid
CBF defined for the set D.

Proof: Taking the derivative of (15) yields

ḣhor = < ṗrel, vrel > + < prel, v̇rel >

+ < vrel, v̇rel >

√
∥prel∥2 − r2

∥vrel∥

+ < prel, ṗrel >
∥vrel∥√

∥prel∥2 − r2
. (16)

Further ṗrel = vrel and

v̇rel =

[
−a
−az

]
.

Given v̇rel and ḣ, we have the following expression for Lgh:

Lgh =

< prel + vrel

√
∥prel∥2−r2
∥vrel∥ ,

[
−1
0

]
>

< prel + vrel

√
∥vrel∥2−r2
∥vrel∥ ,

[
0
−1

]
>


T

, (17)

It can be verified that for Lgh to be zero, we can have the
following scenarios:

• prel + vrel

√
∥prel∥2−r2
∥vrel∥ = 0, which is not possible.

Firstly, prel = 0 indicates that the vehicle is already
inside the obstacle. Secondly, if the above equation
were to be true for a non-zero prel, then vrel/∥vrel∥ =
−prel/

√
∥prel∥2 − r2. This is also not possible as the

magnitude of LHS is 1, while that of RHS is > 1.



• prel + vrel

√
∥vrel∥2−r2
∥vrel∥ is perpendicular to both

[
−1
0

]
and

[
0
−1

]
, which is also not possible.

This implies that Lgh is always a non-zero matrix, implying
that h is a valid CBF.

IV. SIMULATION RESULTS

We have validated the C3BF-QP based controller on
legged robots for both types of obstacles. The simulations
were conducted on Pybullet [14], a python-based physics
simulation engine. PD Controller is used on top of the base-
line controllers (Convex MPC and Zero Moment Point(ZMP)
Methods mentioned in the previous section) to track the
desired path, and the safety controller deployed is given by
Section II-B. We chose constant target velocities for verifying
the C3BF-QP. For the class K function in the CBF inequality,
we chose κ(h) = γh, where γ = 1.

(a) (b)

Fig. 3: Interaction with static obstacles in (a) Quadruped and
in (b) Biped Robots

(a) (b)

Fig. 4: Interaction with moving obstacles in (a) Quadruped
and in (b) Biped Robots

Having presented our proposed control method design, we
now test our framework under three different scenarios to
illustrate the performance of the controller. These scenarios
include the interaction of Quadruped and Biped with: (1) a
static obstacle Fig. 3, (2) a moving obstacle Fig. 4 and (3)
Horizontal obstacle Fig. 5.

In case of vertical obstacles (obstacles in x-y plane), the
robots avoided the obstacles by moving/ overtaking from the
side. In case of horizontal obstacles (obstacles in x-z plane),
the robot ducks under the obstacle and regains its height
back, after the obstacle is avoided. The resulting simulations
for all the cases can be viewed on the webpage1.

(a)

Fig. 5: Interaction with horizontal obstacle in Quadruped
Robot

V. CONCLUSIONS

In conclusion, our research has successfully expanded
the application of collision cone Control Barrier Functions
(CBFs) to enhance the safety of legged robots when nav-
igating through environments featuring static and dynamic
obstacles (as showcased in the accompanying videos on
our webpage). Through our work, we have underscored the
seamless integration of the proposed C3BF-QP controller
with baseline controllers, employed both in quadruped and
biped robots. This ease of integration stems from the model-
free nature of our formulation, which primarily considers
acceleration, highlighting its versatility and potential for real-
world deployment. In our future work, we plan to implement
the controller on legged robots in the real-world situations,
interacting with a variety of obstacles. We also aim to
investigate the potential of safe legged robots navigation in
cluttered environments and confined spaces [15].
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