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Abstract
We explore the class of trilevel equilibrium problems with a focus on energy-
environmental applications and present a novel single-level reformulation for such
problems, based on strong duality. To the best of our knowledge, only one alterna-
tive single-level reformulation for trilevel problems exists. This reformulation uses a
representation of the bottom-level solution set, whereas we propose a reformulation
based on strong duality. Our novel reformulation is compared to this existing formu-
lation, discussing both model sizes and computational performance. In particular,
we apply this trilevel framework to a power market model, exploring the possibili-
ties of an international policymaker in reducing emissions of the system. Using the
proposed methods, we are able to obtain globally optimal solutions for a five-node
case study representing the Nordic countries and assess the impact of a carbon tax
on the electricity production portfolio.
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1. Introduction

Hierarchical optimisation models with three levels of decision-makers arise in contexts
such as traffic equilibrium () and electricity market modelling (). The hierarchical
structure can be, e.g., such that the bottom-level players use a network operated by a
middle-level player and regulated by a top-level player. For both electricity and traffic
networks, similar models without the top-level regulators have been explored using
bilevel optimisation, see Sinha et al. (2017) for a review.

Albeit challenging from both methodological and computational standpoints, in-
cluding a top-level regulator as the third level, as opposed to considering only bilevel
models, can provide important policy insights. In the particular case of energy sys-
tems, these models can yield more realistic solutions in which more stakeholders are
assumed to act in coordination considering their own objectives. Obtaining equilibrium
solutions for these models can thereby provide policy insights on pathways towards de-
carbonisation goals. Gabriel et al. (2022) present a single-level reformulation for bilevel
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problems with complementarity-constrained bottom levels and discuss the possibility
of using the model in a trilevel power market setting. However, their paper includes
no computational experiments demonstrating the practical usability of the proposed
methods. Our aim is to explore the computational efficiency of the method using an
illustrative power system setting representing the market structure in the Nordic coun-
tries.

The contribution of this paper is twofold. First, in Section 2, we present background
on bi- and tri-level optimisation, ending with our novel approach for solving trilevel
equilibrium problems based on strong duality in Section 2.4. Compared to the formu-
lation presented in Gabriel et al. (2022) and summarised in Section 2.3, our proposed
formulation results in fewer constraints, which is likely to result in increased computa-
tional efficiency. Second, we illustrate the methodological contributions using a stylised
trilevel power market model described in Section 3. The motivation for our applica-
tion stems from the recent discussion about optimal carbon taxation and its impact
on electricity production (e.g., Hájek et al., 2019). The computational performance of
the model is explored in Section 4.1, and finally, in Section 4.2, we apply the trilevel
equilibrium modelling framework to a power market case study based on Belyak et al.
(2023). These contributions are significant for the novel class of trilevel optimisation
problems, and equilibrium modelling area in general. Finally, Section 5 concludes the
paper and discusses future research directions.

2. Background

2.1. Earlier research

Bilevel optimisation considers problems with a hierarchical structure consisting of an
upper-level player and one or more lower-level players (Bard, 1983). In power sector
models (Gabriel et al., 2012), the upper-level player is often a transmission system
operator and the bottom level consists of electricity producers in a Cournot oligopoly.
The general structure of a bilevel problem with linear upper- and lower-level problems
is presented in (1) and (2). The upper-level problem Pu is

(Pu) : minx,y≥0 c⊤1 x+ d⊤1 y (1a)
s.t. A1x+B1y ≥ a1, (1b)

y solves Pl(x), (1c)

where Pl(x) denotes the lower-level problem. Here, c1, x ∈ Rnx , d1, y ∈ Rny , A1 ∈
Rmu×nx , B1 ∈ Rmu×ny , and a1 ∈ Rmu . The overall idea of this formulation is that the
upper-level player’s decision variable x affects the lower-level players’ optimal decisions
y, which are reflected back to the upper level in the constraint (1c). The linear lower-
level problem is formulated as

(Pl(x)) : miny≥0 d⊤2 y (2a)
s.t. A2x+B2y ≥ a2. (2b)

In general, both problems can also include equality constraints, but they have been
omitted here for brevity, without loss of generality.

Solution methods for bilevel problems are based on the idea of replacing the upper-
level constraint (1c) with the optimality conditions of the lower level problem (2). The
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two main alternatives are the Karush-Kuhn-Tucker (KKT) optimality conditions (),
leading to a mathematical program with equilibrium constraints (MPEC); and math-
ematical programming with primal and dual constraints (MPPDC) (). Additionally,
approaches based on optimal value functions (Ye & Zhu, 1995) can be used. Bilevel
optimisation models can be used in contexts such as Stackelberg games (Bard, 1991),
Cournot competition (Gabriel et al., 2012) and robust optimisation (Leyffer et al.,
2020). For a recent survey on applications and algorithms for bilevel optimisation, we
refer to Kleinert et al. (2021).

A major challenge in bilevel optimisation is that, even for linear bilevel problems,
single-level reformulations using complementarity constraints lead to nonlinear and
nonconvex problems. This significantly increases the computational complexity of solv-
ing such problems and requires specialised approaches such as the simplex method-
inspired projected gradient method by Still (2002) or the (spatial) branch-and-bound
methods discussed by Bard and Moore (1990) and implemented in the Gurobi solver
(Gurobi Optimization, LLC, 2022). Alternatively, one can use heuristics such as ge-
netic programming (Kieffer et al., 2019) and particle swarm optimisation (Gao & Liu,
2021). For a review on heuristic solution methods for bilevel programming, we refer
the reader to Camacho-Vallejo et al. (2023).

2.2. Trilevel equilibrium models

Consider a problem with a trilevel structure, in which players interact with each other
at all three levels: top, middle and bottom. In this structure, the top-level problem P1

is assumed to be a linear optimisation problem with the middle-level problem P2(x)
represented by the constraint (3c).

(P1) : minx,y,z c⊤1 x+ d⊤1 y + e⊤1 z (3a)
s.t. A1x+B1y + C1z ≥ a1 (3b)

y, z solve P2(x), (3c)

where P2(x) denotes the middle-level problem

(P2(x)) : miny,z d⊤2 y + e⊤2 z (4a)
s.t. A2x+B2y + C2z ≥ a2 (γ) (4b)

y ≥ 0 (4c)
z solves P3(x, y), (4d)

where γ is the vector of dual variables associated with constraint (4b) and z is the
vector of bottom-level variables. In trilevel settings, the “lower-level” problem P2(x) is
itself a bilevel problem. This is challenging, because bilevel optimisation problems are
generally nonconvex and directly obtaining their optimality conditions is thus difficult.
The middle-level problem P2(x) constraints contain a bottom-level problem P3(x, y)
that is parameterised by the upper-level variables x and middle-level variables y. In
particular, Gabriel et al. (2022) discuss the case of the bottom-level problem being a
linear complementarity problem (LCP)

P3(x, y) : 0 ≤ z̃ ⊥ q +Nxx+Nyy +Mz̃ ≥ 0 (5)
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parameterised via the vector terms Nxx and Nyy. It should be noted that (5) can be
viewed as the KKT conditions of convex quadratic problems and in Section 2.4, we
discuss such problems in more detail. Hereinafter, we use the standard ⊥-notation

0 ≤ a ⊥ b ≥ 0 ⇐⇒ a, b ≥ 0, a⊤b = 0

for complementarity constraints with vectors a and b.
Trilevel problems have been researched by, e.g., Sauma and Oren (2007), who do

not solve the models directly and instead iteratively solve the middle- and bottom-
level problem for different values of the top-level decision variables; and Dvorkin et al.
(2017), who employ a column-and-constraint generation algorithm. In contrast, the
goal of this paper is to explore novel single-level reformulations for trilevel problems
and solve them using an off-the-shelf solver, thus lowering the barrier-to-entry for
using these models. However, this comes at the expense of imposing constraints on the
structure of the models that are tractable in this manner. In (4), a general form of the
problem is used, and the bottom-level problem in (4d) is assumed to be parameterised
by both x and y. For the sake of clarity, we define two classes of trilevel problems with
different degrees of computational challenges.

Definition 2.1. If P3 is parameterised by both x and y, we say that the problem has
a strong trilevel structure. In contrast, if P3 is parameterised only by the top-level
variables x, i.e., it is not directly dependent on y, we say that the problem has a weak
trilevel structure.

Gabriel et al. (2022) show that in order to use their single-level reformulation, the
problem must have a weak trilevel structure, allowing such problems to be solved rather
effectively by borrowing from the results in Cottle et al. (2009, Theorem 3.1.6) as long
as the matrix M in the lower-level problem (5) is positive semi-definite (PSD). We
also show that our novel reformulation in Section 2.4 retains this structural limitation,
and that the energy-environmental planning problem considered in this paper has this
structure. The aim of this paper is to develop an alternative reformulation improving
computational tractability and efficiency compared to the reformulation in Gabriel et
al. (2022), and the discussion on ways for lifting this restriction on problem structure
is outside the scope of this paper.

While the lack of direct influence for the middle-level player is a limitation, there
are still structures that necessitate the use of a trilevel framework. As an example of
a setting where a trilevel approach is required, we use the power market example in
Section 3, where the bottom level consists of electricity generators, and on the middle
level we have a profit-maximising system operator who has to satisfy a minimum
renewable share in electricity production. If the bottom-level LCP matrix M in (5) is
PSD, the bottom-level problem can have multiple optima. This could result in, e.g., a
situation where it makes no difference for a generator to produce electricity using coal
in one node or wind power in another.

Using the optimistic bilevel assumption (Dempe & Zemkoho, 2020), while the sys-
tem operator cannot directly influence the generators, they can choose a bottom-level
optimum that maximises their profit while satisfying the minimum renewable share
constraint. In turn, maximising the middle-level player’s profit could, in some settings,
result in worse objective values for the top-level player. These interactions could not be
represented in a setting where the middle-level player is insensitive to the bottom-level
player’s decisions, as the middle-level player must consider the bottom-level optimality
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conditions to be able to choose between bottom-level optimal solutions.

2.3. Bottom-level LCP with a positive semi-definite coefficient matrix

For completeness, we summarise the solution approach introduced in Gabriel et al.
(2022). Let us assume that the matrix M in (5) is positive semi-definite and that
we have a solution z̄ of (5). Furthermore, we assume the problem to have a weak
trilevel structure and thus Ny = 0, i.e., the middle-level decisions y do not influence
the bottom-level problem (c.f. Definition 2.1). Gabriel et al. (2022) show that for a
positive semi-definite M and a weak trilevel structure, a solution to the trilevel problem
consisting of (3)-(5) can be obtained by solving the equivalent single-level reformulation

min
x,y,z̃,z̄,β,γ,δ,ζ,η

c⊤1 x+ d⊤1 y + e⊤1 z̃ (6a)

s.t. A1x+B1y + C1z̃ ≥ a1, (6b)

0 ≤ y ⊥ d2 −B⊤
2 γ ≥ 0, (6c)

0 ≤ z̃ ⊥ e2 − C⊤
2 γ −M⊤δ − ζ(q +Nxx)− (M +M⊤)⊤η ≥ 0, (6d)

0 ≤ z̄ ⊥ q +Nxx+ (M +M⊤)z̄ −M⊤β ≥ 0, (6e)
0 ≤ β ⊥ q +Nxx+Mz̄ ≥ 0, (6f)
0 ≤ δ ⊥ (q +Nxx) +Mz̃ ≥ 0, (6g)

(q +Nxx)
⊤(z̃ − z̄) = 0, (M +M⊤)(z̃ − z̄) = 0, (6h)

0 ≤ γ ⊥ A2x+B2y + C2z̃ − a2 ≥ 0, (6i)

where z̄ is a solution to the bottom-level problem (5) and (z̄∗)⊤(q+Nxx
∗ +Mz̄∗) = 0

has to thus hold at an optimal solution x∗, z̄∗ to (6). Appendix A summarizes the refor-
mulation steps taken in Gabriel et al. (2022), including the constraints corresponding
to the dual variables β, δ, ζ and η. This formulation assumes nonnegativity for all vari-
ables y, but we note that this is not a requirement and including free variables in the
middle level only requires small changes to the corresponding KKT conditions (6c).

Finally, we note that the reformulation (6) is not linear due to the nonlinear products
ζNxx, x⊤N⊤

x z̃ and x⊤N⊤
x z̄, resulting in a nonconvex problem. In general, obtaining

global optimal solutions to nonconvex problems is enormously challenging, but this
particular nonconvexity can be handled by using a solver capable of handling problems
with bilinear terms in special ordered sets of type 1 (SOS1) constraints (Beale &
Tomlin, 1970). An SOS1 constraint states that out of a set of variables or functions,
only one can have a nonzero value. A complementarity constraint 0 ≤ a ⊥ b ≥ 0 can
thus be reformulated as two nonnegative variables a and b in a SOS1 constraint. This
can be achieved using, e.g., the spatial branch-and-bound method in the Gurobi solver
(Gurobi Optimization, LLC, 2022), see also Siddiqui and Gabriel (2013).

2.4. Mathematical programming with complementarity from primal and
dual constraints

We are now ready to discuss our novel single-level reformulation. Let us first consider
a setting where the bottom level is a convex quadratic minimization problem. So far,
we have discussed a reformulation based on adding the KKT optimality conditions of
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the bottom-level problem to the middle-level problem. In our trilevel case, the KKT
optimality conditions, having complementarity constraints, require a reformulation of
the LCP solution set so that we can obtain a single-level equivalent formulation of
the trilevel problem. This eventually results in the middle- and bottom-level problems
being represented as two optimisation problems, potentially leading to computational
challenges with the reformulation (6). Representing these two nested optimisation prob-
lems as a single-level equivalent requires a large number of complementarity constraints
(6e)-(6i), possibly leading to prohibitive computational requirements.

To circumvent these challenges, we note that some bilevel optimisation problems
can also be reformulated as mathematical programs with primal and dual constraints
(MPPDC), using strong duality instead of complementarity. We present a novel strong
duality-based reformulation for trilevel problems, in which a linear middle-level problem
and convex quadratic bottom-level problems are reformulated into a single quadrati-
cally constrained linear problem (QCLP) instead of two optimisation problems (a QP
and an LP) as in Appendix A and Gabriel et al. (2022). The model sizes resulting from
using complementarity (Section 2.3) and strong duality (this section) for the bottom
level are compared in Section 2.5.

Consider a trilevel problem with a set of bottom-level problems P3i(x)

(P3i(x)) : min
zi

1

2
z⊤i Fizi + ei3(x)

⊤zi (7a)

s.t. Ci3zi ≥ ai3(x) (7b)
zi ≥ 0, (7c)

where zi is a vector of decision variables and Fi is positive semidefinite (PSD) for all
i ∈ I. In our illustrative example described in the next section, the set I represents the
electricity producers. Note that we assume a weak trilevel structure, that is, P3i does
not depend on y. Dorn (1960) presents Lagrangian dual formulations for quadratic
problems1, and using these formulations, the dual of each problem P3i(x) is

max
pi,zi

− 1

2
z⊤i Fizi + ai3(x)

⊤pi (8a)

s.t. C⊤
i3pi − Fizi ≤ ei3(x) (8b)

pi ≥ 0. (8c)

In MPPDC, the complementarity constraints in the KKT optimality conditions are
replaced with a strong duality constraint. The strong duality theorem (e.g., Bazaraa
et al., 2013) states that if the problem has no duality gap, that is, some constraint
qualification holds for the problem2, the optimal primal and dual objective values
are equal. This implies that such problems can be solved to optimality by finding any
solution that is both primal and dual feasible with the primal and dual objective values
being equal.

Combining formulations (7) and (8), we obtain the following primal and dual con-

1For completeness, the steps for obtaining the dual (8) from the primal problem (7) are presented in Appendix
B.
2For problems with only affine constraints, such as (7), the Abadie constraint qualification is always satisfied

(Bazaraa et al., 2013).
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straints, combined with a strong-duality constraint:

Ci3zi ≥ ai3(x) ∀i ∈ I (9a)

C⊤
i3pi − Fizi ≤ ei3(x) ∀i ∈ I (9b)

z⊤i Fizi + ei3(x)
⊤zi − ai3(x)

⊤pi ≤ 0 ∀i ∈ I (9c)
zi, pi ≥ 0 ∀i ∈ I. (9d)

The strong duality constraint (9c) states that the objective value of each bottom-
level primal (minimisation) problem must not be higher than the value of the dual
(maximisation) problem. Recall that the weak duality theorem (Bazaraa et al., 2013)
states that the objective value of any solution of a minimisation problem is greater or
equal to any objective value of the corresponding dual problem. This result allows us
to write the strong duality constraint in an inequality form, following the approach in
Huppmann and Egerer (2015), thus avoiding a quadratic equality constraint that would
render a nonconvex feasible region. Since the matrices Fi are PSD, constraints (9c) are
convex. Knowing that weak duality guarantees the left-hand side of each constraint
(9c) to be nonnegative also allows us to combine the |I| constraints into one by taking
a sum over the left-hand side values, reducing the number of constraints.

By combining the middle-level problem (4a)-(4c) with the bottom-level problem
reformulation (9), we obtain the resulting bilevel MPPDC formulation of (4):

min
y,zi,pi

d⊤2 y +
∑
i∈I

e⊤i2zi (10a)

s.t. A2x+B2y +
∑
i∈I

Ci2zi ≤ a2 (10b)

Ci3zi ≥ ai3(x) ∀i ∈ I (10c)

C⊤
i3pi − Fizi ≤ ei3(x) ∀i ∈ I (10d)∑

i∈I
(z⊤i Fizi + ei3(x)

⊤zi − ai3(x)
⊤pi) ≤ 0 (10e)

y ≥ 0 (10f)
zi, pi ≥ 0 ∀i ∈ I. (10g)

The objective function (4a) and constraint (4b) have been modified from (4) by adding
a sum over the set I to highlight the fact that we consider |I| sets of decision variables
zi.

The last step is to take the (KKT) optimality conditions of the middle-level MPPDC
problem (10) and add them to the top-level problem, resulting in a (trilevel) math-
ematical program with complementarity from primal and dual constraints. Similarly
to the LCP-based reformulation summarised in Section 2.3, this strong duality refor-
mulation has the requirement that the bottom level is not directly influenced by the
middle-level decision variables. With a weak trilevel structure (as per Definition 2.1),
both the objective function and constraints are convex (or affine) and the KKT condi-
tions of (10) are thus sufficient for optimality. However, to the best of our knowledge,
no constraint qualification is known to hold for the problem (10). For example, Slater’s
constraint qualification (all nonlinear constraints can be satisfied as strict inequalities,
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Slater, 1950) is not satisfied because weak duality states that∑
i∈I

(z⊤i Fizi + e⊤i3zi − a⊤i3pi) ≥ 0

and thus, the nonlinear strong duality constraint (10e) cannot be strictly satisfied. This
means that the KKT conditions of this problem are only sufficient but not necessary
for optimality. Nevertheless, this tells us that if we find a point that satisfies the KKT
conditions, that point is optimal for the problem (10). The complete single-level strong
duality reformulation is thus

minx,y,z c⊤1 x+ d⊤1 y + e⊤1 z (11a)
s.t. A1x+B1y + C1z ≥ a1 (11b)

0 ≤ y ⊥ d2 +B⊤
2 γ ≥ 0 (11c)

0 ≤ γ ⊥ a2 −A2x−B2y −
∑
i∈I

Ci2zi ≥ 0 (11d)

0 ≤ zi ⊥ ei2 + C⊤
i2γ − C⊤

i3p
b
i − F⊤

i z
b
i + (Fi + F⊤

i )ziϵ+ ei3(x)
⊤ϵ ≥ 0 ∀i ∈ I

(11e)

0 ≤ pi ⊥ Ci3z
b
i − ai3(x)ϵ ≥ 0 ∀i ∈ I (11f)

0 ≤ zbi ⊥ ei3(x)− C⊤
i3pi + Fizi ≥ 0 ∀i ∈ I (11g)

0 ≤ pbi ⊥ Ci3zi − ai3(x) ≥ 0 ∀i ∈ I (11h)

0 ≤ ϵ ⊥ −
∑
i∈I

(z⊤i Fizi + ei3(x)
⊤zi − ai3(x)

⊤pi) ≥ 0, (11i)

where pbi and zbi are the dual variables of the bottom-level primal and dual constraints
(10c) and (10d), respectively, and ϵ is the dual variable of the strong duality constraint
(10e). That is, pbi can be interpreted as the middle-level shadow prices associated with
the bottom-level primal constraints. On the other hand, it is well known that the dual
of the dual problem is the primal problem, and the dual variables associated with dual
constraints are the primal variables. The value of these bottom-level primal variables
must be the same for the middle- and bottom-level players, i.e., zbi = zi. Note that the
right-hand sides of constraints (11e), (11f) and (11i) contain bilinear terms (assuming
ei3(x) and ai3(x) are affine) including the top-level variables x, making the resulting
model nonconvex in general. As discussed before, such constraints can be modelled as
quadratic SOS1 constraints and solved using spatial branch-and-bound-based methods.

If the problem instead has a strong trilevel structure, some of the terms ai3 or ei3
would effectively be functions of y, and the strong duality constraint (10e) would conse-
quently have nonconvex bilinear terms. The middle-level variables would be considered
fixed for the bottom-level problems, but not for the middle level. A nonconvex strong
duality constraint in the middle-level problem (10) would result in the KKT conditions
of the problem not even being sufficient for optimality. If we assume for example that
the middle-level variables y appeared in linear terms added to the constant terms a
and e, constraint (10e) would become

∑
i∈I

(z⊤i Fizi +
(
ei3 +Nobj

y y
)⊤

zi −
(
ai3(x) +N con

y y
)⊤
pi) ≤ 0,
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resulting in bilinear terms (Nobj
y y)⊤z and (N con

y y)⊤p, where Nobj
y and N con

y are the
coefficient matrices of the y-variables in the bottom-level objective and constraints,
respectively.

2.5. Comparison of trilevel formulations

In the reformulation (6) (Gabriel et al., 2022), the vector z̃ contains both the primal
and dual variables of each bottom-level problem. This is because the variable z̃ appears
in the LCP (5), which, in the problems presented in this paper, represents the con-
catenated KKT conditions of the bottom-level problems. We denote by n2 the number
of variables in the middle-level problem and by m2 the number of constraints in the
same problem, and analogously, n3 and m3 for the number of variables and constraints,
respectively, in the bottom-level problem. There are then n2+m2+4(n3+m3) comple-
mentarity constraints (6e)-(6g) and (6i) in formulation (6), and one variable for each
complementarity constraint. Additionally, there are n3 +m3 + 1 equality constraints
(6h) used in the reformulation, and the constraints (6b) for the top-level problem.

The novel strong duality formulation (11) (assuming only inequality constraints and
nonnegative variables in the middle- and bottom-level problems for comparison) results
in n2 +m2 complementarity constraints for the middle-level variables and constraints,
2(n3+m3) complementarity constraints for the bottom-level primal and dual variables
and constraints, and one complementarity constraint for the strong duality. Because
strong duality is represented as an inequality constraint, no equality constraints are
needed for the strong duality reformulation.

The strong duality reformulation of the bottom level results in half the number of
complementarity constraints compared to the LCP reformulation presented in Gabriel
et al. (2022), plus one for strong duality, and no equality constraints. While the LCP
reformulation results in two nested optimisation problems, the intermediate MPPDC
(10) in the strong duality reformulation is a single problem, explaining the difference
in the number of constraints. This is computationally beneficial, as large numbers of
complementarity constraints contribute greatly to the computational challenges with
equilibrium problems. Additionally, it should be noted that the column-and-constraint
generation algorithm (Dvorkin et al., 2017) requires the middle- and bottom-level prob-
lems to be represented as a single optimisation problem, suggesting that the strong
duality approach could be easily extended to that context, unlike the LCP solution set
reformulation.

On the other hand, the main disadvantage of our strong duality formulation is that
the strong duality constraint (10e) retains the quadratic term from the bottom-level
objective function, while the previous formulation has only affine constraints. This
results in the formulation (10) not satisfying a constraint qualification, making the
KKT conditions only sufficient for optimality. Additionally, unlike the strong duality
formulation, the formulation in Gabriel et al. (2022) is applicable to settings where
the bottom-level complementarity conditions are not derived as KKT conditions of an
optimisation problem. For example, the spatial price equilibrium problem in Gabriel
et al. (2022) could not be reformulated using strong duality.

3. Applications in energy-environmental planning

In this section, we describe a trilevel power market equilibrium model that contains
environmental considerations for the top-level regional policy-maker. Finding effective
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instruments for emission reduction and climate change mitigation is becoming increas-
ingly important, and we focus our attention on carbon tax (see Köppl & Schratzen-
staller, 2023, for a review). At the middle level, a single regional system operator is
responsible for operating transmission lines a ∈ A between nodes k ∈ K, maximising
its profit from operating the system.

At the bottom level, each energy producer i ∈ I produces electricity at nodes k ∈ K
using energy sources j ∈ J and sells the electricity to nodes k′ ∈ K, that is, the
electricity is not necessarily sold to the same node it is produced in. The producers
maximise their profit from selling electricity, knowing that their decisions will affect
the selling prices, making the bottom level a Cournot oligopoly. Instead of considering
a fixed demand that must be satisfied exactly, we model the demand side as reacting
with an affine relationship between production and price so that total demand increases
linearly as the price of electricity decreases. This means, e.g., that if the producers
started to generate unreasonably large amounts of electricity, the price would go down
because more and more of the (elastic) demand is satisfied.

Finally, we consider a setD of representative days (Poncelet et al., 2016) of renewable
generation availability factors and demand curves. The top-level regulator chooses a
tax and minimum renewable share which apply for all days. In contrast, the operational
decisions at the system operator- and producer levels can differ between the days d ∈ D.
The weights of the representative days are denoted with Pd, with

∑
d∈D Pd = 1, that

is, Pd represents the fraction of days in a year that is represented by day d. The
purpose of representative days is to reduce the size and complexity of the model while
still being able to realistically convey the variability in renewable energy availability
and demand, and they are used in models such as US-REGEN (Young, 2020) and
LIMES-EU (Nahmmacher et al., 2014).

Our illustrative example is based on the model in Hobbs (2001). This model is chosen
because of its simple nature, as using a more realistic model would require further
discussion on assumptions and data, shifting the focus away from the methodological
contributions of this paper. We highlight however, that While this reference model is a
simplified representation of reality, models containing an equivalent structure to that
in Hobbs (2001) are used in case studies by, e.g., <empty citation>.

3.1. The top-level regulator

On top of this trilevel hierarchy is the regional regulator which tries to both maximise
the amount of electricity produced and minimise the carbon dioxide emissions from
doing so. The motivation for this setting is to balance the utility from electricity gen-
eration and to maintain reasonable electricity prices, while simultaneously mitigating
negative environmental outcomes.

In addition to maximising production, the regulator wants to minimise the total
emissions

∑
ijk ηijkzijkd from electricity generation, where ηijk is the emissions factor

corresponding to the production level zijkd. For carbon-emitting energy sources, ηijk >
0, while it is zero for zero-emission energy sources. These two objectives are then
converted into a single objective by giving the total production value a weight r ∈ (0, 1)
and the total emissions a weight (1−r). By varying the value of this weight parameter,
one could, for example, consider different priorities between these two objectives.

The top-level player decides on a carbon tax x, which affects each firms’ variable
costs: γijk = νijk+ηijkx, where νijk > 0 is the cost specific to the firm-fuel combination
(i, j) in node k, and ηijk is the emissions factor. Additionally, the top-level player can
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impose a minimum renewable share ρ that the system operator must satisfy at each
node k ∈ K. We assume ρ to be the same for all nodes, but it would be straightforward
to extend our model to consider this minimum renewable share to differ by node. The
carbon tax and minimum renewable share affect the optimal solutions of the middle-
and bottom-level players, resulting in different values for z, and consequently, the top-
level objective value. Increasing the carbon tax results in lower emissions as the high-
emission sources become more expensive for the producers. However, this also results
in the market equilibrium in the lower levels shifting towards lower total production
and higher electricity prices.

Given the upper-level variables x and ρ, the overall problem for this top-level player
is given as

max
x,ρ,y,z

∑
d∈D

Pd

∑
i∈I,j∈J,k∈K

(r − (1− r)ηijk)zijkd (12a)

s.t. x, ρ ≥ 0 (12b)
z and y solve (13) for all d ∈ D. (12c)

3.2. Profit-maximising system operator

At the middle level, following the model in Hobbs (2001), we consider a profit-
maximising independent system operator (ISO). This ISO is responsible for operating
the transmission lines a ∈ A between nodes k ∈ K for each representative day d ∈ D
and has to make sure that the lines function within their capacity limits, between −T−

a

and T+
a . The ISO chooses each node’s net import ykd of electricity through the trans-

mission lines (i.e., negative ykd implies that more electricity is produced than used in
node k, and electricity is exported to other nodes). The line flows are determined from
these using power transmission distribution factors (PTDFs) (see, e.g., Burr Metzler
(2000) for a thorough description).

The ISO’s problem for the representative day d ∈ D can be stated as the following
linear program.

max
ykd,zijkd

∑
k∈K

wkdykd (13a)

s.t. −
∑
k∈K

PTDFkaykd ≤ T−
a (ϕ−ad) ∀a ∈ A (13b)∑

k∈K
PTDFkaykd ≤ T+

a (ϕ+ad) ∀a ∈ A (13c)∑
i∈I,j∈R

zijkd ≥ ρ
∑

i∈I,j∈J
zijkd (ψkd) ∀k ∈ K (13d)

zijkd solve (14) for all i ∈ I, (13e)

where wkd is a congestion-based wheeling fee for node k ∈ K in day d ∈ D and R ⊆ J
is the set of renewable energy sources. The wheeling fee is the unit price the producers
have to pay to the ISO for selling electricity at node k, and the price that the ISO
pays to the producer for each unit of electricity produced at node k, and the prices of
buying and selling electricity in a node are assumed to be the same. The variables in
parentheses to the right of each constraint are the corresponding dual variables.
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Constraint (13d) states that the ISO has to choose such transmission values that
the renewable production share in each node is at least ρ, decided by the top-level
regulator. We assume that the ISO has no mechanism for influencing the producers to,
for example, increase their renewable share. This assumption results in a weak trilevel
structure (Definition 2.1). Instead of directly influencing the producers, the optimistic
bilevel assumption described earlier results in the ISO “choosing” the best (in terms of
(13a)) equilibrium solution for the bottom-level problems that satisfies (13d).

3.3. Oligopoly of the producers

We next consider the lower-level optimisation problems for a set of energy firms i ∈ I =
{1, . . . , nF }. We start by presenting these problems formulated for a bilateral market
where electricity producers sell directly to consumers, which turns out to be the simpler
case, and then proceed to add arbitragers to arrive at a POOLCO market model where
the producers instead sell their electricity to a central auction. The POOLCO model
more accurately represents the Nordic system and is thus used in the case study in
Section 4.2. For a detailed discussion on different market types, we refer the reader to
Ilic et al. (1998).

Let us first assume that at this lower level, these nF firms constitute the entire mar-
ket. Each firm has a production capacity in some of the nodes k ∈ K and can bilaterally
sell their electricity directly to any of the nodes. For production, the producers have a
set of energy sources j ∈ J . Our formulation for this producer level follows the ideas
in Hobbs (2001).

In this first model without arbitragers, every firm i ∈ I decides on its sales and
production for each node k ∈ K and day d ∈ D, taking into account linear inverse
demand functions pkd(s1kd, . . . , snF kd) = αkd−βkd

∑NF

i=1 sikd with price intercept αkd >
0 and slope βkd > 0. These parameters are assumed to vary per day, representing the
changes in demand. Recall that sikd is the amount of electricity sold by producer i to
node k in day d, and the market price at node k thus depends on the sum of the sales
of all firms into node k.

Additionally, each producer i ∈ I has maximum production levels zmax
ijkd determined

by their installed production capacity. For wind and solar power, the maximum pro-
duction level depends on the representative day d. Each producing firm solves the
profit-maximisation problem

max
sikd,zijkd

∑
k∈K

(αkd − βkd
∑
i′∈I

si′kd

)
sikd −

∑
j∈J

γijkzijkd − (sikd − zijkd)wkd

 (14a)

s.t. zijkd ≤ zmax
ijkd (λijkd) ∀j ∈ J, k ∈ K (14b)∑

k∈K
sikd =

∑
j∈J,k∈K

zijkd (θid) (14c)

zijkd, sikd ≥ 0, (14d)

where γijk is the marginal production cost for firm i in node k with fuel type j,
composed as the sum of a firm-specific cost νijk and an emissions cost ηijkx, depending
on the carbon tax x determined by the regulator.

The first term in (14a), involving the sales variables sikd represents the revenue from
selling electricity to different nodes k ∈ K. The nodal price is pkd = αkd−βkd

∑
i∈I sikd.

12



The cost of producing energy is γijk. The producers pay a wheeling fee wkd, which is
determined by the transmission network congestion and paid to the ISO. In this hub-
network model, the wheeling fee is also what the ISO pays the producers for producing
extra energy in each node k.

Constraint (14b) states that production cannot exceed capacity zmax
ijkd and constraint

(14c) states that for each producer, the total sales must equal total production. It is
easy to see that the objective function (14a) is concave for βkd > 0 and the constraints
are affine. Thus, the bottom-level problem (14) has the same structure as the quadratic
problems discussed in Section 2.4.

Finally, we include a market-clearing constraint∑
i∈I

sikd −
∑

i∈I,j∈J
zijkd = ykd (wkd) ∀k ∈ K, d ∈ D. (15)

This constraint is similar to constraint (14c), which instead considers the difference
between sales and production for each producer i ∈ I. We adopt the Bertrand as-
sumption used in Hobbs (2001): the system operator sees the wheeling fees as fixed,
instead of using market power to affect their values. In order to achieve this, the
market-clearing constraint (15) is considered outside the system operator and pro-
ducer problems, appearing “separately” in the final single-level formulation, effectively
becoming a top-level constraint.

3.3.1. Extending the producer oligopoly: including arbitrage

We are interested in modelling the Nordic market and, to achieve that, we extend the
bilateral market model represented by (14) into a POOLCO model. In a POOLCO
market model, it is assumed that the producers sell their electricity to a central auc-
tion where the price is determined based on the amount of sold electricity and network
congestion. Burr Metzler (2000) and Hobbs (2001) show that a bilateral market with
arbitragers is equivalent to a POOLCO market, assuming Cournot competition. Ar-
bitragers are bottom-level players who have no production capacity, but they instead
make their profits by exploiting the price differences between nodes, buying cheap elec-
tricity and selling it to nodes with a higher price. They act as price-takers and thus do
not anticipate their effect on the price pkd. The arbitrager’s problem is

max
a

∑
k∈K

(pkd − wkd)akd (16a)

s.t.
∑
k∈K

akd = 0 (pHd ), (16b)

where akd is the amount of electricity sold by the arbitrager to node k in day d and
the price at node k ∈ K depends on the sales from the producers and the arbitragers,
thus becoming pkd = αkd−βkd

(∑
i∈I,j∈J sikd + akd

)
. We can trivially obtain the KKT

conditions of (16), a linear maximisation problem (recall that the arbitragers are price-
takers, and pkd is thus treated as a constant). The KKT conditions (17d) and (17e)
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are necessary and sufficient for optimality and adding them to (14), we obtain

max
sikd,zijkd,aikd

∑
k∈K

(αkd − βkd

(∑
i′∈I

si′kd + aikd

))
sikd −

∑
j∈J

γijkzijkd − (sikd − zijkd)wkd


(17a)

s.t. zijkd ≤ zmax
ijkd (λijkd) ∀j ∈ J, k ∈ K (17b)∑

k∈K
sikd =

∑
j∈J,k∈K

zijkd (θid) (17c)

αkd − βkd

(∑
i′∈I

si′kd + aikd

)
= pHid + wkd ∀k ∈ K (17d)∑

k∈K
aikd = 0 (17e)

zijkd, sikd ≥ 0, (17f)

where aikd is the net amount of power sold in node k by the arbitrager(s), and pHid, the
dual variable associated with the arbitrager constraint, is the price at the central auc-
tion H. Both aikd and pHid are indexed over the different producers i ∈ I, to highlight
that each producer can influence these values with their decisions, and to avoid deci-
sion variables shared by players. This would result in a generalised Nash equilibrium
problem (Facchinei & Kanzow, 2010) that would be computationally more challenging.
However, the values aikd and pHid are the same for all producers at equilibrium, as shown
in Appendix C, and the approach of having separate variables for each producer is thus
valid. Constraint (17d) can be therefore written as pkd −wkd = pHid. That is, including
arbitragers results in the producers selling their electricity to the central auction at the
hub price pHid (or simply pHd at equilibrium), which is the sum of the price pkd at node
k ∈ K and the wheeling fee wkd paid to the system operator. Constraint (17e) states
that since the arbitragers have no production capacity, their net sales amounts must
be zero. The objective function is still concave after adding the arbitrage variables,
and the new constraints are affine. Burr Metzler (2000) shows further substitutions
and simplifications to the producer and system operator problems, which are shown
in Appendix C, along with the resulting model that is used for the computational
experiments in Section 4.

4. Computational experiments

To illustrate the performance of the trilevel optimisation framework in a realistic prob-
lem setting, we solve the trilevel model described in the previous section, using ran-
domly generated instances of varying sizes. The data used in these computational
experiments mimics the data in the case study of Belyak et al. (2023), whose data is
from the ENTSO-E Transparency Platform (Hirth et al., 2018) and is further described
in Section 4.2. The computational experiments were performed using 8 CPU threads
and 16GB of RAM. All code was implemented in Julia v1.7.3 (Bezanson et al., 2017)
using the Gurobi solver v10.0.0 (Gurobi Optimization, LLC, 2022) and JuMP v1.5.0
(Dunning et al., 2017) and is available in Herrala (2023).
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4.1. Comparing formulations

We compare the performance of the two single-level reformulations, the LCP-based
reformulation from Gabriel et al. (2022) (Section 2.3) and our strong duality reformu-
lation (Section 2.4) by solving 50 randomly generated problems with 2 producers, 5
energy sources, 3 nodes and 3 representative days. This problem size was chosen as
the base case because it seems to be large enough to make the problems challenging
to solve, but small enough for them to be mostly solvable within a time limit of one
hour.

The results are presented in Figure 1 and the main observation here is that the
novel strong duality formulation is faster in most cases. In Figure 1, markers below
the diagonal (dashed line) correspond to such cases. In 13 instances, the formulation
of Gabriel et al. (2022) did not find an optimal solution in an hour while our strong
duality formulation did. One major issue with both models compared here is that usu-
ally the first feasible solutions are found at the end of the solution process and most
of the solution time is spent on improving the dual bound without finding any feasi-
ble solutions. Nevertheless, changing solver parameters to emphasize finding feasible
solutions was not found to have a major impact on performance.

Figure 1. Solution times for the two formulations on 50 random instances with 2 producers, 5 energy sources,
3 nodes and 3 representative days. If one of the methods failed to find a solution within 3600s, a red marker is
used, and the marginal distributions on the right and top sides exclude unsolved instances.

As discussed in Section 2.5, the strong duality formulation results in fewer con-
straints than the reformulation in Gabriel et al. (2022). Recall that in our models,
complementarity constraints are formulated as SOS1 constraints. The model sizes in
the base case test problems are presented in Table 1, and out of the two, our strong
duality model is smaller, except for having one more quadratic SOS1 constraint to
represent the strong duality constraint (11i). In our model, all non-complementarity
quadratic constraints are inequality constraints, while in the LCP-based model, there
is one quadratic equality constraint (the first one in (6h)).

Next, we analyze how problem size affects solution times by varying either the num-
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strong duality (this paper) LCP (Gabriel et al., 2022)
variables 678 949

affine constraints 306 757
quadratic constraints 100 100

affine SOS1 288 648
quadratic SOS1 100 99

Table 1. Model sizes for the two reformulations

ber of producers, energy sources, nodes and representative days from the base case,
one parameter at a time. The results are presented in Figure 2. The medium-sized
cases in each subfigure are similar to each other, which is expected as the problem
sizes are the same. Varying the number of producers or energy sources seems to have
only a small effect on the solution times while changing the number of nodes has a far
stronger effect. The effect of the number of representative days is stronger than that
of the number of producers and energy sources but seems to be weaker than that of
the number of nodes.

We can also see that the number of problems that were not solved to optimality
within the time limit is affected by the number of nodes and representative days, but
not by the number of firms or energy sources. Additionally, the novel strong duality
model finds an optimal solution more frequently than the previous formulation. As
predicted in Section 2.4, the larger number of complementarity constraints in the LCP
formulation (Table 1) proves to be computationally challenging, and the smaller strong
duality model is solved faster.

Figure 2. Cumulative distribution functions of solution times for the two formulations with 1-3 producers,
4-6 energy sources and 2-4 nodes and representative days. For each problem size, 50 instances are generated
and solved.
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4.2. Case study: a five-node Nordic energy system

The case study in Belyak et al. (2023) considers five nodes, representing Finland,
Sweden, Norway, Denmark and the combined Baltic countries (Estonia, Latvia and
Lithuania). There are five producers, each owning production capacity in one of the
five nodes. Nine different energy sources are available, consisting of five conventional
sources: nuclear, coal, gas (closed- and open-cycle) and biomass, and four renewable
sources: solar, hydro, onshore and offshore wind. Additionally, we consider three repre-
sentative days of renewable generation availability factors and demand curves. Recall
that in our model, the top-level regulator makes their decisions independent of the
day considered, that is, the carbon tax and minimum renewable share are constant
across different representative days. These representative days are obtained in Belyak
et al. (2023) by performing hierarchical clustering on demand, price and renewable
availability data.

Day 1 is a winter day with higher demand, low solar availability and medium wind
availability. Days 2 and 3 have a lower demand with day 2 representing a windy day
with medium solar availability, and day 3 representing a sunny day with low wind
availability. The details of the hierarchical clustering process can be found in Belyak
et al. (2023).

In Figure 3, the production portfolio (a weighted average over the representative
days) is presented for a model with no carbon tax (i.e., the regulator heavily prefers
maximising production over minimising emissions) and a carbon tax of 23 e/ton
(enough to remove nearly all emissions). Compared to the baseline with no carbon
tax, this 23 e/ton tax decreases the total production by 2.8%. In this example, these
carbon tax values are achieved by setting the weight parameter r in the top-level
objective (12a) to 0.8 and 0.4, respectively.

Because of the substantial hydropower production capacity in the Nordic system,
particularly in Norway and Sweden (IRENA, 2023), the renewable share of production
is large even without a carbon tax. A part of the increase in hydropower usage when
the carbon tax is introduced comes from decreasing onshore wind production. This is
a consequence of the simplified nature of the model and data, as the operational costs
for both hydropower and onshore wind power are zero, resulting in multiple optima
and indifference for the producers to use one or the other, as long as the production
capacity of neither is exceeded. This artefact of the model could be easily removed
by, e.g., setting the operational cost of either energy source to a small positive number
instead of zero, causing the producers to prefer the cheaper source. However, this would
imply an artificial preference for one source over the other. The only significant source
of emissions is coal, and introducing a carbon tax of 23 e/ton removes all coal from
the portfolio, bringing in a small amount of closed-cycle gas power instead. The closed-
cycle gas production occurs in the Baltics for day 1, and to understand this emergence
of gas better, we must examine the transmission network in Figure 4.

The first representative day has the highest network usage with large amounts of
electricity transmitted from Norway to Finland through Sweden. With the carbon tax,
the importance of transmission is further highlighted as the hydropower capacity in
Norway is used for lowering overall prices under high demand and low production from
both solar power and high-emission sources. The differences between representative
days 2 and 3 are more subtle, but we can see, e.g., the reliance on wind power in
Denmark: in the low-wind day 3, the carbon tax results in Denmark importing a
significant amount of electricity from Norway, compared to the high-wind day 2. On
the first day with a carbon tax of 23 e/ton, both lines connecting the Baltic countries
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Hydro 75.2%
Solar 0.5%
Onshore wind 10.5%
Offshore wind 2.2%
Nuclear 6.1%
Coal 5.5%

(a) No carbon tax.

Hydro 83.5%
Solar 0.5%
Onshore wind 7.3%
Offshore wind 2.2%
Nuclear 6.3%
Gas CC 0.2%

(b) Carbon tax 23e/ton.

Figure 3. Weighted average electricity production portfolio over the five nodes and three representative days.

to the rest of the system are at their capacity, explaining why the Baltic countries start
using gas power after a carbon tax is introduced. This illustrates the complex interplay
between the three levels that is captured by our model.
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Figure 4. Transmission grid usage with different carbon taxes and representative days. The size of an arrow is
proportional to the flow on the line and the color of an arrow represents congestion: black arrows correspond to
lines operating at their limit. The nodes are FI=Finland, SE=Sweden, NO=Norway, DK=Denmark, BA=Baltic
countries.

5. Conclusions

In this paper, we propose a novel formulation for trilevel optimisation problems focus-
ing on energy systems planning with environmental considerations. Additionally, we
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characterise the notion of weak and strong trilevel structures and compare the compu-
tational performance of the novel strong duality-based reformulation in this paper and
the LCP-based reformulation in Gabriel et al. (2022).

The computational results are encouraging, as we are able to solve the case study to
optimality within a few minutes despite the fact that both single-level reformulations
considered are nonconvex problems. However, we note that preliminary experiments
with seemingly small extensions to the model, such as adding ramping constraints (lim-
iting the change in production between consecutive periods) to the producer problem
made the problem computationally intractable. The small size of the case study is in-
dicative of the very challenging (nonconvex) nature of these problems, and the authors
note that the reformulations and solution methods in this paper should be viewed as
one of the first steps towards an efficient solution framework for tri-level problems.

For the results in this paper, an off-the-shelf solver is used, which is useful to ensure a
low barrier-to-entry for using the developed formulation. However, we believe that the
computational performance can be increased considerably using specialised solution
methods like column-and-constraint generation (Dvorkin et al., 2017). Notably, ideas
such as bilevel branch-and-bound (Fischetti et al., 2018) and convex hull reformulations
of the middle-level feasible region (Santana & Dey, 2020) may be explored in the
context of the problems presented in this paper. In addition, the model could also be
extended to consider transmission and/or production capacity expansion over multiple
time periods, especially if computationally more efficient reformulations and solution
methods are developed.

Despite the outstanding computational challenges, we show that the novel refor-
mulation improves computational performance compared to the previous formulation
(Gabriel et al., 2022), and we show that the framework can be applied to a setting
representing the Nordic electricity market, and results on the effect of carbon tax can
be obtained. A limitation of the formulation approach presented in this paper and that
originally proposed by Gabriel et al., 2022 is that they require a weak trilevel structure.
In practice, relevant problems may instead have a strong trilevel structure, preclud-
ing the use of these reformulations. Thus, further research is needed on developing
(heuristic) solution methods for problems with a strong trilevel structure.
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Appendix A. Reformulation of a bottom-level LCP with a positive
semi-definite M

Cottle et al. (2009) shows that if the matrix M is positive semidefinite, all solutions
to the LCP

0 ≤ z ⊥ q +Nxx+Nyy +Mz ≥ 0, (A1)

can be obtained as the following polyhedral set:

{z ∈ Rnz

≥0 : q +Nxx+Nyy +Mz ≥ 0,

(q +Nxx+Nyy)
T (z − z̄) = 0, (A2)

(M +MT )(z − z̄) = 0},
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where z̄ is a solution to the LCP.
Hence, the middle-level problem can be re-written as

miny,z≥0 d⊤2 y + e⊤2 z (A3a)
s.t. A2x+B2y + C2z ≥ a2 (A3b)

q +Nxx+Nyy +Mz ≥ 0 (A3c)

(q +Nxx+Nyy)
⊤(z − z̄) = 0 (A3d)

(M +M⊤)(z − z̄) = 0. (A3e)

We observe that (A3d) includes a bilinear term y⊤N⊤
y z in an equality constraint.

This is a nonconvex constraint, precluding the direct use of KKT conditions for obtain-
ing an optimal solution to (A3). However, for problems with a weak tri-level structure,
Ny = 0 and these bilinear terms vanish. In the next theorem, we assume Ny = 0.

Theorem A.1. Let M be a positive semidefinite matrix. Then, (x∗, y∗, z∗) is an op-
timal solution of Problem (3) with middle level (4) if and only if (x∗, y∗, z∗, z̄∗) is an
optimal solution of the problem

minx,y,z,z̄ c⊤1 x+ d⊤1 y + e⊤1 z (A4a)
s.t. A1x+B1y + C1z ≥ a1 (A4b)

z̄ ∈ argmin
z′≥0

{z′⊤(q +Nxx+Mz′) :

q +Nxx+Mz′ ≥ 0 (β)}, (A4c)

y, z ∈ argmin
ŷ,ẑ≥0

{d⊤2 ŷ + e⊤2 ẑ :

q +Nxx+Mẑ ≥ 0 (δ)

(q +Nxx)
⊤(ẑ − z̄) = 0 (ζ) (A4d)

(M +M⊤)(ẑ − z̄) = 0 (η)

A2x+B2ŷ + C2ẑ ≥ a2 (γ)},
such that (z̄∗)⊤(q +Nxx

∗ +Mz̄∗) = 0.

See Theorem 6 in Gabriel et al. (2022) for a proof of this result as well as related
theoretical aspects of the general form of the problem.

The two nested optimization problems in (A4) are a convex QP (A4c) and an LP
(A4d). Hence, the KKT conditions of both problems are necessary and sufficient for
optimality and the two inner problems can be replaced by their necessary and sufficient
KKT conditions, leading to the single-level reformulation (6).
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Appendix B. Formulating the dual of a QP with affine constraints

Given a quadratic program with affine constraints

min
zi

1

2
z⊤i Fizi + ei3(x)

⊤zi (B1a)

s.t. Ci3zi ≥ ai3(x) (pi) (B1b)
zi ≥ 0 (si), (B1c)

where we assume Fi is a positive semidefinite symmetric matrix, the Lagrangian of the
problem is

L(zi, si, pi) =
1

2
z⊤i Fizi + ei3(x)

⊤zi + p⊤i (ai3(x)− Ci3zi)− s⊤i zi, (B2)

where pi and si are nonnegative Lagrange multipliers or dual variables. The first-order
optimality condition is thus

∇ziL(zi, si, pi) = Fizi + ei3(x)− C⊤
i3pi − si = 0 (B3)

and rearranging (B2) gives us

1

2
z⊤i Fizi − z⊤i C

⊤
i3pi + z⊤i ei3(x)− z⊤i si + ai3(x)

⊤pi, (B4)

which, using the first order condition −Fizi = −C⊤
i3pi + ei3(x)− si, becomes

−1

2
z⊤i Fizi + ai3(x)

⊤pi. (B5)

Maximising Eq. (B5), subject to the first-order optimality condition for zi and treating
si as a slack variable and removing its explicit representation from the problem results
in the Lagrangian dual formulation

max
pi,zi

− 1

2
z⊤i Fizi + ai3(x)

⊤pi (B6a)

s.t. C⊤
i3pi − Fizi ≤ ei3(x) (B6b)

pi ≥ 0. (B6c)

Appendix C. Further substitutions for the middle and bottom levels

The producer model can be further simplified using the substitution sikd =
∑

j∈J zijkd,
removing the sales variables and the balance constraint (17c). For a further reduction,
the remaining equality constraints (17d) and (17e) can be used to solve for a and pH .
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We have the necessary and sufficient KKT conditions

αkd − βkd(
∑
i′∈I

si′kd + aikd) = pHid + wkd∀k ∈ K (C1)∑
k∈K

aikd = 0 (C2)

(C3)

of the arbitrager’s problem, and with the substitution
∑

j∈J zijkd = sikd, we get

αkd − βkd(Zkd + aikd) = pHid + wkd∀k ∈ K (C4)∑
k∈K

aikd = 0, (C5)

(C6)

where Zkd =
∑

i∈F,j∈J zijkd. In matrix form, we get

[
Qd 1
1⊤ 0

] [
aid
pHid

]
=

[
αd −QZd − wd

0

]
, (C7)

where Qd is a square diagonal matrix with the element on the kth row and column
being βkd and 1 is a vector of ones. It can be shown that

[
Qd 1
1⊤ 0

]−1

=

[
Ld hd
h⊤d ĥd

]
, (C8)

where

ĥd =
1∑

k∈K β−1
kd

hkd = β−1
kd ĥd

Ld
k,k = ĥdβ

−1
kd

∑
k′∈K\k

β′−1
kd

Ld
k,k′ = −ĥdβ−1

kd β
′−1
kd , k ̸= k′.

This results in the solution

aikd = hkdZd − Zkd −
∑
k′∈K

(αk′d − wk′d)L
d
k,k′ (C9)

pHid =
∑
k∈K

(αkd − wkd)hkd − Zdĥd, (C10)

where
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Zd =
∑

i∈I,j∈J,k∈K
zijkd

Zkd =
∑

i∈I,j∈J
zijkd.

It can be seen that the values of aikd and PH
id are the same for each firm i ∈ I

and we can drop the index i. Burr Metzler (2000) shows that the arbitrage amounts
correspond to the transmission values: akd = ykd.

These substitutions result in the problem formulation

max
zid

(∑
k∈K

(αkd − wkd)hkd − Zdĥd

)
Zid −

∑
j∈J,k∈K

(γijk − wkd) zijkd (C11a)

s.t. zijkd ≤ zmax
ijkd (λijkd) ∀j ∈ J, k ∈ K (C11b)

zijkd ≥ 0 (C11c)

and we can see that the substitutions do not change the concavity of the objective
function: the quadratic term for producer i ∈ I is ĥdZ2

id. Finally, the sales variables
sikd are also eliminated from the market-clearing constraint, resulting in

hkdZd − Zkd +
∑
k′∈K

(αk′d − wk′d)L
d
kk′ = ykd (wkd) ∀k ∈ K. (C12)

The formulation (C11) can be converted into an LCP by using the KKT optimality
conditions. The combined KKT conditions of (C11) for all producers i ∈ I are

0 ≤ zd ⊥Bdzd + λd + qzd ≥ 0 (C13a)
0 ≤ λd ⊥− zd + zmax

d ≥ 0, (C13b)

where qzijkd = −
∑

k∈K(αkd − wkd)hkd + (γijk − wkd) and Bd is a positive semidefinite
matrix with

Bd(ijk, i
′j′k′) =

{
2ĥd i = i′

ĥd i ̸= i′,

making the bottom level an LCP with a positive semidefinite coefficient matrix[
Bd I
−I 0

]
. This makes the problem setting suitable for the method described in Section

2.3. but we will continue by presenting the strong duality approach to this problem.
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C.1. Strong duality reformulation of the trilevel electricity market model

Using the primal-dual conversion rules for quadratic programs summarised in Dorn
(1960), the dual of the bottom-level problem (C11) can be stated as

min
λijkd,zijkd

ĥdZ
2
id +

∑
j∈J,k∈K

zmax
ijkd λijkd (C14a)

s.t. − λijkd ≤ ĥd(Zd + Zid)−
∑
k∈K

hkd(αkd − wkd)

+ (γijk − wkd) (zijkd) ∀j ∈ J, k ∈ K (C14b)
zijkd, λijkd ≥ 0. (C14c)

As described in Section 2.4, we impose a strong duality constraint stating that the
objective value of the dual (minimisation) problem is less or equal to that of the primal
(maximisation) problem, and combine constraints (C11b)-(C11c), (C14b)-(C14c) and
the strong duality constraint. A solution that satisfies these constraints must be optimal
to (C11) and (C14). Notice that the inequality version of the strong duality constraint
is convex (as opposed to an equality constraint between the primal and dual objective
values), and the other constraints are affine.

Finally, we can write the primal and dual constraints and the strong duality con-
straint as

zijkd ≤ zmax
ijkd (λ′ijkd) ∀i ∈ I, j ∈ J, k ∈ K (C15a)

− λijkd − ĥd (Zd + Zid) ≤ −
∑
k∈K

(αkd − wkd)hkd

+ (γijkd − wkd) (z′ijkd) ∀i ∈ I, j ∈ J, k ∈ K (C15b)∑
i∈I

ĥdZ2
id + ĥdZdZid +

∑
j∈J,k∈K

zmax
ijkd λijkd −

(∑
k∈K

(αkd − wkd)hkd

)
Zid

+
∑

j∈J,k∈K
(γijk − wkd) zijkd

 ≤ 0 (ϵd) (C15c)

zijkd, λijkd ≥ 0, (C15d)

where the strong duality constraints for all producers i ∈ I have been combined into
a single constraint (C15c) to reduce the number of constraints as suggested in Pineda
et al. (2018).

The KKT conditions of the ISO problem (13) combined with the constraints (C15)
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and the market-clearing constraint (C12) are

0 ≤ zijkd ⊥λ′ijkd − ĥd(Zd + Zid) +

(
2ĥd (Zd + Zid)−

∑
k∈K

(αkd − wkd)hkd+

(γijkd − wkd)

)
ϵd − (I(j ∈ R)− ρ)ψkd ≥ 0 ∀i ∈ I, j ∈ J, k ∈ K

(C16a)
0 ≤ λijkd ⊥− z′ijkd + zmax

ijkd ϵd ≥ 0 ∀i ∈ I, j ∈ J, k ∈ K (C16b)

0 ≤ z′ijkd ⊥λijkd + ĥd(Zd + Zid)−
∑
k∈K

(αkd − wkd)hkd + (γijkd − wkd) ≥ 0 ∀i ∈ I, j ∈ J, k ∈ K

(C16c)
0 ≤ λ′ijkd ⊥zmax

ijkd − zijkd ≥ 0 ∀i ∈ I, j ∈ J, k ∈ K (C16d)

0 ≤ ϕ−ad ⊥T−
a +

∑
k∈K

PTDFkaykd ≥ 0 ∀a ∈ A (C16e)

0 ≤ ϕ+ad ⊥T+
a −

∑
k∈K

PTDFkaykd ≥ 0 ∀a ∈ A (C16f)

0 ≤ ψkd ⊥
∑

i∈I,j∈R
zijkd − ρ

∑
i∈I,j∈J

zijkd ≥ 0 ∀k ∈ K (C16g)

0 ≤ ϵd ⊥−
∑
i∈I

ĥdZ2
id + ĥdZDZid +

∑
j∈J,k∈K

zmax
ijkd λijkd−

(∑
k∈K

(αkd − wkd)hkd

)
Zid +

∑
j∈J,k∈K

(γijk − wkd) zijkd

 ≥ 0 (C16h)

wkd =
∑
a∈A

PTDFka(ϕ
+
ad − ϕ−ad) ∀k ∈ K (C16i)

ykd =− Zkd + hkdZd +
∑
k′∈K

Ld
k,k′(αk′d − wk′d) ∀k ∈ K. (C16j)

The indicator term I(j ∈ R) is 1 if j ∈ R, 0 otherwise, and the variables z′ijkd and λ′ijkd
are the dual variables of the primal and dual constraints from the producer level for the
system operator problem, and ϵ is the dual variable for the strong duality constraint.
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