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Abstract

We present an acceleration method for sequences of large-scale lin-
ear systems, such as the ones arising from the numerical solution of
time-dependent partial differential equations coupled with algebraic con-
straints. We discuss different approaches to leverage the subspace con-
taining the history of solutions computed at previous time steps in order
to generate a good initial guess for the iterative solver. In particular, we
propose a novel combination of reduced-order projection with random-
ized linear algebra techniques, which drastically reduces the number of
iterations needed for convergence. We analyze the accuracy of the initial
guess produced by the reduced-order projection when the coefficients of
the linear system depend analytically on time. Extending extrapolation
results by Demanet and Townsend to a vector-valued setting, we show
that the accuracy improves rapidly as the size of the history increases, a
theoretical result confirmed by our numerical observations. In particular,
we apply the developed method to the simulation of plasma turbulence in
the boundary of a fusion device, showing that the time needed for solving
the linear systems is significantly reduced.

1 Introduction

The numerical solution of time-dependent partial differential equations (PDEs)
often leads to sequences of linear systems of the form

A(ti)x(ti) = b(ti) i = 0, 1, 2 · · · , (1)

where t0 < t1 < t2 < · · · is a discretization of time t, and both the system
matrix A(ti) ∈ Rn×n and the right-hand side b(ti) ∈ Rn depend on time.
Typically, the systems (1) are available only consecutively. Such sequences of
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linear systems can arise in a number of applications, including implicit time
stepping schemes for the solution of PDEs or iterative solutions of non-linear
equations and optimization problems. A relevant example is given by time-
dependent PDEs solved in presence of algebraic constraints. In this case, even
when an explicit time stepping method is used to evolve the nonlinear PDE,
the discretization of the algebraic constraints leads to linear systems that need
to be solved at every (sub-)timestep. This is the case of the simulation of
turbulent plasma dynamics [10], where a linear constraint (Maxwell equations)
is imposed upon the plasma dynamics described by a set of non linear fluid or
kinetics equations. The linear systems resulting from the discretized algebraic
constraints may feature millions of degrees of freedom, hence their solution is
often computationally very expensive.

One usually expects that the linear system (1) changes slowly in subse-
quent time steps. This work is focused on exploiting this property to accelerate
iterative solvers, such as CG [17] for symmetric positive definite matrices and
GMRES [24] for general matrices. An obvious way to do so is to supply the iter-
ative solver for the timestep ti+1 with the solution of (1) at timestep ti, as initial
guess. As a more advanced technique, in the context of Krylov subspace meth-
ods, subspace recycling methods [26] such as GCROT [7] and GMRES-DR [21]
have been proposed. Such methods have been developed in the case of a single
linear system, to enrich the information when restarting the iterative solver.
The idea behind is often to accelerate the convergence by suppressing parts of
the spectrum of the matrix, including the corresponding approximate invariant
subspace in the Krylov minimization subspace. GCROT and GMRES-DR have
then been adapted to sequences of linear systems in [22], recycling selected sub-
spaces from one system to the next. For this class of methods to be efficient,
it is necessary that the sequence of matrices undergoes local changes only, that
is, the difference A(ti+1)− A(ti) is computationally cheap to apply. For exam-
ple, one can expect this difference matrix to be sparse when time dependence
is restricted to a small part of the computational domain, e.g., through time-
dependent boundary conditions. We refer to [26] for a more complete survey of
subspace recycling methods and their applications. In [5], subspace recycling
was combined with goal-oriented POD (Proper Orthogonal Decomposition) in
order to limit the size of the subspaces involved in an augmented CG approach.
Simplifications occur when the matrices A(ti) are actually a fixed matrix A
shifted by different scalar multiples of the identity matrix, because Krylov sub-
spaces are invariant under such shifts. In the context of subspace recycling, this
property has been exploited in, e.g., [27], and in [25] it is shown how a smoothly
varying right-hand side can be incorporated.

When A(ti) and b(ti) in (1) are samples of smooth matrix/vector-valued
functions, one expects that the subspace of the previously computed solutions
contains a very good approximation of the current one. This can be exploited to
construct a better initial guess, either explicitly through (polynomial) extrapola-
tion, or implicitly through projection techniques. Examples of the extrapolation
approach include polynomial POD extrapolation [14], weighted group extrap-
olation methods [30] and a stabilized, least-squares polynomial extrapolation
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method [1], for the case that only the right-hand side evolves in time. For
the same setting, projection techniques have been introduced by Fischer [11].
Following this first work, several approaches have been developed to extract
an initial guess from the solution of a reduced-order model, constructed from
projecting the problem to a low-dimensional subspace spanned by previous so-
lutions. In [28], such an approach is applied to fully implicit discretizations
of nonlinear evolution problems, while [20] applies the same idea to the so
called IMPES scheme used for simulating two-phase flows through heteroge-
neous porous media.

In this paper, we develop a new projection technique for solving sequences
of linear systems that combines projection with randomized linear algebra tech-
niques, leading to considerably reduced cost. Moreover, a novel convergence
analysis of the algorithm is carried out to show its efficiency. This is also proved
numerically by applying the algorithm to the numerical simulation of turbulent
plasma in the boundary of a fusion device.

The rest of this paper is organized as follows. In Section 2, we first discuss
general subspace acceleration techniques based on solving a projected linear
system and then explain how randomized techniques can be used to speed up
existing approaches. In Section 3, a convergence analysis of these subspace
acceleration techniques is presented. In Section 4 we first discuss numerical
results for a test case to demonstrate the improvements that can be attained by
the new algorithm in a somewhat idealistic setting. In Section 5 our algorithm
is applied to large-scale turbulent simulation of plasma in a tokamak, showing
a significant reduction of computational time.

2 Algorithm

The algorithm proposed in this work for accelerating the solution of the se-
quence of linear systems (1) uses randomized techniques to lower the cost of a
POD-based strategy, such as the one proposed in [20]. Recall that we aim at
solving the linear systems A(ti)x(ti) = b(ti) consecutively for i = 0, 1, · · · . We
make no assumption on the symmetry of A(ti) ∈ Rn×n and thus GMRES is an
appropriate choice for solving each linear system. Supposing that, at the ith
timestep, M previous solutions are available, we arrange them into the history
matrix

X = [x(ti−M ) | · · · |x(ti−1)] ∈ R
n×M .

where the notation on the right-hand side indicates the concatenation of columns.
Instead of using the complete history, which may contain redundant informa-
tion, one usually selects a subspace S ⊂ span(X) of lower dimension m ≤ M .
Then, the initial guess for the ith linear system is obtained from choosing the
element of S that minimizes the residual:

min
s∈S
‖A(ti)s− b(ti)‖2 = min

z∈Rm
‖A(ti)Qz − b(ti)‖2,
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where the columns of Q ∈ Rn×m contain an orthonormal basis of S. We use ‖·‖2
to denote the Euclidean norm for vectors and the spectral norm for matrices.
The described approach is summarized in Algorithm 1, which is a template that
needs to be completed by an appropriate choice of the subspace S, in Sections 2.1
and 2.2.

Algorithm 1 Solution of ith linear system A(ti)x(ti) = b(ti)

Require: History of M solutions {x(ti−M ), · · · ,x(ti−1)}
1: X = [x(ti−M ) | · · · |x(ti−1)]

2: Generate Q← orthonormal basis for S ⊆ span(X), dim(S) = m ≤M

3: Compute s⋆ = argmin
z∈Rm

‖A(ti)Qz − b(ti)‖2 ∈ S
4: Solve A(ti)x(ti) = b(ti) using GMRES with initial guess s⋆ ∈ S

If the complete history is used, S = span(X), then computing Q via a QR
decomposition [13], as required in Step 2, costs O(M2n) operations. In addition,
setting up the linear least-squares problem in Step 3 of Algorithm 1 requires M
(sparse) matrix-vector products in order to compute A(ti)Q. The standard
approach for solving the linear least-squares problem proceeds through the QR
decomposition of that matrix and costs another O(M3+M2n) operations. This
strong dependence of the cost on M effectively forces a rather small choice of
M , neglecting relevant components of the solutions that could be contained in
older solutions only. In the following, we discuss two strategies to overcome this
problem.

2.1 Proper Orthogonal Decomposition

An existing strategy [20] to arrive at a low-dimensional subspace S ⊂ span(X)
uses a POD approach [19] and computes the orthonormal basis Q for S through
a truncated SVD (Singular Value Decomposition) of X ; see Algorithm 2. Note
that only the first m left singular vectors Ψ1, · · · ,Ψm need to be computed in
Step 2.

Algorithm 2 Method 1 (POD) to generate basis Q = QPOD

Require: History of M solutions {x(ti−M ), · · · ,x(ti−1)}
1: X = [x(ti−M ) | · · · |x(ti−1)]

2: Compute SVD of X : [Ψ,Σ,Φ] = svd(X)

3: QPOD = [Ψ1| · · · |Ψm] ∈ Rn×m

Thanks to basic properties of the SVD, the basis QPOD enjoys the following

4



optimality property [29]:

‖(I −QPODQ
T
POD)X‖2F =

M
∑

k=m+1

σ2
k = min

Q∈Rn×n

QT Q=Im

‖(I −QQT )X‖2F , (2)

where ‖ · ‖F denotes the Frobenius norm and σ1 ≥ σ2 ≥ · · · ≥ σM ≥ 0 are
the singular values of X . In words, the choice QPOD minimizes the error of
orthogonally projecting the columns of X onto an m–dimensional subspace.
The relation to the singular values of X established in (2) also allows one to
choose m adaptively, e.g., by choosing m such that most of the variability in
the history matrix X is captured.

At every time step, the history matrix X gets modified by removing its first
column and appending a new last column. The most straightforward implemen-
tation of Algorithm 2 would compute the SVD needed of Step 2 from scratch
at every time step, leading to a complexity of O(nM2) operations. In principle,
SVD updating techniques, such as the ones presented in [4] and [6], could be
used to reduce this complexity to O(mn + m3) for every time step. However,
in the context of our application, there is no need to update a complete SVD
(in particular, the right singular vectors are not needed) and the randomized
techniques discussed in the next section seem to be preferable.

2.2 Randomized range finder

In this section, an alternative to the POD method (Algorithm 1) for generating
the low-dimensional subspace S ⊂ span(X) is presented, relying on randomized
techniques. The randomized SVD from [16] applied to the n×M history matrix
X proceeds as follows. First, we draw anM×mGaussian randommatrix Z, that
is, the entries of Z are independent and identically distributed (i.i.d) standard
normal variables. Then the so-called sketch

Ω = XZ = [x(ti−M ) | · · · |x(ti−1)]Z (3)

is computed, followed by a reduced QR decomposition Ω = QR. This only
involves the n × m matrix Ω, which for m ≪ M is a significant advantage
compared to Algorithm 2, which requires the SVD of an n ×M matrix. The
described procedure is contained in lines 2–4 and 11 of Algorithm 3 below.

According to [16, Theorem 10.5], the expected value (with respect to Z) of
the error returned by the randomized SVD satisfies

E‖(I −QQT )X‖F ≤
(

1 +
r

p− 1

)1/2(∑

k>r

σ2
k

)1/2

, (4)

where we partition m = r + p for a small oversampling parameter p ≥ 2. Also,
the tail bound from [16, Theorem 10.7] implies that it is highly unlikely that
the error is much larger than the upper bound (4). Comparing (4) with the
error (2), we see that the randomized method is only a factor

√
2 worse than
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the optimal basis of roughly half the size produced by POD. As we also see in
our experiments of Section 4, this bound is quite pessimistic and usually the
randomized SVD performs nearly as good as POD using bases of the same size.

Algorithm 3 Method 2 (Randomized Range Finder) to generate basis Q

Require: History of M solutions {x(ti−M ), · · · ,x(ti−1)}.
Optional: x(ti−M−1), matrices Ω and Z from previous time step (see (5))

1: if Ω is computed from scratch then

2: X = [x(ti−M )| · · · |x(ti−1)] ∈ Rn×M

3: Draw Gaussian random matrix Z = [z1| · · · |zM ]
T ∈ RM×m

4: Ω = XZ ∈ Rn×m

5: else

6: Ω = Ω− x(ti−M−1)z1 ⊲ Ω is updated

7: zk = zk+1 k = 1, · · · ,M − 1

8: Draw new Gaussian random vector zM ∈ R
m

9: Ω = Ω+ x(ti−1)z
T
M ⊲ Ω is updated

10: end if

11: [Q,R] =reduced QR of Ω

Instead of performing the randomized SVD from scratch in every timestep,
one can easily exploit the fact that only a small part of the history matrix is
modified. To see this, let us consider the sketch from the previous timestep:

Ωprev = [x(ti−M−1) | · · · |x(ti−2)]Z
prev. (5)

Comparing with (3), we see that the sketch Ω of the current timestep is obtained
by removing the contribution from the solution x(ti−M−1) and adding the con-
tribution of x(ti−1). The removal is accomplished in line 6 of Algorithm 3 by a
rank-one update:

Ωprev − x(ti−M−1)z
prev
1 = [0 |x(ti−M ) | · · · |x(ti−2)]Z

prev.

By a cyclic permutation, we can move the zero column to the last column,
[x(ti−M ) | · · · |x(ti−2) |0], updating Z as in line 7 of Algorithm 3. Finally,
the contribution of the latest solution is incorporated by adding the rank-one
matrix x(ti−1)z

T
M , where zM ∈ Rm is a newly generated Gaussian random

vector that is stored in the last row of Z. Under the (idealistic) assumption
that all solutions are exactly computed (and hence deterministic), the described
progressive updating procedure is mathematically equivalent to computing the
randomized SVD from scratch. In particular, the error bound (4) continues to
hold.

Lines 6–9 of Algorithm 3 require O(nm) operations. When using standard
updating procedures for QR decomposition [13], line 11 has the same complexity.
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This compares favorably with the O(nM2) operations needed by Algorithm 2
per timestep.

When performing the progressive update of Ω over many timesteps, one
can encounter numerical issues due to numerical cancellation in the repeated
subtraction and addition of contributions to the sketch matrix. To avoid this,
the progressive update is carried out only for a fixed number of timesteps, after
which a new random matrix Z is periodically generated and Ω is computed from
scratch.

3 Convergence Analysis

We start our convergence analysis of the algorithms from the preceding section
by considering analytical properties of the history matrixX = [x(ti−M ) | · · · |x(ti−1)].
After reparametrization, we may assume without loss of generality that each of
the past timesteps is contained in the interval [−1, 1]:

−1 = ti−M < · · · < ti−1 = 1.

For notational convenience, we define

X ≡ X(t) := [x(ti−M ) | · · · |x(ti−1)] , t = [ti−M , · · · , ti−1] , (6)

where x(t) satisfies the (parametrized) linear system

A(t)x(t) = b(t), A : [−1, 1]→ R
n×n, b : [−1, 1]→ R

n, (7)

that is, each entry of A and b is a scalar function on the interval [−1, 1]. Indeed,
for the convergence analysis, we assume that each linear system of the sequence
in (1) is obtained by sampling the parametrized system in (7) in ti ∈ [−1, 1].
In many practical applications, like the one described in Section 5, the time de-
pendence in (7) arises from time-dependent coefficients in the underlying PDEs.
Frequently, this dependence is real analytic, which prompts us to make the fol-
lowing smoothness assumption on A, b.

Assumption 1. Consider the open Bernstein ellipse Eρ ⊂ C for ρ > 1, that
is, the open ellipse with foci ±1 and semi-minor/-major axes summing up to
ρ. We assume that A : [−1, 1] → Cn×n and b : [−1, 1] → Cn admit extensions
that are analytic on Eρ and continuous on Ēρ (the closed Bernstein ellipse),
such that A(t) is invertible for all t ∈ Ēρ. In particular, this implies that
x(t) = A−1(t)b(t) is analytic on Eρ and κρ := maxt∈∂Eρ

‖x(t)‖2 is finite.

3.1 Compressibility of the solution time history

The effectiveness of POD-based algorithms relies on the compressibility of the
solution history, that is, the columns of X can be well approximated by an
m–dimensional subspace with m ≪ M . According to (2), this is equivalent
to stating that the singular values of X decrease rapidly to zero. Indeed, this
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property is implied by Assumption 1 as shown by the following result, which
was stated in [18] in the context of low-rank methods for solving parametrized
linear systems.

Theorem 2 ([18, Theorem 2.4]). Under Assumption 1, the kth largest singular
value σk of the history matrix X(t) from (6) satisfies

σk ≤
2ρκρ

√
M

1− ρ−1
ρ−k.

Combined with (2), Theorem 2 implies that the POD basis QPOD ∈ R
n×m

satisfies the error bound

‖(I −QPODQ
T
POD)X‖2F ≤

4ρ2κ2
ρM

(1− ρ−1)2
(ρ−(m+1) − ρ−(M+1)).

3.2 Quality of prediction without compression

Algorithm 1 determines the initial guess s∗ for the next time step ti > ti−1 = 1
by solving the minimization problem

s∗ = argmin
s∈S

‖A(ti)s− b(ti)‖2. (8)

In this section, we will assume, additionally to Assumption (1), that S =
span(X(t)), that is, X(t) is not compressed. Our analysis focuses on uniform
timesteps tequi = [ti−M , · · · , ti−1] defined by

ti−M = −1, ti−M+1 = −1+∆t, · · · , ti−2 = 1−∆t, ti−1 = 1, ∆t = 2/(M−1).

Note that the next timestep ti = 1 + ∆t satisfies ti ∈ Eρ if and only if ρ >

ti +
√

t2i − 1 ≈ 1 +
√
2∆t. The following result shows how the quality of the

initial guess rapidly improves (at a square root exponential rate, compared to
the exponential rate of Theorem 2) as M , the number of previous time steps in
the history, increases.

Theorem 3. Under Assumption (1), the initial guess constructed by Algo-
rithm 1 with S = span(X) satisfies the error bound

‖A(ti)s∗ − b(ti)‖2 ≤ 2‖A(ti)‖2κρ

[ 1

1− r
+

C(M,R)ρ

(ρ− 1)
√

ρ2r2 − 1

]

rR+1,

with C(M,R) = 5
√
5
√
2R+ 1

√
M/

√

2(M − 1), for any R ≤ 1
2

√
M − 1, r =

(ti +
√

t2i − 1)/ρ < 1.

3.2.1 Proof of Theorem 3

The rest of this section is concerned with the proof of Theorem 3. We establish
the result by making a connection to vector-valued polynomial extrapolation and
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extending results by Demanet and Townsend [8] on polynomial extrapolation
to the vector-valued setting.

Let PR ⊂ Rn[t] denote the subspace of vector-valued polynomials of length
n and degree at most R for some R ≤M − 1. We recall that any v ∈ PR takes
the form v(t) = v0 + v1t + · · · + vRt

R for constant vectors v0, · · · ,vR ∈ R
n.

Equivalently, each entry of v is a (scalar) polynomial of degree at most R. In
our analysis we consider vector-valued polynomials of the particular form

p(t) = X(tequi)y(t), (9)

for a vector-valued polynomial y(t) of length M . A key observation is that
the evaluation of p in the next timestep ti satisfies p(ti) ∈ span(X(tequi)) = S.
According to (8), s∗ minimizes the residual over S. Hence, the residual can only
increase when we replace s∗ by p(ti) in

‖A(ti)s∗ − b(ti)‖2 ≤ ‖A(ti)p(ti)− b(ti)‖2
≤ ‖A(ti)‖2‖p(ti)− x(ti)‖2. (10)

Thus, it remains to find a polynomial of the form (9) for which we can establish
convergence of the extrapolation error ‖p(ti) − x(ti)‖2. For this purpose, we
will choose pR ∈ PR to be the least-squares approximation of the M function
samples contained in X(tequi):

pR := argmin
p∈PR

‖X(tequi)− P (tequi)‖F , P (tequi) = [p(ti−M ) | · · · |p(ti−1)] .

(11)
We will represent the entries of pR in the Chebyshev polynomial basis:

pR(t) = q0(t)c0,p + q1(t)c1,p + · · ·+ qR(t)cR,p, (12)

where ck,p ∈ Rn and qk denotes the Chebyshev polynomial of degree k, that is,
qk(t) = cos(k cos−1 t) for t ∈ [−1, 1]. Setting

Cp = [c0,p| · · · |cR,p] ∈ R
n×(R+1), qR(t) = [q0(t), · · · , qR(t)]T , (13)

we can express (12) more compactly as pR(t) = CpqR(t). Thus,

PR(tequi) = CpQR(tequi), QR(tequi) = [qR(t1)| · · · |qR(tM )] .

In view of (11), the matrix of coefficients Cp is determined by minimizing
‖X(tequi) − CpQR(tequi)‖F . Because R ≤ M − 1, the matrix QR(tequi) has
full row rank and thus the solution of this least-squares problem is given by
Cp = X(tequi)QR(tequi)

† with QR(tequi)
† = QR(tequi)

T (QR(tequi)QR(tequi)
T )−1.

In summary, we obtain that

pR(t) = CpqR(t) = X(tequi)QR(tequi)
†qR(t), (14)

which is of the form (9) and thus contained in span(X(tequi)), as desired.
In order to analyze the convergence of pR(t), we relate it to Chebyshev

polynomial interpolation of x. The following lemma follows from classical ap-
proximation theory, see, e.g., [18, Lemma 2.2].
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Lemma 4. Let qR(t) ∈ RR+1 be defined as in (13), containing the Chebyshev
polynomials up to degree R. Under Assumption 1 there exists an approximation
of the form

xR(t) = CxqR(t), Cx = [c0,x, c1,x, · · · , cR,x] ∈ R
n×(R+1),

such that ‖ck,x‖2 ≤ 2κρρ
−k and

max
t∈[−1,1]

‖xR(t)− x(t)‖2 ≤
2κρ

ρ− 1
ρ−R.

Following the arguments in [8] for scalar functions, Lemma 4 allows us to
estimate the extrapolation error for pR(t) if R ∼

√
M .

Theorem 5. Suppose that Assumption 1 holds and R ≤ 1
2

√
M − 1. Then

the vector-valued polynomial pR ∈ PR defined in (14) satisfies for every t ∈
(1, (ρ+ ρ−1)/2) the error bound

‖x(t)− pR(t)‖2 ≤ 2κρ

[ 1

1− r
+

C(M,R)ρ

(ρ− 1)
√

ρ2r2 − 1

]

rR+1,

with r = (t+
√
t2 − 1)/ρ < 1 and C(M,R) defined as in Theorem 3.

Proof. Letting xR be the polynomial from Lemma 4, we write

‖x(t)− pR(t)‖2 ≤ ‖x(t)− xR(t)‖2 + ‖xR(t)− pR(t)‖2

=
∥

∥

∥

∞
∑

k=R+1

ck,xqk(t)
∥

∥

∥

2
+ ‖(Cx − Cp)qR(t)‖2

≤
∞
∑

k=R+1

‖ck,x‖2|qk(t)|+ ‖Cx − Cp‖2‖qR(t)‖2. (15)

To treat the second term in (15), first note that, by definition, we have

XR(tequi) = [xR(ti−M ) | · · · |xR(ti−1)] = CxQR(tequi)

and hence Cx = XR(tequi)QR(tequi)
†. Setting σ := σmin(QR(tequi)) = 1/‖QR(tequi)

†‖2,
we obtain

‖Cx − Cp‖2 = ‖(XR(tequi)−X(tequi))QR(tequi)
†‖2 ≤ ‖XR(tequi)−X(tequi)‖2/σ

≤
√
M

σ
· max
k=1,..,M

‖xR(tk)− x(tk)‖2 ≤
√
M

σ

2κρ

ρ− 1
ρ−R,

where we used Lemma 4 in the last inequality. Applying, once more, Lemma 4
to the first term in (15) gives

‖x(t)− pR(t)‖2 ≤ 2κρ

[

∞
∑

k=R+1

ρ−k|qk(t)|+
√
M

σ

ρ−R

ρ− 1
‖qR(t)‖2

]

(16)
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Because |qk(t)| ≤ (t+
√
t2 − 1)k ≤ ρkrk for t > 1, we have that

‖qR(t)‖22 ≤
R
∑

k=0

(ρr)2k = (ρr)2R
R
∑

k=0

(ρr)−2k ≤ (ρr)2R+2

ρ2r2 − 1
. (17)

Inserted into (16), this gives

‖x(t)− pR(t)‖2 ≤ 2κρ

[

∞
∑

k=R+1

ρ−kρkrk +

√
M

σ

ρ−R(ρr)R+1

(ρ− 1)
√

ρ2r2 − 1

]

≤ 2κρ

[ 1

1− r
+

√
Mρ

σ(ρ − 1)
√

ρ2r2 − 1

]

rR+1.

The proof is completed by inserting the lower bound

σ = σmin(QR(tequi)) ≥
√
2

5
√
5

√
M − 1√
2R+ 1

, (18)

which holds when R ≤ 1
2

√
M − 1 according to [8, Theorem 4].

Using Theorem 5 with t = ti and inserting the result in (10), we have proven
the statement of Theorem 3.

3.3 Optimality of the prediction with compression

When the matrix X(t) is compressed via POD (Algorithm 2) or the random-
ized range finder (Algorithm 3), the orthonormal basis Q ∈ R

n×m used in
Algorithm 1 spans a lower-dimensional subspace S ⊆ span(X).

Corollary 6. Suppose that Algorithm 1 is used with an orthonormal basis satis-
fying ‖(QQT −I)X(tequi)‖2 ≤ ε for some tolerance ε > 0. Under Assumption 1,
the initial guess s∗ constructed by the algorithm satisfies the error bound

‖A(ti)s∗−b(ti)‖2 ≤ 2‖A(ti)‖2κρ

[

1

1− r
+

C(M,R)ρ
√

ρ2r2 − 1

(

1

ρ− 1
+

ερR

2
√
Mκρ

)]

rR+1

for any R ≤ 1
2

√
M − 1.

Proof. Let pR(t) = X(tequi)QR(tequi)
†qR(t) be the polynomial constructed in (14).

Using that s∗ satisfies the minimization problem (8) and QQTx(ti) ∈ S =
span(Q), we obtain:

‖A(ti)s∗ − b(ti)‖2 ≤ ‖A(ti)QQTx(ti)− b(ti)‖2
≤ ‖A(ti)‖2

[

‖(QQT − I)(x(ti)− pR(ti))‖2
+ ‖(QQT − I)pR(ti)‖2

]

≤ ‖A(ti)‖2
[

‖x(ti)− pR(ti)‖2
+ ‖(QQT − I)X(tequi)QR(tequi)

†qR(ti)‖2
]

.

11



The first term is bounded using Theorem 5 with t = ti. For the second term,
we use the bound in (17) on ‖qR(tM+1)‖ to obtain

‖(QQT − I)X(tequi)QR(tequi)
†qR(t)‖2 ≤ ‖(QQT − I)X(tequi)‖2‖qR(tM+1)‖2/σ

≤ ε(ρr)R+1

σ
√

ρ2r2 − 1
,

with σ := σmin(QR(tequi)). The proof is completed using the lower bound (18)
on xσ.

4 Numerical results: Test Case

To test the subspace acceleration algorithms proposed in Section 2, we first
consider a simplified setting, an elliptic PDE with an explicitly given time- and
space-dependent coefficient a(x, t) and source term g(x, t):

{

∇ · (a(x, t)∇f(x, t)) = g(x, t) in Ω

f(x, t) = 0 on ∂Ω
(19)

We consider the domain Ω = [0, 1]
2 ⊂ R2 and discretize (19) on a uniform two-

dimensional Cartesian grid using a centered finite difference scheme of order 4.
This leads to a linear system for the vector of unknowns f (t), for which both
the matrix and the right-hand side depend on t:

A(t)f (t) = g(t). (20)

We discretize the time variable on the interval [t0, tf ] with a uniform timestep
∆t on Nt points, such that tf = t0+Nt∆t. Evaluating (20) in these Nt instants,
we obtain a sequence of linear systems of the same type as (1).

We set a(x, t) = exp[−(x−0.5)2−(y−0.5)2] cos(tx) + 2.1 and choose the right-
hand side g(x, t) such that

f(x, t) = sin(4πyt) sin(15πxt)
[

1 + sin(15πxt) cos(3πyt) exp[(x−0.5)2+(y−0.5)2−0.252]
]

is the exact solution of (19). The tests are performed using MATLAB 2023a
on an M1 MacbookPro. We employ GMRES as iterative solver for the linear
system, with tolerance 10−7 and incomplete LU factorization as preconditioner.
We start the simulations at t0 = 2.3 s and perform Nt = 200 timesteps.

12
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Figure 1: GMRES iterations per timestep when solving equation (20) with
different initial guesses.

The results reported in Figure 1 use a spatial grid of dimension 100 × 100,
leading to linear systems of size n = 10000. Different values ofM , the number of
previous solutions retained in the history matrixX , and m, the dimension of the
reduced-order model, were tested. We found that the choices M = 20, m = 10
and M = 35, m = 20 lead to good performance for ∆t = 10−5 and ∆t = 10−3,
respectively. The baseline is (preconditioned) GMRES with the previous solu-
tion used as initial guess; the resulting number of iterations is indicated with
the solid blue line (“Baseline”) in Figure 1. This is compared to the number
of iterations obtained by applying GMRES when Algorithm 1 is employed to
compute the initial guess, in combination with both the POD basis in Algo-
rithm 2 (“POD” in the graph) and the Randomized Range Finder in Algo-
rithm 3 (“RAND” in the graph). For the Randomized Range Finder algorithm,
the matrix Ω is computed from scratch only every 50 timesteps, while in the
other timesteps is updated as described in Algorithm 3, resulting in a compu-
tationally efficient version of the algorithm. Both the POD and Randomized
versions of the acceleration method give a remarkable gain in computational
time with respect to the baseline.

When employing ∆t = 10−5, in Figure 1a, the number of iterations com-
puted by the linear solver vanishes most of the time, since the initial residual
computed with the new initial guess is already below the tolerance, set to 10−7

in this case. It is worth noticing that the new randomized method gives an
acceleration comparable to the existing POD one, but it requires a much lower
computational cost, as described in Section 2.

The results obtained for larger timesteps, in Figure 1b, are slightly worse, as
expected, since it is less easy to predict new solutions using the previous ones
when they are further apart in time. Nevertheless, the gain of the acceleration
method is still visible, obtaining always less than half iterations with respect
to the baseline and adding the solution of a reduced-order system of dimension
m = 20 only, compared to the full solution of dimension 10000. The resulting
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advantage of the new method can indeed be observed in Figure 2, which com-
pares the computational time needed by the solver using the baseline approach
with the one obtained by using the new guess (this includes the time employed
to compute the guess). The timings showed are the ones needed to produce
the results in Figure 1. The time employed by the POD method has not been
included since it is significantly higher than the baseline, as predicted by the
analysis in Section 2.1.
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Figure 2: Computational time per timestep corresponding to Figure 1a and
Figure 1b. The average speedup per iteration of the randomized method with

respect to the baseline is a factor 9 for ∆t = 10−5 and a factor 10 for
∆t = 10−3.

5 Numerical results: Plasma Simulations

In this Section, we apply the subspace acceleration method to the numerical
simulation of plasma turbulence in the outermost plasma region of tokamaks,
where the plasma enters in contact with the surrounding external solid walls, re-
sulting in strongly non-linear phenomena occurring on a large range of time and
length scales. In this work, we consider GBS (Global Braginskii Solver) [12, 23],
a three-dimensional, flux-driven, two-fluid code developed for the simulation of
the plasma dynamics in the boundary of a fusion device. GBS implements the
Braginskii two-fluid model [3], which describes a quasi-neutral plasma through
the conservation of density, momentum, and energy. This results in six coupled
three-dimensional time-evolving non-linear equations which evolve the plasma
dynamics in Ω, a 3D toroidal domain with rectangular poloidal cross section,
as represented in Figure 3. The fluid equations are coupled with Maxwell equa-
tions, specifically Poisson and Ampére, elliptic equations for the electromagnetic
variables of the plasma. In the limit considered here the elliptic equations reduce
to a set of two-dimensional algebraic constraints decoupled along the toroidal
direction, therefore to be satisfied independently on each poloidal plane. The
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Figure 3: GBS computational domain. The toroidal direction is along ϕ, the
radial direction is along R, and the vertical direction is along Z. The domain
consists of Nϕ rectangular poloidal planes, each discretized on a NR ×NZ

Cartesian grid.

differential equations are spatially discretized on a uniform Cartesian grid em-
ploying a finite difference method, resulting in a system of differential-algebraic
equations of index one [15]:

{

∂tf(t) = Y(f(t),x(t)) in Ω

Ak(f(t))xk(t) = bk(f (t)) for each kth poloidal plane
(21)

where Y(f(t),x(t)) is a non-linear, 6-dimensional differential operator and

x(t) = [x1(t), · · · ,xk(t) · · · ,xNZ
(t)] ∈ R

NRNϕNZ ,

f(t) =
[

f1(t), · · · ,fk(t) · · · ,fNZ
(t)
]

∈ R
NRNϕNZ

are the vector of, respectively, the electromagnetic and fluid quantities solved for
by GBS, where the solutions of all the NZ poloidal planes are stacked together.
More precisely, the time evolution of the fluid variables, f , is coupled with the set
of linear systems Ak(f (t))xk(t) = bk(f (t)) which result from the discretization
of Maxwell equations. Indeed, the matrix Ak ∈ RNRNZ×NRNZ and right-hand
side bk ∈ RNRNZ depend on time through f .

In GBS, system (21) is integrated using a Runge-Kutta scheme of order

four, on the discrete times {ti}Nt

i=1, with step-size ∆t. Given f i and xi, the

value of f and x at time ti, the computation of f i+1, requires performing three
intermediate substeps where the quantities f i+1,j for j = 1, 2, 3 are computed.
To guarantee the consistency and convergence of the Runge-Kutta integration
method [15], the algebraic constraints are solved at every substep, computing
x
i+1,j
k for j = 1, 2, 3 and for each k−th poloidal plane. As a consequence, the

linear systems Ak(f (t))xk(t) = bk(f(t)) are assembled and solved four times for
each of the Nϕ poloidal planes, to advance the full system (21) by one timestep.
Since the timestep ∆t is constrained to be small from the stiff nature of the GBS
model, the solution of the linear systems is among the most computationally
expensive part of GBS simulations.
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In GBS, the linear system is solved using GMRES, with the algebraic multi-
grid preconditioner boomerAMG from the HYPRE library [9], a choice mo-
tivated by previous investigations [12]. The subspace acceleration algorithm
proposed in Section 2 is implemented in the GBS code and, given the results
shown in Section 4, the randomized version of the algorithm is chosen. The re-
sults reported are obtained from GBS simulations on one computing node. The
poloidal planes of the computational domain are distributed among 16 cores,
specifically of type Intel(R) Core i7-10700F CPU at 2.90GHz. GBS is imple-
mented in Fortran 90, and relies on the PETSc library [2] for the linear solver
and Intel MPI 19.1 for the parallelization.

We consider the simulation setting described in [12], taking as initial condi-
tions the results of a simulation in a turbulent state. We use a Cartesian grid of
size of NR = 150, NZ = 300 and Nϕ = 64, with additional 4 ghost points in the
Z and R directions. Therefore, the imposed algebraic constraints result in 64
sequences of linear systems of dimension NRNZ ×NRNZ = 46816× 46816. The
timestep employed is ∆t = 0.7× 10−5. The sequence of linear systems we con-
sider represents the solution of the Poisson equation on one fixed poloidal plane,
but the same considerations apply to the discretization of Ampére equation.
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Figure 4: Performance of the algorithm applied to the solution of Poisson
equation in GBS simulations. The time for the RAND algorithm is on average

approximately one fourth of the time for the baseline.

In Figure 4a the number of iterations obtained with the method proposed in
Section 2, denoted as “RAND” is compared with the ones obtained using the
previous step solution as initial guess, depicted in blue as “Baseline”. We notice
that, employing the acceleration method, the number of GMRES iterations
needed for each solution of the linear system is reduced by a factor 2.9, on
average, at the cost of computing a solution of an m×m reduced-order system.
In Figure 4b the wall clock time required for the solution of the systems is
shown. The baseline approach is compared to the accelerated method, where
we also take into account the cost of computing the initial guess. Thanks to
the randomized method employed, the process of generating the guess is fast
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enough to provide a time speed up of a factor of 6.5 per iteration.
The employed values of M = 15, the number of previous solutions retained,

and m = 10, the dimension of the reduced-order model, are the ones found
to give a good balance between the decrease in the number of iterations and
the computational cost of the reduced-order model. In Table 1 the results for
different values of M and m are reported. It is worth noticing that an average
number of GMRES iterations per timestep smaller than one implies that often
the initial residual obtained with the initial guess is below the tolerance set
for the solver. It is possible to notice that higher values of m lead to very
small number of iterations, but the overall time speedup is reduced since the
computation of the guess becomes more expensive.

M m
Average time
per timestep [s]

Time
speedup

Average GMRES
iterations per timestep

Iterations
speedup

15 6 0.0452 2.1797 2.0183 2.4743
15 8 0.0347 2.8352 1.1098 4.5
15 10 0.0339 2.9071 0.76 6.552

20 10 0.0358 2.7468 0.7862 6.336
20 15 0.0435 2.2572 0.5031 9.9
30 8 0.0485 2.0255 1.698 2.9328
30 12 0.0375 2.6185 0.3758 13.25
30 15 0.05 1.9633 0.579 8.3371

Table 1: GBS simulations result corresponding to different values of M and m.
The iteration and time speedups are computed on the total of 180 linear

systems, with respect to the baseline, that has an average number of 5 GMRES
iterations and an average time per timestep of 0.0828 s. The highlighted row

corresponds to the best result obtained in terms of time speedup.

6 Conclusions

In this paper, we propose a novel approach for accelerating the solution of a
sequence of large-scale linear systems that arises from, e.g., the discretization of
time-dependent PDEs. Our method generates an initial guess from the solution
of a reduced-order model, obtained by extracting relevant components of previ-
ously computed solutions using dimensionality reduction techniques. Starting
from an existing POD-like approach, we accelerate the process by employing
a randomized algorithm. A convergence analysis is performed, which applies
to both approaches, POD and the randomized algorithm and shows how the
accuracy of the method increases with the history size. A test case displays how
POD leads to a noticeable decrease in the number of iterations, but at the same
time a nearly equal decrease is achieved by the cheaper randomized method,
that leads to a time speedup per iteration of a factor 9. In real applications
such as the plasma simulations described in Section 5, the speedup is more mod-
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est, given the stiff nature of the problem which constrains the timestep of the
explicit integration method to be very small, but still practically relevant.
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