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ON THE COMMUTATOR LENGTH OF COMPACT LIE GROUPS

JUAN OMAR GÓMEZ, VICTOR TORRES-CASTILLO, AND BERNARDO VILLARREAL

Abstract. In this short note we show that the path-connected component
of the identity of the derived subgroup of a compact Lie group consists just
of commutators. We also discuss an application of our main result to the
homotopy type of the classifying space for commutativity for a compact Lie
group whose path-connected component of the identity is abelian.

Introduction

Let G be a group, [G, G] its derived subgroup and x an element in [G, G]. The
commutator length of x is defined as the minimum number of commutators needed
to write x as a product of commutators, and is denoted by cl(x). It is well known
that cl(x) is not necessarily one. This invariant has been extensively studied in Lie
groups, and there are some remarkable results that guaranty that in many cases
any element in the derived subgroup is in fact a commutator (see [Dok86], [Got49],
[PW62]). For instance, from work of M. Goto [Got49] it follows that in a compact
connected Lie group G, the derived subgroup of G consists just of commutators.
But for non-compact connected Lie groups, the result no longer holds, for example
the negative identity matrix in SL2(R) is not a commutator.

In this short note we investigate this invariant for compact Lie groups that are
not necessarily connected. Let G0 denote the path-connected component of the
identity in G.

Theorem 1. Let G be a compact Lie group. Then any element in [G, G]0 is a

commutator, that is, cl(x) = 1 for every x ∈ [G, G]0.

We would like to emphasize that in general the group [G, G]0 is not the derived
subgroup of a compact connected Lie group, as G0 may not be semi-simple, but it
does contain the derived subgroup [G0, G0]. Moreover, if G is a compact Lie group
and π0(G) contains elements of commutative length greater than 1, then so does
G (see Remark 11). Hence Theorem 1 is the best generalization of Goto’s result in
the compact setting.

Our study of the commutator length of elements in [G, G]0 was mainly motivated
by some results in [Vill23] concerning the second homotopy group of the classifying
space for commutativity B(2, G) of a compact Lie group G. The space B(2, G) is a
variant of the classifying space of G and was introduced in [ACTG12]. Similarly as
in the theory of principal G-bundles, there is universal bundle E(2, G) → B(2, G)
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in the sense of [AG15, Theorem 2.2], where the total space E(2, G) carries all the
failure of G to be commutative, up to homotopy. For instance, when G is a compact
Lie group, E(2, G) is a contractible space if and only if G is abelian (see [ACGV21]).
It is then natural to try to describe the homotopy type of E(2, G) for non-abelian
G. Our main application of Theorem 1 is the following.

Proposition 2. Let G be a compact Lie group in which G0 is abelian. Then up to

homotopy, the derived subgroup [G, G] splits off from the loop space ΩE(2, G).

Acknowledgements: This project was initiated at CIMAT Mérida’s Algebraic
Topology Seminar, in the modality of ‘mesas de trabajo’ that took place in the
period January-June 2023.

1. Preliminaries

In this note, we will adopt the following convention. Let g, h be elements in
a topological group G. We write [g, h] to denote the commutator g−1h−1gh. As
mentioned before we write G0 to denote the path-connected component of the
identity of G. Recall that the commutator subgroup of a compact Lie group is
closed [HM20, Theorem 6.11], and then coincides with the algebraic commutator
subgroup.

Definition 3. Let G be a topological group, and let g ∈ [G, G]. We define the
commutator length of g as the minimum number of commutators [g1, h1], . . . , [gn, hn]
such that g = [g1, h1] · . . . · [gn, hn], with gi, hi ∈ G, and we denote this number by
cl(g). The commutator length cl(G) of G is the supremum in N ∪ {∞} of the set
{cl(g) | g ∈ [G, G]}, and similarly the connected commutator length cl(G)0 of G is
the the supremum of {cl(g) | g ∈ [G, G]0}.

Note that under this definition the commutator length of the identity element
1 ∈ G is cl(1) = 1, hence if G is an abelian group then cl(G)0 = cl(G) = 1.

Remark 4. There is no reason to expect the commutator length of an arbitrary
group to be finite, we refer to [Cal08] for some examples of groups with infinite
commutator length. However, if G is a compact Lie group, then cl(G) is finite. For
example, it follows by Theorem 1 and the fact that [G, G] = [G, G]0[F, F ] for some
finite subgroup F ⊂ G (see Remark 5 bellow).

It is worth highlighting that computing the commutator length of a group is not
an easy task, not even for finite groups. In fact, there are some famous conjectures
about this invariant. For instance, O. Ore [Ore51] conjectured that finite simple
groups have commutator length 1, and D. Dokovik [Dok86] conjectured that simple
real Lie groups have commutator length 1.

Remark 5. Let G be a compact Lie group. Recall that G is the quotient of a
semidirect product Γ of a connected compact Lie group by a finite subgroup, that
is, it has the form G = (G0 ⋊F )/H where G0 denotes the connected component of
the identity, F is finite group and H is a common finite subgroup that is central in
G0 but not necessarily in F (see [BS64, Lemma 5.1, footnote p. 152]). Let p : Γ → G
the quotient map. Note that the image of p|[Γ,Γ] is precisely [G, G]. Moreover, it
maps [Γ, Γ]0 to [G, G]0. In particular cl(G) ≤ cl(Γ) and cl(G)0 ≤ cl(Γ)0.
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2. Extensions of finite groups by tori

In this section we show that the connected commutator length of an extension
of a finite group by a torus is at most 1. In the last section we will use Remark 5
to extend this result to compact Lie groups.

First we identify the connected component of the identity of [G, G] when G is a
semidirect product of a finite group by a torus.

Lemma 6. Let G = T ⋊ Q be a semidirect product of a torus T by a finite group

Q. Then [G, G]0 agrees with [Q, T ].

Proof. We have that

[G, G] = [Q, Q][Q, T ][T, T ] = [Q, Q][Q, T ] .

Let g ∈ [G, G]0. By the previous line, we can write g as rx for r ∈ [Q, Q] and
x ∈ [Q, T ]. Note that [G, G]0 ⊆ T , and since x ∈ [Q, T ] ⊆ T , we deduce that r
must lie in T , hence r is trivial and the result follows. �

Theorem 7. Let G be an extension of a finite group Q by a torus T . Then

cl(G)0 = 1 .

Proof. We will first prove the case when G is a semidirect product. The general
case will follow by Remark 5. Assume that G a semidirect product of Q by T . Let
T T denote the subset consisting of all torsion elements of T . Let x = r[q, t] be an
element in [G, G]0 with q ∈ Q and t ∈ T . We claim that if r ∈ T T , then there is
a t′ ∈ T such that x = [q, t′]. Moreover, it is enough to prove this claim for some
choice of t. Indeed, for every p ∈ Q we have a continuous group homomorphism

[p, −] : T → T ,

hence the equality r[q, t] = [q, t′] implies r = [q, t−1t′], and with this expression
one can readily verify the claim for an arbitrary t. Let us assume then that t
has infinite order. Consider a 1-parameter subgroup S of [G, G]0 containing r[q, t].
Then [q, tN ] = (r[q, t])N is in S, where N denotes the order of r. Since [q, tN ] is of
infinite order, it follows that [q, −] must cover S and the claim follows.

On the other hand, let m, n be non-negative integers with m ≤ n. Define

P (m, n) = {[q1, t1] · . . . · [qn, tn] | qi ∈ Q, t1, . . . tm ∈ T T, tm+1, . . . tn ∈ T } .

Note that P (0, n) is a closed subset of [G, G]0 for every n ≥ 1. In fact, P (0, |Q|) =
[Q, T ] = [G, G]0 by Lemma 6. We have the following inclusion of sets

P (|Q| − 1, |Q|) ⊂ P (0, |Q|) = [G, G]0 .

Moreover, if t ∈ T T , then [q, t] ∈ T T for any q ∈ Q. Therefore any element of
P (|Q| − 1, |Q|) can be written as r[q, t] for some r ∈ T T , q ∈ Q and t ∈ T . Hence
by the previous claim we obtain that P (|Q| − 1, |Q|) ⊂ P (0, 1).

Finally, note that the closure of P (|Q| − 1, |Q|) must be contained in P (0, 1)
since the latter is closed. Recall that T T is a dense subspace of T . A standard
argument of dense subspaces and surjective continuous maps can be used to show
that P (|Q| − 1, |Q|) is a dense subspace in [G, G]0. Hence P (0, 1) = [G, G]0. �
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3. A homotopy splitting of the classifying space for commutativity
for extensions of finite groups by tori

In this section we briefly describe an application and our main motivation to
study the connected commutator length, cl(G)0, for extensions of finite groups by
tori.

A classical result in the homotopy theory of classifying spaces is that the loop
space ΩBG of the classifying space BG of a topological group G, is homotopy
equivalent to G. It has been explored what the analogue result is for a variant
of BG called the classifying space for commutativity, denoted B(2, G), which was
introduced by A. Adem, F. Cohen and E. Torres-Giese. A model for B(2, G) is the
geometric realization of a simplicial space B•(2, G), where Bk(2, G) is the space
of ordered commuting k-tuples of G (see [ACTG12]). There is a natural map
B(2, G) → BG induced by the inclusions Bk(2, G) →֒ Gk, along which the universal
bundle EG → BG pulls back to a principal G-bundle E(2, G) → B(2, G). Then if
G is a Lie group there is a homotopy equivalence

G × ΩE(2, G) ≃ ΩB(2, G)

(see [ACTG12, Theorem 6.3 and Remark]). Hence to give a more precise answer
on what the homotopy type of ΩB(2, G) is, we should further study the loop space
ΩE(2, G).

There is a map c : E(2, G) → B[G, G] that can be seen as a higher version
of the algebraic commutator map G × G → [G, G], which may be illustrated by
the fact that the restriction of c to the 1-skeleton filtration is the suspension of
the reduced algebraic commutator ΣG∧G → Σ[G, G] (see [ACGV21, Section 3] for
more details). The map c is simply called commutator map. In [ACGV21, Question
21]) the authors asked if for every compact Lie group G, the looped commutator
map Ωc : ΩE(2, G) → [G, G] splits, up to homotopy. Theorem 7 together with
some previous work gives a positive answer for compact Lie groups in which the
path connected component of the identity is abelian. The following corollary is a
stronger version of what was stated in Proposition 2.

Corollary 8. Let G be an extension of a finite group by a torus. Then the looped

commutator map Ωc : ΩE(2, G) → [G, G] splits, up to homotopy.

Proof. Under the hypothesis of the corollary, [Vill23, Corollary 3] states that the
looped commutator map splits, up to homotopy, as long as [G, G]0 consists of single
commutators, but by Theorem 7 every extension of a finite group by a torus satisfies
this condition, hence the result follows. �

4. Proof of Theorem 1

Let G be a compact Lie group. Recall that there is an extension of groups

1 → G0 → G → π0(G) → 1 ,

where π0(G) is the group of path-connected components of G, which is finite.

Remark 9. Let G be a compact connected semi-simple Lie group. As mentioned
before, a classical result of Goto states that cl(G) = 1. Let T be a maximal torus of
G. Recall that a theorem of Cartan asserts that any element g ∈ G can be written
as g = h−1th for some h ∈ G and some t ∈ T . Moreover, since G is semi-simple,
if NG(T ) is the normalizer of T , then [NG(T ), NG(T )]0 = T . By Theorem 7, every
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element of T can be written as a commutator [n, t] for some t ∈ T and n ∈ NG(T ).
Hence any element of G has the form h−1[n, t]h with h ∈ G, n ∈ NG(T ) and t ∈ T .

Recall that Theorem 1 states that for a compact Lie group G, cl(x) = 1 for every
x ∈ [G, G]0.

Proof of Theorem 1. Let F ⊂ G be a finite group as in Remark 5. By [Vill23,
Lemma 5], we have a decomposition

[G, G]0 = [F, Z(G0)0][G0, G0] .

Let x ∈ [G, G]0. We can write x = zg with z ∈ [F, Z(G0)0] and g ∈ [G0, G0].
Consider the group extension

1 → Z(G0)0 → Z(G0)0F → F/(F ∩ Z(G0)0) → 1 .

By Theorem 7 we can write z as a commutator [q, z′], for some q ∈ F and z′ ∈
Z(G0)0. By [BM55] every automorphism of finite order of [G0, G0] has an invariant
maximal torus, that is, q−1T q = T for a maximal torus T ⊂ [G0, G0]. Now since
[G0, G0] is a compact connected semi-simple Lie group and all maximal tori in
[G0, G0] are conjugate, by Remark 9 we may further assume that g = h−1[n, t]h for
some h ∈ [G0, G0], n ∈ N[G0,G0](T ) and t ∈ T , where N[G0,G0](T ) is the normalizer

of T . Moreover, since z ∈ Z(G0) we can write x = h−1[q, z′][n, t]h.
Note that

[q, z′][n, t] ∈ [〈q〉, Z(G0)0][N[G0,G0](T ), N[G0,G0](T )]0

which is a subgroup of the path-connected component of the commutator subgroup
[NG0

(T0)〈q〉, NG0
(T0)〈q〉], where T0 = Z(G0)0T is a maximal torus of G0. We can

now consider the group extension

1 → T0 → NG0
(T0)〈q〉 → Q → 1 ,

where Q is a finite group as q leaves NG0
(T0) invariant, as well. Invoking again

Theorem 7, the element [q, z′][n, t] is a commutator and hence so is x. �

We finish this note with a sufficient condition for compact Lie groups to have
commutator length 1.

Corollary 10. Let G be a compact Lie group. If the projection G → π0(G) admits

a section and π0(G) is abelian, then cl(G) = 1.

Proof. Note that under these hypotheses [G, G] is connected. Thus cl(G)0 = cl(G).
Therefore the result follows by Theorem 1. �

Remark 11. For a compact Lie group G, we have that cl(π0(G)) is a lower bound
for cl(G). Hence we can construct compact Lie groups whose derived subgroups
do not consist only of commutators, see [Isa77] for an example of a family of finite
groups with this property.
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