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Abstract

We investigate finite-temperature observables in three-dimensional large N critical vector
models taking into account the effects suppressed by 1

N
. Such subleading contributions are

captured by the fluctuations of the Hubbard-Stratonovich auxiliary field which need to be
handled with care due to a subtle divergence structure which we clarify. The examples we
consider include the scalar O(N) model, the Gross-Neveu model, the Nambu-Jona-Lasinio
model and the massless Chern-Simons Quantum Electrodynamics. We present explicit re-
sults for the free energy density to the subleading order in 1

N
, which captures the thermal

one-point function of the stress-energy tensor to this order. We also include the dependence
on a chemical potential. We determine the Wilson coefficient in the thermal effective action
that is sensitive to global symmetry for the first time directly in interacting CFTs, which pro-
duces a symmetry-resolved asymptotic density of states. We further provide a formula from
diagrammatics for the one-point functions of general single-trace higher-spin currents. We
observe that in most cases considered, these subleading effects lift the apparent degeneracies
between observables in different models at infinite N , while in special cases the discrepancies
only start to appear at the next-to-subleading order.
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1 Introduction and Summary

The understanding of strongly coupled quantum matter at finite temperature is an important
problem in physics. Its broad applications range from the basic experimental needs, since any
realistic quantum critical point would necessarily be at non-zero temperature, to fundamental
theoretical questions such as the thermalization of many-body quantum systems, where
highly excited states of the system are conjectured to be universally approximated by the
finite-temperature (thermal) state [1, 2], and furthermore to profound connections between
quantum gravity and quantum field theory dictated by the holographic principle [3–5], where
finite-temperature systems are believed to be dual to black holes, and therefore would provide
valuable information about the quantum nature of the latter.

Conformal Field Theory (CFT), which provides a non-perturbative formulation of critical
phenomena, offers a powerful approach to investigate the finite-temperature quantum system
near its quantum critical point. While the second-order quantum phase transition occurs at
zero temperature and is described by the CFT on the flat spacetime Rd−1,1, to turn on finite
temperature T amounts to compactifying the Euclidean time τ ∼ τ + β with β = 1

T
and

imposing suitable periodicity conditions along τ . At thermal equilibrium, this boils down
to studying the Euclidean CFT (from Wick rotation) on S1

β × Rd−1 (known as the thermal
background), and the basic observables are correlation functions of local operators on this
background, the simplest of which being the one-point function ⟨Tµν⟩β of the stress-energy
tensor which measures the free energy of the thermal state. On the one hand, such thermal
observables behave qualitatively different from the conventional flat space CFT correlation
functions due to the explicit breaking of conformal symmetry by the thermal background,
and for the same reason they appear much harder to determine in interacting models. On
the other hand, these thermal observables present a universal coarse-grained description of
the flat space operator data, through the asymptotic density of states in the CFT Hilbert
space on Sd−1 and operator-product-expansion (OPE) coefficients averaged over high energy
states [6] (see also the recent work [7]). In light of the AdS/CFT correspondence [3–5], this
translates to the expectation that the black hole solution in gravity is a universal coarse-
grained description that encodes a large number of underlying microstates. Nonetheless
deriving such universal formulas directly from the flat space OPE data is very challenging
in interacting CFTs of spacetime dimension d ≥ 3. A main focus of this work is to provide
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explicit solutions to thermal observables using field theory techniques in interacting CFTs
in d = 3.1

There is an alternative interpretation of the CFT on S1
β × Rd−1 entirely as a zero-

temperature quantum system (or a classical statistical system in d dimensions) and con-
sequently a reinterpretation of the results we present in this paper. Instead of taking S1

β

to be the compactified Euclidean time, we can choose it to be a compactified spatial circle
(and keep the new Euclidean time along one of the Rd−1 directions). This way, it describes
the quantum system confined to a finite interval of length β with certain periodic boundary
conditions, also known as the Kaluza-Klein compactification of the CFT. Here an important
and universal observable is the Casimir force, which underpins the quantum nature of the
system. For instance, if we confine free electromagnetic field in cavity, the walls of the cavity
would feel the pressure due to the quantum fluctuations of the vacuum despite being at
zero temperature. Such an effect was firstly predicted by Hendrik Casimir in 1948 and later
confirmed experimentally. The Casimir effect exists for any quantum field theory, but in the
absence of a mass-gap, the Casimir pressure is expected to depend on the geometric moduli
of the cavity algebraically. Consequently the Casimir force will be long-ranged and more
easily detected in a gapless phase, in contrast to a gapped phase where the Casimir pressure
decays exponentially as we increase the cavity size. Therefore, the Casimir force (pressure)
serves as a salient observable when the system undergoes a quantum phase transition (or a
second-order phase transition in the statistical model), which is often described by a CFT.
It is again measured by the one-point function ⟨Tµν⟩β but with the time and space directions
swapped. Similar reinterpretations hold for more general observables on S1

β × Rd−1.
In this work we study d = 3 CFTs on the background S1

β × R2. The dimensionful
parameter β breaks the conformal symmetry explicitly to the Euclidean isometry on R2 and
translation symmetry along S1

β. As an immediate consequence, the one-point functions of
local operators are no longer constrained to be zero. Instead the residual symmetry and
dimensional analysis require the one-point function of a primary operator Oµ1...µℓ of scaling
dimension ∆ and spin ℓ to take the following form with an overall constant bO [6],

⟨Oµ1...µℓ(x)⟩β =
bO
β∆

(eµ1 . . . eµℓ − traces) , eµ = (1, 0, . . . , 0) , (1.1)

and the descendant operators all have vanishing one-point functions. The dimensionless one-
point function coefficients bO are the most basic building blocks in the finite temperature

1It would be interesting to study our results in relation to the flat space OPE data. We leave that to
future work.
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CFT and they determine the most general correlation functions together with the flat OPE
data.

For instance, the stress-energy tensor has the following one-point function at finite tem-
perature (we keep d general for the moment),

⟨T00⟩β = (d− 1)
f

βd
, ⟨Tij⟩β = −fδij

βd
, ⟨T0i⟩β = 0 . (1.2)

where the constant f = bT
d

determines the free energy density of the CFT thermal state via

F (β) =
f

βd
, (1.3)

which is negative by the positivity of energy [6].2 When the S1
β is regarded as a spatial circle,

f is referred as the critical Casimir amplitude which determines the Casimir pressure from
changing the circle size β. This universal quantity f have been measured for a variety of
systems in experiments or from the Monte-Carlo simulations (see [8] for an extensive review).
Yet only limited results are available from the theoretical side for d ≥ 3 [6,9–15]. One main
purpose of this paper is to compute the free energy coefficient (equivalently critical Casimir
amplitude) f explicitly in interacting d = 3 CFTs that are solvable in some regime, and
similarly for one-point functions (1.1) of more general local operators.

Importantly these one-point functions also give access to flat space CFT data that are
hard to obtain otherwise. Regarding the background S1

β × Rd−1 as a limit of S1
β × Sd−1

R as
R
β
→∞, we can see the free energy coefficient controls the asymptotic density of high energy

CFT states on Sd−1, equivalently heavy local operators by the state-operator correspondence.
Explicitly, the partition function S1

β × Sd−1
R that counts states in the Hilbert space HSd−1

graded by dilatation operator ∆ is determined by the free energy coefficient f in this limit,

ZS1β×Sd−1
R
≡ TrH

Sd−1
e−

β
R
∆ =

ˆ
d∆ ρ(∆)e−

β
R
∆

R
β
→∞
−−−→ ZS1β×Rd−1 = e

−
Vd−1

βd−1 f , (1.4)

where ρ(∆) is the density of states and Vd−1 ≡ Sd−1R
d−1 = 2π

d
2

Γ( d
2)
Rd−1 is the area of Sd−1

R .
Performing an inverse Laplace transform, this implies the following asymptotic density of

2Note that the Lorentzian energy density (which is positive) is related to the temporal component of the
Euclidean stress tensor (in (1.2)) by Wick rotation TLorentzian

00 = i2TEuclidean
00 .
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heavy operators [16],

log ρ(∆)
∆≫1−−−→ d

(d− 1)
d−1
d

(−fSd−1)
1
d∆

d−1
d . (1.5)

Similarly, the one-point function of a general local operatorOµ1...µJ on S1
β×Sd−1

R is determined
by the thermal one-point function ⟨O⟩β for O ≡ eµ1 . . . eµJOµ1...µJ in the same limit,

⟨O(x)⟩S1β×Sd−1
R
≡ 1

ZS1β×Sd−1
R

∑
ϕ∈H

Sd−1

⟨ϕ|O(x)|ϕ⟩e−
β
R
∆ϕ

R
β
→∞
−−−→ ⟨O(x)⟩β =

bO
β∆O

, (1.6)

where ϕ labels an orthonormal basis in HSd−1 . The inverse Laplace transform then produces
an asymptotic formula for the averaged OPE coefficients [17],

⟨ϕ|O|ϕ⟩
∣∣∣
∆
≡
∑

ϕ∈H
Sd−1
⟨ϕ|O|ϕ⟩δ(∆ϕ −∆)

ρ(∆)

∆≫1−−−−→ bO

(
∆

(1− d)fSd−1

)∆O
d

. (1.7)

Note that all of the above are completely determined by the one-point function coefficient
bO (including the free energy coefficient f as a special case).

In general, CFTs are strongly coupled and thus inaccessible via small perturbations near
some integrable theory. A class of d = 3 models with a large numberN of scalars and fermions
governed by O(N) (or U(N)) invariant interactions, which we will refer to collectively as large
N vector models, circumvent this obstacle by admitting an expansion in 1

N
and thus providing

an ideal playground to study interacting CFTs (see [18] for a review). Surprisingly, this
simple-looking vector model has proven to be an excellent description of real-world critical
systems. In the case of scalar vector models, the UV Lagrangian for the scalar fields ϕi with
i = 1, 2, . . . , N takes the following form

S =

ˆ
d3x

(
1

2
∂µϕ

i∂µϕi +
1

2
m2

0ϕ
iϕi +

λ0
4
(ϕiϕi)2

)
. (1.8)

The special cases with N = 1, 2, 3 correspond to the Ising model, the XY model and the
Heisenberg model respectively, each of which has experimental realizations both as zero-
temperature quantum phase transitions and classical (thermal) phases transitions in statis-
tical systems and can also be simulated on a lattice.3 Furthermore, the limit N → 0 describes
the statistics of polymers [20]. In the case of the Ising and the XY model, the free energy

3See [19] for a comprehensive review on the O(N) CFTs including their conformal data and physical
applications.
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coefficient f in (1.3) (equivalently the critical Casimir amplitude) has been computed by the
Monte-Carlo techniques [21, 22] and using the ϵ expansion and functional renormalization
group [23]. The results are summarized below,

fMC
N=1 = −0.1527 , fMC

N=2 = −0.3066 , fRG
N=1 = −0.181 , fRG

N=2 = −0.353 . (1.9)

In the large N limit, the leading contribution to the coefficient f was determined in [24],

fN ∼ −
2ζ(3)

5π
N = −0.153051N , (1.10)

up to subleading corrections in 1
N

. Notably this is in rather good agreement with the Monte-
Carlo simulations and the RG computations for the Ising model (N = 1) and the XY model
(N = 2) despite the small values of N . It is then natural to ask about the nature of the 1

N

corrections.
Famously, the 1

N
expansion in the large N scalar vector model (similarly for fermionic

models) coincides with a semi-classical expansion where 1
N

plays the role of the Planck
constant ℏ [18]. This semi-classical expansion is facilitated by introducing the Hubbard-
Stratonovich auxiliary field σ and rewriting the action (1.8) in a form that is quadratic
in the elementary fields ϕi. Path-integrating over ϕi then produces a non-local effective
Lagrangian F(σ) for the σ field which is amenable to saddle-point analysis due to the small
ℏ ∼ 1

N
. In the scaling region, the saddle-point σ = σ∗ in the N →∞ limit and the value of

the effective Lagrangian F(σ∗) determines the O(N) CFT completely to the leading order
in N . The first correction comes from the one-loop determinant around the saddle σ = σ∗,
which is suppressed by 1

N
.

For the large N critical O(N) scalar model, the 1
N

correction to the free energy coefficient
f in (1.3) was first computed in [9]. The calculation requires a subtle numerical procedure
which we will clarify here. We also provide several approaches to access the same observable.
Together they lead to the following expression for the free energy coefficient for the O(N)

model including the first 1
N

correction,

fO(N) =−
2ζ(3)

5π
N + 0.06399553 +O(N−1) , (1.11)

which improves significantly on the precision of the result from [9]. It is immediate to note
that the correction is comparable to the leading term at small N . This is related to the fact
that we solve these models using the saddle-point approximation, which generally produces
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asymptotic series in the expansion parameter.
We further analyze the 1

N
correction to the free energies of fermionic large N vector

models using our numerical procedure. These models all arise from the critical points of
N Dirac fermions with different types of four-fermion interactions. They include the Gross-
Neveu (GN) model with the maximal global symmetry and its closely related variations with
reduced symmetry such as the chiral Ising Gross-Neveu (cGN) model and the Nambu-Jona-
Lasinio (NJL) model. The results are summarized below,

fGNN
= fcGNN

=− 3ζ(3)

4π
N − 0.01340099 +O(N−1) ,

fNJLN
=− 3ζ(3)

4π
N − 0.02680198 +O(N−1) .

(1.12)

We see that all these models have the identical free energy density at leading order in the
large N expansion, which coincides with that of the free fermions [10, 11]. While the NJL
model is distinguished from the GN and the cGN models at the subleading order in 1

N
.

The free energy density of the cGN model only starts to differ from the GN model at the
next-to-subleading order in 1

N
.

The fermionic large N models present additional subtleties that are absent in the bosonic
models. For instance, the large N saddle-point equation in the scaling region has multiple
solutions in addition to the one producing (1.12). The analog of the Hubbard-Stratonovich
field here is a pseudoscalar φ and the solution φ = 0 gives (1.12). The additional solutions
φ ̸= 0 break the parity symmetry (and come in a complex conjugate pair) lead to the
following free energy density

fGN
′
N
=− κN + 0.14222693 +O(N−1) ,

fNJL
′
N
=− κN − 0.44297273 +O(N−1) ,

(1.13)

with

κ ≡ 2

3
Cl2(π/3)−

ζ(3)

3π
= 0.54908554 , (1.14)

where Cl2 is the second Clausen function (see (3.28)). Since these solutions have a lower free
energy compared to (1.12) one may naively expect them to describe the actual CFT at finite
temperature. However a careful inspection of these fermionic large N models reveals that
these saddle-points are not on the steepest descent contour that is obtained from deforming
the original integration contour for φ that defines the unitary QFT [18,25]. Therefore these
saddle-point solutions are spurious for the study of the unitary models and do not describe
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the corresponding unitary fermionic CFT. Instead we propose that they potentially describe
non-unitary cousins (analogs of the Lee-Yang CFT) after a rotation of the defining integration
contour.

We also study an interesting class of 3d CFTs that share the same U(N) global symmetry.
They are described by the 3d Chern-Simons Quantum Electrodynamics (CSQED) with N

charge one Dirac fermions and Chern-Simons level k. In the ’t Hooft limit, namely N, |k| →
∞ with the ’t Hooft coupling λ = 4πN

k
fixed, they give rise to a one-parameter family of

CFTs labelled by λ. We find that while the free energy coefficient in this case is independent
of λ in the leading large N order, the subleading piece is a nontrivial function g(λ) as in,

fCSQEDN,k
=− 3ζ(3)

4π
N + g(λ) +O(N−1) , (1.15)

which has the following limiting behaviors,

lim
λ=∞

g(λ) = −0.21211735 , lim
λ=0

g(λ) = 0 , (1.16)

corresponding to QED with vanishing Chern-Simons level k = 0 and the free limit (with
infinity Chern-Simons level) respectively. The former agrees with the previous result in [12].

In addition to the free energy coefficient f in (1.3), we also develop diagrammatic methods
in the large N vector models to compute the one-point functions of other primary operators
as in (1.1). Because of the unbroken global symmetry, only singlet operators with respect to
the symmetry acquire nontrivial one-point functions. In the large N vector models, a family
of such operators are known as the single-trace higher-spin currents Js

µ1...µs
which takes the

following schematic form in the scalar vector model [26–31],

Js
µ1...µs

∼ ϕi∂µ1 . . . ∂µsϕi − traces , (1.17)

with even spin s. These operators are conserved currents in the N = ∞ limit but develop
anomalous dimensions at the order 1

N
. Their thermal one-point function coefficients bs in

the N = ∞ limit of the scalar O(N) model has been previously computed in [6] using the
inversion formula. Here we provide a direct diagrammatic derivation of bs for both bosonic
and fermionic large N vector models in the leading large N limit. We also describe explicitly
the procedure to obtain their 1

N
corrections where the inversion formula in [6] does not

obviously apply.
It was shown recently in [32] that by incorporating global symmetry twists one can obtain

8



a refined version of the asymptotic density of states (1.5) labelled by the representations of the
symmetry group. More specifically, let us consider a CFT with continuous global symmetryG
on S1

β × Sd−1
R as around (1.4). We focus on a U(1) subgroup of the full symmetry generated

by a charge Q and turn on a U(1) holonomy g = eiµ along the S1 factor. The resulting
symmetry twisted partition function is

ZS1β×Sd−1
R

(g) ≡TrH
Sd−1

e−
β
R
∆+iµQ =

∑
r∈Irrep(G)

χr(g)

dim r

ˆ
d∆ ρ(∆, r)e−

β
R
∆ , (1.18)

where the sum is over irreducible representations r of G, χr is the corresponding group
character and ρ(∆, r) is the symmetry-resolved density of states of the CFT. In the high
temperature limit, symmetry twist leads to addition contributions in the thermal free energy,

ZS1β×Sd−1
R

(g)
R
β
→∞
−−−→ ZS1β×Rd−1(g) = e

−
Vd−1

βd−1 (f+ b
4
tr(µ2)+... ) , (1.19)

and the leading effect at small µ valued in the Lie algebra g is captured by the Wilson
coefficient b above as introduced in [32] where tr(·) denotes the Killing form on g.4 In
particular b is argued to be positive based on the relation to the domain wall tension for the
g-twisted sector [32]. As was derived in [32], the twisted free energy is related to the one
without symmetry twist by

ZS1β×Rd−1(g)

ZS1β×Rd−1(1)
=

(
4πβd−1

bVd−1

)dimG
2 ∑

r∈Irrep(G)

dim rχr(g)e
− 1

bVd−1
c2(r)βd−1+...

(1.20)

where c2(r) is the second Casimir for r and we have omitted terms suppressed by higher
powers of β. Using (1.18) and (1.19) together with (1.20), we can determine the asymptotic
behavior of the refined density of states ρ(∆, r) normalized by (1.5),

log

[
ρ(∆, r)

ρ(∆)(dim r)2

]
∆≫1−−−→ −c2(r)

b

(
(1− d)fSd−1

∆

) d−1
d

+ . . . , (1.21)

where we have omitted terms that are representation independent in this limit. In [32], the
b coefficient was determined for free theories and holographic CFTs from the gravity dual.
Here by studying the large N vector models at finite temperature with nonzero chemical
potential, we provide the first results for the b coefficient directly from interacting CFTs, as

4Note that our normalization of b differs from that of [32] by the volume a unit sphere (i.e. bthere =
Sd−1bhere).
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summarized below for the O(N) global symmetry of the O(N) CFT, the O(2N) symmetry
of the the GN CFT and the O(N) symmetry of the NJL CFT (with N Dirac fermions),

bO(N) =
2arccos

(
3
2

)2
+ 2

(
5 + 2 arccosh

(
3
2

))
arcsinh 1

2√
5π

− 0.42424

N
,

bGNN
=

2 log 2

π
− 0.1338

N
,

bNJLN
=

2 log 2

π
− 0.2676

N
,

(1.22)

where we have included the leading 1
N

correction. We have also determined the coefficient b
for the non-unitary cousins of the GN CFT (see (3.35)), as well as for the CSQED to leading
order in N (see (4.11)).

Our normalization is such that for a free complex scalar or a Dirac fermion with U(1)

symmetry, the corresponding b coefficient is5

bscalar =
3

π
, bfermion =

2 log 2

π
. (1.23)

We now discuss a number of potential applications and future directions of our work.
As the Monte-Carlo simulations are being pushed to study vector models at higher N , it
would be interesting to see how our results on the 1

N
corrections compare to these numerical

investigations. It would also be interesting to see if these large N systems can be realized in
experiments (e.g. by stacking and twisting existing finiteN setups), which would measure the
1
N

corrections we have found. Another interesting direction involves treating the parameter
N as a coupling constant and finding the non-perturbative corrections to the large N results
using the techniques developed by Lipatov [33,34] and renormalons [35]. As special instances
of the AdS/CFT correspondence [3–5], the d = 3 large N vector models are expected to be
dual to certain versions of Vasiliev’s higher-spin gravity on AdS4 [36–40] (see also [41,42] for
recent works). The critical largeN vector model at finite temperature should then correspond
to a black brane solution of Vasiliev’s higher-spin gravity. Such a solution is known in the
linearized limit, but not yet in the full non-linear theory due to the high complexity of the
bulk interactions in the higher-spin gauge theory [43, 44]. Furthermore, it is not known
how to reproduce even the leading N free energy from a bulk action for the higher-spin
gravity.6 Nonetheless in light of the successful matching between one-loop effects (i.e. order

5Note that for the free scalar the divergent zero mode contribution is removed (e.g. by an orbifold).
6Note that the collective field method of [45–50] and the recent development in [41,42] rely on gauge-fixing

to the AdS4 background in the bulk which cannot describe the (deconfined) thermal state.
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O(N0) contributions to the free energy) for the CFT on S3 and the higher-spin gravity on
AdS4 in [51], it would be interesting to compare the one-loop contributions from higher-spin
gauge fields on a putative thermal geometry and the finite temperature 1

N
corrections we

find on the CFT side, which will provide a nontrivial test on the bulk solution and offer some
insights on the structure of the bulk solution. Finally, it would be interesting to compare our
predictions for the asymptotic density of states obtained from the thermal effective action
(which includes refinement by global symmetries) to explicit operator counting.

The rest of the paper is organized in the following way. In Section 2, we consider the
critical scalar O(N) model at finite temperature in detail. We compute the two-point func-
tion of the σ field at finite temperature, and then numerically obtain the first correction
to the free energy coefficient in the large N expansion and comment on subtleties in the
numerical procedure. We also include the dependence of the free energy on a particular
U(1) chemical potential. In addition, we show explicitly how the same result follows from
the computation of the one-point function of the stress-energy tensor by explicitly summing
Feynman diagrams. We then generalize the diagrammatic analysis to higher-spin currents of
even spin s > 2. In Section 3, we apply the developed techniques to study fermionic vector
models including the Gross-Neveu model and the Nambu-Lasino-Jonas model. In Section 4,
we investigate thermal one-point functions in the d = 3 Quantum Electrodynamics with a
large number of flavors and Chern-Simons level k in the ’t Hooft limit. In the Appendices,
we provide technical details for intermediate steps in the main text.

2 Scalar O(N) Vector Model

2.1 Review of the Critical O(N) Model and Large N Expansion

Here we review some basics facts about the scalar O(N) vector model. We start in general
spacetime dimensions and later specialize to d = 3. The action of the model is defined as

S =

ˆ
ddx

(
1

2
∂µϕ

i∂µϕi +
1

2
m2

0ϕ
iϕi +

λ0
4
(ϕiϕi)2

)
, (2.1)

where m0 and λ0 are the bare mass and coupling and ϕi belongs to the vector representation
of the O(N) global symmetry group. Famously, the model admits a large N limit where
physical observables such as the correlation functions of local operators can be extracted
using a saddle-point approximation (see [18] for an extensive review). To see that, we apply
the Hubbard–Stratonovich (HS) trick using the auxiliary σ field, also known as the HS field,
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whose original integration contour is along the imaginary axis [18]. Then up to a constant
shift, we have

S =

ˆ
ddx

(
1

2
∂µϕ

i∂µϕi +
1

2
σϕiϕi − σ2

4λ0
+

1

2
r0σ

)
, (2.2)

with r0 =
m2

0

λ0
. Note that σ field can be thought as a mass of the field ϕi. Integrating out the

fields ϕi, we arrive at the following effective Lagrangian for σ,

F(σ) = 1

2
N log det (−□+ σ)− σ2

4λ0
+

1

2
r0σ . (2.3)

By demanding λ0 =
λt
0

N
, r0 = Nrt0 with λt0, r

t
0 held fixed in the large N limit, we see that 1

N

plays the role of an effective Planck constant which gives rise to a semi-classical expansion.
For that purpose we first need to solve the equation of motion for σ,

Gϕ(x, x) =
σ(x)

λt0
− rt0 , (2.4)

where the LHS coincide with the coincident limit of the propagator for ϕi,

(−□+ σ)Gϕ(x, y) = δ(x− y) . (2.5)

Assuming the homogeneous ansatz σ(x) = σ, the saddle-point equation for σ is given by,

ˆ
ddk

(2π)d
1

k2 + σ
=

σ

λt0
− rt0 , (2.6)

which is also known as the gap equation since σ determines the mass gap for the scalar
fields. The LHS of the above equation is divergent for d ≥ 2 and needs to be regularized.
It is straightforward to check that the divergences could be absorbed in the redefinition of
the bare coupling constants rt0. To study the CFT, we bring the system to a critical point
by further fine-tuning this parameter. Note that for d < 4 near the free Gaussian point, the
composite operators ϕiϕi and (ϕiϕi)2 are both relevant and thus we should fine-tune them
at the same time to reach the free fixed point. Perturbed away from the Gaussian point
by the (ϕiϕi)2 operator, the theory can flow to an interacting critical point, where (ϕiϕi)2

becomes irrelevant. In this case, we only need to fine-tune the mass r0. This critical point
describes the second-order phase transition between the ordered and the disordered phases
of the O(N) model. The actual value of the parameter r0 where the system becomes critical
is scheme-dependent and we will label the regularization scheme by R. The phase transition
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occurs at σ = 0 (for σ < 0 there are tachyonic instabilities) since σ controls the correlation
length. It is thus more convenient to parameterize the bare coupling rt0 as

rt0 = rt −
ˆ
R

ddk

(2π)d
1

k2
, (2.7)

where the RHS is computed with the chosen regularization scheme in the UV. Note that this
equation has a solution only for d > 2 since at d = 2 the integral acquires an IR divergence.
This is a manifestation of the Coleman-Mermin-Wagner theorem stating that there are no
Goldstone modes in d ≤ 2. Substituting the value of rt0 (2.7) in the gap equation (2.6), we
obtain

ˆ
R

ddk

(2π)d

(
1

k2 + σ
− 1

k2

)
=

σ

λt0
− rt . (2.8)

Now by tuning rt we can bring the system to the critical phase transition. Indeed, with
σ > 0, we obtain the following equation

rt

σ
− 1

λt0
=

ˆ
R

ddk

(2π)d
1

k2(k2 + σ)
. (2.9)

Expanding the RHS of the above equation for small σ at 2 < d < 4 gives [18]

rt − σ

λt0
∼ Kdσ

d
2
−1 + IRσ + . . . , (2.10)

where Kd is a scheme-independent constant

Kd ≡ −
Γ(1− d

2
)

(4π)
d
2

, (2.11)

and IR is a constant that depends on the regularization scheme R. The terms that are
subleading when σ → 0 are omitted in (2.10). Near the critical point, we have the scaling
behavior rt ∼ Kdσ

d
2
−1. If we further set λt0 = − 1

IR
then the corrections due to the finite-size

effects would become suppressed. This value should be carefully chosen when adopting a
numerical lattice regularization scheme (see Appendix A for further comments). For the
analytical treatment, we find the dimensional regularization to be the most convenient. For
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2 < d < 4, this gives,

ˆ

dimreg

ddk

(2π)d
1

k2(k2 + σ)
= Kdσ

d
2
−2 ,

1

λt0
= 0 , rt = Kdσ

d
2
−1 , (2.12)

so to reach the critical point we set rt = 0 (equivalently rt0 = 0) and to cancel subleading
corrections we pick λt0 = ∞ in this scheme. Consequently, the corresponding CFT on flat
space is governed by the following action

S =

ˆ
ddx

(
1

2
∂µϕ

i∂µϕi +
1

2
σϕiϕi

)
, (2.13)

and similarly the effective Lagrangian for σ at the critical point is

F(σ) = 1

2
N log det (−□+ σ) . (2.14)

To determine observables at the subleading order in the 1
N

expansion, we also need the
propagator for σ, which follows from the large N Lagrangian (2.3),

G−1
σ (x, y) = −N

2

1

λt0
δ(d)(x− y)− N

2
G2

ϕ(x, y). (2.15)

The negative signs reflect the fact that the original integration contour for σ runs parallel to
the imaginary axis [18]. At the critical point in the dimensional regularization scheme (see
(2.12)), we have from (2.5),

G−1
σ (p) =

πΓ
(
d
2

)
(4π)

d
2 sin

(
πd
2

)
Γ(d− 1)

Npd−4 , Gσ(x, 0) =
sin
(
πd
2

)
Γ(d− 1)

π5Γ
(
d
2
− 2
)
Γ
(
d
2

) 1

Nx4
, (2.16)

so that the scaling dimension of the composite operator σ ∝ (ϕi)2 is ∆σ = 2 and independent
of the spacetime dimension (thus different from the mean-field value for general d, a hallmark
of interacting CFT).

Here we are mostly interested in the d = 3 CFT on the background S1
β × R2 which is

flat but has nontrivial topology. This is described by the same action (2.13) with periodic
boundary conditions for the fields along S1

β. The gap equation (saddle-point equation) for σ
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now takes the following form,7

0 =
1

β

∑
n∈Z

ˆ
d2k⃗

|⃗k|2 + ω2
n + σ

(2.17)

where ωn ≡ 2πn
β

are the bosonic Matsubara frequencies and the UV divergence is regulated
in the same way as in flat space. As we review in the next subsection, the saddle-point
solution σ = σ∗ is no longer zero for finite β and corresponds to a finite mass-gap generated
by quantum effects. Equivalently, it determines the one-point function of σ ∼ (ϕi)2 in the
large N limit,

⟨(ϕi)2ren⟩β =

√
π5Γ

(
d
2
− 2
)
Γ
(
d
2

)
sin
(
πd
2

)
Γ(d− 1)

N
1
2σ∗
β2

, (2.18)

where (ϕi)2ren is the renormalized primary operator with the normalized two-point function
on flat space

⟨(ϕi)2ren(x)(ϕ
i)2ren(y)⟩ =

1

(x− y)4
. (2.19)

2.2 Large N Free Energy and the Subleading Correction

Here we derive the free energy density of the scalar O(N) CFT on S1
β × R2,

F (β) ≡ − 1

βV2
logZS1β×R2

∣∣∣
non−extensive

, (2.20)

where V2 regulates the infinite spatial volume and we focus on the non-extensive (in S1
β) part

of logZS1β×R2 which is free from counterterm ambiguities. The free energy density has the
following large N expansion,

F (β) = F0(β) + F−1(β) +O(N−1) , (2.21)

where F0 denotes the leading contribution of order O(N) and F−1 is the first subleading
contribution at O(1).

We start with the effective Lagrangian for σ,

F(σ) = N

2
tr log(−□+ σ) =

N

2β

∑
n∈Z

ˆ
d2p

(2π)2
log
(
p2 + ω2

n + σ
)
, (2.22)

7In the following we will simply write k⃗ as k for the two dimensional momentum to simplify the notation.
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where ωn ≡ 2πn
β

. In the large N limit, the leading free energy density is determined by the
saddle-point σ = σ∗,

F0(β) = Fren(σ∗) , (2.23)

of the renormalized Lagrangian Fren(σ) for F(σ),

Fren(σ) =
N

2

(
1

β

∑
n∈Z

ˆ
R

d2p

(2π)2
log
(
p2 + ω2

n + σ
)
+ rt0σ −

ˆ
R

d2pdω

(2π)3
log
(
p2 + ω2

))
, (2.24)

where we work in a general regularization scheme R, keep only terms that are non-vanishing
for constant σ (sufficient for the leading large N analysis) and restore rt0 (which vanishes in
the dimensional regularization). The last term in the above expression is the cosmological
constant counterterm.

A key point is that the sum-integral in (2.24) has the following large energy momentum
expansion,

Fren(σ) =
N

2

(
σ

(
1

β

∑
n∈Z

ˆ
R

d2p

(2π)2
1

p2 + ω2
n

+ rt0

)
+ . . .

)
, (2.25)

where the omitted terms are absolutely convergent thus independent of the regularization
scheme R. Furthermore, the first term in the bracket is also absolutely convergent which
follows from (2.6) at σ = 0 (zero temperature). Consequently Fren(σ) is scheme-independent.

To facilitate the analytic calculations, we perform dimensional regularization on the two-
dimensional momentum integral and zeta function regularization on the Matsubara sum.
Implementing this procedure to (2.22), we first obtain

F(σ) dimreg−−−−→ − N

8πβ

∑
n∈Z

(ω2
n + σ)

(
log(ω2

n + σ)− 1
)
. (2.26)

The following identity (which holds in zeta function regularization) will be useful [52],

∑
n∈Z

log

(
σ +

(
2πn

β
+ α

)2
)

= β
√
σ + log(1− e−β

√
σ+iβα) + log(1− e−β

√
σ−iβα) . (2.27)
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Integrating in σ, we then obtain the renormalized Lagrangian8

Fren(σ) =−
N

4πβ3

(
1

3

(
β2σ

) 3
2 + 2β

√
σLi2(e

−β
√
σ) + 2Li3(e

−β
√
σ)

)
. (2.28)

The integration constant is fixed by requiring,

Fren(0) = −
N

2πβ3
ζ(3) , (2.29)

which follows directly from (2.26) by zeta function regularization.
Extremizing Fren(σ) with respect to σ, we find the thermal gap equation (the regularized

version of (2.17))

0 = β
√
σ + 2 log(1− e−β

√
σ) , (2.30)

with the following solution

σ∗ =
∆2

β2
, ∆ = log

(
1

2

(√
5 + 3

))
, Fren(σ∗) = −

2ζ(3)

5π

N

β3
. (2.31)

Consequently, the leading free energy density for the O(N) CFT is

F0(β) = −
2ζ(3)

5π

N

β3
. (2.32)

Let us briefly comment on a subtle point in this calculation. The CFT is Lorentz invari-
ant at zero temperature (i.e. β =∞). It is a priori not obvious whether the short-distance
regulator implemented above (a combination of zeta function and dimensional regulariza-
tions) respects the Lorentz symmetry at scales much smaller than β. In fact, as we will see
momentarily, this regulator is not compatible with the Lorentz symmetry at the subleading
order in the 1

N
expansion. Nonetheless, as explained after (2.24), in the leading large N

limit, the scheme independence is enhanced.
As a consistency check, we also evaluate (2.24) with a manifestly Lorentz-invariant reg-

ulator [9] by performing sum-integral with the following Lorentz-invariant hard cutoff

p2 + ω2
n < Λ2 , (2.33)

8Note that in a general regularization scheme we will need to subtract off the extensive piece of the free
energy to obtain the scheme-independent part of the free energy density F (see (2.20)). Such an extensive
contribution to F in a CFT on S1β ×R2 can only come from the cosmological constant (β independent). For
our choice of regularization scheme here, such a constant is absent, since the last two terms in (2.24) vanish
in this scheme.
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and obtain the same results numerically as in (2.31).9

We are mostly interested in the first subleading correction in 1
N

denoted by F−1(β)

in (2.21). According to the semi-classical expansion in the large N vector model, this is
computed by the log-determinant of the second variation of the effective Lagrangian (2.3)
with respect to σ (equivalently from the inverse propagator G−1

σ ), subject to regularization
and renormalization that we explain below,

F−1(β)←
1

2β

∑
n∈Z

ˆ
d2p

(2π)2
log |G−1

σ (ωn, p)| . (2.34)

Explicitly, the inverse propagator on S1
β×R2 in momentum space (from (2.15) with λt0 =∞)

is proportional to the self-energy Πβ (where a factor of N is extracted for convenience),

G−1
σ (ωn, p) = −NΠβ(ωn, p) , (2.35)

and Πβ takes the following form

Πβ(Ω, p) =
1

2β

∑
n∈Z

ˆ
d2q

(2π)2
1

(p− q)2 + (Ω− ωn)2 + σ∗

1

q2 + ω2
n + σ∗

, (2.36)

with σ∗ as in (2.31). We take the integral over the spatial momentum using the Feynman
parametrization and evaluate the sum over the discrete frequencies exactly. The detailed
computation is presented in Appendix B, and the resulting expression is

Πβ(Ω, p) = −
1

16π

1ˆ

0

dx√
σ∗ + (Ω2 + p2) (x− x2)

sinh
(
β
√
σ∗ + (Ω2 + p2) (x− x2)

)
cos (βΩx)− cosh

(
β
√
σ∗ + (Ω2 + p2) (x− x2)

) .
(2.37)

To evaluate (2.34) using (2.37) requires a further regularization. Indeed, we see that the σ
self-energy at large momentum behaves as (see Appendix B.1 for details),

Πβ(Ω, p) =
1

16P
+

1

P 2

(
−
√
σ∗
4π

+

ˆ
d2q

(2π)2
n(ϵq)

ϵq

)
+

2Ω2 − p2

P 6

1− 6γ

6π
σ

3
2
∗ + . . . , (2.38)

where

P 2 ≡ Ω2 + p2 , ϵq ≡
√
q2 + σ∗ , n(ϵ) ≡ 1

eβϵ − 1
. (2.39)

The first term in this expansion (2.38) corresponds to the flat spacetime propagator and
9We emphasize that rt0 ̸= 0 at the critical point in this regularization scheme.
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should be cancelled to obtained the renormalized free energy. We thus arrive at the following
expression for the renormalized free energy at the subleading order in 1

N
,

F−1(β) =
1

2β

∑
n

ˆ
d2p

(2π)2
log |G−1

σ (ωn, p)| −
1

2

ˆ
d3P

(2π)3
log |G−1

σ (P )|

=
1

2β

∑
n

ˆ
d2p

(2π)2
log
[
16
√
p2 + ω2

nΠβ(ωn, p)
]
+

1

4πβ3
ζ(3) ,

(2.40)

where the last term in the second line follows from (2.29) (see Appendix B for further details).
The second term in (2.38) is proportional to the gap equation (2.30) and vanishes for the

special point σ = σ∗ from (2.31) relevant for describing the finite temperature CFT. If this
term were nonzero, we would encounter a quadratic divergence in the subleading free energy
(2.40) that is linear in the temperature, which would be inconsistent with the structure of
UV divergences in local quantum field theory.

The next term in the large momentum expansion (2.38) no longer vanishes at the critical
point σ = σ∗, and consequently

log
[
16
√
p2 + ω2

nΠβ(ωn, p)
]
= 16

1− 6γ

6π
∆3 2ω2

n − p2

(ω2
n + p2)5/2

+O
(

1

P 4

)
. (2.41)

The further subleading terms in the above expansion converge absolutely and we don’t need
to worry about them. On the other hand, the first term on the RHS is dangerous since it
contributes an apparent logarithmic divergence to (2.40) and could lead to regularization
ambiguities. To see this explicitly, we consider the following sum-integral,

I =
1

β

∑
n

ˆ
Mn

d2p

(2π)2

(
2ω2

n − p2

(ω2
n + p2)

5
2

)
=

1

β

∑
n

1

(2π)2

ˆ
∂Mn

pidS
i

(p2 + ω2
n)

3
2

, (2.42)

where Mn for fixed n is a region in the full two-dimensional momentum space and plays
the role of a regulator for the momentum integral. In the second equality, we have used the
fact that the first integrand is a total derivative. If we choose Mn to be R2 independent
of n, naively this sum-integral is regulated to zero. If we instead implement the regulariza-
tion procedure used earlier (dimensional regularization for the momentum integral and zeta
function regularization for the Matsubara sum), we also find the answer is zero. However,
as we have already emphasized below (2.32), in general one has to be careful with choosing
the correct regulator that is compatible with the symmetry that is preserved under renor-
malization. Here we assume Lorentz symmetry (at zero temperature) in the renormalization
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procedure and consequently should use a Lorentz-invariant UV regulator, such as (2.33),
which corresponds to choosingMn = {p|p2 + ω2

n < Λ2} in (2.42).10 This gives

I =
1

3π2
+O

(
1

βΛ

)
, (2.43)

which determines the contribution from this term to the free energy (2.40). In the next
section, we will evaluate (2.40) numerically taking into account this regulator subtlety.

2.3 Numerical Calculation

Now we are in position to compute numerically the subleading correction to the free energy
for large N critical vector model, by evaluating the sum-integral in (2.40). Because of the
oscillatory behavior of Πβ (see (2.37)), this sum-integral needs to be handled with care. Below
we explain the strategy for this numerical evaluation which we implement in mathematica.

We start by rescaling all momentum and energy in (2.40) by β,

p→ p

β
, ωn →

ωn

β
, (2.44)

such that the β dependence is completely factored out and given by 1
β3 . The goal is to

determine the dimensionless coefficient in F−1(β).
We first need an efficient way to evaluate the σ self-energy Πβ(ωn, p) to high precision.

The expression (2.37) for Πβ(ωn, p) is a highly oscillating integral at large momentum, thus
converges very slowly. Therefore, to optimize the numerical evaluation of Πβ(ωn, p), we
introduce two spherical shells of radius Λ0 and Λ, with Λ0 < Λ. Where Λ is the UV cut-off
and Λ0 is chosen in such a way that the difference between the actual value of the self-energy
(2.37) and its large momentum expansion (B.10) would be negligible.

For ωn, p within the spherical shell p2 + ω2
n < Λ2

0, we evaluate directly the sum-integral
of log

[
16
√
ω2
n + p2Πβ(ωn, p)

]
in (2.40) for |ωn| < Λ0 and p <

√
Λ2

0 − ω2
n to high precision.

We find that the optimal range for Λ0 is 250 ≤ Λ0 ≤ 450, where the difference between the
direct computation of (2.37) and its large P =

√
ω2
n + p2 expansion (B.10) is of the order

∼ 10−14.
Between the two spherical shells Λ2 > ω2

n + p2 > Λ2
0, we can use the large P expansion of

the σ self-energy to compute the sum-integral to the desired precision, by keeping all terms
in (B.10). Finally, the relativistic UV cutoff Λ is taken to infinity numerically. Note that

10We thank Subir Sachdev for discussions on this point.
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this resolves the regularization ambiguity which we have discussed near the end of the last
section.

Implementing the procedure outlined above in Mathematica and taking different values
of 250 ≤ Λ0 ≤ 450 and 104 ≤ Λ ≤ 108, we find that the sum-integral in (2.40) evaluates to

1

2β

∑
n

ˆ
d2p

(2π)2
log
[
16
√
p2 + ω2

nΠβ(ωn, p)
]
= −0.03166112

β3
, (2.45)

and consequently the subleading correction to the free energy of the O(N) vector model
reads,

FO(N),−1(β) =
0.06399553

β3
. (2.46)

2.4 Turning on Chemical Potential

One natural extension of our analysis of the finite temperature free energy of the O(N) CFT
in the previous section is to include a background for its global symmetry. Here for simplicity,
we consider N even and take the U(1) subgroup of O(N) with commutant SU(N/2) (such
that the complex scalars ϕj + iϕj+N/2 for j = 1, . . . , N/2 have charge 1 under this U(1)). We
turn on an imaginary chemical potential parameterized by µ ∈ [0, 2π) for this U(1) subgroup,
via a background gauge field with nonzero temporal component A0 =

µi
β
. Consequently the

energy spectrum for the scalar fields are shifted to βω̃n = 2πn+µ. The effective Lagrangian
in this case is

F(σ̃, µ) = N

2β

∑
n

ˆ
d2p

(2π)2
log
(
ω̃2
n + p2 + σ̃

)
, (2.47)

and its renormalized version reads

Fren(σ̃, µ) =−
N

4πβ3

(
β3σ̃3/2

3
+ Li3(e

−β
√
σ̃+iµ) + Li3(e

−β
√
σ̃−iµ)

+β
√
σ̃ Li2(e

−β
√
σ̃+iµ) + β

√
σ̃ Li2(e

−β
√
σ̃−iµ)

)
.

(2.48)

When µ = 0, this reduces to the case considered previously (see (2.28)). The gap equation
is given by,

β
√
σ̃ + log

(
1− e−β

√
σ̃+iµ

)
+ log

(
1− e−β

√
σ̃−iµ

)
= 0 . (2.49)
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Figure 1: The leading large N free energy F0(β, µ) of the O(N) CFT as a function of the
imaginary chemical potential µ (here β = 1).

We denote its solution by σ̃ = σ̃∗(µ) whose explicit form is given below,

σ̃∗(µ) =
1

β2
arccosh2

[
1

2
+ cosµ

]
. (2.50)

The free energy in the leading large N limit follows from

F0(β, µ) = Fren(σ̃∗(µ), µ) , (2.51)

which is plotted in Figure 1.11

Moving onto the subleading order in the 1
N

expansion, we will determine the free energy
F−1(β, µ) by performing the sum-integral as in (2.24) which now involves the σ free-energy
Πµ

β that depends on µ (see (B.4) for its explicit integral representation). Implementing the
numerical procedure explained in Section 2.3, we compute the F−1(β, µ) as a function of the
chemical potential and the result is presented in Figure 2.

As discussed in the introduction (around (1.19)), in the expansion of the thermal free
energy F (β, µ) at small chemical potential12

F (β, µ) = F (β) +
1

4

N

2
µ2b+ . . . , (2.52)

the positive coefficient b governs the asymptotics density of (high energy) states refined by
11As a consequence of the charge conjugation symmetry in the O(N) CFT, the special points µ = 0 and

µ = π are extrema of the free energy as evident from Figure 1 and Figure 2.
12Here we have used the relative normalization tr = 1

2 trfund between the Killing form and the trace in the
fundamental presentation for O(N).
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Figure 2: The subleading correction F−1(β, µ) to the free energy of the O(N) CFT as a
function of the imaginary chemical potential µ (here β = 1).

the O(N) global symmetry of the CFT. From our explicit result for F (β, µ), we find that up
to the first subleading order in the 1

N
expansion,

N

2
b = Nb0 + b−1 +O(N−1) , (2.53)

with13

b0 =
arccos

(
3
2

)2
+
(
5 + 2 arccosh

(
3
2

))
arcsinh 1

2√
5π

, b−1 = −0.21212± 0.00005 . (2.54)

2.5 One-point Function of the Stress-energy Tensor

As explained in the introduction, the thermal free energy of the CFT contains the same infor-
mation as the one-point function of the stress-energy tensor at finite temperature (see around
(1.2)). So far we have analyzed the free energy of the O(N) CFT using the semi-classical
expansion in the large N limit. It would be useful to understand how the same physical
quantity can be computed using the standard Feynman diagrams for this Lagrangian field
theory. In particular, this second diagramatic approach will have immediate generalizations
to determining the thermal one-point functions (1.1) of more general operators in the CFT,
which we will discuss in the next section.

From the general structure of the thermal one-point function (1.2), it suffices to focus on
the temporal component T00 of the stress tensor Tµν , which in the O(N) CFT is given by,

13The error for b−1 is a standard error that is estimated using function NonLinearModel in Mathematica.
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T00 T00

+

T00

+

T00

+ . . . +

T00

+ . . .=

Figure 3: Examples of Feynman diagrams (on the right) containing ϕi loops that con-
tribute to the thermal one-point function ⟨T00⟩0,β at the leading order in 1

N . They resum
to the diagram on the left with the large N exact propagator for ϕi represented by a thick
line.

T00 T00

T00
T00

Figure 4: Examples for the four families of Feynman diagrams that can contribute to the
thermal one-point function ⟨T00⟩−1,β at the first subleading order in 1

N . All internal lines
are large N exact propagators for ϕi.

up to the improvement total derivative terms,14

T00 = −
(
−1

2
(∂0ϕ)

2 +
1

2
(∂αϕ)

2 +
λ0
4

(
ϕiϕi

)2
+ improvement terms

)
. (2.55)

The explicit relation between the thermal one-point function and the free energy in the d = 3

CFT is

⟨T00⟩β = 2F (β) , (2.56)

and similar to the RHS analyzed previously (2.21), the LHS admits an 1
N

expansion in the
O(N) CFT

⟨T00⟩β = ⟨T00⟩0,β + ⟨T00⟩−1,β +O(N−1) (2.57)

which can be seen explicitly by reorganizing the Feynman diagrams at large N .
The leading large N result ⟨T00⟩0,β for the thermal one-point function only receives con-

tributions from the expectation values of the first two terms in (2.55) and comes from resum-
14Note that the improvement terms are conformal descendants which have vanishing thermal one-point

functions and consequently do not affect the subsequent evaluation of ⟨T00⟩β .
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mation of the Feynman diagrams with increasing number of ϕi loops (see Figure 3), which
induces a non-zero value for the sigma field. Therefore we have, from the one-loop diagram
with the large N exact ϕi propagator,

⟨T00⟩0,β =
N

2β

∑
n

ˆ
d2p

(2π)2
ω2
n − p2

ω2
n + p2 + σ∗

= −N
2

∂

∂β

[∑
n

ˆ
d2p

(2π)2
log
(
ω2
n + p2 + σ∗

)]
,

(2.58)
which confirms the relation (2.56) upon comparing with (2.22) with σ = σ∗ as in (2.31).

We now compute the 1
N

correction to the thermal one-point function ⟨T00⟩β. The Feynman
diagrams that contribute at this order come in four families which are given in Figure 4 with
increasing number of ϕi loops with exact propagators, independent of the temperature (or
more general spacetime background). Each family of these diagrams can be resummed in the
IR using the σ self-energy (inverse propagator) Πβ(ωn, p) (which captures the contributions
from a chain of ϕi loops) given explicitly in (2.37) and together they determine ⟨T00⟩−1,β,

⟨T00⟩−1,β = ⟨T (1)
00 ⟩−1,β + ⟨T (2)

00 ⟩−1,β + ⟨T (3)
00 ⟩−1,β + ⟨T (4)

00 ⟩−1,β . (2.59)

Explicitly the first two contributions could be written as

⟨T (1)
00 ⟩−1,β = − 1

2β2

∑
n,m

ˆ
d2p

(2π)2
1

Πβ(Ωn, p)

[ˆ
d2q

(2π)2
1

(Ωn − ωm)
2 + (p− q)2 + σ∗

ω2
m − q2

(ω2
m + q2 + σ∗)

2

]
,

⟨T (2)
00 ⟩−1,β =

1

4β3

∑
n,m,l

ˆ
d2p

(2π)2
1

Πβ(Ωn, p)

[ˆ
d2q

(2π)2
1

(Ωn − ωm)2 + (p− q)2 + σ∗

1

(ω2
m + q2 + σ∗)

2

]

× 1

Πβ(0, 0)

[ˆ
d2k

(2π)2
ω2
l − k2

(ω2
l + k2 + σ∗)

2

]
, (2.60)

The second equation above can be further simplified to

⟨T (2)
00 ⟩−1,β =

1

2β

∑
n

ˆ
d2p

(2π)2
1

Πβ(Ωn, p)

× 1

β

∑
m

ˆ
d2q

(2π)2
1

(Ωn − ωm)2 + (p− q)2 + σ∗

−σ∗ + 2
π
log
[
2 sinh

(
β
√
σ∗
2

)]
tanh

[
β
√
σ∗
2

]
(ω2

m + q2 + σ∗)
2

=
1

2β2

∑
m,n

ˆ
d2p

(2π)2
1

Πβ(Ωn, p)

ˆ
d2q

(2π)2
1

(Ωn − ωm)2 + (p− q)2 + σ∗

−σ∗
(ω2

m + q2 + σ∗)
2 ,

(2.61)
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where we have used in the last equality that the saddle σ = σ∗ in (2.31) satisfies

2

π
log

[
2 sinh

(
β
√
σ∗
2

)]
tanh

[
β
√
σ∗
2

]
= 0 . (2.62)

The contributions from the first two terms in (2.59) then combine to,

⟨T (1)
00 ⟩−1,β + ⟨T

(2)
00 ⟩−1,β = − 1

2β2

∑
n,m

ˆ
d2p

(2π)2
1

Πβ(Ωn, p)

×
[ˆ

d2q

(2π)2
1

(Ωn − ωm)
2 + (p− q)2 + σ∗

ω2
m − q2 + σ∗

(ω2
m + q2 + σ∗)

2

]
.

(2.63)

Similarly, the third family of diagrams in Figure 4 resum to

⟨T (3)
00 ⟩−1,β = − 1

2β

∑
n

ˆ
d2p

(2π)2
1

Πβ(Ωn, p)
× Πβ(Ωn, p) . (2.64)

Finally, the fourth family of diagrams in Figure 4 vanish,

⟨T (4)
00 ⟩−1,β =

Greg(x, x)

4β2Πβ(0, 0)

∑
n,m

ˆ
d2p

(2π)2
1

Πβ(Ωn, p)

×
[ˆ

d2q

(2π)2
1

(Ωn − ωm)
2 + (p− q)2 + σ∗

1

(ω2
m + q2 + σ∗)

2

]
= 0 ,

(2.65)

whereGreg(x, x) is the regularized two-point function of ϕi at coinciding points which vanishes
as a consequence of the gap equation (2.17). Combing the above all together, we arrive at
the full subleading 1

N
correction to the stress tensor one-point function,

⟨T00⟩−1,β =− 1

4β2

∑
n,m

ˆ
d2p

(2π)2
1

Πβ(Ωn, p)

×
(ˆ

d2q

(2π)2
1

(Ωn − ωm)
2 + (p− q)2 + σ∗

3ω2
m + 3σ∗ − q2

(ω2
m + q2 + σ∗)

2

)
.

(2.66)

Let us compare the above expression with that of the free energy. We have from Section 2.2

F−1(β) =
1

2β

∑
n

ˆ
d2p

(2π)2
log Πβ(Ωn, p)|ren , (2.67)

where the explicitly renormalized expression is given in (2.40). From (1.2) and (2.67), we
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have the simple following relation15

⟨T00⟩−1,β = − ∂

∂β
(βF−1(β)) = −

1

2

∑
n

ˆ
d2p

(2π)2
1

Πβ(Ωn, p)

∂

∂β
Πβ(Ωn, p) , (2.68)

where the last term clearly coincides with (2.66) after using (2.36).

2.6 One-point Function of Higher-Spin Currents

Using the ideas from the previous section, we can compute the 1
N

corrections to the thermal
one-point function of more general local operators, which, as emphasized in the introduc-
tion, are the basic building blocks for the most general correlation functions in the finite
temperature CFT. For illustration, we focus on the so-called higher-spin current operators
in the O(N) CFT, which are O(N) invariant primary operators Js

µ1...µs
transforming in the

rank s symmetric traceless representations of the Lorentz group for positive even integer s
(also refers to as the spin s representations) [26–31]. These operators are constructed out of
O(N) singlet bilinears of the scalar field ϕi together with s derivatives,

Js
µ1...µs

=

(
1

N
ϕi∂µ1 . . . ∂µsϕi − traces

)
+ descendants , (2.69)

up to total derivatives which are fixed by demanding the LHS to be a primary operator.
They generalize the stress-energy tensor which appears at s = 2 (as well as the singlet scalar
operator (ϕi)2ren at s = 0).

Using the residual symmetries of the thermal background, the one-point function of the
higher-spin current of rank s is constrained to take the following form

⟨Js
µ1...µs

⟩
β
=

bs
β∆s

(eµ1eµ2 . . . eµs − traces) , eµ = (1, 0, 0) , (2.70)

with the scaling dimension

∆s = s+ 1 + γs , (2.71)

where γs is the anomalous dimension which is suppressed by 1
N

in the large N limit and thus
the O(N) CFT is said to have a slightly broken higher-spin symmetry [28]. It is convenient

15Note that the subtraction term in (2.40) disappears after the β derivative.
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to introduce an auxiliary complex null polarization vector ξµ = ξ (1, i, 0) and write16

Js
ξ ≡ Js

µ1...µs
ξµ1 . . . ξµs =

1

N
ϕi (ξ

µ∂µ)
s ϕi + descendants , (2.72)

whose one-point function is
⟨Js

ξ ⟩β =
bsξ

s

β∆s
, (2.73)

where we have used (2.70). Therefore to determine the one-point function of the higher-spin
current Js

µ1...µs
, it suffices to focus on the component Js

ξ .
In the large N limit, the thermal one-point function ⟨Js

ξ ⟩β admits a 1
N

expansion similar
to (2.57) for the stress tensor. At the leading order, the same family of diagrams as in
Figure 3 contribute and give

⟨Js
ξ ⟩0,β =

1

β

∑
n

ˆ
d2p

(2π)2
(ipµξ

µ)s

ω2
n + p2 + σ∗

, (2.74)

where σ∗ is given in (2.31). As usual, the UV divergences in the sum-integral above is
regulated by subtracting the flat space expression in the given regularization scheme. To
simplify the computation, we introduce the generating function

Gβ,0(ξ) ≡
∞∑
s=0

⟨Js
ξ ⟩0,β
s!

=
1

β

∞∑
n=−∞

ˆ
d2p

(2π)2
eipµξ

µ

ω2
n + p2 + σ∗

, (2.75)

where the regularization of the last term above is implicit. This generating function is just
a specialization of the coordinate-space propagator for ϕi, which for general any spacetime
separation rµ = (r0, r⃗) is given by

Gβ,0(r) =
1

4π

∞∑
m=−∞

e−
√
σ∗
√

(r0+βm)2+r⃗2√
(r0 + βm)2 + r⃗2

, (2.76)

which follows from (2.75) by Poisson resummation. Physically, each summand above rep-
resents the contribution from a worldline instanton of mass

√
σ∗ = ∆

β
propagating along a

geodesic on the thermal background that connects the two ϕi insertions. The m = 0 term
coincides with the flat space-time propagator in the short distance limit. After subtracting

16Note that these are bare operators (also (2.69)) which will be subjected to renormalizations (suppressed
by 1

N ). See around (2.85) and (2.90).
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that, we obtain the regularized version of Gβ,0(ξ), which gives

∞∑
s=0

⟨Js
ξ ⟩0,β
s!

=
1

4π

∑
m ̸=0

e−
√
σ∗
√

mβ(mβ−2ξ)√
mβ(mβ − 2ξ)

. (2.77)

The one-point function coefficient bs in the leading large N limit (which we will denote as
b0s) of the spin s current is obtained immediately by the small ξ expansion of the RHS above,

b0s =
1

4π

s∑
n=0

2n−s+1(2s− n)!
n!(s− n)!

βnσ
n
2
∗ Lis+1−n

(
e−β

√
σ∗
)
, (2.78)

which agrees with the results obtained in [6] from a different method (up to an overall
normalization factor that only depends on s).

Alternatively, we can directly regulate the integrals (2.74) as follows (setting β = 1 below
and using (2.31)),

⟨Js
ξ ⟩0,β = lim

ϵ→0

∞∑
n=−∞

ˆ
d2p

(2π)2
(ipµξ

µ)s

ω2
n + p2 +∆2

e−ϵ(ω2
n+p2+∆2)2 . (2.79)

By standard contour manipulation, the above can be rewritten as

⟨Js
ξ ⟩0,β = −ξ

s

2
lim
ϵ→0

ˆ
d2p

(2π)2

˛
γ

dz

2πi

(p1 − z)s

z2 − ϵ2p
e−ϵ(z2−ϵ2p)

2
(
coth

(z
2

)
− 1
)
, (2.80)

where ϵp ≡
√
p2 +∆2 and γ is a contour that circles the simple poles at z = 2πin with

n ∈ Z in the counter-clockwise direction.17 Deforming the contour to infinity, we obtain by
Cauchy theorem that,

b0s =

ˆ
d2p

(2π)2
(p1 − ϵp)s

ϵp

1

eϵp − 1
, (2.81)

for positive even s, which again reproduces the same result (2.78), after implementing a
straightforward change of variables and using the following integral identity

Lis
(
e−∆

)
=

1

Γ(s)

ˆ ∞

∆

dz
(z −∆)s−1

ez − 1
. (2.82)

17The −1 shift in (2.80) does not affect the integral by Lorentz invariance (writing z = ip0 where p0 is the
energy component of the three-momentum).
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The first subleading correction to the one-point function of higher-spin currents

The subleading correction to the one-point function of higher-spin currents can be computed
using Feynman diagrams as in the case of the stress-energy tensor in Section 2.5.

The dynamical data in the one-point function (2.73) of the higher-spin currents, namely
the overall constant coefficient bs and the anomalous dimension γs (see (2.71)) have the
following 1

N
expansions,

bs = b0s +
b1s
N

+ . . . , γs =
∆1

s

N
+ . . . . (2.83)

The 1
N

corrections ∆1
s to the scaling dimensions of these operators have been computed

in [26,30,31,53],

∆1
s =

16(s− 2)

3π2(2s− 1)
. (2.84)

Consequently, the first correction in the 1
N

expansion of the one-point function of bare
operator (2.73) takes the following form,

⟨Js
ξ,bare⟩β =

(
b0s
βs+1

+
1

N

1

βs+1

[
b1s + b0s∆

1
s log (βΛ)

])
ξs + . . . , (2.85)

where Λ is a UV regulator and the UV divergence could be treated by proper renormalization
of the operator. In the above equation, we have reintroduced the subscript on the higher-spin
current Js

ξ,bare to emphasize this is the bare operator. For the stress-energy tensor, its scaling
dimension does not receive corrections (∆1

2 = 0) and therefore the logarithmic correction is
absent, which simplifies the computation.18

Following the strategy of the previous section, we start by incorporating the first 1
N

correction to the ϕi propagator as follows,

G−1
ϕ (ωn, p) = ω2

n + p2 + σ∗ +
1

N
Σ(ωn, p) , (2.86)

where Σ(ωn, p) is a self-energy part for the matter field ϕi where σ∗ is the largeN saddle-point
for σ (as given in (2.31) in the dimensional regularization). Note that the self-energy Σ(ωn, p)

also contains the information about 1
N

corrections to the one-point function of σ ∼ (ϕi)
2 (i.e.

correction to σ∗).
18Note that the logarithmic term in (2.85) indicates a scheme dependence for the one-point function

coefficient b1s at the subleading order in 1
N . This scheme dependence can be removed by normalizing with

respect to the two-point function of Js
ξ in the flat spacetime computed in the same scheme.
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The bare self-energy Σ(ωn, p) is computed from the second and third diagrams in the
Figure 5, which produce

Σ(Ωn, p) =
1

β

∑
m

ˆ
d2q

(2π)2
Gσ (Ωn − ωm, p− q)Gϕ (ωm, q)

+
1

β2

∑
m,l

ˆ
d2q

(2π)2
d2k

(2π)2
Gσ(0, 0)Gσ(ωm, q)

(k2 + ω2
l + σ∗)

2

1

(k + q)2 + (ωl + ωm)2 + σ∗
.

(2.87)

⟨Js
ξ ⟩β =

Js
ξ,bare

+

Js
ξ,bare

+

Js
ξ,bare

+

Js
ξ,bare

×
+

Js
ξ,bare

×+

×
δJs

ξ

Figure 5: The Feynman diagrams that contribute to the one-point function of the higher-
spin current ⟨Js

ξ ⟩β at the leading and the first subleading order in 1
N . The dotted lines

correspond to the propagator of σ field and crosses to the counter-term vertices that are
computed in the flat spacetime.

The expression (2.87) contains a logarithmic divergence that does not depend on the
temperature explicitly and can be explicitly subtracted with the use of counter-terms in the
following way in the cut-off scheme with UV regulator Λ [18],

Σren(ωn, p) = Σ(ωn, p)−
8

3π2

(
ω2
n + p2 + σ∗

)
log (βΛ) . (2.88)

Then the one-point function to this order in the 1
N

expansion is then

⟨Js
ξ,bare⟩β =

1

β

∑
n

ˆ
d2p

(2π)2
(pµξ

µ)s

ω2
n + p2 + σ∗ +

1
N
Σren(ωn, p)

+ . . . . (2.89)

Note that the above expression contains a UV divergence that renormalizes the operator
itself, which could be accounted for by the following counter-term to the first subleading
order in 1

N
,

⟨Js
ξ ⟩β =

1

β

∑
n

ˆ
d2p

(2π)2
(pµξ

µ)s

ω2
n + p2 + σ∗ +

1
N
Σren(ωn, p)

− ∆1
s

N

log (βΛ)

β

∑
n

ˆ
d2p

(2π)2
(pµξ

µ)s

ω2
n + p2 + σ∗

,

(2.90)
where ∆1

s is given in (2.84). This incorporates contributions from all diagrams in the Figure 5.
We then obtain the following sum-integral expression for the correction to the one-point
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function coefficient bs,

b0s +
1

N
b1s =

1

β

∞∑
n=−∞

ˆ
d2p

(2π)2
(pµξ

µ)s

ω2
n + p2 + σ∗ +

1
N
Σren(ωn, p)

. (2.91)

Specializing to the case s = 2 and expanding the integrand, we obtain exactly (2.60) that
produces the right answer for the one-point function of the stress-energy tensor.

In (2.91), a Lorentz invariant UV regulator for the sum-integral is implicit (see around
(2.33)). More explicitly, assuming that Σren(ωn, p) is analytic and does not contain additional
poles in ωn, we can follow the derivation of (2.80) to obtain the following contour integral
expression at general even spin s,

b0s +
1

N
b1s = −

1

2

ˆ
d2p

(2π)2

˛
γ

dz

2πi

(p1 − z)s

z2 − ϵ2p − 1
N
Σren(−iz, p)

coth
(z
2

)
, (2.92)

where γ is the same contour as in (2.80) and ϵp =
√
p2 +∆2. Pushing the contour to infinity

(we have implicitly suppressed the regulator ϵ in (2.80) and the divergences in ϵ are cancelled
by counter-terms), we obtain

b1s =

ˆ
d2p

(2π)2
(p1 − ϵp)s

(2ϵp)
3

Σren(−iϵp, p)
sinh2 ϵp

2

×
((

ϵp +
p1 + (s− 1)ϵp

p1 − ϵp
sinh ϵp

)
+ ϵp sinh ϵp ∂ϵ log Σren(−iϵp, p)

)
.

(2.93)

The above expression is manifestly finite but still challenging to evaluate numerically due to
the complicated expression for Σ(ωn, p) as in (2.87).19

3 Gross-Neveu Model and Variations

We now apply the methods developed in Section 2 to study thermal observables in d = 3

fermionic CFTs with vector-like large N limits. We will focus on the Gross-Neveu (GN)
model as well as its closely related variations.

19One may hope to derive a simpler expression for the one-point function coefficient b1s as we have done
for the s = 2 case in (2.67) (see also (2.40)) directly in terms of the leading self-energy Πβ(ωn, p) for the σ
field whose explicit form is given in (2.37).
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3.1 Review of the Gross-Neveu Model and Large N Expansion

We start by reviewing the celebrated Gross-Neveu (GN) model [54] (see also [18]), keeping
spacetime dimension d general for the moment. This model describes N interacting Dirac
fermions ψi governed by the following action

SGN = −
ˆ
ddx

(
ψ̄i/∂ψi −

1

2g0
(ψ̄iψi)

2

)
, (3.1)

which has an obvious U(N) global symmetry that rotates the Dirac fermions, as well as a
Z2 parity symmetry that acts as,20

Z2 : x→ x̃ ≡ (−x1, x2, . . . , xd) , ψ(x)→ γ1ψ(x̃) , ψ̄(x)→ −ψ̄(x̃)γ1 , (3.2)

which forbids the U(N) invariant Dirac mass term mψ̄iψi. For d > 2, the quartic interaction
is non-renormalizable and this theory needs a proper UV completion. This is provided for
2 < d < 4 [25] by the Gross-Neveu-Yukawa (GNY) model which has in addition a real
pseudoscalar φ (which is Z2 parity odd) and the following action,

SGNY =

ˆ
ddx

(
1

2
(∂φ)2 − ψ̄i/∂ψi + g1φψ̄

iψi + g2φ
2 + g4φ

4

)
. (3.3)

Correspondingly, in contrast to the O(N) scalar model, the fixed point of the GN model
resides in the UV, which coincides with the IR fixed point of the GNY model. This U(N)

symmetric and parity invariant critical point is commonly referred to as the GN or the GNY
CFT. It describes the second-order order-disorder phase transition with order parameter
φ ∼ ψ̄ψ and characterized by the spontaneous Z2 parity symmetry breaking and dynamical
mass generation for the fermions (see [18] for a more extensive review).

In d = 3, which will be the focus here, the GN (or GNY) CFTs of N (two-component)
Dirac fermions have an enhanced O(2N) global symmetry that rotates the 2N Majorana
fermions.21 Relatedly the theory is well-defined for N ∈ Z+

2
by imposing the Majorana

condition on the Dirac fermions. For different values of N , these fermionic CFTs govern the
universality classes of quantum phase transitions in a variety of condensed matter systems
of interacting fermions, including the quantum critical points in d-wave superconductors

20This comes from a time-reversal symmetry in the Lorentzian signature after Wick rotation.
21A small subtlety is that for N = 1

2 , the CFT is properly defined only in the GNY description as the
four-fermion coupling vanishes for a single Majorana fermion. Interestingly, this model has emergent N = 1
supersymmetry at the fixed point [55] and is also known as the N = 1 super-Ising CFT [56].
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[57–59] (for N = 4) and the spontaneous breaking of parity (time-reversal) symmetry at
the boundary of a topological superconductor (for N = 1

2
) [60]. The O(2N) symmetric

GN (GNY) CFT also has closely related cousins [61] defined with a different four-fermion
coupling (equivalently a different Yukawa-type coupling in the GNY description with possibly
additional scalar fields) and reduced global symmetry, such as the chiral Ising GNY model
with O(N)2⋊Zchiral

2 global symmetry which we discuss in Section 3.6 and the chiral XY GNY
model with (SO(N)×U(1))⋊ZC

2 symmetry (also known as the Nambu-Jona-Lasino model)
which we will come to in Section 3.7. They describe various quantum phase transitions for
spinless and spinful fermions on lattices including graphene [62–65]. There has been recent
progress in determining the flat space CFT data in these fermionic CFTs using the bootstrap
method (see [66] and references therein).

The large N solution of the GN model at criticality can be deduced in a similar way as
for the critical vector model. We introduce an auxiliary scalar field ϕ, analogous to the σ
field for the O(N) vector model and implement a Hubbard-Stratonovich (HS)transformation

SGN = −
ˆ
ddx

(
ψ̄i/∂ψi + ϕψ̄iψi +

g0ϕ
2

2

)
. (3.4)

We will set g0 = Ngt0 to obtain the proper large N limit with gt0 held fixed. Integrating out
the fermions, we arrive at the following effective Lagrangian for ϕ,

FGN(ϕ) = −N
(
tr log (/∂ + ϕ) +

gt0ϕ
2

2

)
. (3.5)

As explained in [25], the GN and the GNY models coincide in the scaling region where the
HS field ϕ coincides with the Yukawa pseudoscalar φ up to a normalization factor.

In the large N limit we can again argue that the path integral over ϕ is dominated by its
saddle-point, which satisfies the so-called gap equation

ˆ
R

ddk

(2π)d
tr

1

i/k + ϕ
= −gt0ϕ , (3.6)

or equivalently (for ϕ ̸= 0)

−
ˆ
R

ddk

(2π)d
cd

k2 + ϕ2
= gt0 , (3.7)

where cd ≡ tr 1 counts the components of the Dirac spinor in d spacetime dimensions (i.e.
c3 = 2 in the case of interest). This equation again contains divergences, that we cancel by
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introducing a renormalized coupling constant gt,

gt = gt0 + cd

ˆ
R

ddk

(2π)d
1

k2
= cd

ˆ
R

ddk

(2π)d
ϕ2

(k2 + ϕ2)k2
= cdKdϕ

d−2 + . . . , (3.8)

where Kd is scheme-independent and given by (2.11) and in the last equality above we have
neglected further corrections that are scheme-dependent (and suppressed near the critical
point). To reach criticality, we fine-tune gt such that ϕ = 0 so that the fermions become
massless.22 One can check that at this point the HS field ϕ is also massless. Indeed, the
inverse propagator for ϕ is,23 in the dimensional regularization scheme,

G−1
ϕ (p) = −gt − cd

ˆ
R

ddk

(2π)d

[
k · (k + p)

k2(k + p)2
− 1

k2

]
. (3.9)

The second term on the RHS above vanishes as p→ 0 and we have G−1
ϕ (0) = −gt. Therefore

ϕ is massive unless gt = 0.

3.2 Free Energy at the Subleading Order

The thermal free energy density or equivalently the one-point function of the stress-energy
tensor in the GN CFT has the same structure as a series in 1

N
as in (2.21) for the critical

O(N) model. In this section we will compute the leading contribution FGN,0 ∝ N and
the first subleading correction FGN,−1 ∝ N0 in this expansion. The computation of both
contributions is similar to the critical O(N) model. We will comment on the differences and
the subtleties associated with these fermionic CFTs along the way.

We start with the leading contribution FGN,0(β). We assume that at finite temperature,
the dominant configuration for the HS field ϕ is homogeneous and thus the free energy
density is

FGN(ϕ) =−
N

β
tr log(/∂ + ϕ) = −N

β

∑
n∈Z

ˆ
d2p

(2π)2
log(p2 + ω2

n + ϕ2) , (3.10)

where the saddle-point value of ϕ will be fixed shortly. There are two spin-structures for the
fermions that are compatible with the O(2N) global symmetry, corresponding to either peri-
odic or anti-periodic boundary conditions along S1

β. Correspondingly the allowed frequencies

22For greater gt, the gap equation admits a nonzero solution for ϕ which describes the Z2 parity symmetry
breaking phase [18].

23The pseudoscalar ϕ here (with propagator Gϕ) is not to be confused with the scalar fields ϕi in the O(N)
scalar model studied in Section 2.
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in the sum of (3.10) are,

periodic : ω+
n =

2πn

β
, antiperiodic : ω−

n =
2π(n+ 1/2)

β
, (3.11)

and the latter is the standard thermal boundary condition for fermions. In the periodic case,
the free energy density (3.10) as a function of ϕ can be read off from (2.28) by comparing
(3.10) and (2.22),

FP
GN(ϕ) = −2Fren(ϕ

2) . (3.12)

One finds from (2.31) that the saddle-point and the final free energy density are24

ϕ =
√
σ∗ =

1

β
log

(
3 +
√
5

2

)
, FP

GN,0(β) = FP
GN(
√
σ∗) =

4ζ(3)

5π

N

β3
. (3.13)

Note that FP
GN,0 is positive, naively implying that the specific heat of such model is negative,

but we are considering the periodic boundary condition, which does not define a conventional
thermal ensemble.

In the anti-periodic case, following a similar derivation to (2.28), the free energy density
before plugging in the saddle-point for ϕ reads (see also [10,11]),25

FAP
GN(ϕ) =

N

2πβ3

(
1

3
(βϕ)3 + 2βϕLi2

(
−e−βϕ

)
+ 2Li3

(
−e−βϕ

))
. (3.14)

Formally, FAP
GN(ϕ) has three critical points,

ϕ = 0 , ϕ = ±ϕ∗ = ±
2πi

3β
. (3.15)

The last two solutions ϕ = ±ϕ∗ are equivalent by the Z2 parity symmetry and have lower
free energy density than the first solution.

However we should remember that in the GN model the path integral contour for the HS
field ϕ is along the real axis (in contrast to the scalar O(N) model) [18]. This is obvious from
its unitary UV completion, the GNY model (3.3), since ϕ is identified up to a real rescaling
with the real pseudoscalar field φ. Furthermore, one can check that this defining integration
contour is a steepest descent contour for constant ϕ where ϕ = 0 is the stable saddle-point,
whereas the other complex saddle-points ϕ = ±ϕ∗ are unstable when approached in the real

24Note that there is also a saddle at ϕ = 0 which sub-dominate.
25This is also studied for various d in [67].
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direction.
Consequently to describe the large N GN CFT at finite temperature, we pick ϕ = 0 in

(3.15) as our saddle-point solution. Then the leading contribution to the free energy density

FAP
GN,0(β) = FAP

GN(0) = −
3Nζ(3)

4πβ3
= −0.28696995N

β3
, (3.16)

coincides with that of N free Dirac fermions, as was found in [10, 11]. Nonetheless, we will
see that at the subleading order in 1

N
, this coincidence is lifted.

The subleading 1
N

corrections to the free energy density in the GN CFT comes from the
fluctuations of ϕ around its saddle-point. This is related to the computation of the propagator
for ϕ in such a background. In this case, as shown in Appendix C, the ϕ propagators take
the following forms for the periodic and anti-periodic spin structures respectively,

(
GP

ϕ

)−1
(Ω, p, ϕ+) =N

[
1

πβ
log

(
2 sinh

βϕ+

2

)
+ 2

(
P 2 + 4ϕ2

+

)
Π+

β (Ω, p)

]
(
GAP

ϕ

)−1
(Ω, p, ϕ−) =N

[
1

πβ
log

(
2 cosh

βϕ−

2

)
+ 2

(
P 2 + 4ϕ2

−
)
Π−

β (Ω, p)

]
,

(3.17)

where P = (Ω, p) is a short-hand for the three-momentum with P 2 = Ω2+p2, and ϕ+ =
√
σ∗

and ϕ− = 0 are the corresponding saddle-points. For fermions obeying the periodic boundary
condition Π+

β (Ω, p) = Πβ(Ω, p) as is given in (2.36) (see also (2.37)) and for the anti-periodic
case Π−

β (Ω, p) is given in (C.8).
The subsequent 1

N
correction to the free energy density of the GN CFT with the periodic

boundary condition is related to the O(N) answer as follows,

FP
GN,−1(β) = −

1

2β

∑
n

ˆ
d2p

(2π)2
log
[
GP

ϕ(ωn, p,
√
σ∗)
]

=
1

2β

∑
n

ˆ
d2p

(2π)2
log
(
P 2 + 4σ∗

)
+ FO(N),−1(β) ,

(3.18)

where we have already computed the second term in the last line in (2.46) and the first term
after proper renormalization follows from (2.28),

1

2β

∑
n

ˆ
d2p

(2π)2
log
(
P 2 + 4σ∗

)
−−−−−−→
renormalize

1

N
Fren(4σ∗) = −

0.25927703

β3
. (3.19)

We thus arrive at the final answer of the subleading free energy density for the GN CFT in
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the periodic spin structure,

FP
GN,−1(β) = FO(N),−1(β) +

1

N
Fren(4σ∗) = −

0.19528150

β3
. (3.20)

For the anti-periodic spin structure, we have instead

FAP
GN,−1(β) = −

1

2β

∑
n

ˆ
d2p

(2π)2
logGAP

ϕ (ωn, p, 0) . (3.21)

Proceeding as above, after renormalization, it is given by,

FAP
GN,−1(β) =

1

2β

∑
n

ˆ
d2p

(2π)2
log

(
8ΠAP

GN(ωn, p, 0)√
ω2
n + p2

)
+

1

2N
Fren(0) =

−0.01340099
β3

, (3.22)

where the self-energy ΠAP
GN is given in (C.8) and in the last step we have applied the numerical

procedure as in Section 2.3 to evaluate the sum-integral above.

3.3 Chemical Potential Dependence and Phase Transition

Analogously to the critical O(N) model analyzed in Section 2.4, here we study the GN
model with a non-zero imaginary chemical potential. We consider the U(1) ⊂ O(2N) global
symmetry subgroup for the GN CFT under which the Dirac fermions ψi all have charge 1
and introduce an external constant electromagnetic potential A0 = µi

β
with µ ∈ [0, 2π). It

amounts to shifting frequencies of the fermions to βω̃n ≡ βω−
n + µ. Note that in particular

µ = π corresponds to the periodic spin structure for the fermions. The leading free energy
density as a function of µ and the one-point function of ϕ field (denoted by ϕ̃ below) is

FGN(ϕ̃, µ) = −
N

β

∑
n

ˆ
d2p

(2π)2
log
(
ω̃2
n + p2 + ϕ̃2

)
=

N

2πβ3

(
ϕ̃3

3
+ ϕ̃Li2(−e−ϕ̃+iµ) + ϕ̃Li2(−e−ϕ̃−iµ) + Li3(−e−ϕ̃+iµ) + Li3(−e−ϕ̃−iµ)

)
,

(3.23)

which coincides with (3.14) for µ = 0 and with (3.12) for µ = π as expected. The gap
equation is modified by the nontrivial chemical potential. While the real solution ϕ = 0

remains valid, the pair of complex solutions in (3.15) are deformed to,

ϕ̃∗(µ) = arccosh

[
1

2
− cosµ

]
, (3.24)
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which becomes real for 2π
3
≤ µ ≤ 4π

3
and is purely imaginary elsewhere for µ ∈ [0, 2π).

Furthermore for this intermediate range of µ around µ = π, it is the nonzero saddle (3.24)
that is stable and dominates the free energy, which is consistent with what we found for
the periodic spin structure in (3.13). This implies a phase transition as we dial µ up from
µ = 0 where the real stable saddles exchange dominance. This transition is first-order and
characterized by the nonzero expectation value of ϕ ∼ ψ̄iψi, which signals breaking of the
spatial parity.26 See Figure 6 for the resulting free energy density FGN,0(β, µ) in the leading
large N limit.

1 2 3 4 5 6
μ

-0.4

-0.2

0.2

0.4

FGN,0(β,μ)

Figure 6: The dependence of the leading free energy density FGN,0(β, µ) FGN′,0(β, µ) of
the GN (solid) and GN′ (dashed) CFT as a function of the imaginary chemical potential
µ (here β = 1). The middle portion (colored in red) is dominated by the nontrivial real
saddle (3.24).

To compute the 1
N

correction, we proceed as before using the propagator of the ϕ field
on such a thermal background with imaginary chemical potential (see (C.10) for the explicit
expression) and the resulting free energy density FGN,−1(β, µ) is plotted in Figure 7, taking
into account the switching of branches at µ = 2π

3
, 4π

3
between which the relevant saddle is

given by (3.24).
As before, from the dependence of the free energy on µ, we can extract the Wilson

coefficient b in (1.19) which governs the symmetry resolved density of states (1.21) at high
energy. Here for the O(2N) symmetry of the GN CFT, we find

Nb = Nb0 + b−1 +O
(
N−1

)
, (3.25)

26This is a parity transformation that reflects a spatial direction on R2 and is preserved by the chemical
potential.

39



with27

b0 =
2 log 2

π
, b−1 = −0.1338± 0.0002 . (3.26)

1 2 3 4 5 6
μ

-0.15

-0.10

-0.05

FGN,-1(β,μ)

Figure 7: The subleading contribution to the free energy density FGN,−1(β, µ) as a function
of the imaginary chemical potential µ of the GN CFT (here β = 1). The middle portion
(colored in red) comes from fluctuations around the nontrivial saddle (3.24).

3.4 The Alternative Gross-Neveu Model and Parity Breaking

As alluded to before, the large N analysis of the Gross-Neveu model after the HS transforma-
tion, suggests an alternative Gross-Neveu Model defined by a different integration contour
for the zero mode of ϕ which runs along the imaginary axis. We refer to this new model as
GN′ to distinguish from the usual GN model. As a consequence of the contour rotation, we
expect the GN′ theory to become non-unitary. Nonetheless, at least in the large N limit,
the conformal phase at finite temperature exists in the GN′ model, which shares similarities
with the Lee-Yang edge singularity (see also [68]).

In this case, with the rotated contour, the relevant saddle-point at zero chemical potential
is given by ϕ = ±ϕ∗ = ±2πi

3β
from (3.15) which breaks the Z2 parity. The leading contribution

to the thermal free energy density is

FAP
GN′,0(β) = −

N

4πβ3

(
8π

3
Cl2(π/3)−

4

3
ζ(3)

)
= −0.54908554N

β3
(3.27)

where the Clausen function is related to usual polylogarithms by

Cl2(z) ≡ ImLi2(e
iz) . (3.28)

27As in the case of the critical O(N) model, the error for b−1 is a standard error that is computed using
NonLinearModel in Mathematica.
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The leading 1
N

correction to the free energy can be obtained in a similar way as in the case
of the unitary GN model,

FAP
GN′,−1(β) =

1

2β

∑
n

ˆ
d2p

(2π)2
[
log
(
P 2 + 4ϕ2

∗
)
+ logΠ−

β (P )
]
. (3.29)

At first glance, for ϕ2
∗ < 0 the integrand becomes imaginary for some range of the integral-

sum, and therefore seems unphysical. However, we should remember that the contour of
integration for the field ϕ needs to be deformed (to be the steepest descent contour) in order
to implement a proper saddle-point approximation. To this end, we just need to take the
absolute value of the argument of logarithm (that corresponds to a slight tilt of the contour
of integration), we then arrive at

FAP
GN′,−1(β) =

1

2β

∑
n

ˆ
d2p

(2π)2
log
(
16
√
ω2
n + p2Π−

β (ωn, p)
)
− 1

2N
Fren(0) +

1

N
Fren(4ϕ

2
∗)

=
0.14222693

β3
,

(3.30)
where we have used from (2.28),

1

2β

∑
n

ˆ
d2p

(2π)2
log
∣∣P 2 + 4ϕ2

∗
∣∣ −−−−−−→

renormalize

1

N
Fren(4ϕ

2
∗) =

0.53611329

β3
, (3.31)

and also (2.29).
For the periodic spin structure, a similar calculation gives

FP
GN′,0(β) =

ζ(3)

π

N

β3
, (3.32)

which comes from (3.12) with ϕ = 0. At the first subleading order in 1
N

, taking into account
the fluctuations of the HS field ϕ, we find28

F P
GN′,−1(β) = −

0.08± 0.005

β3
. (3.33)

We can also determine the Wilson coefficient b for the O(2N) global symmetry of the
28The error in this computation is significantly bigger than in the analogous computation in the unitary

GN model due to the spurious divergences (that eventually cancel) when the self-energy of the HS field ϕ is
computed around ϕ = 0.
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GN′ model from the dependence of its free energy on the chemical potential. The result is

Nb = Nb0 + b−1 +O
(
N−1

)
(3.34)

with
b0 =

2√
3
, b−1 = −0.562± 0.005 . (3.35)

One might wonder how the GN and GN′ models could have such different free energies
given that these two theories coincide at the perturbative level. These different free energies
translate into drastically different behavior for the asymptotic density of states in the putative
CFTs. This difference could arise only at the non-perturbative level, which can be studied
with the methods developed in [69]. We see that if we consider the GN′ model and integrate
the HS field ϕ over the imaginary contour we wouldn’t encounter additional instantonic
contributions while in the GN model such contributions are present. Consequently, the
scaling dimensions of the GN′ and the GN models would differ non-perturbatively.

3.5 One-point Functions of Higher-Spin Currents

As explained before, the free energy density of the CFT determines the thermal one-point
function of the stress-energy tensor. The stress-energy tensor belongs to a tower of spin-
ning operators known as the higher-spin currents, which in the GN model are given by the
following, with s ≥ 1,

J̃s
µ1...µs

=

(
1

Ns

s∑
ℓ=1

ψ̄i∂µ1 · · · γµℓ
· · · ∂µsψi − traces

)
+ descendants , (3.36)

similar to those in the O(N) scalar model case (see (2.69)).29 As before, at finite temperature,
the one-point functions are required to take the following form

⟨J̃s
µ1...µs

⟩
β,± =

b̃±,s

β∆̃s
(eµ1 . . . eµs − traces) , (3.37)

where eµ is a unit vector along the S1
β and ∆̃s is the scaling dimension of the (weakly broken)

higher-spin current,

∆̃s = s+ 1 + γ̃s , (3.38)

29See also recent work [67] which studies the thermal one-point functions of higher-spin currents for general
d.
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with the anomalous dimension γ̃s that is suppressed by 1
N

and can be found in [53, 70–72].
The ± subscript in (3.37) refers to the choice of spin structure along the S1

β. To compute the
coefficients b̃±,s in the leading large N limit, we introduce an auxiliary null three-vector ξ as
in Section 2.6 (see around (2.72)). Following the same procedure there with the same type
of Feynman diagrams (the propagating bosons are substituted by the fermions), we find that

b̃0±,s =
∑
ω±
n

ˆ
d2p

(2π)2
(ipµξ

µ)s−1 tr

[
iγνξ

ν

i/p+ ϕ±

]
= 2

∑
n∈Z

ˆ
d2p

(2π)2
(ipµξ

µ)s

(ω±
n )

2 + p2 + ϕ2
±
, (3.39)

where for ϕ+ =
√
σ∗ we sum over βω+

n = 2πn, and for ϕ− = ϕ∗ we sum over βω−
n = π(2n+1)

with n ∈ Z. The UV divergences in the above expressions are regularized as for the critical
O(N) model.

By comparing (3.39) with (2.74), for the periodic boundary condition ϕ+ =
√
σ∗ and all

one-point functions are related to those in the critical O(N) model simply by30

b̃0+,s = 2b0s . (3.40)

For the anti-periodic boundary condition, we consider the following generating function
similar to (2.75),

∞∑
s=0

b̃0−,sξ
s

s!βs+1
=

2

β

∑
n∈Z

ˆ
d2p

(2π)2
eipµξ

µ

(ω−
n )

2 + p2 + ϕ2
∗
=

1

2π

∑
m̸=0

(−1)m e−ϕ∗
√

mβ(mβ−2ξ)√
mβ(mβ − 2ξ)

, (3.41)

Expanding the RHS of the above equation we find that b̃0−,s = 0 for s odd as expected and
for s even we have,

b̃0−,s =
1

2π

s∑
n=0

2n−s+1(2s− n)!
n!(s− n)!

βnϕn
∗Lis+1−n

(
−e−βϕ∗

)
, (3.42)

We can also derive an alternative formula for b̃0−,s starting from (3.39). Following the proce-
dure around (2.80), we arrive at the following integral expression (setting β = 1 below), for
even spin s,

b̃0−,s = −2
ˆ

d2p

(2π)2
(ϵp − p1)s

ϵp

1

eϵp + 1
, (3.43)

30This is no longer true at the subleading order in 1
N as we have seen for the stress-tensor one-point

function which follows from (3.18).

43



where ϵp ≡
√
p2 + ϕ2

∗. The above integral reproduces the sum expression (3.42) thanks to
the following integral identity,

Lis
(
−e−ϕ∗

)
= − 1

Γ(s)

ˆ ∞

ϕ∗

dz
(z − ϕ∗)

s−1

ez + 1
. (3.44)

The subleading 1
N

corrections b̃1±,s to the one-point functions of these higher-spin currents in
the fermionic CFT can be in principle computed in a similar way as describe near the end
of Section 2.6 for the O(N) scalar model.

3.6 The Chiral Ising Gross-Neveu-Yukawa Model

As it was explained in the previous section, another interesting generalization of the usual
GN or GNY model is the chiral Ising GN or GNY model with a different symmetry, which has
many applications in condensed matter systems including the semimetal-insulator transition
in graphene [62–64]. The chiral Ising GN model is defined by splitting the N Dirac fermions
into two groups as ψi = (χL

a , χ
R
a ) where a = 1, . . . , N

2
with the following action that has a

different quartic interaction compared to (3.1),31

ScGN = −
ˆ
ddx

(
χ̄La/∂χL

a + χ̄Ra/∂χR
a −

1

2g0
(χ̄LaχL

a − χ̄RaχR
a )

2

)
. (3.45)

Consequently the global symmetry of the model is reduced to (U(N/2)L×U(N/2)R)⋊Zchiral
2

where the so-called “chiral” Zchiral
2 exchanges χL

a and χR
a . In d = 3, this symmetry is enhanced

to O(N)2 ⋊ Zchiral
2 as mentioned previously.

For 2 < d < 4, the UV completion of the model (3.45) is provided by the chiral Ising
GNY model, with one additional real pseudoscalar φ and the following action,

ScGNY =

ˆ
ddx

(
1

2
(∂φ)2 − χ̄La/∂χL

a − χ̄Ra/∂χR
a + g1φ

(
χ̄LaχL

a − χ̄RaχR
a

)
+ g2φ

2 + g4φ
4

)
.

(3.46)

Note that φ is odd under both the “chiral” Zchiral
2 and the parity (3.2) thus invariant under

the diagonal combination. The latter is identified with the preserved parity (time-reversal)
symmetry at the semimetal-insulator transition in graphene for which φ is the order param-
eter [62–64] (see also [66]). In the scaling region, the chiral Ising GN and GNY models are

31Again there is little difference to the description of the model when N is odd for spacetime dimension
d = 3, in which case we simply write the action in terms of the Majorana fermions.
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expected to coincide [25].
Implementing the HS transformation, the action (3.45) can be recast into the following

form

ScGN = −
ˆ
ddx

(
χ̄La/∂χL

a + χ̄Ra/∂χR
a + ϕ

(
χ̄LaχL

a − χ̄RaχR
a

)
+

1

2
g0ϕ

2

)
, (3.47)

where the HS field ϕ is again identified up to an normalization with the pseudoscalar φ in
the chiral Ising GNY model (3.46). We then integrate out the fermions and arrive at the
following effective Lagrangian for the field ϕ

FcGN(ϕ) = −N
(
tr log (i/∂ + ϕ) + tr log (i/∂ − ϕ) + 1

2
gt0ϕ

2

)
, (3.48)

where g0 = gt0N as before with gt0 held fixed in the large N limit. Note the two terms in
(3.48) where ϕ comes with opposite signs. For a general configuration of ϕ, these two terms
are not related to each other and that’s why the chiral Ising GNY (or GN) model is different
from the usual GNY model. Nonetheless, as we explain below, it is easy to show that the
leading and the first subleading corrections to the free energy density coincide.32 This is
because for constant ϕ, the first two terms in (3.48) are identical and the saddle-point of ϕ
obeys the same gap equation as for the GN model,

ˆ
R

ddk

(2π)d
tr

1

i/k + ϕ
= −gt0ϕ , (3.49)

and by fine-tuning the coupling gt0 we can bring system to criticality as before. The free
energy density of the chiral Ising GN model has the same large N expansion as before,

F±
cGN(β) = F±

cGN,0(β) + F±
cGN,−1(β) + F±

cGN,−2(β) + . . . , (3.50)

where FcGN,α scales asN1+α. The above discussion indicates that the leadingN contributions
agree F±

cGN,0 = F±
GN,0. Furthermore, the first subleading corrections also coincide F±

cGN,−1 =

F±
GN,−1 because the largeN propagator of the field ϕ is an even function of its constant saddle-

point value (see (3.17)). However it is easy to see that already at the second order, there
is a difference between the two versions of the GN model in the free energy density, namely

32In fact the same analysis below easily extends to the free energy on S1β × S2R and the same conclusion
that the free energies for the GN model and its chiral version only differ at the 1

N order continue to hold.
It would be interesting to study this difference in free energies in relation to the difference in the operator
spectrum as was analyzed in [66].
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F±
cGN,−2 ̸= F±

GN,−2, which arises from the different contributions of the vacuum diagrams in
Figure 8 at non-zero temperature. The same conclusion holds for the thermal one-point
function of general higher-spin currents defined in (3.36).

Figure 8: The first two diagrams in the 1
N expansion whose contributions to the free

energy density differ between the GNY and the chiral Ising GNY models (due to the choice
of signs at the cubic vertices in the latter). The solid lines denote the propagators for the
fermions ψi and the dotted lines for the pseudoscalar φ.

3.7 The Nambu–Jona-Lasinio (NJL) Model

Another important generalization of the GN model reviewed in Section 3.1 is the Nambu-
Jona-Lasinio (NJL) model. It is commonly defined in terms of four-component Dirac fermions
Ψi with i = 1, . . . , Nf (which naturally arise in the d = 4 model) with the following action,

SNJL = −
ˆ
ddx

(
Ψ̄i/∂Ψi −

1

2g0

(
(Ψ̄iΨi)

2 − (Ψ̄iγ5Ψi)
2
))

, (3.51)

where γ5 is the usual chirality matrix for d = 4 Dirac spinors.33 The global symmetry
of the theory is (U(Nf ) × U(1)) ⋊ ZC

2 where U(Nf ) is the obvious flavor symmetry that
rotates the Dirac fermions Ψi, the extra U(1) “chiral” symmetry acts by Ψi → eiαγ5Ψi, and
ZC

2 is the charge conjugation symmetry. For d = 3, the global symmetry is enhanced to
(SO(2Nf )× U(1))⋊ ZC

2 .
As is the case for the other fermionic models with four-fermion interactions, the model

(3.51) is non-renormalizable for d > 2 and its UV completion for 2 < d < 4 is provided
by the Nambu-Jona-Lasinio-Yukawa (NJLY) model which contains one complex scalar field
φ = φ1 + iφ2 and has the following action [25],

SNJLY =

ˆ
ddx

(
1

2
|∂φ|2 − Ψ̄i/∂Ψi + g1Ψ̄

i(φ1 + iγ5φ2)Ψi + g2|φ|2 + g4|φ|4
)
. (3.52)

The scalar field transforms under the chiral U(1) symmetry as φ → eiαφ. In the scaling
33We follow the gamma matrix conventions in [66] (see also [73]). In particular, the four-fermion interaction

of the chiral Ising GN model with N = 2Nf discussed in Section 3.6 takes the form (Ψ̄iΨi)
2 in terms of these

four-component Dirac fermions and the chiral symmetry Zchiral
2 acts by Ψ→ γ5Ψ.
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region, the NJL and the NJLY models are expected to coincide [25], where the theory
undergoes a second-order phase transition with order parameter φ and spontaneous U(1)
chiral symmetry breaking.

The NJL (NJLY) model is also known as the chiral XY GN (GNY) model in the condensed
matter literature, where it describes various quantum phase transitions with complex order
parameters (see for example [74–78]). In particular, it governs the superconducting phase
transition in graphene at Nf = 2 [74, 75] and the semimetal-VBS (valence bond solid)
transition in graphene and graphene-like material for various values of Nf [76] as well as
the critical surface states of certain topological insulators with emergent supersymmetry at
Nf = 1

2
[75, 79,80].34

To solve the NJL model in the large N = 2Nf expansion, we proceed by introducing a
complex HS field ϕ = ϕ1 + iϕ2, which is identified (up to an overall normalization) with
the complex scalar φ in the NJLY model near the critical point. We then integrate out the
Dirac fermions and obtain the following effective Lagrangian, with

FNJL(ϕ) = −
N

2

(
tr log (/∂ + ϕ1 + iγ5ϕ2) + gt0|ϕ|

2) , (3.53)

where the rescaled coupling gt0 is related to the coupling constant in (3.51) by g0 = Ngt0 and
kept fixed in the large N limit. Again by fine-tuning gt0 we can bring the model to its critical
point which is described by the chiral XY GN (or GNY) CFT. We exploit the semi-classical
approximation in the large N limit as before and derive the gap equation that governs the
dominant saddle which we assume to be described by a homogeneous configuration of the
complex HS scalar ϕ. Taking advantage of the U(1) symmetry, we can always set ϕ2 = 0. At
zero temperature, the gap equation is then equivalent to the one for the ordinary GN model
(3.7) with ϕ = ϕ1 and the same critical value of the coupling gt0 applies with the CFT vacuum
described by ϕ = 0. The same equivalence holds for the gap equation and its solution at
finite temperature for either periodic or anti-periodic spin structures. Consequently, the
leading large N contribution to the free energy density of the critical NJL (or NJLY) model
with Nf = N

2
agrees with that of the critical GN (or GNY) model with N two-component

Dirac fermions (see (3.13) and (3.16)),

FP,AP
NJL,0(β) = FP,AP

GN,0 (β) . (3.54)

34The corresponding CFT has 3d N = 2 supersymmetry and is also known as the N = 2 super-Ising
model whose operator spectrum has been analyzed using conformal bootstrap [81].
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Nonetheless, as we show explicitly below, they start to differ at the first subleading order in
1
N

.
To obtain the 1

N
correction FP,AP

NJL,−1 to the free energy density, we compute the induced
propagators for the HS fields ϕ1, ϕ2, which take the following form

(
G+

ϕ

)−1
(Ω, p) =

N

πβ
log

(
2 sinh

βϕ+

2

)(
1 0

0 1

)
+ 2N

(
P 2 + 4ϕ2

+ 0

0 P 2

)
Π+

β (Ω, p) , (3.55)

and

(
G−

ϕ

)−1
(Ω, p) =

N

πβ
log

(
2 cosh

βϕ−

2

)(
1 0

0 1

)
+ 2N

(
P 2 + 4ϕ2

− 0

0 P 2

)
Π−

β (Ω, p) , (3.56)

with ϕ± and Π±
β (Ω, p) the same as around (3.17) where the ± label the periodic and anti-

periodic spin structures respectively. Note that the additional zero of
(
G±

ϕ

)−1

22
at P 2 = 0

corresponds to the Goldstone boson for the chiral U(1) symmetry, which contributes to the 1
N

correction to the free energy density of the critical NJL model. Comparing with the analysis
in Section 3.2 for the GN model, we find that the full 1

N
correction in the NJL model for the

free energy density is given by,

FP
NJL,−1(β) = 2FP

GN,−1(β)−Fren(4σ∗) + Fren(0) = −
0.32259927

β3
, (3.57)

for the periodic spin structure, and analogously for the anti-periodic (thermal) spin structure,
the result is

FAP
NJL,−1(β) = 2FAP

GN,−1(β) =
−0.02680198

β3
. (3.58)

As promised, the above clearly differ from the results in the GN model (see (3.20) and (3.30)).
Similar to the GN′ model obtained from contour rotation compared to the familiar GN

model, the NJL model also has an analogous cousin at large N which we refer to as the NJL′

model. Once again, to the leading large N limit, its free energy coincides that of the GN′

model,

FAP
NJL′,0(β) = FAP

GN′,0(β) , (3.59)

whereas this degeneracy is lifted at the subleading order,

FAP
NJL′,−1(β) = 2FAP

GN′,−1(β)−Fren(4ϕ
2
∗) + Fren(0) = −

0.44297273

β3
. (3.60)
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The Wilson coefficient b for the SO(N) symmetry of the NJL model is straightforward
to obtain given the above discussion, after turning on a chemical potential. It is easy to see
that the leading contribution coincides with the answer for the GN model and the subleading
contribution is twice of that for the GN model because of the presence of two real HS fields.
Thus we have the following (comparing to (3.26)),

b =
2 log 2

π
− 0.2676

N
. (3.61)

Let us now consider more general thermal observables given by one-point function of the
higher-spin currents in the critical NJL model. They are defined in a way analogous to (3.36)
but in terms of the four-component Dirac fermions,

Ĵs
µ1...µs

=

(
1

Ns

s∑
ℓ=1

Ψ̄i∂µ1 · · · γµℓ
· · · ∂µsΨi − traces

)
+ descendants . (3.62)

The corresponding one-point function coefficients b̂±,s (defined in a similar way as in (3.37))
can be computed from Feynman diagrams as in Section 3.5. As one may expect from the
discussion around (3.54) that concerns the free energy density (equivalently the stress-energy
tensor one-point function), these more general one-point functions in the critical NJL model
also coincide with those in the ordinary GN model (see (3.40) and (3.42)) to the leading
order in the 1

N
expansion, namely

b̂0±,s = b̃0±,s . (3.63)

We expect this agreement to fail at the subleading order which we have demonstrated ex-
plicitly for s = 2 (see around (3.57) and (3.58)) and for general s by an analysis parallel to
that in Section 2.6.

4 Chern-Simons Quantum Electrodynamics

We now study finite temperature observables in d = 3 vector-like large N CFTs whose
definition involves dynamical gauge fields. For concreteness, we focus on perhaps the simplest
class of nontrivial gauge theories, namely the quantum electrodynamics (QED) with N

massless Dirac fermions and Chern-Simons coupling k (which we refer to as CSQED), and
present explicit results for its free energy density at the subleading order in the 1

N
expansion

as a function of the ’t Hooft coupling λ = 4πN
k

.
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4.1 Review of the CSQED and Large N Thermal Observables

The CSQED model in d = 3 describes the interaction of N two-component Dirac fermions
with the electromagnetic field Aµ,

SQED =

ˆ
d3x

[
1

4e20
F 2
µν − ψ̄iγµ (∂µ + iAµ)ψi −m0ψ̄

iψi +
k

4π
ϵµνρAµ∂νAρ

]
, (4.1)

with Maxwell coupling e0, fermion bare mass m0 and Chern-Simons coupling k that satisfies
the quantization condition k + N

2
∈ Z.35 The theory has a U(N)/Γ ⋊ ZC

2 global symmetry
where the U(1) subgroup of U(N) comes from the topological symmetry (under which the
monopole operators are charged), the SU(N) subgroup is the flavor symmetry of the Dirac
fermions, ZC

2 is the charge conjugation symmetry and the discrete quotient Γ ⊂ U(1) ensures
that the symmetry acts faithfully on the local operators [83,84].36

There is substantial evidence that at sufficiently large N , upon tuning the bare mass m0,
the 3d CSQED flows to a nontrivial U(N) invariant CFT at long distance [85–90], which we
will refer to as the conformal CSQED.37 This is particularly well-established by considering
the limit of N → ∞ and studying the 1

N
expansion (see for example [12, 97–101]).38 See

also [103–106] for recent works on bootstrapping the corresponding CFTs directly at finite N .
Such CFTs are known to describe exotic phases of quantum matter in two spatial dimensions
including the Dirac spin liquid [107–112] for vanishing Chern-Simons level k = 0 and various
values of N depending on the underlying two-dimensional lattice. For nonzero Chern-Simons
level k ̸= 0, they also emerge near the quantum phase transitions between different quantum
hall states [113]. Below we explain how to extract finite temperature observables for these
quantum critical points in the large N limit, taking into account the subleading effects.

By integrating out the fermions, we arrive at the following effective Lagrangian for the
35Note that the mass term in (4.1) is parity-odd and SU(N) invariant. The CS level k here (also known

as the effective CS level) includes the formal N
2 shift from the gauge invariant regularization of the fermion

determinant using the eta invariant exp
(
N
2 πiη(A)

)
[82]. The theory is parity invariant only when N is even

and the effective CS level vanishes k = 0.
36For k < N

2 , Γ = ZN/2−k and otherwise Γ = ZN/2+k. See [83] for details.
37These abelian gauge theories are also related by conjectured IR dualities to certain nonabelian Chern-

Simons-matter theories [91–96]. Consequently our results for the abelian theories in the large N limit give
rise to predictions for the corresponding thermal observables in these nonabelian theories, which are strongly
coupled, due to the very nature of these level/rank type dualities.

38At small enough even N ≤ N∗ for even critical flavor number N∗, the QED model with vanishing
Chern-Simons level k = 0 is believed to exhibit spontaneously “chiral” symmetry breaking of SU(N) →
SU(N/2) × SU(N/2) × U(1) due to certain parity-even SU(N) invariant scalar operator (quartic in the
fermions) becoming relevant and inducing a nonzero expectation value for the order parameter (quadratic
in the fermions) [85,86,90,102].
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gauge field,

FCSQED(A) =
N

4g20
F 2
µν −N tr log [/∂ + i /Aµ +m0] +

N

λ
iϵµνρAµ∂νAρ , (4.2)

where we have rescaled the couplings

e20 =
g20
N
, k =

4πN

λ
, (4.3)

and we take the large N limit with g0 and λ kept fixed. Note that the gauge field Aµ here
plays the role of the ϕ field in the case of the GN model (similarly the σ field for the scalar
O(N) model).

It is easy to see in the large N limit that the theory has a nontrivial fixed point in the
IR for any initial coupling g20. The quantum correction to the fermion mass in the IR can
be cancelled by properly fine-tuning the bare mass parameter m0 (and in the dimensional
regularization scheme this corresponds to setting m0 = 0).39 The propagator for the gauge
field Aµ can be computed from standard Feynman diagrams (see Figure 9) and in the Lorentz
gauge is given by (see also [12]),

D−1
µν (P ) =

1

e20

(
P 2gµν − PµPν

)
+

k

4π
ϵµνρP

ρ +
N

16P

(
P 2gµν − PµPν

)
, (4.4)

and at large distance,

D−1
µν (P ) −−−→

P→0

1

λ
ϵµνρP

ρ +
1

16P

(
P 2gµν − PµPν

)
, (4.5)

which indeed takes the right form that is required for conformal symmetry. In particular,
it implies that the gauge invariant operator Fµν is a primary operator of scaling dimension
∆ = 2 in the large N limit. This also means that in the IR we can neglect the Maxwell
action since it is irrelevant.

Figure 9: The leading diagram in the 1
N expansion that contributes to the photon self-

energy. The dashed line corresponds to the fermion loop and the curved lines correspond
to the photon legs.

39No fine-tuning is required for k = 0 and N even due to the extra parity symmetry.
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We proceed as before to study this CFT on S1
β×R2 to determine its thermal observables.

The free energy density of the conformal CSQED has the same type of 1
N

expansion as in
(2.21) for the critical O(N) model, and we will be interested in the first two terms FCSQED,0(β)

at order O(N) and FCSQED,−1(β) at order O(N0).
We can again argue that in the largeN limit we can pursue a semi-classical approximation

where Aµ is homogeneous. Using gauge transformations we can set the spatial components
along R2 to A1 = A2 = 0, but we can not set A0 = 0 because of the non-trivial topology of
the thermal background. Nonetheless, we can fix

A0 = u ≡ 1

β

βˆ

0

dτA0(τ, x) , (4.6)

and compute the effective Lagrangian as a function of the holonomy u ∈ [0, 2π/β),

FCSQED(u) = −
N

β

∑
n

ˆ
d2p

(2π)2
log

[(
(2n+ 1)π

β
+ u

)2

+ p2

]
, (4.7)

where we have imposed anti-periodic boundary conditions40 for the fermions along S1
β. Im-

plementing the regularization for the sum-integral as before (see in particular (3.23)), we
arrive at,

FCSQED(u) =
N

2πβ3

[
Li3(−eiβu) + Li3(−e−iβu)

]
. (4.8)

The homogeneous saddle-point for the holonomy u relevant for the thermal CFT and the
corresponding leading free energy density then follow,

u∗ = 0 , FCSQED,0(β) = FCSQED(u∗) = −
3Nζ(3)

4πβ3
, (4.9)

which coincides with the free energy density of N free Dirac fermions. We emphasize that
FCSQED(u) has another saddle-point at u = π which is a local maximum and thus unstable.
We see that effective anti-periodic boundary conditions on the fermions are energetically
favored.

As in the previous sections we can introduce a chemical potential for the global symmetry
and determine the Wilson coefficient b from the symmetry twisted free energy. Here we will
do so for the SU(N) global symmetry of conformal CSQED for even N , where the symme-
try twist is implemented by g = (eiµ1N/2, e

−iµ1N/2). In this case, the effective Lagrangian

40This is without loss of generality since u changes the effective boundary condition for the fermions.
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becomes

FCSQED(u, µ) =
N

4πβ3

[
Li3(−ei(βu+µ)) + Li3(−e−i(βu−µ)) + Li3(−e−i(βu+µ)) + Li3(−ei(βu−µ))

]
.

(4.10)
We find that u = u∗ = 0 is the minimum of FCSQED(u, µ) for all µ. Therefore, the thermal
free energy of the CSQED, as a function of the chemical potential, is

FCSQED(µ) =
N

2πβ3

[
Li3(−eiµ) + Li3(−e−iµ)

]
= −3ζ(3)

4πβ3
+

log 2

2πβ3
µ2 + . . . , (4.11)

which produces the leading large N answer for the b coefficient bCSQED = 2 log 2
π

.
It is easy to repeat the analysis in the previous section to compute the one-point function

of the higher-spin currents defined in (3.36) in the large N limit of the conformal CSQED.
The one-point function coefficient b̃0s for the spin s current follows from (3.42) with ϕ∗ = 0,

b̃0s =
1

2π

21−s(2s)!

s!
Lis+1(−1) = −

(2s − 1) ζ(s+ 1)Γ
(
s+ 1

2

)
π

3
2

, (4.12)

which again coincides with the free fermions as expected in the leading large N limit of the
CSQED.

4.2 Subleading corrections to the Free Energy

The large N CSQED is of course very different from free fermions. Indeed, the distinctions
already manifest at the first subleading order in the 1

N
expansion of thermal observables in

the CFT. Below we demonstrate this explicitly for the free energy density (equivalently the
one-point function of the stress-energy tensor), which depends nontrivially on the ’t Hooft
coupling λ.

To obtain the 1
N

correction to the free energy density, we compute the quantum propa-
gator for the gauge field Aµ. We first work with vanishing Chern-Simons level k = 0. The
photon polarization tensor then reads,

Πµν(Ωn, p) =
1

β

∑
n

ˆ
d2k

(2π)2
tr [γµ/kγν(/k + /p)]

k2(k + p)2
, Ωn ≡

2πn

β
, (4.13)

from fermions running in the loop. One can check that it has the following structure as
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required by the residual symmetry at finite temperature and the Ward identity,

Π00(Ωn, q) = ΠE(Ωn, q) , Π0i(Ωn, q) = −
Ωnqi
q2

ΠE(Ωn, q) ,

Πij(Ωn, q) =
(
q2δij − qiqj

)
ΠM(Ωn, q) +

Ω2
nqiqj
q4

ΠE(Ωn, q) ,

(4.14)

where ΠE(Ωn, q) and ΠM(Ωn, q) are scalar functions (see Appendix D for explicit expres-
sions). After taking into account the Faddeev-Popov ghosts, the 1

N
correction to the free

energy density of the conformal QED is given by,

FQED,−1(β) =
1

2β

∑
n

ˆ
d2p

(2π)2
log [ΠM(Ωn, q)ΠE(Ωn, q)] . (4.15)

Using the results of the Appendix D and implementing the numerical evaluation of the
sum-integral above as explained in Section 2.3, we find that,

FQED,−1(β) = −
0.21211735

β3
, (4.16)

which agrees with the results in [12].

2 4 6 8 10
λ

-0.20

-0.15

-0.10

-0.05

FCSQED,-1(β,λ)

Figure 10: The dependence of the subleading correction FCSQED,−1(β, λ) to the free energy
density of the conformal CSQED on the ’t Hooft coupling λ (here β = 1).

We now re-introduce the Chern-Simons coupling k and study the dependence of the
free energy density on the ’t-Hooft coupling constant λ = 4πN

k
. Recall that the leading

contribution to the free energy density FCSQED,0(β) is λ independent. In this case, the
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photon polarization operator is modified in a simple way to,

Πλ
µν(Ωn, q) = Πµν(Ωn, q) +

1

λ
ϵµνρq

ρ . (4.17)

Consequently, the free energy density at the subleading order reads,

FCSQED,−1(β, λ) =
1

2β

∑
n

ˆ
d2p

(2π)2
log

[
ΠM(Ωn, q)ΠE(Ωn, q) +

1

λ2

]
, (4.18)

which now depends nontrivially on λ and can be computed numerically from the method
outlined in Section 2.3 (see Figure 10). In particular, it interpolates between the free fermion
answer at λ = 0 where there is no subleading correction to the free energy density (4.9) and
the pure QED answer (4.16) at λ =∞.
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A Lattice Regularization

Here we discuss an alternative approach to compute the thermal free energy of the critical
O(N) model in d = 3 using a finite lattice. First, we consider the system on an infinite
lattice Z3 with lattice spacing a [114]. It amounts to replacing the scalar propagators in the
following way

G−1(p,m2) = p2 +m2 → G−1
a (p,m2) = 6− 2 cos px − 2 cos py − 2 cos pz +m2 , (A.1)
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with normalized periodic momenta px,y,z ∈ [−π, π]. This automatically regulates the UV
divergences. The gap equation (2.6) becomes,

πˆ

−π

d3k

(2π)3
Ga(k, σ) =

σ

λt0
− rt0 , (A.2)

expanding the left-hand side of this equation for small σ we obtain,

πˆ

−π

d3k

(2π)3
Ga(k, σ) ∼ −rt∗ −

1

4π

√
σ +

σ

λt∗
+ . . . , (A.3)

with

rt∗ = −
πˆ

−π

d3k

(2π)3
Ga(k, 0) = −0.252731 , λt∗ = −0.012 , (A.4)

where λt∗ is determined from numerically fitting the integral. To approach the critical point
we fine-tune rt0 to rt∗. In this case σ = 0 is the solution and the system is gapless in the IR.
The other coupling λt0 could be left arbitrary but it is better for the numerics to also tune
it to λt0 = λt∗ to cancel the leading finite-size corrections from the least irrelevant operator.
Indeed, the propagator for the HS field σ in this limit becomes,

− 2

N
G−1

σ (pi) =
1

λt0
+

πˆ

−π

d3k

(2π)3
Ga(k, 0)Ga(k + p, 0) −−→

p→0

1

8 |p|
+

1

λt0
− 1

λt∗
+O(p) , (A.5)

and if we set λt0 = λt∗ the leading correction to the conformal propagator is cancelled.
Now we study the same model at criticality on a finite lattice Znt × Z2

n. For general
n, nt ≫ 1 this correspond to the lattice approximation for studying the CFT on the torus
S1
R × S1

R × S1
β with R

β
= n

nt
. If we further take n ≫ nt, the lattice setup approximates the

thermal background R2 × S1
β with inverse temperature β = nta. The scalar propagator on

this lattice is

G−1
a (p, σ) = 6− 2 cos px − 2 cos py − 2 cos pt + σ , px,y =

2πix,y
n

, pt =
2πit
nt

. (A.6)

where ix,y,t ∈ Z. The gap equation is

1

n2nt

n∑
ix,iy=1

nt∑
it=1

Ga

(
2πix
n

,
2πiy
n

,
2πit
nt

, σ

)
= −rt∗ +

σ

λt0
, (A.7)
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and we will attempt to set λt0 ∼ λt∗ to reduce the leading finite-size corrections as discussed
above. We have checked numerically that the solution of this gap equation is σ∗ = ∆2

n2
t

which
produces the leading free energy density (see (2.32)) with good precision for a lattice of size
n = 100 and nt = 40

1

N
F0n

3
t ∼ −0.160282036 . (A.8)

To obtain the subleading correction to the free energy density, we should study the propagator
of the HS field σ, equivalently the self-energy (see also (2.36)),

Πβ(q) =
1

2λt0
+

1

2n2nt

n∑
ix,iy=1

nt∑
it=1

Ga (p, σ∗)Ga (p+ q, σ∗) . (A.9)

In the limit of the interest n ≫ nt ≫ 1 and small q, we expect that Πβ(q) ∼ ntΠ̃σ(qnt).
Then the subleading correction to the free energy is

F−1(n, nt) =
1

2

1

n2nt

n∑
ix,iy=1

nt∑
it=1

log

[
Πβ

(
2πix
n

,
2πiy
n

,
2πit
nt

)]
. (A.10)

Limited by the precision for the value of λt∗ in (A.4) and the size of the lattice we can consider
with the available computing power, we wouldn’t get the desired behavior

F−1(nt) ∼ const +
f−1

n3
t

, (A.11)

for the free energy density at the critical point (where f−1 is the desired CFT observable and
the constant needs to be subtracted by numerical fitting).

To see this more explicitly, we estimate that the self-energy Πβ(q) behaves for nt ≫
qnt ≫ 1 as

Πβ(q) ∼
1

λt0
− 1

λ∗
+

1

8q
+

g1
q2nt

+
g2
q4n3

t

. (A.12)

To achieve a good approximation to the critical behavior, we need to consider a sizable lattice
such as n ∼ 500 , nt ∼ 25. For instance, in this parameter regime, the value of the σ field
from solving the gap equation is σ∗n2

t = 0.9268 which is close to the critical value (2.31).
But then to evaluate the sum in (A.10) accurately requires large processing powers that we
don’t have at the moment. For a smaller lattice such as n ∼ 70 and nt ∼ 10 however, we
obtain instead σ∗n

2
t = 0.9409, which reflects a relative error of ϵσ∗ ∼ 1%. Since the free

energy density involves a sum over a logarithm of the self-energy which depends on σ, such
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a relative error is quite important.
For smaller lattices, the subleading corrections in (A.12) also need to be taken into

account, which requires setting λt0 = λt∗ with high precision. However the fact that we don’t
know λt∗ (see (A.4)) at high precision introduces a numerical uncertainty to the computation
of the Πβ which again propagates to the numerical evaluation of the subleading piece F−1(nt)

of the critical free energy density. We expect the total error in (A.11) to be ∆F−1 ∼ 0.01

for nt ∼ 10, which makes it hard to extract the small critical amplitude f−1 (see (2.46)). To
improve the situation, we must know λt∗ at least within a relative error of ϵλt

∗ ∼ n−3
t .

B Self-energy of σ in the O(N) Vector Model

In this section we analyze the two-point function of the HS field σ at finite temperature for
the critical O(N) model at large N and provide useful analytic expressions that will help
the numerical evaluation of subleading effects for thermal observables in the CFT.

From diagrammatic analysis (equivalently by saddle-point approximation of the path
integral), one finds that the self-energy for the σ field (i.e. the inverse propagator) is,

Πβ(Ω, q) =
1

2β

∞∑
n=−∞

ˆ
d2k

(2π)2
1

(ωn − Ω)2 + (k − q)2 + σ∗

1

ω2
n + k2 + σ∗

, (B.1)

where ωn ≡ 2πn
β

denotes the Matsubara frequency and σ∗ is the solution to the gap equation
given in (2.31) (although the expressions below will not depend on its value unless explicitly
stated). Using Feynman parametrization, we take the integral over spatial momentum and
obtain the following,

Πβ(Ω, q) =
β

32π3

1ˆ

0

dx
∞∑

n=−∞

1(
n− β

2π
Ωx
)2

+ β2

4π2M2
, (B.2)

where we have introduced M2 ≡ σ∗ + (Ω2 + q2)x(1 − x) > 0. Evaluating the sum in (B.2)
then gives,

Πβ(Ω, q)

=− 1

16π

1ˆ

0

dx√
σ∗ + (Ω2 + q2)x(1− x)

sinh (β
√
σ∗ + (Ω2 + q2)x(1− x))

cos (βΩx)− cosh (β
√
σ∗ + (Ω2 + q2)x(1− x))

.

(B.3)
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If we introduce a chemical potential µ for the U(1) ⊂ O(N) subgroup with even N as
described in Section 2.4, the self-energy becomes,

Πµ
β

(
µ,Ω, q,

√
σ̃∗

)
=− 1

16π

1ˆ

0

dx√
σ̃∗ + (Ω2 + q2)x(1− x)

sinh (β
√
σ̃∗ + (Ω2 + q2)x(1− x))

cos (βΩx− µ)− cosh (β
√
σ̃∗ + (Ω2 + q2)x(1− x))

,

(B.4)
where σ̃∗ is the solution (2.50) of the modified gap equation (2.49).

The self-energy of the σ field captures the subleading correction to the free energy density
of the critical O(N) model in the following way,

F−1(β) =
1

2β

∑
n∈Z

ˆ
d2p

(2π)2
log |G−1

σ (Ωn, p)| =
1

2β

∑
n∈Z

ˆ
d2p

(2π)2
log Πβ(Ωn, p) , (B.5)

up to regularization and renormalization as described in Section 2.2.

B.1 Large Momentum Expansion

To analyze the UV structure of the self-energy and the sum-integral in (B.5), it is useful to
have the large momentum expansion of (B.1) which we provide here, generalizing the results
in [9] to further subleading orders.

For this purpose, it is useful to use the following representation of the self-energy by first
implementing the sum in (B.1),

Πβ(Ω, q) =−
1

4

ˆ
d2k

(2π)2
1

(P 2 + 2q · k)2 + 4Ω2ω2
k

((
P 2 + 2q · k

)( 1

ωq+k

− 1

ωk

)
− 2Ω2

ωq+k

)
+

ˆ
d2k

(2π)2
n(βωk)

ωk

P 2 + 2q · k
(P 2 + 2q · k)2 + 4Ω2ω2

k

,

(B.6)
with P 2 = Ω2 + q2, ω2

k = k2 + σ∗, n(βω) denotes the Bose-Einstein distribution

n(βω) ≡ 1

eβω − 1
, (B.7)

and we are keeping σ∗ general. Note that the first line of (B.6) coincides with the self-energy
at zero temperature (but nonzero mass

√
σ∗) and can be evaluated exactly. Thus we arrive
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at the following expression,

Πβ(Ω, q) =
1

8πP
arctan

[
P

2
√
σ∗

]
+

1

P 2

ˆ
d2k

(2π)2
n(βωk)

ωk

1 + x

(1 + x)2 + y
, (B.8)

where we have introduced the following quantities for convenience,

x ≡ 2q · k
P 2

, y ≡ 4Ω2ω2
k

P 4
. (B.9)

Due to the exponential suppression for large x, y in (B.8), we can simply expand the integrand
and integrate over the spatial momentum k to obtain the large momentum expansion of the
self-energy,

Πβ(Ω, q) =
1

16P
− 1

2πβP 2
log

[
2 sinh

∆

2

]
+

2Ω2 − q2

β3P 6

1− 6γ

6π
∆3 +

q2

πβ3P 6
∆2 log

[
2 sinh

∆

2

]
+

1

πβ5P 10

(
−2Ω2q2 (12γ1 + γ4) + Ω4 (8γ2 − γ4) + q4 (3γ3 − γ4)

)
+O

(
1

P 8

)
,

(B.10)
where ∆ ≡ β

√
σ∗ is a dimensionless number.

The leading 1
P

term in (B.10) is the conformal answer in flat spacetime which is subtracted
to obtain the renormalized free energy density and the dangerous 1

P 2 term goes away once
we specialize to ∆ in (2.31) that solves the gap equation (see around (2.40)). Furthermore,
the various constants in (B.10) are

γ =
1

∆3

+∞ˆ

∆

dωn(ω)ω2 = 2.3241 , γ1 =

+∞ˆ

∆

dωn(ω)ω2(ω2 −∆2) = 22.8244 ,

γ2 =

+∞ˆ

∆

dωn(ω)ω4 = 24.7434 , γ3 =

+∞ˆ

∆

dωn(ω)(ω2 −∆2)2 = 21.3181 ,

γ4 =
4∆5

5
= 0.660574 ,

(B.11)

where the explicit values are computed for ∆ as in (2.31). Similarly, in the presence of
chemical potential, using the same methods, we can represent (B.4) in the following form

Πµ
β(µ,Ω, q,

√
σ̃∗) =

1

8πP
arctan

[
P

2
√
σ̃∗

]
+

ˆ
d2k

(2π)2
1

2ωk

(
n(βωk + iµ) + n(βωk − iµ)

)
P 2 + 2k · q

(P 2 + 2k · q)2 + 4Ω2ωk

,

(B.12)
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with the large momentum expansion of the form (we set β = 1)

Πµ
β(µ,Ω, q,

√
σ̃∗) =

1

16P
− P 4 − 2q2σ̃∗

4πP 6
log
(
2
[
− cosµ+ cosh

√
σ̃∗

])
+

2Ω2 − q2

P 6

1− 6γ̃

6π

√
σ̃2
∗
3

+
1

πP 10

(
−2Ω2q2 (12γ̃1 + γ̃4) + Ω4 (8γ̃2 − γ̃4) + q4 (3γ̃3 − γ̃4)

)
+O

(
1

P 8

)
,

(B.13)
with the following constant coefficients,

γ̃ =
1

√
σ̃∗

3

+∞ˆ
√
σ̃∗

dω
1

2

(
n(ω + iµ) + n(ω − iµ)

)
ω2 ,

γ̃1 =

+∞ˆ
√
σ̃∗

dω
1

2

(
n(ω + iµ) + n(ω − iµ)

)
ω2(ω2 − σ̃∗) ,

γ̃2 =

+∞ˆ
√
σ̃∗

dω
1

2

(
n(ω + iµ) + n(ω − iµ)

)
ω4 ,

γ̃3 =

+∞ˆ
√
σ̃∗

dω
1

2

(
n(ω + iµ) + n(ω − iµ)

)
(ω2 − σ̃∗)2 ,

γ̃4 =
4
√
σ̃∗

5

5
,

(B.14)

which coincide with (B.10) for µ = 0.

C Self-energy of ϕ in the Gross-Neveu Model

In this section we compute the two-point function for the HS field ϕ ∼ ψ̄iψi in the critical
Gross-Neveu model (equivalently the self-energy of ϕ). We consider both periodic and anti-
periodic boundary conditions for the fermions and with a U(1) chemical potential.
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C.1 Periodic Boundary Condition

We start with computation of the self-energy of ϕ at finite temperature in the periodic spin
structure with generic mass ϕ+,

ΠP
GN(Ω, q, ϕ+) =

1

β

∑
ω+
n

ˆ
d2k

(2π)2
tr

(
1

i/k + ϕ+

1

i/k − i/q + ϕ+

)
= − 2

β

∑
ω+
n

ˆ
d2k

(2π)2
1

(ω+
n )

2 + k2 + ϕ2
+

+
2

β

∑
n∈Z

ˆ
d2k

(2π)2
2ϕ2

+ + Ω2 + q2 − ω+
nΩ− q · k

(ω+
n − Ω)2 + (k − q)2 + ϕ2

+

1

(ω+
n )

2 + k2 + ϕ2
+

,

(C.1)
where /k ≡ kµγµ includes the time component k0 = ω+

n (see (3.11)). The first term in the
second equality above can be further simplified,

− 2

β

∑
ω+
n

ˆ
d2k

(2π)2
1

(ω+
n )

2 + k2 + ϕ2
+

=
1

πβ
log

[
2 sinh

β
√
ϕ2
+

2

]
. (C.2)

Using Feynman parametrization and summing over the Matsubara frequency in the sec-
ond line of (C.1), we arrive at the following expression,

ΠP
GN(Ω, q, ϕ+) =

1

πβ
log

[
2 sinh

β
√
ϕ2
+

2

]
+ 4

(
2ϕ2

+ +
P 2

2

)
Πβ(Ω, q)

− Ω

4π

1ˆ

0

dx
sin (βΩx)

cos (βΩx)− cosh
(
β
√
ϕ2
+ + P 2x(1− x)

) , (C.3)

where P 2 ≡ Ω2 + q2 and Πβ is the self-energy for the σ field in the bosonic O(N) CFT (see
(B.1)) where we need to replace σ∗ → ϕ2

+. The second line in the above equation vanishes
because its integrand is odd under x→ 1− x. Therefore, we finally have

ΠP
GN(Ω, q, ϕ+) =

1

πβ
log

[
2 sinh

β
√
ϕ2
+

2

]
+ 2

(
P 2 + 4ϕ2

+

)
Πβ(Ω, q) , (C.4)

whose large momentum expansion follows from that of Πβ in (B.10), and has the following
form (with β=1):

ΠP
GN(Ω, q, ϕ+) = −

4ϕ2
+

πP 2
log

[
2 sinh

√
ϕ2
+

2

]
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+2(P 2 + 4ϕ2
+)

(
1

16P
+

2Ω2 − q2

P 6

1− 6γ

6π
ϕ3
+ +

q2

πP 6
ϕ2
+ log

[
2 sinh

√
ϕ2
+

2

]
+

+
1

πP 10

(
−2Ω2q2 (12γ1 + γ4) + Ω4 (8γ2 − γ4) + q4 (3γ3 − γ4)

)
+O

(
1

P 8

))
, (C.5)

where all the constants are defined in (B.11). The first term in (C.5) is proportional to the
gap equation which follows from (3.12) and therefore it vanishes in the CFT.

C.2 Anti-periodic Boundary Condition and General Chemical Po-

tential

In the anti-periodic (thermal) spin structure, the self-energy of ϕ takes a similar form, with
the frequency sum from (3.11) with generic mass ϕ−,

ΠAP
GN(Ω, q, ϕ−) =

1

β

∑
ω−
n

ˆ
d2k

(2π)2
tr

(
1

i/k + ϕ−

1

i/k − i/q + ϕ−

)
=

− 2

β

∑
ω−
n

ˆ
d2k

(2π)2
1

(ω−
n )

2 + k2 + ϕ2
−

+
2

β

∑
ω−
n

ˆ
d2k

(2π)2
2ϕ2

− + Ω2 + q2 − ω−
nΩ− q · k

(ω−
n − Ω)2 + (k − q)2 + ϕ2

−

1

(ω−
n )

2 + k2 + ϕ2
−
,

(C.6)

where the first term in the second equality can be simplified,

− 2

β

∑
ω−
n

ˆ
d2k

(2π)2
1

(ω−
n )

2 + k2 + ϕ2
−
=

1

πβ
log

[
2 cosh

βϕ−

2

]
. (C.7)

After performing the sum in the second line of (C.6), we obtain

ΠAP
GN(Ω, q, ϕ−) =

1

πβ
log

[
2 cosh

βϕ−

2

]
+ 2(P 2 + 4ϕ2

−)Π
−
β (Ω, q) , (C.8)

with

Π−
β (Ω, q) =

1

16π

1ˆ

0

dx
1√

ϕ2
− + P 2x(1− x)

sinh
(
β
√
ϕ2
− + P 2x(1− x)

)
cos (βΩx) + cosh

(
β
√
ϕ2
− + P 2x(1− x)

) . (C.9)

If we further introduce a chemical potential µ for the U(1) ⊂ O(2N) global symmetry as

63



in Section 3.2, we have instead

ΠAP
GN(µ,Ω, q, ϕ̃∗) =

1

2π
log
(
2
[
cosµ+ cosh βϕ̃∗

])

+
1

4π

1ˆ

0

dx
2ϕ̃2

∗ + P 2(1− x)√
ϕ̃2
∗ + P 2x(1− x)

sinh

(
β
√
ϕ̃2
∗ + P 2x(1− x)

)
cos (βΩx− µ) + cosh

(
β
√
ϕ̃2
∗ + P 2x(1− x)

)

− Ω

4π

1ˆ

0

dx
sin (βΩx− µ)

cos (βΩx− µ) + cosh

(
β
√
ϕ̃2
∗ + P 2x(1− x)

) ,

(C.10)

where we used that (with ω̃n = ω−
n + µ)

− 2

β

∑
ω̃n

ˆ
d2k

(2π)2
1

(ω̃n)
2 + k2 + ϕ̃2

∗
=

1

2π
log
(
2
[
cosµ+ cosh βϕ̃∗

])
. (C.11)

C.3 Large Momentum Expansion of Π−β

The large momentum (i.e. large P ) expansion of the self-energy Π−
β (Ω, q) in the anti-periodic

spin structure can be obtained by using the same methods developed in Appendix B.1. Here
we present the resulting formula (with β = 1),

Π−
β (Ω, q) =

1

16P
− 1

2πP 2
log

[
2 cosh

ϕ−

2

]
+

2Ω2 − q2

P 6

χ0

6π
+

q2

πP 6
ϕ2
− log

[
2 cosh

ϕ−

2

]
+

1

πP 10

(
−2χ1Ω

2q2 + χ2Ω
4 + χ3q

4
)
+O

(
1

P 8

)
,

(C.12)
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where the definitions of the constants involved and their numerical values for ϕ− = 2πi
3

are
given below,

χ0 =ϕ3
− + 6

+∞ˆ

ϕ−

dωnF (ω)ω
2 = 20.7 ,

χ1 =− 12

+∞ˆ

ϕ−

dωnF (ω)ω
2(ω2 − ϕ2

−) +
4ϕ5

−

5
= −401.2977 ,

χ2 =− 8

+∞ˆ

ϕ−

dωnF (ω)ω
4 −

4ϕ5
−

5
= −146.4644 ,

χ3 =− 3

+∞ˆ

ϕ−

dωnF (ω)(ω
2 − ϕ2

−)
2 −

4ϕ5
−

5
= −145.7247 ,

(C.13)

and nF (ω) is the usual Fermi-Dirac distribution,

nF (βω) ≡
1

eβω + 1
. (C.14)

Combining (C.8) and (C.12) we obtain that at large momentum

ΠAP
GN(Ω, q, ϕ−) = −

4ϕ2
−

πP 2
log

[
2 cosh

ϕ−

2

]
+ 2

(
P 2 + 4ϕ2

−
) [ 1

16P
+

2Ω2 − q2

P 6

χ0

6π

+
q2

πP 6
ϕ2
− log

[
2 cosh

ϕ−

2

]
+

1

πP 10

(
−2χ1Ω

2q2 + χ2Ω
4 + χ3q

4
)
+O

(
1

P 8

)]
,

(C.15)
where the first term after the equality sign is proportional the gap equation which follows
from (3.14) and thus vanish for all solutions in (3.15).

In order to find the large momentum expansion of (C.10) in the presence of chemical
potential µ, it is more convenient to use the following expression (with β = 1)

ΠAP
GN(µ,Ω, q, ϕ̃∗) =

1

2π
log
(
2
[
cosµ+ cosh ϕ̃∗

])
+ 2

(
P 2 + 4ϕ̃2

∗

)[ 1

8πP
arctan

 P

2
√
ϕ̃2
∗


−
ˆ

d2k

(2π)2
1

2ωk

(
nF (ωk + iµ) + nF (ωk − iµ)

)
P 2 + 2q · k

(P 2 + 2q · k)2 + 4Ω2ω2
k

]
,

(C.16)
where ω2

k = k2 + ϕ̃2
∗. In the case of µ = π, this reproduces (C.4) and for µ = 0 it gives (C.8).
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Also, one can see that (C.16) can be written in terms of (B.12) as

ΠAP
GN(µ,Ω, q, ϕ̃∗) =

1

2π
log
(
2
[
cosµ+ cosh ϕ̃∗

])
+ 2

(
P 2 + 4ϕ̃2

∗

)
Πµ

β

(
µ+ π,Ω, q, ϕ̃∗

)
.

(C.17)

Using the same methods as above we deduce that its large momentum expansion takes the
following form

ΠAP
GN(µ,Ω, q, ϕ̃∗) = −

2ϕ̃2
∗

πP 2
log
(
2
[
cosµ+ cosh ϕ̃∗

])
+ 2

(
P 2 + 4ϕ̃2

∗

)[ 1

16P
+

2Ω2 − q2

P 6

χ̃0

6π

+
q2

2πP 6
ϕ̃2
∗ log

(
2
[
cosµ+ cosh ϕ̃∗

])
+

1

πP 10

(
−2χ̃1Ω

2q2 + χ̃2Ω
4 + χ̃3q

4
)
+O

(
1

P 8

)]
,

(C.18)
where the constants involved are defined below,

χ̃0 = ϕ̃3
∗ + 6

+∞ˆ

ϕ̃∗

dω

2
[nF (w + iµ) + nF (w − iµ)]ω2 ,

χ̃1 =− 12

+∞ˆ

ϕ̃∗

dω

2
[nF (w + iµ) + nF (w − iµ)]ω2(ω2 − ϕ̃2

∗) +
4ϕ̃5

∗
5
,

χ̃2 =− 8

+∞ˆ

ϕ̃∗

dω

2
[nF (w + iµ) + nF (w − iµ)]ω4 − 4ϕ̃5

∗
5
,

χ̃3 =− 3

+∞ˆ

ϕ̃∗

dω

2
[nF (w + iµ) + nF (w − iµ)] (ω2 − ϕ̃2

∗)
2 − 4ϕ̃5

∗
5
.

(C.19)

D Polarization Tensor of the Large N QED

The polarization tensor for the large N conformal QED at finite temperature takes the
general form in (4.14) and is determined by two scalar functions ΠE(Ω, p) and ΠM(Ω, p)

which we refer to as the electric and the magnetic polarizations respectively. Below we
provide their explicit expressions and their large momentum expansions which are used in
the main text for the evaluation of subleading effects in the conformal (CS)QED at finite
temperature.
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D.1 Electric Polarization and Large Momentum Expansion

We start with the electric polarization in (4.14). After introducing the Feynman parametriza-
tion, and explicitly separating the divergent part of the polarization tensor, we arrive at

ΠE(Ω, p) =
2

β

∑
n∈Z

ˆ
d2k

(2π)2
ωn(Ω + ωn)− k · (k + p)

(ω2
n + k2)((Ω + ωn)2 + (k + p)2)

=
1

2πβ

∑
n∈Z

1ˆ

0

dx
ωn (3Ω− 4Ωx)− 2Ω2x2 − 2P 2x(1− x) + Ω2 + p2(1− x)

(ωn + Ωx)2 + P 2x(1− x)

+
1

πβ

∑
n∈Z

1− 2

β

∑
n∈Z

ˆ
d2k

(2π)2
1

(ω2
n + k2)

,

(D.1)

with ωn = ω−
n as in (3.11). After implementing the sum (with zeta function regularization)

in the second equality of (D.1), we obtain the following simplified expression for the electric
polarization,

ΠE(Ω, p) =
1

4π

1ˆ

0

dx
1

M

sinh (βM)

cos (βΩx) + cosh (βM)

(
P 2

2
− 2

(
P 2 + Ω2

)
x(1− x)

)

+
1

π

1ˆ

0

dx
Ωx sin (βΩx)

cos (βΩx) + cosh (βM)
+

1

πβ
log 2 ,

(D.2)

with

M ≡ P
√
x(1− x) . (D.3)

The large momentum expansion of (D.2) can be deduced using the same methods as in
Appendices B and C and is given below (for convenience we set β = 1),

ΠE(Ω, p) =
1

16

P 2 − Ω2

P
+

ˆ
d2k

π2|k|
nF (|k|)

(k2 + k · p) (P 2 + 2k · p)− k2 (Ω2 − p2 − 2k · p)
(P 2 + 2k · p)2 + 4Ω2k2

=
1

16

p2

P
+

3

π
ζ(3)

p2

P 4
+

45

π
ζ(5)

p2 (p2 − 4Ω2)

P 8
+

2835

π
ζ(7)

p2 (p4 − 12p2Ω2 + 8Ω4)

P 12
+O

(
1

P 8

)
.

(D.4)
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D.2 Magnetic Polarization and Large Momentum Expansion

We now move onto the magnetic polarization in (4.14). Using rotation symmetry on the
plane, we work with (p1, p2) = (0, p), then

ΠM(Ω, p) =
2

βp2

∑
m

ˆ
d2k

(2π)2
k21 − (ωm(Ω + ωm) + k2(k2 + p2))

((ωm + Ω)2 + (k + p)2)(ω2
m + k2)

, (D.5)

Employing the same tricks as in the previous subsections, we arrive at the following simplified
expression,

ΠM(Ω, p) =
1

4πp2

1ˆ

0

dx
1

M

sinh (βM)

cos (βΩx) + cosh (βM)

[
2
(
Ω2 + p2

)
x(1− x)

]

− 1

2πp2

1ˆ

0

dx
Ωx sin (βΩx)

cos (βΩx) + cosh (βM)
.

(D.6)

where we have restored rotational invariance and M is defined as in (D.3).
Similarly the large momentum expansion of the magnetic polarization is given by (again

first with (p1, p2) = (0, p)),

ΠM(Ω, p) =
1

16

P

p2
+

1

p2

ˆ
d2k

π2|k|
nF (|k|)

(k22 − k21 + k2p2) (P
2 + 2k2p2)− k2 (Ω2 − p2 − 2k2p2)

(P 2 + 2k2p2)2 + 4Ω2k2

=
1

16

P

p2
+

3

π
ζ(3)

Ω2 − 2p2

p2P 4
− 45

π
ζ(5)

4p4 − 27p2Ω2 + 4Ω4

p2P 8

−2835

π
ζ(7)

6p6 − 101p4Ω2 + 116p2Ω4 − 8Ω6

p2P 12
+

1

p2
O
(

1

P 8

)
.

(D.7)
Combining (D.4) and (D.7), we obtain the large momentum expansion of the logarithm
relevant for the evaluation of the subleading piece of the free energy density in (4.15),

log
(
162ΠEΠM

)
=

96

P 3

ζ(3)

2π

(
1 +

Ω2 − 2p2

P 2

)
+

1440

P 5

ζ(5)

2π

(
p2 − 4Ω2

P 2
− 4p4 − 27p2Ω2 + 4Ω4

P 4

)
− 1

2P 6

(
96ζ(3)

2π

)2
(
1 +

(Ω2 − 2p2)
2

P 4

)
+

90720

P 7

ζ(7)

2π

(
p4 − 12p2Ω2 + 8Ω4

P 4

−6p6 − 101p4Ω2 + 116p2Ω4 − 8Ω6

P 6

)
+O

(
1

P 8

)
.

(D.8)
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