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Using quantum Monte Carlo simulations and field-theory arguments, we study the fully frustrated
transverse-field Ising model on the square lattice for the purpose of quantitatively relating two
different order parameters to each other. We consider a “primary” spin order parameter and a
“secondary” dimer order parameter, which both lead to the same phase diagram but detect Z8 and
Z4 symmetry breaking, respectively. While at T > 0 their scaling exponents are simply related to
each other, as explained by a mapping to a height model, we show that at T = 0 they correspond
to different charge sectors of the O(2) model in 2+1 dimensions with non trivial exponents that are
not simply related to each other. Our insights are transferrable to a broad class of Ising models
whose low-energy physics involves dimer degrees of freedom, and also serve as a guide to treating
primary and secondary order parameters more generally.

The concept of an order parameter is key to quantita-
tive descriptions of phase transitions. In some systems
it is natural to define more than one order parameter,
either in some trivial way or using emergent degrees of
freedom originating from some mapping to an effective
low-energy model. The relationships between different
order parameters may be non-trivial, e.g., unexplained
behavior of a “parasitic” ferromagnetic order parameter
in a system with primarily antiferromagnetic order was
reported [1–3]. Here we consider a quantum spin model
that very clearly illustrates two different order parame-
ters that not only exhibit different scaling behaviors but
the relationships between the critical exponents of the
order parameters are also different at temperature T = 0
and T > 0.
We study the two-dimensional (2D) square-lattice fully

frustrated transverse field (Villain) quantum Ising model
(FFTFIM), with Hamiltonian

H =
∑
⟨ij⟩

Jijσ
z
i σ

z
j − Γ

∑
j

σx
j , (1)

where σx
i and σz

i are Pauli operators. The couplings Jij
are equal in magnitude but the number of antiferromag-
netic (AF) couplings around any elementary plaquette is
odd [4], here with Jij = +J (AF) on every second column
and Jij = −J on all other bonds as depicted in Fig. 1.
The classical model at Γ = 0 hosts a large ground state
degeneracy that is lifted by the transverse field via an
“order-by-disorder” mechanism [5–7].

The first studies of the FFTFIM considered the stacked
version of the classical model using a using Landau-
Ginsburg-Wilson (LGW) approach [8] as well as Monte

Carlo (MC) simulations [9]. The LGW study predicted
an eight-fold degenerate ground state, which was more
precisely characterized by Ref. [9] as a Z4 symmetry
breaking phase, corresponding to 90◦ rotations of the lat-
tice, paired with a global spin-flip symmetry.

The model was later treated using quantum MC
(QMC) simulations [10], where spin and dimer order was
found at T = 0 for Γ < Γc ∼ 1.578. In this phase the frus-
trated bonds (mapped to dimers as in Fig. 1) align along

FIG. 1. The degenerate ground states represented by elemen-
tary plaquettes. Blue and red bonds show Jij = −J and
Jij = +J , respectively. The direction of the sublattice mag-
netizations ms, s = 1, . . . , 4, are indicated by the arrows,
and dimers (green ovals) are defined on the frustrated bonds.
The values of the magnetization and dimer order parameters
shown correspond to the ground state sublattice magnetiza-
tions of the stacked, classical (Γ = 0) model [8], sin(π/8) for
the sites sharing a frustrated bond and cos(π/8) for the two
others [see Eqs. (3) and (5)].
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alternating columns or rows; the Z4 symmetry breaking
phase identified in the stacked model. The order param-
eters considered previously detected Z4 symmetry and
spin-reflection symmetry separately. The reconciliation
of Z8 versus Z4 breaking was touched on by Coletta et
al. [11], but the relationship between the respective order
parameters was not explored.

Here we define a proper Z8 symmetric spin order pa-
rameter and demonstrate that the Z4 dimer order param-
eter should be considered as secondary. While both order
parameters lead to the same phase diagram (provided in
Supplemental Material, Sec. SI [12]), the Z4 order param-
eter exhibits faster decaying critical correlations. Both
order parameters, when correctly defined, exhibit emer-
gent U(1) symmetry in the critical phase as well as at
the quantum phase transition, stemming from the irrel-
evance of the discrete symmetry-breaking terms at criti-
cality [13]. However, the distinction between primary and
secondary order is made quantitative by considering the
critical scaling in these two regimes. This is only made
possible by connecting these order parameters to opera-
tors in the relevant field theories, at T = 0 and T > 0.
Finite-size scaling of QMC (stochastic series expansion
[14]) results of the full FFTFIM Hamiltonian, Eq. (1),
support the predicted scaling, emphasizing the utility of
this novel approach to studying quantum magnetism.

Secondary order parameters have previously been used
to describe higher harmonic contributions to spatial mod-
ulation in density wave systems, e.g., liquid crystals [15–
19]. A secondary order parameter can clearly be defined
also in the FFTFIM, but the different scaling forms of
the spin and dimer order parameter in the FFTFIM have
not been addressed. This Letter provides a framework for
secondary order not just in the FFTFIM, but in the en-
tire class of frustrated Ising models with effective dimer
degrees of freedom, e.g., the antiferromagnet on the tri-
angular lattice [20–24].

Order Parameters.—To construct a proper primary or-
der parameter, we follow standard procedures [8, 11, 22],
using an effective Hamiltonian for the amplitude m and
phase θ of critical modes:

Heff =
∑
q⃗

(r + q2)|m|2 + u4|m|4 + u6|m|6+

(u8 + v8/32)|m|8 − (v8/32)|m|8 cos(8θ).
(2)

The eight-state clock anisotropy implies an eight-fold de-
generate ground state, characterized by sublattice mag-
netizations (m1,m2,m3,m4); see Fig. 1. Each state cor-
responds to one frustrated bond in a plaquette, where the
magnitude of the sublattice magnetizations of the sites
sharing this bond are smaller than the other two, sin(π/8)
and cos(π/8) respectively [8]. An overall spin-flip trans-
formation gives a total of eight degenerate states.

Based on the low-energy behavior of the stacked model,
as well as the semiclassical analysis of Ref. [11], we define

the primary order parameter as the complex number

m =mx + imy =

1

2

(
m1e

iπ
8 +m2e

i 3π
8 +m3e

i 5π
8 +m4e

i 7π
8

) (3)

where

ms =
4

N

∑
j∈s

σz
j . (4)

The eight ground state configurations of the stacked
model correspond to m = einπ/4, n = 1, 2, . . . , 8.
The problem can also be mapped onto that of dimer

coverings, where a dimer is assigned across each frus-
trated bond [23], and we define a secondary order param-
eter Ψ with this mapping in mind. This order parameter
is also complex number, defined in terms of the dimer
density modulation on the dual lattice [10]:

Ψ = Ψx + iΨy = 2d̃x(0, π) + 2id̃y(π, 0), (5)

where

d̃α(q) =
1

N

∑
i

eiq·ridi,α, (6)

is the Fourier transformed dimer density

di,α = 1 +
Ji,jα
J

σz
i σ

z
jα , (7)

and jα is the index of nearest neighbor to site i in the α
direction. Long-range ordering is associated with |Ψ| tak-
ing a finite value, while the specific (symmetry-broken)
ordering pattern is identified by the phase. Thus, Ψ takes
one out of the values einπ/2, n = 1, 2, . . . , 4. The con-
nection between the columnar states and the sublattice
magnetizations is illustrated in Fig. 1.
Z8 versus Z4 Symmetry Breaking.—We detect the

order-parameter symmetries by plotting the probability
distributions of m and Ψ accumulated during QMC sim-
ulations. In the ordered phase, we expect eight (four)
δ-functions at the eight (four) values corresponding to
the columnar spin (dimer) states in Fig. 1. These δ-
functions smear for finite systems, appearing as highly
peaked Gaussian distributions for large systems.
In the critical phase, we observe the emergent U(1)

symmetry expected from the mapping to the height
model [25–27]. We assign height differences to neigh-
boring spins based whether or not the bond they share
is frustrated (i.e., crossing a dimer) [26], as detailed in
Supplemental Material, Sec. SII [12]. In the ordered
phase, the height profile is “flat,” with the height val-
ues bounded from above. In the critical and disordered
phases, the model is in its “rough” phase, with a loga-
rithmically diverging height profile. This behavior can
be described by an effective elastic free energy with a pe-
riodic “locking” potential favoring the eight flat height
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FIG. 2. Distributions of (Ψx,Ψy) in (a,c) and (mx,my) in
(b,d), collected in several independent simulations (each ini-
tialized in one of the four columnar states, to prevent trapping
in states with topological defects) and symmetrized using lat-
tice rotations and reflections. The system size is L = 96 and
Γ/J = 0.43, with T/J = 0.21 in (a,b) (in the critical phase)
and T/J = 0.014 in (c,d) (in the ordered phase).

configurations, i.e., the columnar states in Fig. 1. This
effective free energy is precisely that of the 2DXY model,
where the locking potential corresponds to an q = 8 state
clock anisotropy term. This connection allows us to ap-
ply the renormalization group (RG) analysis of Ref. [13]
to understand the observed behavior.

Jose et al. [13] first showed that the classical 2D q-
state clock model is characterized by three temperature
regimes if q > 4. At temperatures below the lower critical
temperature Tc1, the clock term is relevant and the sys-
tem orders into the Zq clock phase. At T above Tc1 but
below the upper critical temperature Tc2, the clock term
is irrelevant and the free energy reduces to that of the
XY model in the KT phase. In this phase, the system
can freely fluctuate between the flat height configura-
tions, thus resulting in the U(1) symmetric distributions
that we observe. Finally, above Tc2 the critical phase
melts into the disordered phase as defects proliferate.

An example of the symmetry reduction in the ordered
phase is shown in Fig. 2, where (a) and (b) are collected
from simulations in the critical phase, while (c) and (d)
are from the ordered phase. While we detect emergent
U(1) symmetry in both order parameters, a U(1) phase
would not be expected for a primary Z4 dimer order pa-
rameter at T > 0, given the q > 4 criterion in the clock
model [13]. However, with the spin order parameter cor-
responding to q = 8, the critical phase is expected.

Scaling at T > 0.—As a quantitative characterization
of the primary and secondary natures of the two order

FIG. 3. Log-log plots of the magnitude of the primary (a)
and secondary (b) order parameter versus the system size L
for a range of temperatures at Γ/J = 0.67. The dashed lines
are power-law fits to the largest eight system sizes, with T
increasing with color brightness (red to orange). (c) Anoma-
lous dimensions ηm,d versus T for the primary (red) and sec-
ondary (blue) order parameters, extracted from fitting data
to Eq. (8). The exponents align if ηd is rescaled by a fac-
tor 1/4. The gray box denotes Tc2 ± σ from Binder crossing
results. The dashed lines are at the predicted values at the
phase boundaries.

parameters, we compare the scaling of their respective
correlation functions in the critical phase. Within the q-
state clock-model description, the spin-spin correlations
should decay algebraically with a scaling exponent η that
varies continuously with the temperature [28]. The value
of η at the upper and lower critical temperatures are
known, η = 1/4 and η = 4/q2, respectively [13, 27]. To
extract η, we examine the magnitudes of both order pa-
rameters, which in this phase should scale with the lattice
length L as

|m|2 ∝ L−ηm , |Ψ|2 ∝ L−ηd , (8)

where we leave open the possibility that ηm ̸= ηd. In
Fig. 3(a) and 3(b), the order parameters are plotted
versus system size for a range of temperatures between
Tc1 and Tc2. As predicted, they scale algebraically with
L, and we extract ηm(T ) and ηd(T ) by fitting data to
Eq. (8). Results are shown versus T in Fig. 3(c).
The primary order parameter scales with the expected

exponent ηm = 1/4 at the upper critical temperature
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Tc2 extracted from Binder crossing results (Supplemental
Information, Sec. SI [12]). Below this temperature, the
exponent linearly decreases. The statistical quality of the
fits deteriorates below the temperature at which ηm =
1/16 (see Supplemental Material, Sec. SIII [12]), which
is the predicted value at the lower transition point Tc1

[13], where the system orders. While the linear decrease
in η appears to continue below Tc1, the deterioration of
the power-law fit used to extract the exponents below this
temperature implies that this trend should not be given
any credence. Thus, our numerical results are consistent
with the theory, and we can use ηm = 1/4 and ηm = 1/16
to set more precise upper and lower boundaries.

The same behavior is observed for the dimer order pa-
rameter, except that the value of the ηd is consistently
approximately four times larger than ηm. After rescaling
ηd by a factor of four, the results match within statistical
errors, suggesting the relation ηd = 4ηm. This relation-
ship between ηm and ηd can be explained by the height
model: the dimer value d(r⃗) at r⃗, is related to the prod-
uct of neighboring spin operators, Eq. (7), which in the
coarse-grained model can be considered simply as the
square of the spin operator at r⃗, (σz(r⃗))

2
. By represent-

ing the spin operators in terms of the height variables,
one can relate the spin-spin and dimer-dimer correlation
functions to the logarithmically diverging height differ-
ence profile; the observed factor of four relating ηd and
ηm then emerges. For details, see Supplemental Material,
Sec. SII [12].

Scaling at T = 0.—At the quantum critical point,
there must be a different relationship between ηd and
ηm. Given the irrelevance in 2+1 dimensions of Z4 or
Z8 perturbations to a U(1) order parameter, the primary
order parameter should scale with the conventional 3D
XY critical exponent 1 + η3DXY [29], as previously con-
firmed in simulations with a spin-based order parameter
[10]. However, to explain the critical scaling of the dimer
order parameter, we must reference other aspects of the
field theory. Here we analyze both order parameters us-
ing simulations at T = 1/L.

We extract ηm from the asymptotic long distance
(r = L/2) critical spin-spin correlation function, which
is expected to scale as CM (L/2) ∼ L−(1+ηm) = L−2∆ϕ ,
where ∆ϕ is the scaling dimension of the operator of the
order parameter ϕ in the 3D O(2) theory. This is often
referred to as a charge-1 (or spin-1) operator [17, 30],
indicating that it corresponds to a perturbation, e.g.,
h cos(θ), inducing order in a single direction in the O(2)
space, so that the degeneracy is completely lifted. A cor-
responding perturbation in FFTFIM would be one that
fully breaks the Z8 symmetry in the ordered state, favor-
ing one of the eight columnar spin configurations.

A perturbation that couples an external field to the
secondary order parameter would not fully break the Z8

symmetry of the ground state, but would favor the two
spin configurations of given columnar dimer state. Ac-

24 36 48 72 96 128
L

10−5

10−4

10−3

10−2

10−1

L−2∆φ(1.633 − 1.801L−ω)

L−2∆t(0.707 − 1.310L−ω)

CM(L/2)

CD(L/2)

FIG. 4. Dimer-dimer (blue) and spin-spin (red) correlation
functions at the quantum critical point, Γ/J = 1.5768. The
lines are fits of the L ≥ 44 data to the expected scaling form
∝ L−2∆s,t(a + bL−ω), with ∆ϕ = 0.519088, ∆t = 1.23629
[30], and the correction exponent ω = 0.789 [31] in the 3D
O(2) universality class. The reduced χ2 values are ∼ 0.8 and
∼ 0.9 for the spin and dimer correlations respectively.

cordingly, in the low-energy U(1) theory the perturba-
tion should be charge-2 (or spin-2 traceless symmetric)
of the form h cos(2θ), which can also be accomplished
with products of ϕ components, e.g., hϕ1ϕ2. This opera-
tor has scaling dimension often referred to as ∆t [17, 30],

To test the scaling form L−(1+ηd) = L−2∆t , we an-
alyze the oscillating part CD(L/2) of the dimer-dimer
correlation function. Since the connection between the
primary order parameter and ∆ϕ is well known, we first
used its scaling behavior to refine the value of Γc reported
in Ref. [10], as detailed in Supplemental Material, Sec. SV
[12], obtaining Γc = 1.57680 ± 0.00009. We then calcu-
lated CM (L/2) and CD(L/2) at the midpoint; their scal-
ing behaviors are shown in Fig. 4. The results match very
well the scaling dimensions obtained in recent numerical
conformal bootstrap calculations [30]: ∆ϕ ≈ 0.519088
and ∆t ≈ 1.23629.

The simplest effective model with the same microscopic
symmetries and exhibiting the same scaling behavior is a
classical 3D 8-state clock model, where a charge-l order
parameter is defined by the vector m⃗l = (mx,my), with
mx =

∑
i cos(lθi), my =

∑
i sin(lθ), θi being the angle of

spin i. Results for this model are presented in Supple-
mental Material, Sec SVI [12]). The excellent agreement
with the expected exponents in both the FFTFIM and
clock model confirms without doubt the emergent U(1)
symmetry and the primary and secondary nature of the
order parameters in the FFTFIM.

Conclusion.—We have clarified the nature of the two
order parameters, based on spins and dimers, in the
square-lattice FFTFIM. The spin-based order parameter
is primary, as it scales with the leading critical exponents
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and displays the full eight-fold degeneracy of the ordered
phase, while the Z4 dimer order parameter is secondary
with faster decaying critical correlations. Our QMC re-
sults at T = 0 and T > 0 confirm the scaling exponents
predicted from the respective low-energy field theories.

Mapping to dimer models is a powerful tool in the
study of frustrated spin systems, and the problem of
lattice coverings by hard-core dimers is an interesting
topic in itself. The connection between the secondary
dimer order parameter and the primary spin order pa-
rameter then provides a crucial link between the models
that had not been previously drawn in this context. Be-
yond the particular FFTFIM considered here, the trian-
gular and kagome lattice AF Ising models [23, 32], the
fully-frustrated honeycomb lattice Ising model [23], and
the fully frustrated 4-8 lattice Ising models [33] are all
well studied systems where the secondary order parame-
ter prescription could also be applied.

Our insights also explain the critical scaling of a so-
called “parasitic” order parameter studied in the AF 3-
state Potts model on the diamond lattice [1–3]. While
this system primarily orders antiferromagnetically in the
ground state, it was shown that the presence of this order
induces a finite ferromagnetic moment, which is captured
by a secondary order parameter. The observed scaling of
this order parameter had previously eluded explanation,
but it is now clear that this “parasitic” order parameter
also has scaling dimension ∆t in that system.

The relevance of the secondary order parameter opera-
tor (∆t < 3) in the FFTFIM implies that a perturbation
favoring one of the dimer states, accomplished by ap-
propriately modulating the Ising couplings, will induce a
Z2 symmetry breaking phase in the plane of Γ and the
dimer field (modulation) strength hd. The phase bound-
ary between the paramagnetic and ordered phases should
have the asymptotic form hd,c ∼ |Γc(hd,c) − Γc(0)|ν/νd ,
where ν is the 3D O(2) correlation-length exponent and
νd = (3−∆t)

−1, which we confirm in Supplemental Ma-
terial, Sec. SVII [12].

The FFTFIM, with hd = 0 and hd > 0, can be imple-
mented on current D-Wave quantum annealing devices.
While the frustrated AFM triangular AF Ising model had
already been studied in depth [34, 35], only recently was
the FFTFIM implemented on such a device [36]. In this
recent study, only the spin order parameter was investi-
gated, and it would be interesting to study dimer order
parameter as well, in the light of our results.
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PHASE DIAGRAM

The finite temperature phase diagram for the FFT-
FIM is shown in Fig. S1. At temperatures above Tc2(Γ),
or transverse field values above Γc, the system is in
the paramagnetic (PM) phase, while for Γ < Γc and
Tc1(Γ) < T < Tc2(Γ), it is in a critical KT phase. For
Γ < Γc and T < Tc1(Γ), the system is ordered, exhibit-
ing Z8 and Z4 symmetry breaking in the primary and
secondary order parameters, respectively. The phase di-
agram was constructed in the following way:

To locate the upper transition temperature Tc2, we de-
fine Binder cumulants for both order parameters [37]:

Ud = 2− ⟨|Ψ|4⟩
⟨|Ψ|2⟩2 , Um = 2− ⟨|m|4⟩

⟨|m|2⟩2 . (S1)

At the critical temperature, the Binder cumulant should
be system-size dependent, and we indeed find that curves
of U versus T for different L values intersect each other
close to a point Tc2. We extract the temperatures at
which the cumulants for pairs of system sizes L and 2L
intersect, and extrapolate these to the infinite-size Tc2

using the expected finite-size scaling form (shift of a def-
inition of the critical point with the system size) at a KT
transition [38]:

Tc2(L) = Tc2(∞) +
a

log2(aL)
, (S2)

An example of this procedure is shown in Fig. S2 for
Γ/J = 1.50. The fits to the primary (red) and secondary

(blue) binder crossing temperatures give infinite-size Tc2

valuess that agree well with each other to within error
bars estimated using bootstrapping of the data.

At the lower phase boundary, between the KT phase
and the ordered phase, we do not find any crossings of
the Binder cumulants. Instead, we located Tc1 from the
expected power-law scaling of the magnetic and dimer or-
der parameters, with exponents ηm = 1/16 and ηd = 1/4
at the lower boundary, supported also by the observed
break-down of power-law scaling of the order parameters
below Tc1. Our analysis of the correlation functions is
described in the main text and in more detail in Sec. .

The black point at T = 0 in Fig. S1 is the quantum
critical point (QCP), which was identified in Ref. [10]; we
further refined its location in the present work as detailed
below in Sec. . The black dashed lines show the theoret-
ical scaling of Tci versus Γ predicted by Ref. [25, 26],
in which an overall factor has been adjusted to fit our
data at the maximums. These phase boundaries are for-
mally only valid for Γc−Γ ≪ Γc (near the QCP), but we
include them here all the way to Γ = 0 as a visual aid.

0.00 0.25 0.50 0.75 1.00 1.25 Γc/J

Γ/J

0.0

0.1

0.2

0.3

0.4

0.5

T
/J

PM Phase

KT Phase

Ordered Phase

QCP
Theoretical Tc

Tc from Binder Crossing

Tc from η

FIG. S1. Phase diagram of the square-lattice FFTFIM in the
plane of transverse field Γ and temperature T . The QCP is
shown as the black circle at T = 0. The black dashed lines
are the theoretical predictions for the phase boundaries made
in Ref. [25, 26], and the red and blue points are the transition
temperatures identified using our QMC simulations. The the-
oretical phase boundaries have overall unknown factors that
we have adjusted for best agreement at the maximums.
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FIG. S2. Finite-size scaling of the Binder crossing tempera-
ture at Γ/J = 1.50. The temperatures for the magnetization
(red) and dimer (blue) order parameters were extracted for
pairs of systems of size (L, 2L). The error bars on the ex-
trapolated Tc2(∞) values were estimated by a bootstrapping
procedure.

HEIGHT MODEL MAPPING

Here, we make explicit the mapping between the spins,
dimers, and height variables of the FFTFIM. Following
the prescription in Ref. [25, 26], we start by identifying
the 2-to-1 mapping between the ground states of the clas-
sical fully frustrated Ising model and those of the purely
kinetic dimer model on the square lattice [44]. These de-
generate states are defined by the configurations where
each plaquette contains a single frustrated bond. The
dimer model on the square lattice has been studied ex-
tensively [39–41] and its height representation is known
[27]. We repeat the mapping here for the specific sake
of clarifying the relationship between the spin and dimer
order parameters, which was not emphasized in previous
treatments.

The mapping proceeds as follows: begin by dividing
the dual lattice into two sublattices A and B, where
dimers connect dual lattice sites from sublattice A to
B. Assign an arbitrary height value to a site on the spin
lattice and move clockwise around a dual lattice site. If
the dual lattice site is on sublattice A and a dimer is
crossed, the height value at the following spin lattice site
is increased by 3, otherwise it is reduced by 1; see Fig. S3.
If the dual lattice site is on sublattice B, the same rules
apply with signs reversed; -3 and +1, respectively.

In the ordered phase, the dimers are ordered along
columns or rows, corresponding to a height profile that
is ”flat,” i.e., the height value at any given lattice site
is bounded from above. In the critical and disordered
phases, plaquettes with three frustrated bonds begin to
populate the system. The height model is then ”rough”,
with a logarithmically diverging height profile. This be-

FIG. S3. Height model mapping rules for a plaquette at dual
sublattice A. Height variables h are labeled at the spin sites.

havior can be described by an effective elastic free energy
with a periodic ”locking” potential favoring flat height
configurations [41, 42];

F ({h(r⃗)}) =
∫

dx⃗

[
K

2

∣∣∇⃗h(r⃗)
∣∣+ V cos (2πh(r⃗))

]
, (S3)

where h(r⃗) is the coarse-grained height field (height vari-
ables averaged over a plaquette), K is the temperature
dependent stiffness constant, and V > 0 is the strength
of the locking potential.
As discussed in the main text, for T < Tc1 the locking

potential is a relevant perturbation and the system orders
[13, 27]. For Tc1 < T < Tc2, ”screw dislocations” begin
to emerge in pairs throughout the system. These defects
are the aforementioned plaquettes containing not one but
three frustrated bonds, which appear bound in neutral
pairs. For T > Tc2, the interaction between the defects
becomes sufficiently weak for the pairs to unbind, spread-
ing throughout the system and disordering the critical
phase [25, 26, 45].
In the critical (rough) phase, the locking potential is

irrelevant, and the system is described by a free Gaussian
theory. The long distance height difference correlations
can be easily calculated [13, 27, 28]:

1

2
⟨
∣∣h(r⃗)− h(⃗0)

∣∣2⟩ ∝ ln(r)

2πK
. (S4)

We relate this form to the spin-spin and dimer-dimers
correlations by noting that the spins are periodic in the
height variables, with a period of 8. This can be seen by
turning the spins around a plaquette twice as depicted in
Fig. S4.
This periodicity implies that the spins can be written

as a Fourier series:

σz(r⃗) =
∑
G

σ̃z
Ge

iGh(r⃗)
(S5)

where G = 2π
8 n with n = 1, 2, 3, . . . . The spin-spin cor-

relations for a single Fourier mode is given by

⟨eiGh(r⃗)e−iGh(⃗0)⟩ = e−
1
2G

2⟨|h(r⃗)−h(⃗0)|2⟩, (S6)
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FIG. S4. Demonstration of the periodicity of the spin vari-
ables with the height variables. Upon traversing the plaque-
tte, each spin (marked in yellow) is flipped sequentially (left
to right, upper then lower row) and the height variables are
computed according to the rules laid out in the text. The fi-
nal spin configuration is identical to the initial one, but with
each height increased by 8, implying that the spins must be
periodic in the heights with period 8.

and clearly the smallest G value in the expansion in
Eq. (S5) will dominate. Thus, we can express the coarse-
grained spin and dimers as

σz(r⃗) ∝ ei
2π
8 h(r⃗)

d(r⃗) ∝ σz(x⃗)σz(r⃗ + x̂) ≈ (σz(r⃗))
2 ∝ ei

4π
8 h(r⃗).

(S7)

Plugging in the height difference correlations in the
rough phase, Eq. (S4), we can extract the anomalous
dimensions for the spins and dimers:

⟨σz(x⃗)σz (⃗0)⟩ ∝ e−
1
2 (

2π
8 )

2⟨|h(r⃗)−h(⃗0)|2⟩

∝ r−π/32K ∝ r−ηm

⟨d(r⃗)d(⃗0)⟩ ∝ e−
1
2 (

24pi
8 )

2⟨|h(r⃗)−h(⃗0)|2⟩

∝ r−π/8K ∝ r−ηd

(S8)

This mapping implies that ηd = 4ηm, which we have
confirmed numerically in Fig. 3c in the main text.

The above derived relationship between η and K al-
lows us to determine the values of anomalous dimension
at the boundaries of the critical phase. Because the ef-
fective free energy in Eq. (S3) is exactly that of the 2D
classical XY model with an eight-state clock anisotropy
term, we can use the RG analysis preformed in Ref. [13]
to determine the critical values of the coupling K sepa-
rating the critical phase from the ordered and disordered
phases.

The lower and upper critical temperatures correspond
toKc1 = π/2 andKc2 = π/16, between which the system
is critical (cf. with Ref. [28]). The values of ηm at the
phase boundaries are then

ηm(Tc1) = 1/16, ηm(Tc2) = 1/4. (S9)

REDUCED χ2 FOR POWER LAW FIT IN
CRITICAL PHASE

Below the lower critical temperature Tc1, the order pa-
rameters should no longer scale as power laws. Around

0.0 Tc1 0.2 0.3 Tc2 0.4 0.5
T/J

0

1

2

3

4
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6

χ
2
/N

d
o
f

Magnetization

Dimer

FIG. S5. Reduced χ2 values from power law fits used to ex-
tract ηm (red) and ηd (blue) in Fig. 3 of the main text. The
black dashed line denotes the value corresponding to the 95%
confidence level for the number of degrees of freedom of the
fits. The reduced χ2 begins to exceed the 95% confidence
level below Tc1 and above Tc2, indicating that the order pa-
rameters no longer scale as power laws.

this temperature, we therefore expect that the reduced
χ2 from a power law fit used to extract ηm and ηd would
begin to degrade. Figure S5 shows the reduced χ2 for
these fits versus temperature compared to the reference
value corresponding to the 95% confidence level (black
dashed line). The results are indeed consistent with the
power law form no longer being applicable below Tc1 and
above Tc2. Larger system sizes would be required to ob-
serve the fits deteriorating more significantly close to the
phase boundary. The results shown here were obtained
by including the largest 8 system sizes in Figs. 3(a) and
3(b) in the fits.

CORRELATION FUNCTION AT ZERO
TEMPERATURE

At the quantum critical point, we extract the scaling
exponents ηm and ηd by measuring the long distance cor-
relation functions at T = 1/L, given that the dynamical
exponent has the value z = 1. The spin-spin correlation
function is defined as

lim
r→∞

CM (r⃗) = lim
r→∞

⟨σz
mi

(r⃗)σz
mi

(0)⟩ ∼ 1

r1+ηm
, (S10)

where σz
mi

(r⃗) is the spin operator at a site r⃗ on sublattice
i and we expect ηm = η3DXY . In connection to the rele-
vant field theory, 1+η3DXY = 2∆ϕ, where ∆ϕ ≈ 0.519088
[30] is the scaling dimension of the order parameter of the
3D O(2) model. This reflects the known irrelevance of Zq

perturbations with q ≥ 4 at this critical point.
The dimer-dimer correlation function is defined as

Dx(r⃗) = ⟨dx(r⃗)dx(0)⟩, (S11)
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where dx(r⃗) is the x-oriented dimer operator at a site
r⃗. However, in the ordered phase, the dimer correlations
will oscillate between smaller and larger values and the
order parameter of interest is the difference between these
modulated correlations;

D∗
x(r⃗) = Dx(r⃗)−

Dx(r⃗ − ŷ) +Dx(r⃗ + ŷ)

2
. (S12)

Averaging over both horizontal and vertical dimer orien-
tations, the expected scaling is

lim
r→∞

CD(r⃗) = lim
r→∞

D∗
x(r⃗) +D∗

y(r⃗)

2
∼ 1

r1+ηd
(S13)

We evaluate both of these correlation functions at the
largest separation for a periodic, finite system of linear
size L, r⃗ = (L/2, L/2). In Fig. 4 of the main text we
show that the dimer correlations fall off with distance as
a power law with exponent corresponding to the leading
charge-2 operator of the 3D O(2) model; 1 + ηd = 2∆t,
with ∆t ≈ 1.23629 [30].

DETERMINING Γc

To determine Γc, we located the value of Γ where the
primary order parameter correlation functions scales as
power law with the expected power ∆ϕ. We measured
the correlations function for Γ values in a small range
around the previously reported Γc and compared the χ2

from power law fits to the data at these different values.
To reduce the error bars on the measured data, we inter-
polated the correlation function data for a given system
size using second-order polynomials for several data sets
in the Γ range [1.576, 1.578].
Reduced χ2 versus Γ for the spin-spin correlation func-

tion is shown in Fig. S6, where we see convergence in the
location of the χ2 minimum as the minimum system size
used for the fit is increased. We judge that any remaining
systematic errors from scaling corrections are negligible
for Lmin = 44, and the resulting critical point is then
Γc = 1.57680 ± 0.00009. To determine the error bar on
Γc, we located Γ values where the reduced χ2 is equal to
the the 95% confidence level for the number of degrees of
freedom used, denoted by the two vertical black lines.

SECONDARY ORDER PARAMETER IN 3D
CLASSICAL CLOCK MODELS

The 3D classical q-state clock model is defined by the
Hamiltonian

Hq = −
∑
⟨i,j⟩

cos (θi − θj)− hq

∑
i

cos (qθi) , (S14)

with θi ∈ [0, 2π) defining the orientation of a two-
component spin on cubic lattice site i. At fixed hq, below

1.5764 1.5766 1.5768 1.5770 1.5772
Γ/J

0.0

0.5

1.0

1.5

2.0

2.5
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3.5
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χ
2
/N

d
of

Lmin = 20

Lmin = 28

Lmin = 36

Lmin = 44
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FIG. S6. Reduced χ2 from power-law fits to the spin-spin cor-
relation function data versus Γ. The χ2 minimum converges
as the smallest L value used in the fit is increased. Using
the number of degrees of freedom for the Lmin = 44 fit, we
determine the Γ values within the 95% confidence interval of
the χ2 distribution, indicated here by the two vertical black
lines. The error bars were computed by bootstrapping the
raw binned data sets.

T = Tc, the systems orders into a Zq symmetry break-
ing phase. The Zq perturbation for q ≥ 4 is known to
be irrelevant at the critical point, so that the 3D O(2)
universality class applies (though changing the symmetry
broken in the ordered phase).
For q = 8, the microscopic symmetries of the model

exactly match those of the square-lattice FFTFIM, and
we here study this clock model as a bench-mark case
of primary and secondary order parameters. Just as in
the FFTFIM, we can define charge-1 and charge-2 scalar
order parameters for the clock models:

mx =
∑
i

cos(lθi), my =
∑
i

sin(lθi),

m2
l =⟨m2

x⟩+ ⟨m2
y⟩,

(S15)

where l labels the charge.
Although our primary interest here is in the q = 8 case,

we carried out simulations at the critical points of three
different versions of the model, namely, the XY model
(with no clock field, corresponding to q → ∞), the 8-
state hard clock model (with the spins restricted to the
q discrete states, corresponding to h8 → ∞), and the
4-state soft clock model with anisotropic field h4 = 1.
We expect the same scaling dimensions in all cases on
account of the irrelevance of the clock perturbations. The
critical points of the first two models can be found in
Ref. [31], while Tc = 2.20465(1) of the third model was
reported in [43]. In an improved analysis, we found this
value to be about two error bars too low and here report
results obtained with T = 2.20467.
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FIG. S7. Scaling behaviors of m2
l , with charge l = 1 i (a) and

l = 2 in (b), at the estimated critical temperatures for the q =
4 and q = 8 clock models (using 1/Tc = 0.45416467 for q = 8
[31] and Tc = 2.20467 for q = 4. The curves show the form
Eq. (S16) with only the constants a and b adjusted for best
fits and with results for the smaller system sizes exccluded
systematically until a statistically good reduced χ2 value is
obtained.

In Fig. S7 we fit our data for q = 4 and q = 8 to the ex-
pected scaling form with the leading finite-size correction
included;

m2
lL

2∆l = a+ bL−ω (S16)

with ∆1 = ∆ϕ = 0.519088, ∆2 = ∆t = 1.23629 [30], and
ω = 0.789 [31]. Only the prefactors a and b were fitted.
In the case of the XY model, the results fall so close to
those for q = 8 that we have not included them in the
figure for clarity (we also note that the error bars are
larger for the XY model after simulations of comparable
length).

To compare the clock results more directly to the FFT-
FIM results shown in Fig. 4 of the main text, in Fig. S8
we show the FFTIFM data analyzed in the same way as
the clock results in Fig. S7, with the expected leading
power laws of L divided out and fitting only to the ex-
pected correction given by Eq. (S16). Though the sign
of the (non-universal) amplitude of the correction to the
dimer correlations in Fig. S8(b) is different from that in
the q = 8 result in Fig. S7(b), the overall behavior of the
corrections (the leading term fitted to and the higher-
order corrections causing deviations from the fit) is sim-

FIG. S8. Scaling behaviors of CM (L/2) and CD(L/2), plotted
as in Fig. S7.

ilar. The primary order parameter of the FFTFIM in
Fig. S8(a) seems to have more significant subleading cor-
rections than the clock results in Fig. S7, but the large-L
asymptotic form is again similar and consistent with the
leading correction.

FIG. S9. Γ–hd phase boundary. The red line indicates the Z8-
breaking phase that exists only at hd = 0. The black dashed
lines show the boundaries between the paramagnetic and Z2-
breaking phases and are of the form given in Eq. (S18), where
a single prefactor was adjusted to fit the data.
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Z2 PHASE

By alternating the Ising couplings between J −hd and
J + hd (J = 1) on either rows or columns in the FFT-
FIM, a single dimer state and its accompanying two spin
states are energetically favored. Thus, this perturbation,
arbitrarily weak, induces a Z2 symmetry breaking phase
in the plane of Γ and the strength of the coupling mod-
ulation hd.
We can derive the expected asymptotic form of the

phase boundary by considering the diverging length
scales corresponding to each perturbing field (Γ and hd).
Upon tuning Γ → Γc and hd → hd,c, their respective
correlation lengths will diverge as

ξΓ ∼ |Γ− Γc|−ν , ξhd
∼ |hd − hd,c|−νd , (S17)

where ν again is the 3D O(2) correlation length exponent,
ν = (3−∆s)

−1 in terms of the relevant charge-0 (singlet)
scaling dimension ∆s ≈ 1.51136 [30], and νd = (3 −
∆t)

−1 with ∆t = 1.23629. Assuming that the Γ–hd phase
boundary corresponds to a fixed ratio of these two length
scales, we extract the form

hd,c ∼ |Γc(hd,c)− Γc(0)|ν/νd . (S18)

We have confirmed this form using numerics, as shown
in Fig. S9, using the same type of QMC simulations and
analysis as explained in previous sections.
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