
ar
X

iv
:2

30
9.

02
60

5v
3 

 [
qu

an
t-

ph
] 

 2
7 

M
ar

 2
02

4

A pragma based C++ framework for hybrid

quantum/classical computation

Arnaud GAZDA1 and Océane KOSKA1,2

1Eviden Quantum Lab, Les Clayes-sous-Bois, France
2Laboratoire Interdisciplinaire des Sciences Numériques,

Gif-sur-Yvette, Saclay, France

March 29, 2024

Abstract

Quantum computers promise exponential speed ups over classical com-
puters for various tasks. This emerging technology is expected to have
its first huge impact in High Performance Computing (HPC), as it can
solve problems beyond the reach of HPC. To that end, HPC will require
quantum accelerators, which will enable applications to run on both clas-
sical and quantum devices, via hybrid quantum-classical nodes. Hybrid
quantum-HPC applications should be scalable, executable on Quantum
Error Corrected (QEC) devices, and could use quantum-classical primi-
tives. However, the lack of scalability, poor performances, and inability to
insert classical schemes within quantum applications has prevented cur-
rent quantum frameworks from being adopted by the HPC community.

This paper specifies the requirements of a hybrid quantum-classical
framework compatible with HPC environments, and introduces a novel
hardware-agnostic framework called Q-Pragma. This framework extends
the classical programming language C++ heavily used in HPC via the
addition of pragma directives to manage quantum computations.

Keywords— quantum, HPC, programming, hybrid computing, C++, pragma,
framework

1 Introduction

Quantum computing is a paradigm of computer science that uses quantum physics
to solve some computationally hard problems faster than a classical computer. These
problems, such as cracking encryption [32] or simulating quantum chemistry systems
[22, 7], are currently solved using High Performance Computing (HPC) systems, but
can be tackled more efficiently using quantum algorithms, suggesting that quantum
computing will revolutionize HPC. However, these quantum algorithms are not ex-
pected to replace existing classical applications; they will be integrated inside existing
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softwares to avoid some heavy classical computations. For example, the application
that cracks encryption will use a quantum processor to find an integer divisor while
parsing a SSL certificate or decoding an encrypted message will require classical re-
sources. Applications using quantum resources will be hybrid, requiring both quantum
and classical resources. Moreover, the classical code used in these hybrid applications
is likely already implemented. Then, extending classical applications to integrate
quantum kernels is a crucial step in the process of making quantum devices useful.

This kind of integration has already been done in classical computing, using more
than one type of processor or core. For example, in general-purpose computing on
Graphical Processing Units (GPU), the Central Processing Unit (CPU) delegates some
tasks to the GPU acting as an accelerator [19]. The emergence of new programming
tools such as CUDA [30] and OpenMP [10, 24] have made classical hybridization
possible, based on a well-defined hardware connection between the GPU and the CPU.
Similarly, tasks could be offloaded to a Quantum Processing Unit (QPU), by taking
into account the interaction between classical and quantum hardware. The main
challenge would be to connect the quantum computing systems with classical ones, and
to define the programming interface to communicate with such quantum resources.

Proposition of architectures integrating quantum devices into a HPC node1 were
recently published [4, 20] (these nodes are referred to as “hybrid quantum-classical
nodes”). In these designs, the classical resource (named Host) is placed close to the
quantum device to reduce latency and to enhance the quantum computation efficiency.
Reducing the latency improves the computation and allows for efficient data-transfers
between the components of the node. In these designs, the Host is directly connected
to a controller, which is a piece of classical software and electronics responsible for
manipulating the quantum state within the quantum device.
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Figure 1: Hybrid HPC node - composed of a Host and one or several devices.
The QPU is connected to the Host like any other device.

In Figure 1, the QPU controller receives instructions from the Host to execute them

1A node is the minimal entity on which an Operating System (OS) can be installed
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on the quantum part. It schedules these instructions, and can execute classical com-
putations that interact with the quantum part. Incorporating classical computations
alongside quantum computation is used to manage Quantum Error Correction (QEC),
but can also be used to optimize a quantum routine. For example, this method is used
to reduce the gate count of arithmetic operations [14]. The incorporation of classical
computation directly impacts the design of a hybrid quantum-HPC framework.

Existing quantum frameworks (like OpenQASM 3 [9], Q# [36], and Scaffold [1]) do
not take advantage of this hardware integration, by restricting CPU/QPU interactions.
Moreover, running a quantum routine within an existing application appears challeng-
ing, as the discussion on the interoperability between HPC and quantum computing
remains limited. Then, redesigning classical-quantum programming is a foremost re-
quirement, but this redesign can also simplify the way hybrid applications are imple-
mented. To do so, defining the specifications of a hybrid quantum-HPC framework is
necessary.

This paper proposes a definition of a hybrid quantum-HPC framework based on 7
criteria, inspired by well-established classical and quantum hybrid frameworks. Based
on these criteria, a new C++ quantum-HPC framework called “Q-Pragma” is intro-
duced. This framework integrates modern programming concepts to satisfy HPC con-
straints and to simplify the integration of quantum kernels in existing applications.
Nevertheless, these constraints are not an obstacle to use Q-Pragma in a non-HPC
context, and can even simplify the development of hybrid algorithms. For instance, ad-
vanced quantum algorithms can be written using only few lines of code (see Appendix
A). A core concept of Q-Pragma is to use pragma directives to add quantum-classical
hybridization capabilities to C++. Q-Pragma is a hardware-agnostic framework built
on existing HPC design patterns, making it portable, scalable, and usable with classical
HPC frameworks.

In the next section, the term “hybrid quantum-HPC” will be used, since this section
focus on the integration of a quantum device in a HPC system. Subsequently, the term
“hybrid quantum-classical” will be preferred to discuss about hybridization in general
(and not only HPC).
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2 Defining a hybrid quantum-HPC framework

Developing a hybrid quantum-HPC framework seamlessly interoperable with HPC
languages is of paramount importance. Such interoperability would guarantee com-
patibility and facilitate smooth integration with current HPC infrastructures and soft-
ware ecosystem. Additionally, these specifications play a critical role in shaping the
framework functionalities and performance.

HPC is already hybrid, as many existing applications rely on GPUs. This section
focus on the existing classical hybrid frameworks, to highlight HPC-friendly design
patterns which can be used in a quantum-HPC framework. Then, this section focus
on existing quantum frameworks to identify features that need to be implemented in
quantum-HPC frameworks.

2.1 Classical hybrid computing

Within the realm of HPC, the most prominent languages are Fortran [3], C [23],
and C++ [35]. Fortran, the oldest among them, maintains its active presence in
HPC, primarily due to its utilization in legacy codes. Meanwhile, C stands out for
its precise memory management and system operations, making it particularly pow-
erful for performance optimization. Additionally, a vast range of libraries and tools
like BLAS [6] and LAPACK [2] are available for C, enriching its development ecosys-
tem. On the other hand, despite its greater complexity compared to C and Fortran,
C++ offers the advantages of object-oriented programming, significantly enhancing
code maintainability in large-scale HPC applications. Furthermore, C++ has tem-
plate metaprogramming capabilities that enable compile-time code generation, thus
enhancing performance further. These three programming languages possess interop-
erability, meaning that a function written in any of these languages can be invoked or
utilized within another language. Creating a framework that works easily with today’s
HPC languages allows us to use pre-existing tools including parallel programming tools
and optimized libraries.

In classical hybrid computing, interoperability with one of these programming
languages prevails. There are two types of classical hybrid computing frameworks,
frameworks based on a new programming language, and frameworks extending an
existing HPC language.

Hybrid frameworks based on a new programming language
Some hybrid applications already use third-party languages to run code on specific de-
vices. For example, CUDA [30] and OpenCL [34] are programming languages designed
to take advantage of GPUs.

CUDA (Compute Unified Device Architecture) is a parallel computing platform
and programming model developed by NVIDIA, specifically designed to exploit the
computational power of GPUs for general-purpose computing tasks. CUDA provides
a C-like programming interface, allowing developers to express GPU computations
within their existing C or C++ codebase.

Similarly OpenCL is an open standard parallel programming framework that tar-
gets heterogeneous computing environments like CPUs, GPUs and FGPAs. OpenCL
also supports several programming languages such as C, C++ and Python.

This design pattern provides the concept of kernel (i.e. a device-specific function
which can be called from a HPC language) and provides tools to allocate memory on
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the device. This design pattern has been chosen by some quantum frameworks, includ-
ing CUDA Quantum [11], Q# [36], OpenQASM 3 [9], and Scaffold [21]. Howeover,
with the exception of CUDA Quantum, none of these programming languages incor-
porate the concept of kernel, preventing these frameworks from being used in HPC
environments.

Hybrid frameworks extending existing programming languages
Another option is to enhance an existing language to streamline integration. Among
conventional hybrid programming solutions, OpenMP [10, 24] (Open Multi-Processing)
stands out as a prominent programming model engineered to seamlessly integrate
GPU-specific code within established programming languages like C, C++, or For-
tran. OpenMP is based on a collection of compiler directives, library functions, and
environment variables. These directives, highlighted by pragmas, allow programmers
to define code sections for GPU execution without having to learn a new program-
ming language. They serve the purpose of adding device specific instructions as well as
specifying the code and memory locality (i.e. selecting the device on which a function
is executed, or a variable stored). This design pattern has been chosen by QCOR [26],
by adding function attribute specifiers to the C++ language.

These two classical design patterns address a critical concern of classical hybrid
environments, namely code and memory locality control. This concern should be
addressed by quantum-HPC frameworks through the following specification:

Code and memory locality
A quantum-HPC framework provides tools to control code and memory locality.

Existing classical HPC frameworks are extended with device-specific features to
encompass the full spectrum of capabilities offered by the device. Thus, the capabilities
of a QPU must be defined in order to build a quantum-HPC framework.

2.2 Quantum computing features for HPC

Quantum computing will impact HPC. To harness this acceleration, quantum com-
puting features for HPC must be listed. A set of hardware capabilities, through the
seven DiVicenzo’s criteria [12], has defined what a universal quantum computer is.
This section defines a list of software capabilities to better take advantage of a such
device. An overview of these specific capabilities has never been done before. Inspired
by the state of the art, this subsection outlines the main features of a quantum-HPC
framework. It involves using millions of physical qubits, correcting errors for accu-
rate results, and spreading computations across multiple QPUs for better processing.
These requirements will need specific capabilities from the QPU.

Dynamic interaction Classical memory or quantum memory can be allocated on
a QPU and manipulated from the Host, at runtime.

Hybrid quantum-HPC applications require their classical part to interact with their
quantum part. To interact with a quantum computation, the Host needs to send and
receive information from the QPU. The Host should then be able to access QPU’s
memory, by reading and writing data directly on the QPU.

5



Scalability Hybrid quantum-HPC frameworks should support algorithms with arbi-
trary big number of qubits, or instructions.

Pratical quantum-HPC applications, like Shor algorithm running on an error-
corrected QPU [15], would require millions of physical qubits (the scalability is a hard-
ware requirement, since it is a DiVicenzo’s criteria). Then, any hybrid quantum-HPC
framework must be able to handle such large amount of physical qubits. Nowadays,
the circuit formalism used to describe quantum algorithms represents, on a timeline,
the different operations that will be applied on the quantum state. This formalism is
static and is used by most of today’s quantum frameworks like myQLM [13], Qiskit
[31], and Cirq [8]. Nevertheless, the circuit formalism is not designed to represent
billions of operations acting on millions of qubits, as it would be necessary to create
a data structure of several gigabytes to represent a single instance of the problem.
Moreover, the integration of classical operations that have an impact on the quantum
computation is not compatible with this formalism.

Typing Quantum registers are typed to simplify the manipulation of huge structures.

Today, the majority of classical programming languages utilizes typing, where
source code handles not just booleans but also more complex data types like integers,
floating points, and arrays. Employing typing in a language streamlines the source
code and empowers users to create sophisticated algorithms. The use of typing in a
framework is essential to ensure scalability. A quantum-HPC framework should offer
predefined quantum data types while also permitting users to define their own custom
quantum structures.

Reversibility Pure quantum operations are reversible.

Quantum reversibility is a fundamental concept in quantum computing, referring
to the ability to reverse quantum operations and undo their effects [29]. Any quantum
routine written in a hybrid framework should be reversible.

Controllability Pure quantum operations are controllable.

In quantum computing, control gates such as Toffoli gates have a crucial func-
tion as they facilitate the creation of entanglement [29]. This entanglement, along
with the concept of superposition, empowers quantum computers to execute advanced
computations that greatly surpass the classical computer capabilities. The ability to
control a quantum routine constitutes a fundamental concept within a quantum-HPC
framework.

Safe uncomputation Quantum registers can be reset to |0〉 state without any
measurement.

Unlike classical computing, resetting a qubit is dangerous (reset being composed
of a measurement, and optionally a X gate). A qubit may be entangled with another
one, so resetting a qubit could have an impact on other qubits. Safe uncomputation is
a concept defined in existing quantum frameworks like Quipper [17] or Silq [5], relying
on the reversibility of quantum unitary operations to reset a qubit to the |0〉 state.

None of the existing quantum frameworks fulfill the aforementioned requirements,
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see Table 1. A new C++ framework for hybrid quantum-classical computing fulfilling
all these requirements is introduced. This framework, compatible with HPC environ-
ments, is composed of both a C++ library, as well as a compiler plugin providing C++
pragmas to control the quantum computation.
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Fully supported
∼ Partially supported

Framework Locality Dynamic interaction Scalability Typing Reversibility Controllability Safe uncomputation

Cirq [8]
CUDA Quantum [11] ∼ ∼

myQLM [13] ∼

OpenQASM 3 [9]
ProjectQ [33, 18] ∼

Q# [36] ∼ ∼

QCOR [26] ∼

Qiskit [31]
Quipper [17]
Scaffold [1]
Silq [5]

CUDA [30]
OpenCL [34]
OpenMP [10, 24]

Table 1: Features implemented by existing hybrid frameworks - the first group corresponds to quantum frameworks, the second
one corresponds to classical frameworks (see Appendix B for details).
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3 Q-Pragma: a C++ hybrid framework

This section introduces a new framework, called “Q-Pragma” that bridges the clas-
sical and quantum computing worlds, even within HPC ecosystems. Q-Pragma is a
C++-based framework that not only empowers classical applications with quantum ca-
pabilities but also satisfies the code and memory locality requirement. This framework
constitutes a first step towards the development of hybrid quantum-classical applica-
tions, and adds the power of quantum computing to the computational efficiency and
scalability offered by HPC systems.

At its core, this framework comprises a versatile C++ library designed to facil-
itate the seamless integration of quantum operations into classical C++ code. This
integration enables developers to explore quantum algorithms and harness quantum
hardware resources without completely overhauling their existing classical codebases.
Moreover, C++ pragmas specifically tailored to extend the language expressive power
are introduced, allowing for the efficient description of quantum operations within
classical code, thus forming a bridge between the two computing paradigms.

In Q-Pragma, the dynamic interaction requirement is satisfied through the memory
sharing enabled by the HPC link between Host and QPU [20]. This is discussed in
Subsection 3.2.1.

Additionally, the QPU connected to the Host is directly targeted by Q-Pragma,
simplifying hybrid application development. This targeting relies on a C++ library
available on the node. This library provides a connection with the QPU, and instruc-
tions are directly streamed through this library. This fulfills the scalability require-
ment. Streaming instructions avoid the drawbacks of the circuit structure, permitting
the framework to manipulate large scale quantum computations, as well as allowing
classical computation to interact with the quantum part. Streaming instructions is a
known pattern used by OpenQASM 3 [9] or ProjectQ [33, 18].

The subsequent subsections delve into the architecture, design principles, and key
features of this C++ framework. They focus on the typing system introduced by
Q-Pragma, the concept of quantum routine and the directives extending the C++
language.
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3.1 Q-Pragma: A quantum library

Q-Pragma provides a C++ library defining new quantum types as well as the concept
of quantum routines. The new quantum types guarantee compliance with the typing
and safe uncomputation requirements, while the quantum routine concept meets the
reversibility and controllability requirements.

3.1.1 Quantum types

In order to make Q-Pragma intuitive and well integrated with classical C++, new
quantum types have been added to the framework. These quantum types can describe
arbitrary data-structures, including user defined quantum structures. Q-Pragma quan-
tum types can be grouped into two categories:

• Quantum boolean, named “qbool” in Q-Pragma. A quantum boolean can be
seen as a unique pointer, pointing to a quantum memory address. This “qbool”
is a quantum register of size 1 and is the elementary brick of the quantum type
design.

• Quantum array, an array of quantum bools having a fixed size. Pure quantum
types defined in this framework inherit from a quantum array.

A pure quantum register has a fixed size. This size is defined by a constant value
and not by a classical variable stored in a classical register, thereby making the register
a pure quantum object. This follows the philosophy of C++ types: any C++ type has
a fixed size. Moreover, pure quantum functions built upon these fixed-size quantum
registers can be optimized at compile-time. Dynamic-sized quantum types are built
using a classical C++ container (e.g. vector, list). They are composed of both classical
and quantum registers, and as such are called hybrid structures.

The safe uncomputation concept stems from the reversibility of quantum unitary
operations to reset a quantum register to the |0〉 state. It has been introduced in
some quantum frameworks like Quipper [17] or Silq [5]. Q-Pragma provides a safe
uncomputation mechanism based on the initialization of a quantum object. Each
quantum type handles its own “initialization” (i.e. computing the state preparation -
done by the constructor of the quantum type) and “deinitialization” (i.e. uncomputing
the state preparation - done by the destructor of the quantum type, ignored if a
measurement occurred on this register). Any quantum operation executed on the
quantum register must be uncomputed to get |0〉 state. Through a get_init method
one can cast a classical type value into a state preparation routine. This routine is
used to initialize the state and then stored to undo this state preparation at delete
time.

Listing 1 illustrates the safe uncomputation mechanism. The qreg quantum register
is initialized to state |1〉 (to do so, an implicit X gate is applied on the qubit). At
the end of the scope, the qreg register is no longer accessible, so Q-Pragma reset the
register to state |0〉 (by applying a X gate on the qubit).
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1 {

2 // Initialize a quantum register based on

3 // a classical value

4 // This initialization creates a state

5 // preparation (here applying a X gate )

6 qbool qreg = true;

7
8 ...

9
10 // Object "qreg " is deleted , the safe

11 // uncomputation mechanism applies a

12 // X gate to reset this register to |0〉
13 }

Listing 1: Safe uncomputation mechanism

Similarly, the cast_measure method consists in casting a quantum measurement
into a classical interpretation of it. This approach forms an explicit connection between
classical and quantum types. For instance, measuring a qbool gives a bool while
measuring a quantum array leads to a classical array of bools. If one creates a new
quantum type, one can arbitrarily choose the way classical and quantum data interact
through this new type.

1 // State preparation

2 quint8_t quint = 12UL;

3
4 ...

5
6 // Measurement of a quantum integer

7 uint8_t cuint = measure_and_reset (quint);

Listing 2: Casting a quantum integer into a classical integer - A
quantum integer being an array of qbools, casting the measurement
consists in translating an array of bool (i.e. bitstring) into a classical
integer

Q-Pragma provides three built-in quantum types: the qbool (quantum bool or
qubit), the quint_t (quantum unsigned integer) and the qint_t (quantum signed in-
teger). The quint_t and the qint_t are inspired from the C++ classical types uint_t
and int_t respectively. These two types belong to the quantum array category, mean-
ing that quint_t and qint_t are fixed-sized arrays of qbools, their size being given
by a template parameter. Note that any quantum type can be created following the
quint_t conception.

A quantum integer can be initialized from a classical integer, and measuring a
quantum integer returns a classical integer. Listing 2 illustrate this behavior, the
quantum register quint will be initialized with the quantum state |00001100〉, which
is the binary encoding for 12; at the end of the scope, the quantum register quint
is measured in the Z-basis, and the outcome bitstring is casted into a classical inte-
ger. To implement this behavior, quantum type quint_t overloads the get_init and
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cast_measure methods, enabling this type to be instantiated from an unsigned integer
or a positive signed integer.

1 /* QUINT_T */

2 quint8_t quint_a;

3 quint8_t quint_b = 42;

4
5 // Apply operations

6 quint_a ^= (quint_b + 7);

7
8 // Measure a register

9 uint8_t cuint_a = measure_and_reset (quint_a);

Listing 3: Usage of a 8 qubits quantum integer

A quint_t behaves as a classical integer, enabling bitwise operations and some
arithmetic operations, as shown in Listing 3. This can be done by overriding C++
operators. For instance, overriding the “+” operator enables the addition between
quint_t and other quantum or classical integers. The same mechanism applies for
qbool and qint_t.

Any built-in Q-Pragma quantum type behaves as its equivalent classical type. A
quantum type can be initialized using its equivalent classical type and is manipulated
using the same set of operations, as long as the operations remain reversible, as shown
in Listing 3 or Listing 4. Measuring a quantum type returns its classical equivalent.
Moreover, any quantum type can be initialized using a C++ expression.

1 // Initializing two qbools from classical bools

2 qbool a = true , b = false;

3 // Initializing a qbool from a C++ expression

4 qbool c = a | b;

Listing 4: Initialization of a quantum type using a C++ expression

C++ operators can be used to define complex quantum routines using only few
lines of code. In addition, this section shows that Q-Pragma adheres to several require-
ments described in the previous section, namely the typing and safe uncomputation
requirements.

3.1.2 Quantum routines

A quantum routine is a pure quantum function acting on a fixed-size quantum register.
It is by definition controllable and reversible. A quantum routine is either:

• A native gate, also called “basic gate” in Q-Pragma. These basic gates are the
usual gates used in quantum computation, including Pauli gates X, Y and Z,
Toffoli gates, CNOT gates, and others.

• A sequence of other quantum routines, each acting on a subset of qubits.
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A routine being a function, it can be built using the same syntax as any C++
function. A directive #pragma quantum routine must be used to declare this function
as a quantum routine. The behavior of this pragma is explained in the next section.

A quantum routine can be executed using the operator() method, to be called using
the same syntax as any C++ function. Nevertheless, a quantum routine features extra
methods to change the behavior of this function, as shown in Listing 5:

• Method dag() is used to call the inverse version of the routine.

• Method ctrl() is used to call the control version of the routine. The size of the
register passed in argument defines the number of controls.

• Method ctrl_dag() is used to call the control version of the inverse. The size of
the register passed in argument defines the number of controls.

1 qbool q0 , q1 , qc;

2
3 // Apply the routine

4 my_routine (q0 , q1);

5
6 // Apply the reverse routine

7 my_routine .dag(q0 , q1);

8
9 // Apply the controlled routine

10 // The routine is controlled by a single qubit

11 my_routine .ctrl(qc , q0 , q1);

12
13 // Apply the reverse and controlled routine

14 my_routine .ctrl_dag (qc , q0 , q1);

Listing 5: Usage of a quantum routine

The quantum routine ensures that Q-Pragma supports the reversibility and con-
trollability requirements.
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3.2 Q-Pragma: extending C++

C++ pragma directives are powerful tools used to specify several compilation features,
while maintaining compatibility with the C++ language. Q-Pragma relies on these
directives to add quantum programming capabilities to C++. This is achieved using
five new pragma directives, allowing hybrid quantum-classical code implementation
while remaining consistent with C++, and comprehensible by C++ developers.

These pragmas are used to:

• manage code and memory locality, i.e. quantum scope and quantum move di-
rectives.

• control quantum instructions, i.e. quantum ctrl directive.

• define quantum routines, i.e. quantum routine directive.

• manage the uncomputation, i.e. quantum compute directive.

3.2.1 Managing code and memory locality

The pragma quantum scope is the first pragma directive of our framework. It indi-
cates that the following scope has to be run on the quantum device. The QPU has
classical capabilities through the controller (see Figure 1). Q-Pragma is based on the
assumption that this controller is programmable. Therefore, a quantum scope can
contain pure quantum operations, classical instructions, and non-reversible quantum
operations like measurements. The pragma quantum scope compiles the source code to
be offloaded on the QPU, reducing the amount of data transferred, and thus increas-
ing performances. Any function defined on the Host can be called from the quantum
device, and a function defined on the quantum device can be called from the Host
(quantum gates can then be executed from the Host). This involves a PCI Express
communication between QPU and Host, and is therefore slower than executing a local
function.

1 #pragma quantum scope

2 {

3 std:: array <int , 4UL > counters ;

4 qbool q0 , q1;

5
6 for (int i = 0 ; i < 100 ; ++i) {

7 // Generate a Bell pair

8 H(q0);

9 CNOT (q0 , q1);

10
11 // Measure

12 bool meas0 = measure_and_reset (q0);

13 bool meas1 = measure_and_reset (q1);

14
15 // Store measurement in the map counter

16 ++ counters [meas1 << 1 + meas0];

17 }

18 }

Listing 6: Example of a pragma quantum scope
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Listing 6 illustrates a pragma quantum scope directive: the sample of code inside
the scope is executed on the QPU, not on the Host. This pragma directive is not
mandatory and does not change the program output, but serves to improve perfor-
mances: the Host communicates only once with the quantum device (to start the
scope) instead of a hundred times (to allocate memory, to apply quantum gates or to
measure a qubit).

Any piece of code written inside a pragma quantum scope directive is executed
on the quantum device, otherwise the code is executed on the Host. If a variable is
defined in a pragma quantum scope directive, the memory is allocated on the quantum
device, otherwise the memory is allocated on the Host. A qbool can be allocated
and manipulated from the Host, as this structure is a classical object pointing to a
quantum memory address (a qbool can be seen as a unique pointer). Host variables
can be accessed in a pragma quantum scope, using the memory sharing enabled by
the PCI Express protocol. Nevertheless, variable access between Host and QPU is
inherently slow. To compensate for this, Q-Pragma handles the memory through data
management directives. Some variables can be temporarily moved from the Host to
the QPU in a quantum scope, using the with keyword. At the beginning of the scope,
the listed variables are moved to the device, and moved back to the Host at the end
of the scope. Listing 7 shows how to temporarily move the my_int variable on the
QPU.

1 qint8_t my_int;

2
3 #pragma quantum scope with (my_int)

4 {

5 my_int += 13;

6 }

Listing 7: Example of a pragma quantum scope with

Moreover, the pragma quantum move directive handles manual data transfer from
Host to device through the toDevice specifier, and from device to Host through the
toHost one. In this case, the developer has total control over the data flow between
Host and device as shown in Listing 8.
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1 std::array <qbool , 8UL > qreg ;

2 bool condition = ...;

3
4 #pragma quantum scope

5 {

6 if (condition ) {

7 #pragma quantum move toDevice(qreg)

8 for (const auto & qubit : qreg ) {

9 H(qubit);

10 }

11 #pragma quantum move toHost(qreg)

12 } else {

13 // DO SOMETHING with no memory movement

14 }

15 }

Listing 8: Example of a pragma quantum move directive

These two pragma directives provide fine control over both code and memory
locality. One can precisely select on which device a function is executed, or a variable
stored. The syntaxes of these pragma directives are specified in Figure 2.

〈pragma_scope〉 ::= “#pragma quantum scope” 〈scope_options〉?
〈scope_options〉 ::= “with” 〈var_list〉

〈pragma_move〉 ::= “#pragma quantum move” (〈move_dir〉 〈var_list〉)+
〈move_dir〉 ::= “toDevice” | “toHost”

〈var_list〉 ::= “(” 〈var_name〉 (“,” 〈var_name〉 )* “)”

Figure 2: Grammar of pragma quantum scope and pragma quantum move using
BNF with regex

3.2.2 Controlling quantum instructions

The pragma quantum ctrl directive is used to control quantum instructions, using
a qbool or a C++ expression. If a C++ expression is used, a temporary qbool is
created and initialized using the C++ expression. Listing 9 highlights this behavior: a
temporary qbool is instantiated (with the value my_int == 42), and this qbool is used
to control the scope; thanks to the safe uncomputation mechanism, this temporary
qbool is reset to state |0〉 at the end of the scope.
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1 qint8_t my_int;

2 // Some code acting on my_int

3 // ...

4
5 qbool q0 , q1;

6 #pragma quantum ctrl (my_int == 42)

7 {

8 H(q0);

9 CNOT (q0 ,q1);

10 RZ(M_PI / 4.)(q1);

11 }

Listing 9: Example of a pragma quantum ctrl controlled by a C++
expression

Only pure quantum operations are impacted by a control. Control have no impact
on classical operations, and quantum measurements are forbidden. A pragma quantum
ctrl is similar to a quantum if statement in the sense that the controlled quantum
instructions affect the quantum state only if the control qubit evaluates to true. Nev-
ertheless, unlike the C++ if statement, instructions inside a pragma quantum ctrl
are always executed in their controlled version. Using a different syntax between the
C++ if statement and the pragma quantum ctrl avoids confusion. The syntax of this
pragma is defined by Figure 3.

〈pragma_ctrl〉 ::= “#pragma quantum ctrl” 〈ctrl_options〉
〈ctrl_options〉 ::= “(” 〈var_name〉 | 〈quantum_condition〉 “)”

Figure 3: Grammar of pragma quantum ctrl using BNF with regex

This pragma meets the controllability requirement of a quantum-classical frame-
work compatible with HPC systems.

3.2.3 Defining quantum routines

The pragma quantum routine directive is used to create quantum routines using the
same syntax as a C++ function. A quantum routine is composed of purely quantum
operations, and is reversible. Therefore:

• a routine takes only purely quantum objects as arguments.

• measurement-based operations are not allowed.

• a routine returns nothing (i.e. is void type), since no classical data is either
passed as input or created (no measurement).

To meet the reversibility and controllability requirements, a routine is callable,
reversible and controllable, as shown in Listing 10. Since a quantum routine is a pure
quantum function, the routine is compiled for the QPU: executing a quantum routine
from the Host requires a single communication request between the Host and the QPU,
regardless of the quantum routine size.
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1 #pragma quantum routine

2 void my_routine (const qbool & q0 , const qbool & q1)

3 {

4 H(q0);

5 Z.ctrl (q0 , q1);

6 }

7
8 int main () {

9 qbool q0 , q1 , qc;

10 // Apply the routine

11 my_routine (q0 , q1);

12 // Apply the reverse routine

13 my_routine .dag(q0 , q1);

14 // Apply the controlled routine

15 my_routine .ctrl (qc , q0 , q1);

16 // Apply the reverse and controlled routine

17 my_routine .ctrl_dag (qc , q0 , q1);

18 }

Listing 10: Example of the creation and calls of a quantum routine
using the pragma quantum routine directive

In Listing 10, the my_routine routine is compiled for the QPU, i.e. the routine
object only exists on the QPU. The main function allocates three qubits and performs
four calls to my_routine. Since the sample of code is executed on the Host (due to the
lack of pragma quantum scope directive), each allocation and each routine call sends a
request to the QPU. A response is sent back by the QPU after each request, to notify
the Host that the request has been executed on the QPU (so the Host can execute the
next instruction). Then, executing Listing 10 requires 7 requests to the QPU.

As any C++ function, quantum routines can be templated. For instance, one can
create a templated Quantum Fourier Transform (QFT), as shown in Listing 11. The
template parameter SIZE is reused to define the size of the argument qreg, but also
inside the routine as a stop condition for the for loops.
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1 #pragma quantum routine

2 template <uint64_t SIZE >

3 void qft(const std ::array <qbool , SIZE > & qreg ) {

4 for (uint64_t idx = 0ul ; idx < SIZE ; ++ idx) {

5 H(qreg [idx ]);

6
7 for (uint64_t ctr = idx + 1 ; ctr < SIZE ;

8 ++ctr) {

9 // Compute angle

10 double angle =

11 M_PI / (1 << (ctr - idx));

12
13 // Apply gate

14 PH(angle).ctrl (qreg[ctr], qreg [idx ]);

15 }

16 }

17 }

18
19 int main () {

20 qint8_t qreg ;

21 qft <8UL >( qreg );

22 }

Listing 11: QFT on an array, using Q-Pragma

Moreover, quantum routines can be parameterized. According to our routine defi-
nition, the RX gate is not a routine as it depends on a classical angle (a routine takes
only pure quantum objects as argument). On the other hand, RX(θ) is a quantum
routine since its angle is known, and the gate itself does not depend on any classical
input. In Q-Pragma, RX is a parameterized routine, i.e. an object which, binded with
classical parameters, becomes a routine. Variational algorithms can be implemented
with parameterized routine in Q-Pragma.

A parameterized routine can be built using the pragma quantum routine, by listing
the binded variables in the directive. Listing 12 provides an example of a parameterized
routine.
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1 #pragma quantum routine (double angle0, double angle1)

2 void param_routine (const qbool & q0 ,

3 const qbool & q1) {

4 RX(angle0).ctrl (q0 , q1);

5 RZ(angle1).ctrl (q0 , q1);

6 }

7
8 int main () {

9 qbool q0 , q1;

10 param_routine (M_PI /3.0, M_PI /6.0)(q0 , q1);

11 }

Listing 12: Parameterized routine using the pragma quantum
routine

The requirements introduced with the concept of typed arguments in C++ func-
tions do not necessarily apply to quantum routines generated with a pragma quantum
routine. In fact, as long as the quantum arguments have exactly the same size as the
one given in the function declaration, no error will be raised. This brings flexibility,
as shown in Listing 13.

1 #pragma quantum routine

2 void bell_pair (const qbool & q0 , const qbool & q1)

3 {

4 H(q0)

5 CNOT (q0 , q1);

6 }

7
8 int main () {

9 qbool q0 , q1;

10 bell_pair (q0 , q1); // Correct

11
12 std:: array <qbool , 2> qreg ;

13 bell_pair (qreg ); // Still correct

14
15 qint_t<2> qint ;

16 bell_pair (qint ); // Still correct

17 }

Listing 13: Example demonstrating the flexibility of quantum
routine call arguments

However, strict typing can be enforced over the quantum routines using the typed
flag. This flag ensures that the quantum types given in the quantum routine decla-
ration are exactly the same as the one given in the routine call, as shown in Listing
14.
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1 #pragma quantum routine typed

2 void bell_pair (const qbool & q0 , const qbool & q1)

3 {

4 H(q0)

5 CNOT (q0 , q1);

6 }

7
8 int main () {

9 qbool q0 , q1;

10 bell_pair (q0 , q1); // Correct

11
12 std:: array <qbool , 2> qreg ;

13 bell_pair (qreg ); // ERROR - does not compile

14
15 qint_t<2> qint ;

16 bell_pair (qint ); // ERROR - does not compile

17 }

Listing 14: Example of a typed quantum routine

Additionally, a pure quantum type has a static size in Q-Pragma. Therefore,
quantum routines cannot be created using hybrid types such as lists of qubits. To
overcome this limitation, dynamic quantum routines have been introduced to create
routines acting on a dynamic-sized quantum registers. A dynamic routine can be
created using the “dynamic” flag, as shown in Listing 15. Dynamic routines are always
typed.

1 #pragma quantum routine dynamic (double angle)

2 void rx_wall(const std:: vector <qbool > & vector) {

3 for (auto & qubit: vector) {

4 (RX(angle))(qubit);

5 }

6 }

7
8 int main () {

9 std:: vector <qbool > qvect (12);

10 rx_wall (0.6)(qvect);

11 }

Listing 15: Example of a dynamic quantum routine

Since dynamic and parameterized quantum routines rely on variables defined at
runtime, they can only be created at runtime. Fixed-sized quantum routines are
created at compile-time, and are then optimized by the compiler. The syntax of
pragma quantum routine is defined in Figure 4.
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〈prag_routine〉 ::= “#pragma quantum routine” 〈flag〉? 〈bound_vars〉?
〈flag〉 ::= “dynamic” | “typed”
〈bound_vars〉 ::= “(” 〈variable〉 ( “,” 〈variable〉 )* “)”
〈variable〉 ::= 〈cpp_type〉 〈var_name〉

Figure 4: Grammar of pragma quantum routine using BNF with regex

3.2.4 Managing the uncomputation

The safe uncomputation requirement is a key element of a quantum-classical frame-
work. Q-Pragma provides a pragma quantum compute directive in which pure quantum
gates are executed. This directive enables the automatic uncomputation of these pure
quantum operations as soon as the end of the current scope is reached. For instance,
implementing a RZZ gate relies on an ancilla qubit which must be reset to its |0〉 state,
this can be implemented using pragma quantum compute as shown in Listing 16.

1 #pragma quantum routine (double angle)

2 void RZZ(const qbool & qb1 , const qbool & qb2) {

3 // Define ancilla

4 qbool ancilla;

5
6 {

7 #pragma quantum compute

8 {

9 CCNOT(qb1 , qb2 , ancilla );

10 }

11
12 // Apply RZ gate

13 (RZ(angle))(ancilla);

14
15 // Automatic uncomputation of CCNOT

16 // "ancilla " is then reset to |0〉
17 }

18 }

Listing 16: Example of a parameterized routine using the pragma
quantum routine directive

This directive has been designed to meet the safe uncomputation requirement, but
can also be used to implement a routine matching the pattern U ·A · U†. This allows
additional optimization techniques. For instance, the computation and uncomputation
parts are never controlled, even if they are in a pragma quantum ctrl context. The
syntax of this directive is shown in Figure 5.

〈pragma_compute〉 ::= “#pragma quantum compute”

Figure 5: Grammar of pragma quantum compute using BNF with regex
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4 Evaluation of Q-Pragma

Q-Pragma has been designed to simplify the development of quantum algorithms.
The article presenting the SILQ framework [5] compares some frameworks to show
how suitable they are for implementing various quantum algorithms. This benchmark
has been extended to add Q-Pragma figures, as shown in Figure 6.
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Figure 6: Evaluation of Q-Pragma compared to Q# and SILQ. The comparison
between these frameworks is based on the number of quantum primitives and
annotations used (Figure 6a) and the code length (Figure 6b) - Q-Pragma allows
these algorithms to be implemented on the Host or on the QPU (by using a
pragma quantum scope directive). Each algorithm of this benchmark has been
implemented twice (one implementation executing code on the Host, the other
executing code on the QPU). See Appendix C for details.

Typing provides a higher-level interface for manipulating quantum registers, sim-
plifying the development of quantum algorithms. Thus, complex quantum algorithms
can be written using fewer quantum primitives (see Figure 6a), and using less line of
code (see Figure 6b).

5 Conclusion

Q-Pragma enables quantum code integration in classical applications, and remains
compatible with HPC environments. It has been designed as an Open Standard, to
ensure that these applications will be executable on real QPUs. This also guarantees
that Q-Pragma can evolve, and support new programming features future hybrid code
may require. Q-Pragma attempts to meet all the requirements current and future
QPUs will establish, facilitating the development of hybrid quantum-classical applica-
tions able to reach quantum advantage.

Since the relevance of a framework can only be assessed through practice, our aim
is to develop post-NISQ quantum algorithms using Q-Pragma. For example, we would
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like to implement several linear algebra algorithms, such as QSVT [16, 25], since their
classical equivalents are of great interest in HPC.

Furthermore, Q-Pragma has only been connected to quantum emulators, and not
yet to real quantum hardware. We would like to work with QPU makers to demon-
strate a real use case of Q-Pragma.

Q-Pragma also introduces new compilation constraints. Current quantum com-
pilers process quantum circuits, acting on a known set of qubits. Q-Pragma defines
quantum routines, but the register on which a routine will be applied is not known at
compile time. This makes it difficult to consider topological constraints when compil-
ing a Q-Pragma program. We would like to work on compilation within the Q-Pragma
framework, whether in a QEC scope or not.

This Q-Pragma framework has been implemented in C++17, and relies on a Clang
plugin. Some common quantum algorithms are implemented in Q-Pragma, code ex-
amples are given in the Appendix A.
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A Examples

A.1 Bell pair

The Bell pair algorithm is a quantum routine composed of two quantum gates. These
quantum gates are part of Q-Pragma standard library. We provide in Listing 17 an
example of such implementation.

1 #pragma quantum routine

2 void bell_pair (const qbool & qb0 ,

3 const qbool & qb1) {

4 H(q0);

5 CNOT (q0 , q1);

6 }

Listing 17: Example - Bell pair

A.2 Uniform superposition

A uniform superposition [0 , 256[ can be created using wall of Hadamard gates acting
on 8 qubits, as 256 = 28. On the other hand, a uniform superposition [0 , 200[ requires
an additional post-selection, as shown in Listing 18.

1 quint8_t quantum_int ;

2 qbool ancilla;

3
4 do {

5 // Create a uniform superposition

6 reset(quantum_int );

7 wall ::H<8UL >( quantum_int );

8
9 #pragma quantum ctrl(quantum_int >= 200)

10 X(ancilla);

11 } while ( measure_and_reset (ancilla ));

Listing 18: Example - Uniform superposition [0 , 200[

A.3 Shor Algorithm

Shor algorithm [32] relies on advanced primitives like the Modular Exponentiation. In
Q-Pragma, this primitive can be easily implemented using C++ operators. This is
demonstrated in the Shor algorithm implementation in Listing 19. This example only
focuses on the quantum part of Shor algorithm.
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1 // Define the size of the register used to encode

2 // a quantum (unsigned ) integer

3 #define SIZE ...

4
5 using namespace qpragma ;

6
7 uint64_t find_divisor (uint64_t to_divide ) {

8 // Step 1: find a random number

9 std:: random_device rd;

10 std:: uniform_in_distribution <uint64_t > distrib (

11 2UL , to_divide - 1UL

12 );

13 uint64_t random_number = distrib (rd);

14
15 // If random_number is not coprime with

16 // to_divide , then we found a divisor

17 if (

18 auto gcd =

19 std ::gcd(random_number , to_divide );

20 gcd != 1UL

21 )

22 return gcd;

23
24 // Step 2: Perform the quantum part of Shor

25 uint64_t measurement = 0UL;

26
27 #pragma quantum scope with (to_divide, random_number)

28 {

29 quint_t<SIZE> first_register ;

30 wall ::H<SIZE >( first_register );

31
32 quint_t<SIZE> second_register =

33 qpragma :: pow(random_number ,

34 first_register )

35 % to_divide ;

36 reset( second_register );

37
38 qft <SIZE >( first_register );

39 measurement =

40 measure_and_reset ( first_register );

41 }

42
43 // Step 3: perform the classical part of

44 // Shor algorithm . This part is purely

45 // classical and rely on the continuous

46 // fraction algorithm

47 ...

48 }

Listing 19: Example - Shor algorithm
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B Features implemented in existing frameworks

This section explains the reasoning behind Table 1 and is composed of two subsections.
The first subsection focuses on quantum frameworks, and the second subsection focuses
on well-established hybrid CPU-GPU frameworks.

B.1 Quantum frameworks

Locality A quantum-HPC framework provides tools to control code and memory
locality.

Most of today’s quantum frameworks do not provide control over QPU-Host inter-
actions, meaning that the code written in these frameworks can only be executed
on a quantum device. Therefore, a user cannot choose whether a function should
be executed on the Host or on the QPU. Then, most of today’s quantum frame-
works do not implement the locality feature.

Nevertheless, CUDA Quantum [11] and QCOR [26] introduce the concept of quan-
tum kernels, to specify that a function should be executed on a quantum device
(otherwise, the function is executed on the Host). Nevertheless, the locality feature
is not entirely supported as these frameworks do not provide tools to control the
memory locality.

Dynamic interaction Classical memory and quantum memory can be allocated
on a QPU and manipulated from the Host, at runtime.

Most of quantum frameworks rely on the concept of quantum circuit to describe a
quantum computation. In these frameworks, a circuit describes the entire quantum
computation: each circuit describes an independent computation, and the quan-
tum memory is reset after the circuit has been executed. Moreover, a quantum
circuit being static, a classical computation cannot interact with it during the ex-
ecution. As a result, quantum frameworks relying on a quantum circuit structure
prevent any interaction between the classical and quantum parts of the system, so
do not implement the dynamic interaction feature.

In most of quantum frameworks, applying a gate is equivalent to adding it into an
underlying circuit, but this is not mandatory. For instance, the instruction can be
streamed to the QPU and the gate applied right away, allowing a classical program
to interact with the QPU. Several methods have been implemented by OpenQASM
3 (see [9], Section 2.4), ProjectQ (see [33], Section 4.1.2) and Q# (see examples
from Q# documentation) to support the dynamic interaction feature.

All other frameworks listed in Table 1 rely on a circuit structure to describe a
quantum computation, so do not implement the dynamic interaction feature.

Scalability Hybrid quantum-HPC frameworks should support algorithms with arbi-
trary big number of qubits, or instructions.

The circuit structure, used by most of today’s quantum frameworks, list all quan-
tum operations that will occur during a computation. This structure does not scale
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well as the number of qubits continues to increase. OpenQASM 3 [9] and ProjectQ
[33, 18] rely on scalable structures (see dynamic interaction paragraph) to describe
a quantum computation.

Q# [36] is the only remaining framework which does not rely on a quantum circuit.
Nevertheless, due to the lack of information concerning the internal structure used
by this framework, it is not possible to verify whether this framework support the
scalability feature or not.

Typing Quantum registers are typed to simplify the manipulation of huge structures.

Typing registers add a new level of abstraction to simplify the manipulation of
large data structures, simplifying the design of large scale quantum algorithms.
NISQ frameworks focusing on short-term algorithms, they often do not implement
this feature. As a consequence, only SILQ [5] and myQLM [13] implement the
typing feature.

Reversibility Pure quantum operations are reversible.

The reversibility feature is key to simplify the development of quantum algorithms.
This feature is already well integrated in existing quantum frameworks. Scaffold
[21] is the only framework listed in Table 1 which does not fulfill this requirement
(reversing a routine in Scaffold implies to rewrite the routine by hand, as shown in
their tutorials).

Controllability Pure quantum operations are controllable.

To simplify the development of quantum-HPC algorithms, a quantum routine
should be controllable by one or several qubits. All the programming frameworks
listed in Table 1 implement the controllability feature, by providing either a control
function / method, or by relying on a if statement.

Safe uncomputation Quantum register can be reset to |0〉 state without measure-
ment.

The safe uncomputation concept has been introduced by Quipper [17] and em-
braced by SILQ [5]. Additional frameworks like CUDA Quantum [11], myQLM
[13], ProjectQ [33], or Q# do not full-fill this requirement but provides some un-
computation features that enable to uncompute safely a quantum register.

B.2 Classical frameworks

Locality A hybrid framework provides tools to control code and memory locality.

CUDA Any function defined in CUDA [30] is, by default, executed on the Host.
Some function attribute like __Host__ or __device__ can be used to specify
if a function should be executed on the Host or on the GPU. A Host function is
only callable from the Host, and a device function is only callable from the device.
The __global__ function attribute is used to define a kernel, which is a function
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executed on the device but callable from the Host. By using these attributes, one
can control the code locality.

CUDA is based on C++. Then, any C++ function allocating memory on the Host
is available in CUDA. Moreover, CUDA provides some functions, like cudaMalloc,
to allocate memory on the device. By using C++ and CUDA functions, one can
control the memory locality.

OpenCL An OpenCL-based program is developed using a classical program-
ming language (like C) and OpenCL [34]. Any function defined in the classical
language is executed on the Host, and any function written in OpenCL is executed
on the GPU. OpenCL defines the kernel function attribute to define a kernel, which
is a function executed on the device but callable from the classical programming
language. By using these two programming languages, one can control the code
locality.

OpenCL provides also a library to allocate memory on the GPU, using a classical
programming language, to control the memory locality.

OpenMP OpenMP [10, 24] extends C++. Any C++ function is executed on
the Host. OpenMP relies on the omp target pragma directive to define a kernel,
which is a piece of code executed on the device. By using this pragma directive,
one can control the code locality.

OpenMP does not provide tools to directly allocate memory on the GPU. Nev-
ertheless, the omp target pragma directive can move data from the Host to the
device (and vice-versa), to control the memory locality.

Dynamic interaction Classical memory and GPU memory can be allocated on a
GPU and manipulated from the Host, at runtime.

As shown above, CUDA [30], OpenCL [34], and OpenMP [10, 24] provide tools
to allocate memory at runtime. This memory can be updated at runtime like any
Host variable (the GPU being connected using a PCIe link, the GPU memory is
mapped and accessible from the Host).
Moreover, kernels can be started at runtime, fulfilling the dynamic interaction
feature.

Scalability Hybrid CPU-GPU frameworks should support algorithms with arbitrary
memory size, or instructions.

CUDA [30], OpenCL [34], and OpenMP [10, 24] are used in production to solve
complex problems requiring the manipulation of large amounts of data. The scal-
ability feature is already proven by practice.

Typing GPU registers are typed to simplify the manipulation of huge structures.
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CUDA [30], and OpenMP [10, 24] are based on the C++ language. Any C++
class or type can be used on the GPU using these frameworks.

OpenCL [34] is based on C language. Any C type is already defined in OpenCL.
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C Evaluation of Q-Pragma

This paper provides a first evaluation of Q-Pragma compared to Q# [36] and SILQ
[5]. This comparison shows that implementing algorithms using Q-Pragma requires
less lines of code, in average. Table 2 summarizes the code length, and the number
of quantum primitives / annotations needed to solve various problems defined for
the Microsoft Q# coding contests (Summer 2018 [27] and Winter 2019 [28]). This
evaluation has already be done in [5] for both Q# and SILQ.

Summer 2018
A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 D1 D2 D3 E1 E2

Q#
Lines 9 12 32 24 12 16 9 19 11 28 11 15 9 23 21
QPA 1 2 4 6 1 1 5 14 2 3 1 4 3 8 3

SILQ
lines 5 6 12 12 3 9 4 5 3 7 7 7 7 7 5
QPA 2 5 5 7 2 2 3 5 2 5 3 3 1 9 5

Q-Pragma
Lines 3+1 6+1 8+1 9+1 4+3 5+3 4+3 9+3 4+3 9+3 5+1 5+1 6+0 8+3 9+4
QPA 2+0 3+0 4+0 2+1 1+0 1+0 2+1 3+1 2+1 3+1 1+0 1+0 1+0 5+1 3+1

(a) Summer 2018 comparison

Winter 2019
A1 A2 B1 B2 C1 C2 C3 D1 D2 D3 D4 D5

Q#
Lines 3 20 21 30 18 27 19 3 12 5 21 10
QPA 1 8 11 14 6 10 9 1 8 5 11 9

SILQ
lines 10 10 17 15 7 11 7 4 15 18 17 15
QPA 4 8 12 12 2 2 2 2 5 7 7 8

Q-Pragma
Lines 6+0 8+1 17+4 12+3 10+1 9+1 7+1 4+1 7+1 6+1 7+1 9+0
QPA 4+0 2+0 10+1 8+1 4+0 1+0 2+0 2+0 3+0 4+0 4+0 7+0

(b) Winter 2019 comparison

Mean

Q#
Lines 16.30
QPA 5.59

SILQ
lines 9.07
QPA 4.81

Q-Pragma
Lines 7.26+1.67
QPA 3.15+0.33

(c) Mean

Table 2: Evaluation of Q-Pragma compared to SILQ and Q#, using algorithms
from Q# coding contests (Summer 2018 [27] and Winter 2019 [28]). The com-
parison is based on the code length, and the number of quantum primitives /
annotations (QPA) used. For Q-Pragma, the code has been implemented on
the Host or on the QPU: the “+” symbol shows the figures for both the Host
and the QPU implementation (e.g. 17+ 4 means that the Host implementation
requires 17 lines of code, while the QPU implementation requires 17 + 4 = 21
lines of code). The green cells show the lowest value for each column.

To ensure a fair evaluation, the criteria defined in [5] (Appendix H) have been
reused, and any unreadable code-shortening transformation have been avoided. The
Q-Pragma primitives and annotations are:

• quantum usual gates (H, X, CNOT . . . ) and their derivatives (wall, ctrl, dag
and ctrl_dag),

• measurements and resets,

• pragma directives.
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Quantum registers are not considered as a primitive / annotation, matching a
criteria defined in [5] for Q# (qubits are not considered as a primitive / annota-
tion). According to this protocol, Table 2 shows that, in average, Q-Pragma im-
plementations are shorter, and use less quantum primitives / annotations than Q#
or SILQ. However, the readability of the code is key, to ensure maintainability. In
the following, some implementations are provided. Q# implementations are available
in [27] and [28] while some of SILQ implementations are available on their website
(https://silq.ethz.ch/examples).

C.1 Creating a superposition (Summer 2018 - A2)

The goal is to generate the following quantum state on n qubits:

1√
2
(|0〉+ |b〉) ,

where b ∈ {0, 1}n and b0 = 1, so b can also be considered as an integer such that
1 ≤ b < 2n.

1 #include "qpragma .h"

2
3 using namespace qpragma ;

4
5 #pragma quantum routine (uint64_t bstate)

6 template <uint64_t SIZE >

7 void solve(const qbool & head ,

8 const quint_t<SIZE> & tail ) {

9 H(head );

10
11 #pragma quantum ctrl(head)

12 tail += (bstate >> 1);

13 }

Listing 20: Implementation of 1
√

2
(|0〉+ |b〉) state using Q-Pragma

Listing 20 shows a solution for this problem using Q-Pragma. This example high-
lights how typing registers simplifies the code development. The quantum register is
splitted in two (head and tail). The variable b being an integer, it can be added to
the tail register, as this register is a quantum integer. This idea not only shortens
the code, but also makes it clearer. In this example, the first qubit is initialized with
the |+〉 state, and then controls the operation updating tail in-place: this naturally
creates the superposition of the states |0〉 |0...0〉 and |1〉 |b1...bn−1〉. Because b0 = 1,
this routine creates the superposition |0〉 and |b〉. Note that this routine can be called
on a unique quantum register, as this routine is not typed.

C.2 Creating a W state (Summer 2018 - A4)

The goal is to generate a W state on N qubits (where N is a power of 2):

WN =
1√
N

(|100 · · · 0〉+ |010 · · · 0〉+ · · ·+ |000 · · · 1〉)
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1 #include "qpragma .h"

2
3 using namespace qpragma ;

4
5 // In this sample of code , LOG is expected

6 // to be equal to log2 (N)

7 #pragma quantum routine

8 template <uint64_t LOG , uint64_t SIZE = (1 << LOG)>

9 void solve(const quint_t<SIZE> & qreg ) {

10 quint_t<SIZE> anc;

11 wall ::H<LOG >(anc);

12
13 for (uint64_t idx = 0 ; idx < SIZE ; ++ idx) {

14 qreg [idx] ^= (anc == idx);

15
16 #pragma quantum ctrl (qreg == 1 << idx)

17 anc -= idx;

18 }

19 }

Listing 21: W state implementation using Q-Pragma

In Listing 21, the creation of the W state relies on an array of ancilla qubits
initialized with a uniform superposition. These ancilla qubits represent all the possible
indexes for the 1 in the final W state. At the end of the routine, these ancilla qubits
need to be reset to state |0〉. To do so, the routine implements the following steps:

• Create state
∑ |i〉 |0〉 by allocating the anc register and applying a wall of

Hadamard gate on it.

• Perform the transformation |i〉 |0〉 → |i〉 |2i〉 (this is done by the first line of the
for loop).

• Implement the transformation |i〉 |2i〉 → |0〉 |2i〉 to reset the anc register to |0〉
(done by the pragma quantum ctrl in the for loop).

These steps are used to create the state
∑ |0〉 |2i〉, which correspond to the W

state. The two last steps can be implemented using a single for loop (instead of 2),
shortening the implementation.

C.3 Pattern of increasing blocks (Winter 2019 - D2)

The goal is to implement a unitary operation which is represented by a square matrix
with increasing blocks. For example, a such 3-qubits matrix should have the following
shape:
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

1 #include "qpragma .h"

2
3 using namespace qpragma ;

4
5 #pragma quantum routine

6 template <uint64_t SIZE >

7 void solve(const std :: array <qbool , SIZE -1> & most ,

8 const qbool & tail ) {

9 if constexpr (SIZE > 1UL) {

10 wall ::H<SIZE - 1>.ctrl (tail , most );

11 solve <SIZE - 1>.ctrl ((qbool) not tail , most );

12 }

13 }

Listing 22: Increasing blocks pattern implementation using Q-
Pragma

Listing 22 provides an implementation of the solution given in [28]. This example
relies on recursive calls of the solve routine. The routine arguments are most and tail,
which corresponds respectively to the whole array except for the last qubit, and the
last qubit itself. When the quantum routine solve〈n〉 is called with a quantum array
of n-qubits, this array is automatically splitted in the array most (of size n − 1) and
the qubit tail by Q-Pragma. Consequently, it makes the recursive call easier.
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