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Recently, the quantum spin-Hall edge channels of two-dimensional colloidal nanocrystals of the topological
insulator Bi2Se3 were observed directly. Motivated by this development, we reconsider the four-band effective
model which has been traditionally employed in the past to describe thin nanosheets of this material. Derived
from a three-dimensional 𝒌 · 𝒑 model, it physically describes the top and bottom electronic surface states at the
Γ point that become gapped due to the material’s small thickness. However, we find that the four-band model for
the surface states alone, as derived directly from the three-dimensional theory, is inadequate for the description
of thin films of a few quintuple layers and even yields an incorrect topological invariant within a significant range
of thicknesses. To address this limitation we propose an eight-band model which, in addition to the surface
states, also incorporates the set of bulk states closest to the Fermi level. We find that the eight-band model not
only captures most of the experimental observations, but also agrees with previous first-principles calculations
of the Z2 invariant in thin films of varying thickness. The band inversion around the Γ point, which endows
the surface-like bands with topology, is shown to be enabled by the presence of the additional bulk-like states
without requiring any reparametrization of the resulting effective Hamiltonian.

I. INTRODUCTION

Topological insulators (TIs), and more generally topological
materials, have experienced a massive surge in interest in the
last decade due to their excellent prospects for energy-efficient
electronics, spintronics, and transport applications [1–15]. A
common feature shared by most conventional TIs is the appear-
ance of protected states at the boundaries of a finite sample,
which are typically perfectly conducting and whose disper-
sions are linear and cross the semiconducting band gap. In
three dimensions (3D) these take the form of surface states,
while in two dimensions (2D) they are realized as edge states.
The properties of these boundary modes strongly depend on
which symmetries are present in a given system. Arguably,
the best known examples are the integer quantum Hall state
[16–21], where chiral electrons flow without dissipation along
the edge due to breaking of the time-reversal symmetry (TRS),
and the quantum spin-Hall (QSH) state [22–29], which pre-
serves the TRS and can be seen as two spin-reversed copies of
the quantum Hall state with opposite spins flowing in opposite
directions.

Within the vast landscape of topological materials, bis-
muth selenide (Bi2Se3) is often quoted as a prototypical three-
dimensional TI [30–35]. Its atomic structure comes in the
form of quintuple layers (QLs) stacked on top of one another
and bound together by van der Waals forces [30, 36–38]. The
topological nature of Bi2Se3 has been extensively investigated
both theoretically and experimentally, and can be traced back
to the existence of a large inverted topological gap arising from
the spin-orbit interaction. This leads to topologically protected
surface states at the top and bottom surfaces of planar slabs.
These have been fully characterized theoretically [39–42] by
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means of a continuum model for three-dimensional Bi2Se3
around the Γ point derived from 𝒌 · 𝒑 theory [30, 36]. A par-
ticularly interesting topic in this regard is the transition from
3D to 2D samples of Bi2Se3, as the dispersion of the surface
states becomes gapped due to the hybridization between the
modes at both surfaces, and the corresponding gap may or
may not be of topological nature. The gapping of the top
and bottom surface states has been observed experimentally
via angle-resolved photoemission spectroscopy [43–45], and
addressed theoretically in some of the aforementioned studies
[39–41]. In the latter, an effective nanosheet Hamiltonian is
obtained for each number of QLs by projecting the full 3D
bulk Hamiltonian onto the subspace of four Γ-point surface
states that appear due to the nontrival topology and which are
closest to the Fermi level. For samples of Bi2Se3 with a thick-
ness of a few QLs, these theoretical studies predict a series of
topological phase transitions between the 3D and 2D models,
in which the material repeatedly oscillates between a trivial
phase and a QSH phase. Focusing on the ultrathin regime be-
tween 1 and 6 QLs, as for larger thicknesses the surface-state
gap becomes negligible, nanosheets of 6 QLs are predicted to
show QSH behavior, while those with 5 and 4 QLs are found
to be trivial, followed by another QSH phase at 3 QLs, and
finally remaining in a trivial phase for 2 and 1 QLs. However,
this is at odds with state-of-the-art first-principles calculations,
which predict a nonzero Z2 invariant for 3 to 5 QLs and a triv-
ial phase for 1 and 2 QLs [39]. It also disagrees with a recent
experiment on colloidal Bi2Se3 nanosheets of finite lateral di-
mensions, where QSH edge states were observed directly in
the regime between 4 and 6 QLs [46]. Thus, it may seem as
though the applicability of the continuum model in the regime
between 4 and 6 QLs can be put into question even from the
point of view of qualitative predictions in Bi2Se3.

It thus appears that the effective four-band model obtained
in this way does not provide a complete understanding of the
physics in the entire regime between 1 and 6 QLs. Here,
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we demonstrate that some of the oscillations predicted by the
aforementioned theoretical studies are spurious, and disappear
when one takes into account not only the gapped surface states
closest to the Fermi level, but also the first set of bulk conduc-
tion and valence states. The resulting eight-band Hamiltonian
is not only capable of describing the physics in a broader range
of momenta, but also reproduces most of the experimental find-
ings and features of ab initio calculations. Our results show
that the three-dimensional continuum model for topological
Bi2Se3 can be successfully used even in the ultrathin limit of
1 QL, and also elucidates the crucial role of the bands further
away from the Fermi level, which are usually neglected.

This article is organized as follows. In Sec. II we present
a general description of Bi2Se3 nanosheets by starting from
the 3D bulk model, and compare the features of the four-
band model for the surface states with our novel eight-band
model including also the bulk states closest to the Fermi level.
In Sec. III we analyze the topology of the eight-band model
by studying the interplay between the different bands. In
Sec. IV we validate our model by comparing its topological
properties with those calculated from first principles as well as
with the most recent experimental results. Finally, in Sec. V
we summarize our work and give an outlook on potential future
research.

II. EFFECTIVE MODEL FOR BI2SE3 NANOSHEETS

Our starting point is the 𝒌 · 𝒑 Hamiltonian for three-
dimensional Bi2Se3 derived in Refs. [30, 36]. This
model is expressed in the combined orbital-spin basis
( |Bi+, ↑⟩ , |Se− , ↑⟩ , |Bi+, ↓⟩ , |Se− , ↓⟩) that is closest to the
Fermi surface, where Bi+ and Se− are hybridized Bi and Se
𝑝𝑧 orbitals of even and odd parity, respectively. The effective
Hamiltonian reads

𝐻 (𝒌, 𝑘𝑧) = 𝜖0 (𝒌, 𝑘𝑧)I𝑠 ⊗ I𝜏 +M(𝒌, 𝑘𝑧)I𝑠 ⊗ 𝜏𝑧
+ 𝐴1𝑘𝑧𝑠𝑧 ⊗ 𝜏𝑥 + 𝐴2 (𝒌 · 𝒔) ⊗ 𝜏𝑥 .

(1)

Here, 𝜖0 (𝒌, 𝑘𝑧) = 𝐶 +𝐷1𝑘
2
𝑧 +𝐷2𝑘

2, M(𝒌, 𝑘𝑧) = 𝑀 − 𝐵1𝑘
2
𝑧 −

𝐵2𝑘
2, 𝒔 and 𝝉 are the Pauli matrices in the spin and orbital

spaces, respectively, and I𝑠 and I𝜏 are the identity matrices
in these respective subspaces. Here and below, 𝒌 ≡ (𝑘𝑥 , 𝑘𝑦)
denotes the in-plane momentum, with 𝑘 ≡ |𝒌 |. We employ
the parameters of the paper by Zhang et al. [30], which have
been fitted to their ab initio calculation. Their numerical
values are 𝐶 = −0.0068 eV, 𝑀 = 0.28 eV, 𝐴1 = 0.22 eV nm,
𝐴2 = 0.41 eV nm, 𝐵1 = 0.10 eV nm2, 𝐵2 = 0.566 eV nm2,
𝐷1 = 0.013 eV nm2, and 𝐷2 = 0.196 eV nm2.

We are interested in thin nanosheets of only a few QLs.
This geometry breaks the translational invariance in the 𝑧-
direction and thus we must solve the model of Eq. (1) after
substituting 𝑘𝑧 → −i𝜕𝑧 . It is customary to employ hard-wall
boundary conditions for the wave functions at both surfaces,
Ψ(𝑧 = ±𝐿𝑧/2) = 0, with 𝐿𝑧 the nanosheet thickness. To ob-
tain a low-energy effective model, one first solves the Hamil-
tonian at the 2D Γ point 𝑘 = 0. The solutions to this problem
are described in detail in Refs. [40–42]. One then projects

the full Hamiltonian at nonzero 𝒌 onto a subset spanned by
these solutions. The size of this subspace essentially deter-
mines the validity of the effective model around 𝑘 = 0. Only
when projecting on all states, full equivalence with the higher-
dimensional Hamiltonian is recovered.

Note that, of course, one can in principle also solve the full
3D model above at arbitrary 𝒌, without needing to resort to
an effective model (cf. FIG. 5 below). However, this requires
solving a boundary eigenproblem for each 𝒌, which is undesir-
able for many purposes, e.g., computing many-body properties
involving interaction matrix elements at different momenta,
or computing Chern numbers or other topological invariants
where the wave functions must be known over the entire Bril-
louin zone. By contrast, the use of an effective model allows
one to solve the boundary problem at a single momentum and
thereafter simply diagonalize a (typically small) 𝒌-dependent
matrix. For this reason, it is often useful to work with a
reliable effective Hamiltonian whose 𝑧-dependence has been
integrated out.

As 3D Bi2Se3 is a TI, the spectrum obtained from the Hamil-
tonian in Eq. (1) for large thicknesses contains states that are
localized at the surfaces of the nanosheet under consideration.
Their dispersions around the Γ point form a gapless Dirac cone
that crosses the semiconductor band gap. As one decreases
𝐿𝑧 to a few QLs, the Dirac cone becomes gapped at Γ as a
result of the hybridization between the states localized at op-
posite surfaces. We are interested in thicknesses small enough
for this gap to be of observable magnitude. It is not until a
thickness of around 𝐿𝑧 ≃ 6 nm that this gap becomes of the
order of 1 meV, so we will focus on the regime 𝐿𝑧 ≲ 6 nm.
Note that the thickness of a single QL is approximately 1 nm
[47, 48], so that the thickness of the nanosheet in nanome-
ters is in good approximation the number of QLs. We also
mention that, in this ultrathin limit, what is meant by “surface
states” are those states whose dispersions evolve from the gap-
less Dirac point at large 𝐿𝑧 , even though their wave functions
are no longer strongly localized due to the aforementioned hy-
bridization. The remaining spectrum of the Hamiltonian (1)
at 𝑘 = 0 consists of states whose energies are gapped for all 𝐿𝑧

and whose wave functions never show strong localization; we
call these the bulk states. Finally, we clarify that because our
starting model is derived from a low-energy expansion, it does
not contain the surface state replicas described by Kung et al.
located deep inside the bulk energy region [49]. However, it
is safe to assume that their effects can be neglected for the
purposes of this article.

A. Four-band model

Previous works on the model considered here have always
assumed that projecting on the topological surface states alone
is enough to obtain an accurate low-energy model for any thick-
ness. However, as we show here, this introduces some issues
and in particular the topology of the resulting model does not
align with experimental findings and density-functional theory
(DFT) calculations.

At the 2D Γ point, the Hamiltonian decouples into two sub-
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spaces of opposite spin, and its spectrum contains four elec-
tronic surface states close to the Fermi level. These states have
well-defined spin and parity, so we denote them by |S±, ↑ (↓)⟩,
where the label S indicates that they are surface states [50].

We define the basis ( |S+, ↑⟩ , |S− , ↓⟩ , |S− , ↑⟩ , |S+, ↓⟩), in
which the effective four-band Hamiltonian for the surface states
takes the form

𝐻eff
4-band, 𝜉 (𝒌) = (𝐸0 − 𝐷𝑘2)I𝜎 + 𝑣F (𝝈 × 𝒌) · 𝒛̂

− 𝜉
(
Δ

2
− 𝐵𝑘2

)
𝜎𝑧 .

(2)

There are two subblocks with 𝜉 = ±1, sometimes called the
hyperbola index, as the Hamiltonians 𝐻eff

4-band,± (𝒌) resemble
those at the 𝐾 and 𝐾 ′ points of graphene but shifted to the
Γ point. Here, however, we choose to call 𝜉 the spin-orbit
parity (SOP), as the product of spin times orbital parity in
each subspace is precisely 𝜉 if we identify ↑ (↓) with +1 (−1).
Furthermore, 𝝈 are Pauli matrices that couple the basis states
( |S+, ↑⟩ , |S− , ↓⟩) for 𝜉 = +1 and ( |S− , ↑⟩ , |S+, ↓⟩) for 𝜉 = −1,
and I𝜎 stands for the identity in each of these subspaces of
fixed SOP. We note that, even though the states in the doublets
( |S+, ↑⟩ , |S− , ↓⟩) and ( |S− , ↑⟩ , |S+, ↓⟩) have opposite spin, 𝝈
is not directly the physical spin operator, as the wave functions
of the up and down spin states in each subspace are not equal.
Instead, they correspond to two distinct hybridized orbitals, so
that 𝝈 is more appropriately understood as a pseudospin that
mixes the orbital and spin degrees of freedom.

Each 2 × 2 subblock has two bands with dispersions
𝜀𝑐,𝑣 (𝑘) = 𝐸0 − 𝐷𝑘2 ±

√︁
(Δ/2 − 𝐵𝑘2)2 + (𝑣F𝑘)2. The corre-

sponding eigenstates are

𝜓
𝑐,𝑣

𝜉𝒌
= N 𝑐,𝑣

𝜉𝒌

[
−𝜉

(
Δ
2 − 𝐵𝑘2) ±√︃(

Δ
2 − 𝐵𝑘2)2 + (𝑣F𝑘)2

−i𝑣F𝑘+

]
, (3)

where 𝑘± = 𝑘𝑥 ± i𝑘𝑦 and N 𝑐,𝑣

𝜉𝒌
is readily found by normal-

izing the eigenstates to unity. The Chern number of these
states is given by C 𝜉

𝑐,𝑣 = ∓ 𝜉

2 (sgnΔ + sgn 𝐵). This is nonzero
only when Δ and 𝐵 have the same sign. Physically, this may
be understood from the fact that the topology arises from a
band inversion, which in the four-band model is driven by the
combined action of Δ and 𝐵. The fact that the band inver-
sion leads to a topologically nontrivial phase is rooted in the
parity flip that takes place as one goes from the Γ point to
large momenta. Due to the inversion, the valence band around
Γ has opposite parity to that when 𝑘 → ∞. This argument
was first formalized by Fu and Kane [51], and in systems with
inversion symmetry allows one to determine the Z2 invariant
by evaluating the parity of the eigenstates at the time-reversal-
invariant momenta. This procedure will be paramount in our
description of the topology in the eight-band model below.

The Hall conductivity of each subspace is then 𝜎
𝑥𝑦

𝜉
=

(𝑒2/ℎ) C 𝜉
𝑣 provided that the Fermi level stays within the gap

with decreasing thickness. The superposition of two opposite
Hall conductivities causes the total 𝜎𝑥𝑦 to vanish, but if the
individual conductivities are nonzero the system is in a QSH
phase. However, strictly speaking this QSH effect is in terms
of the pseudospin of the underlying basis, and not in terms of

the 𝑧-direction component of the real electronic spin. This can
be easily seen from the fact that each 2 × 2 subblock mixes
up and down spins, contrary to the prototypical Bernevig-
Hughes-Zhang model for the QSH effect, in which the two
subspaces separately describe spin-up and spin-down electrons
[23, 24]. As a result, there is a nontrivial spin texture along
the 𝑧-direction given by ⟨𝑆𝑖⟩𝑐,𝑣𝜉𝒌

(𝑧) = 𝜓𝑐,𝑣

𝜉𝒌
(𝑧)†𝑆𝑖𝜓𝑐,𝑣

𝜉𝒌
(𝑧), with

𝜓
𝑐,𝑣

𝜉𝒌
(𝑧) = ⟨𝑧 |S𝜉 , ↑⟩⟨S𝜉 , ↑|𝜓𝑐,𝑣

𝜉𝒌
⟩+ ⟨𝑧 |S−𝜉 , ↓⟩⟨S−𝜉 , ↓|𝜓𝑐,𝑣

𝜉𝒌
⟩ and

𝑆𝑖 =
1
2 𝑠𝑖 ⊗ I𝜏 the spin operator. Note that ⟨𝑧 |S±, ↑ (↓)⟩ are sim-

ply the wave functions corresponding to the surface states at
the Γ point introduced in the previous section, which are 𝑧-
dependent four-component vectors in the orbital-spin basis.

Similarly, the edge states of this Hamiltonian at the bound-
aries of a finite sample also present a nontrivial spin texture
along the vertical direction. An analysis of these edge modes
reveals that the physical spin is always perpendicular to the
momentum along the edge. More precisely, there is a nonva-
nishing projection in the 𝑧-direction, whose average over the
nanosheet thickness is in general nonzero. Furthermore, the
spin in the direction perpendicular to the edge and parallel to
the nanosheet has a nontrivial texture along the vertical direc-
tion, but its average over 𝑧 vanishes. Finally, the spin in the
direction parallel to the edge is identically zero for all 𝑧. Con-
sequently, we recover the well-known QSH picture, realized
now in terms of the 𝑧-averaged vertical component of the real
electronic spin. We emphasize that this is not necessarily clear
a priori, given that the underlying basis mixes the up and down
components as explained above. A sketch of the situation is
shown in FIG. 1, where the edge is taken along the 𝑥-direction
and thus the spin lies entirely in the 𝑦𝑧-plane. For nonzero 𝑘𝑥 ,
the edge states always follow a linear dispersion, given by

𝜀±edge (𝑘𝑥) = 𝐸Γ ± 𝑣̃F𝑘𝑥 , (4)

where 𝑣̃F = 𝑣F
√

1 − 𝐷2/𝐵2 is a renormalized Fermi velocity
which is lower than that of the surface states, and 𝐸Γ is the
energy at the one-dimensional Γ point 𝑘𝑥 = 0. We note that
all of this is valid only if |𝐷 | < |𝐵 |, as otherwise the global
energy gap disappears and no edge states are found.

The form of Eq. (1) is indeed capable of describing the sur-
face states of electrons in Bi2Se3 nanosheets, as previous ex-
periments have successfully matched the observed band struc-
ture with that arising from the effective model [43]. However,
there is a caveat: it is crucial to realize that a faithful descrip-
tion of the system in terms of the four-band model requires
adjusting the numerical values of the parameters in the low-
energy Hamiltonian to a set of experimentally determined val-
ues. This is not only completely ad-hoc, but also only possible
if experiments in the 2D limit are available. Since this may
not be the case in other similar materials, it is desirable to have
a reliable scheme which allows 2D topological properties to
be inferred solely from the 3D bulk model. In practice, the
actual theoretical prediction of the projected four-band model
for Bi2Se3 is far from satisfactory, as the parameters obtained
directly through the projection procedure give a band structure
that disagrees with the experimental findings. The most im-
portant aspect in this regard is that the topological properties
appear incorrect for a relevant range of thicknesses. The rea-
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FIG. 1. Sketch of the spin behavior in the QSH regime of a thin Bi2Se3
nanoribbon along the 𝑥-direction. (a) Top view of the nanoribbon.
The long arrows along the edges show the velocity of the edge states,
and the out-of-plane arrows indicate the direction of the 𝑧-averaged
electron spin. Note that the average spin polarization is in general not
100%, even though its direction of polarization is perpendicular to the
nanosheet. (b) Side view of the nanoribbon. The small arrows show
the nontrivial microscopic spin texture along the nanosheet thickness.
This texture is such that there is a 𝑧-dependent tilt in the 𝑦𝑧-plane. Its
average over the nanosheet thickness vanishes in the 𝑦-direction, but
is nonzero in the 𝑧-direction. Thus, the usual QSH picture emerges
in terms of this nonvanishing vertical component, as shown in (a).

son is that the parameters Δ and 𝐵, which together determine
the topology, have opposite signs for 4 and 5 QLs, a regime
where both experiments [46] and DFT calculations [39] show
the presence of QSH edge states. More precisely, in this pic-
ture the model oscillates four times between a trivial and a
QSH phase between 1 and 6 QLs. Two of these oscillations
are due to the gap closing, and two more seemingly take place
because, while the gap remains open, the parameter 𝐵 changes
sign and the band inversion disappears. This phenomenon is
in fact an artifact of such a continuum model: placing the
model on a lattice reveals that a change in Chern number is
always accompanied by a gap closing, but depending on Δ and
𝐵 this may happen at the edges of the Brillouin zone instead
of at the Γ point. This is problematic, because it would in-
dicate that the low-energy subspace we wish to study is not
located at the Γ point for a certain range of thicknesses. As
we will see, however, enhancing the model to an eight-band
Hamiltonian eliminates this spurious change in Chern number.
Hence, for all thicknesses the system is still described by the
physics around Γ, thus providing the physically expected pic-
ture. Moreover, for 𝐿𝑧 ≳ 3.23 nm it is found in the four-band
model that |𝐷 | > |𝐵 |, which means that the valence band is not
inverted and thus actually grows in energy when 𝑘 → ∞. This
leads to the absence of a global gap in the spectrum, which in
this system leads to no edge states even if the Chern number of
the valence band is nonzero. Once again, this is undesirable
and in contradiction with experiments on Bi2Se3 nanosheets
and DFT calculations.

B. Eight-band model

We have demonstrated that projection on the surface states
alone is not enough to obtain accurate results for the low-
energy physics of Bi2Se3 nanosheets. We now proceed to
include in this projection also the first set of bulk states that

arises from solving the model at the two-dimensional Γ point,
which we denote by |B±, ↑ (↓)⟩. As we explain below, this is
enough to solve all issues present in the previous model.

One can show that the effective Hamiltonian always decou-
ples into two separate subspaces, which are related by TRS.
This is a consequence of the TRS in combination with the
mirror symmetry with respect to the 𝑥𝑦-plane, as the latter
enforces a definite parity for the individual components of the
Γ-point wave functions under the operation 𝑧 → −𝑧. In other
words, the spin-orbit parity 𝜉 is always a well-defined quantum
number in the presence of both TRS and planar mirror sym-
metry. For our combined eight-band Hamiltonian we choose
the basis

( |S+, ↑⟩ , |S− , ↓⟩ , |B+, ↑⟩ , |B− , ↓⟩︸                                   ︷︷                                   ︸
𝜉=+1

,

|S− , ↑⟩ , |S+, ↓⟩ , |B− , ↑⟩ , |B+, ↓⟩︸                                   ︷︷                                   ︸
𝜉=−1

) .
(5)

Due to the TRS, we focus on the analysis of the first 4 × 4
subblock, with SOP 𝜉 = +1. Its Hamiltonian reads

𝐻eff
8-band, 𝜉=+1 (𝒌) =

[
𝐻SS 𝐻SB
𝐻

†
SB 𝐻BB

]
, (6)

where

𝐻II = 𝜖
I
0 (𝒌)I2×2 +

[
MI (𝒌) (𝐴I)∗𝑘−
𝐴I𝑘+ −MI (𝒌)

]
, (7a)

𝐻SB =

[
𝑎𝑘2 𝑏𝑘−
𝑐𝑘+ 𝑑𝑘2

]
, (7b)

with I ∈ {S,B}, 𝜖 I
0 (𝒌) = 𝐶

I + 𝐷I𝑘2, and MI (𝒌) = 𝑀 I − 𝐵I𝑘2.
All parameters (𝑀 I, 𝐴I, 𝐵I, 𝐶I, 𝐷I, 𝑎, 𝑏, 𝑐, 𝑑) depend on the
thickness 𝐿𝑧 and together determine the topology of the cor-
responding nanosheet. It is important to realize that their
numerical values are unambiguously determined from the ini-
tial set of parameters of the 3D bulk Hamiltonian, thus not
requiring any further adjustments. In FIG. 2 we show the
band structure of the eight-band model for 4 QLs in the sub-
space 𝜉 = +1. There are four bands which we call the upper
and lower valence or conduction band (from top to bottom:
UCB, LCB, UVB, and LVB). The topological properties can
be understood by tracking the spin projection of the different
bands as a function of momentum while taking care of some
subtleties detailed in the next section.

We have computed the spectrum of each subspace separately
on a ribbon along the 𝑥-direction. The width in the 𝑦-direction
is taken as 𝐿𝑦 = 100 nm and we solve the continuum model
by substituting 𝑘𝑦 → −i𝜕𝑦 and employing hard-wall boundary
conditions for the wave function at the edges. The results for
1–5 QLs are plotted in FIG. 3. In all cases the valence bands
are fully inverted, i.e., they go down in energy when 𝑘 → ∞,
meaning that for 𝐿𝑧 ≳ 3.23 nm the bulk states are required to
obtain a fully gapped spectrum. For 1 and 2 QLs the spectrum
is devoid of edge states, as already happens in the four-band
model. However, we now find edge states not only for 3, but
also for 4 and 5 QLs, in contrast to the situation in the four-
band model. In the first row of the figure we have colored
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FIG. 2. Band structure of a spatially extended nanosheet of 4 QLs
in thickness for the subspace with SOP 𝜉 = +1, as given by the
eight-band model. The band-name abbreviations are defined in the
main text. Here we have set 𝑘𝑦 = 0, as the dispersion is rotationally
symmetric in our 𝒌 · 𝒑 model. The energy bands of the 𝜉 = −1
subspace are degenerate with these ones, but their spin is opposite
due to the TRS. Avoided crossings are found at |𝑘𝑥 | ≃ 1.2 nm−1, at
which the two valence or conduction bands exchange their spin. As
explained in detail in the main text, this gives a nontrivial twist to the
LVB and the UCB, which become topological in the effective model,
while effectively undoing the twist of the UVB and the LCB visible
around |𝑘𝑥 | ≃ 0.5 nm−1 and making them trivial. Contrary to the
four-band model for 4 QLs, the eight-band model shows a global gap,
meaning that when 𝑘 → ∞ all conduction and valence bands go to
large positive and negative energies, respectively. The insets show
magnifications of the avoided crossings and the surface gap.

the states according to their surface or bulk character, and the
edge states are shown according to their localization along the
width of the ribbon. In the second row we show the states
colored according to their average spin in the 𝑧-direction. It is
worth noting that the picture of FIG. 1 remains valid, except
for the fact that the precise spin texture is now also influenced
by the wave functions of the newly added bulk states. We
comment on the case of 5 QLs, where there seems to be no
Dirac point. This is due to the fact that the gap closing takes
place at a thickness of 5.02 nm, so that the last panel of FIG. 3
is extremely close to the transition. As such, the gap is so
small that the upper half of the Dirac cone, which is slightly
gapped due to finite-size effects, has already merged with the
lowest conduction band. Although not shown here, this can be
verified by tracking the evolution of the edge conduction band
at intermediate thicknesses between 4 and 5 QLs, which poses
no complications in a continuous model.

III. ANALYSIS OF THE TOPOLOGY

To determine the topological protection of the aforemen-
tioned edge states it is necessary to compute the Z2 invariant
of the system, as the total 8 × 8 Hamiltonian lies in class AII

[13]. However, the system decouples into two subspaces that
get interchanged under time reversal, so in this case theZ2 clas-
sification is equivalent to a double Chern-number classification
[52]. The topology can thus be equally determined from the
Chern numbers of each subblock, as they individually break
the TRS. A distinction will have to be made between physical
Chern numbers (PCNs) and effective-model Chern numbers
(EMCNs). The latter refer to those obtained by directly in-
tegrating the Berry curvatures of the eight-band model in the
entire range of 𝑘 , which is unbounded in our continuum model.
We will argue that they generally differ from the PCNs, i.e.,
the Chern numbers which should be considered physical, al-
beit the Hall conductivity stays the same. These PCNs will be
defined later and can be easily inferred once we have gained
an intuitive understanding of the features of FIG. 2.

We have numerically computed the EMCNs of the four
bands of each subspace. The total Hall conductivity is then
(𝑒2/ℎ)∑𝑖 C

𝜉

𝑖
, where the sum runs over the occupied bands.

In the range between the gap closings at 𝐿𝑧 = 2.51 nm and
𝐿𝑧 = 5.02 nm, we find that the EMCN of the UVB is zero,
whereas that of the LVB band is nontrivial and equal to ±1
in each subblock. The Hall conductivity is thus nonzero and
we have accordingly found that edge states are present. For
𝐿𝑧 < 2.51 nm and 5.02 nm < 𝐿𝑧 ≤ 6 nm, we actually find
that both occupied bands of each subblock have opposite unit
EMCNs. Thus, the total Hall conductivity vanishes and there
is no spin-Hall current.

For completeness, we have also explicitly calculated the Z2
invariant directly by analyzing the Pfaffian of the matrix

𝐴𝑖 𝑗 (𝒌) = ⟨𝜓𝑖𝒌 |Θ|𝜓 𝑗𝒌⟩ , (8)

which we denote by 𝑃(𝒌) ≡ Pf [𝐴(𝒌)]. Here, Θ is the time-
reversal operator, and one takes only the eigenstates |𝜓𝑖𝒌⟩
whose energy lies below the Fermi level. In our eight-band
model, the time-reversal operator is represented by the ma-
trix Θ = −i(𝜎SOP

𝑥 ⊗ 𝜎SB
𝑧 ⊗ 𝜎𝑦)K, where 𝜎SOP

𝑥 acts on the
two uncoupled subspaces with opposite SOP, 𝜎SB

𝑧 acts on the
surface-bulk degree of freedom, 𝜎𝑧 acts on the pseudospin
defined in Sec. II A (generalized to surface and bulk orbitals),
and K is the complex conjugation operator. The topological
invariant is determined by analyzing the phase of 𝑃(𝒌) along
a contour 𝐶 that encloses precisely half of the Brillouin zone,
or in the case of our continuum model, half of the infinite
momentum plane. The Z2 invariant is then given by [10, 53]

𝜈 =
1
2
× [sign changes of 𝑃(𝒌) along 𝐶] mod 2 . (9)

Choosing 𝐶 to be formed by a line integral over 𝑘𝑥 and an
irrelevant semicircular path around the upper half plane with
𝑘 → ∞, we can simply analyze 𝑃(𝑘𝑥 , 𝑘𝑦 = 0). This is plotted
in FIG. 4 for 1–6 QLs, and it is found that it remains negative
for 1, 2, and 6 QLs, but changes sign twice for 3 to 5 QLs.

The results for the EMCNs determined above can now be
explained in an intuitive manner. We refer to the picture of
FIG. 2, which shows the case of 4 QLs, and focus on the
valence bands. At the Γ point, the gap defined by the surface
states is inverted, as the spin reverses when moving away from
it. Thus, the UVB exchanges its character with the LCB.
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FIG. 3. Band structure of a ribbon of width 𝐿𝑦 = 100 nm and 1 to 5 QLs in thickness for the subspace with SOP 𝜉 = +1, as given by the
eight-band model. All parameters used arise directly from the projection of the 3D states at the Γ point. The top row depicts the surface or
bulk character of the bands for 1 to 5 QLs, that is, whether the corresponding states predominantly live in the outer or inner QLs, respectively.
The edge states, only present between 3 and 5 QLs, are colored according to their localization on the ribbon. The bottom row depicts the spin
polarization along the 𝑧-direction for 1 to 5 QLs. Despite not being fully polarized, the edge states still have a nonzero average spin in the
𝑧-direction, as explained in detail in Sec. II A. One must keep in mind that there is another subblock whose band structure is related by TRS to
the one shown here. Hence, the spins and velocities of electrons in the time-reversed subspace are opposite, giving the usual QSH picture but
with a partial spin polarization.
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FIG. 4. Pfaffian of the matrix 𝐴(𝒌) for 1 to 6 QLs in the eight-band
model. In the cases of 3, 4, and 5 QLs, the Pfaffian changes sign twice
along the contour, giving 𝜈 = 1, while the other cases are trivial. Note
that our model has rotational symmetry and thus the Pfaffian’s zeros,
if any, form a circle enclosing the origin of the (𝑘𝑥 , 𝑘𝑦)-plane.

However, at larger momenta there is now an avoided crossing
(AC) between the UVB and the LVB. This causes the spin of
the UVB to flip again, while also reversing that of the LVB.
Thus, the LVB ultimately acquires a nontrivial twist when
going from 𝑘 = 0 to 𝑘 → ∞, while the UVB remains trivial

because its twist is undone at the AC. The same happens for 3
and 5 QLs. As a result, there is no net twist of the UVB and
its EMCN is accordingly zero, while the net spin flip of the
LVB results in a nontrivial EMCN. In contrast, for 1, 2, and 6
QLs, the closing of the gap undoes the band inversion at the
origin. However, the AC remains, resulting in the spin twisting
once for every band, but oppositely between the UVB and the
LVB. The result is that the occupied bands have nonzero but
opposite EMCNs, leading to a vanishing Hall conductivity, in
agreement with our calculations.

In fact, this intuitive understanding becomes rigorous by
virtue of the parity argument by Fu and Kane [51], because
in addition to the TRS, our 𝒌 · 𝒑 Hamiltonian possesses the
inversion symmetry of the underlying crystal lattice. In our
continuum model there are only two time-reversal invariant
momenta, namely 𝑘 = 0 and 𝑘 = ∞, as the momentum space
now has the topology of a sphere with all points at infinity
identified. We find that the eigenstates of the effective Hamil-
tonian with a nonzero EMCN indeed change parity as one goes
from the origin of 𝒌 to infinity. This is ultimately the same
as comparing the spin direction at these points, because the
product of spin and parity is well-defined in each subspace due
to our definition of the SOP in Sec. II A.

We have now understood how the direction of the spin can be
used to read off the topology of the bands in the effective model.
However, one has to be careful regarding the nature of the ACs
involved in the process. While these are sources of Berry
curvature and thus affect the EMCNs, they are actually an
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artifact of the effective model, which employs a finite number
of bands. This can be seen by including even more bands: as
we increase the size of the effective model, the ACs remain
very localized but shift to larger values of 𝑘 . In the limit of an
infinite number of bands these will have disappeared and one
recovers the smooth band structure arising from the solution
to the 3D model at arbitrary 𝒌. However, the band inversion
of the LCB and the UVB close to Γ (at around 𝑘𝑥 ∼ 0.4 nm−1

in FIG. 2) remains localized in the same region no matter how
many bands we include. One must therefore conclude that
this inversion is really physical. Indeed, our 𝒌 · 𝒑 model is
based on the premise that the topological properties of Bi2Se3
arise from the band inversion around the Γ point due to the
spin-orbit coupling [30]. Thus, the nontrivial Berry curvature
should be localized around this point only, which is precisely
expressed by the spin twists in this region.

In view of the above, the effective model is physical only
in the region before the ACs take place. This means that the
EMCNs do not actually correspond to the Chern numbers of
the model with infinitely many bands, as they include the ef-
fect of the unphysical ACs. To remedy this, we introduce
the PCNs. These must be calculated via the above spin-flip
counting procedure, but only in the region before the first AC.
Then only the physical band inversion contributes, if present.
Note that, in any model with a finite band number, the PCNs
cannot be calculated by integration of the Berry curvature as
the result will not be quantized due to the truncation of the
momentum space. The PCNs, as calculated via spin flips, are
guaranteed to be the same as the Chern numbers of the infinite-
band model. It then follows that for 3, 4, and 5 QLs the UVB
has a unit PCN while that of the LVB is trivial, that is, the
effective-model picture is essentially reversed. Furthermore,
for 1, 2, and 6 QLs all bands have trivial PCNs. However,
note that the physical Hall conductivity remains unchanged
with respect to that of the effective model because it is given
by a sum of Chern numbers. Thus, it does not matter if it is
calculated with the EMCNs or the PCNs, because each AC
oppositely affects both involved bands. The Z2 invariant cal-
culated via the Pfaffian is similarly correct in both cases, since
it simultaneously includes the effect of all occupied bands.

We stress that the inclusion of the bulk states at the Γ point is
essential to reach our conclusions regarding the PCNs. As said
before, there is no band inversion around Γ in the effective four-
band model for 4 and 5 QLs, i.e., all Chern numbers are trivial
in this case. The eight-band model is thus the minimal model
that contains all the topology, which can now be understood
as follows. Firstly, there is a band inversion between the LCB
and the UVB that endows these bands with nontrivial PCNs.
In the region where this inversion takes place, both of these
bands are essentially fully surface-like, as seen from FIG. 3.
However, this inversion is only observed in the presence of the
UCB and the LVB, which in this region are almost fully bulk-
like. We thus conclude that the nontrivial topology resides in
states on the surfaces and is due to a band inversion enabled
by the presence of deeper-lying states with bulk character.

Finally, in TABLE I we present a comparison summary be-
tween the four-band and the eight-band models. It is apparent
that the four extra bands drastically modify the properties of

Thickness (QLs) 𝜈 Global gap Edge states

4-
ba

nd
m

od
el 1 0 ✓ ✗

2 0 ✓ ✗
3 1 ✓ ✓
4 0 ✗ ✗
5 0 ✗ ✗
6 1 ✗ ✗

8-
ba

nd
m

od
el 1 0 ✓ ✗

2 0 ✓ ✗
3 1 ✓ ✓
4 1 ✓ ✓
5 1 ✓ ✓
6 0 ✗ ✗

TABLE I. Overview of the features of the four- and eight-band models
discussed in the main text. Here, 𝜈 is the topological Z2 invariant,
and edge states are found only when it is nontrivial and there is a
global energy gap, that is, all valence bands go to negative energies
when 𝑘 grows large.
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FIG. 5. Comparison of the four-band and eight-band models with
the exact solution of the 3D model. The panels show a distinctive
artifact of the four-band model, namely that the valence band is not
inverted for 4 QLs and higher, and thus goes up in energy for large
𝑘 . In the case of 4 and 5 QLs, this is fixed by the eight-band model,
whose valence bands go down in energy as desired. For 6 QLs and
thicker, the eight-band model also presents this artifact. However, the
topological invariant of this larger model remains the same as that
of the eight-band model, which cannot be said when going from the
four-band to the eight-band model.

the model for more than 3 QLs, and must therefore be included.
We note that for 6 QLs the UVB is not inverted, leading still
to the absence of a global gap, as seen in FIG. 5. We have
checked that this can be fixed by including yet another set of
states, but this does not change the PCNs.

IV. COMPARISON WITH A RECENT EXPERIMENT

In a recent experiment [46], the presence or absence of QSH
edge states was studied in colloidal nanocrystals of Bi2Se3 with
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thicknesses between 1 and 6 QLs. The findings clearly show
that platelets of 1 to 3 QLs do not sustain edge modes, while
platelets from 4 to 6 QLs do. A potential explanation for the 3
and 6 QL cases, which do not conform to our eight-band model,
is given in the next section. Except for this issue, our eight-
band model agrees with the experimental findings, while the
four-band model does not if one simply takes the parameters
arising from the projection of the 3D bulk Hamiltonian. In the
experiment, the edge states are found to span a large energy
window of around 500 meV and penetrate around 8 nm into
the interior of the crystals. In FIG. 6 we have plotted the local
density of edge states in the case of 4 QLs as calculated via the
eight-band model. Their penetration is about 8 nm, in excellent
agreement with the experimental value. Furthermore, they
span an energy range of approximately 250 meV. While this is
roughly only half of that observed experimentally, we note that
the gap measured in the laboratory is also larger than that of our
effective eight-band model [43]. Hence, it is natural that the
energy range spanned by the edge states is also larger than that
predicted by the latter. Nevertheless, our eight-band model
still provides an insight on the underlying mechanism behind
this behavior. In FIG. 3 we see that the edge states merge
with the conduction band very close to the Dirac point, but
that they leak remarkably deep below the top of the valence
band, especially for 4 and 5 QLs. This is attributed to a
shift in the position of the Dirac point in combination with a
renormalized Fermi velocity of the edge states, which around
the Γ point is slightly lower than that of the surface states.
This enables the edge modes to live well separated from the
gapped surface-like bands for an energy range much larger
than the zero-momentum gap. In fact, the same conclusion
can be reached via the four-band model with experimentally
adjusted parameters. For 𝐷 > 0 (which is the case according
to Ref. [43]) the Dirac point shifts upwards, and the Fermi
velocity in both cases becomes smaller than that of the surface
states, as mentioned already after Eq. (4). As a result, the edge
modes of the four-band model never actually touch the valence
band; the eight-band model is needed to observe the merging
that takes place in FIG. 3 and predict a finite energy range.

V. SUMMARY AND OUTLOOK

In this article we have investigated the effect of the nanosheet
thickness on thin films of the 3D TI Bi2Se3. Whereas previ-
ous studies had already shown a dimensional transition from
a 3D to a 2D TI, the theoretical description in terms of an
underlying 𝒌 · 𝒑 Hamiltonian was unsatisfactory. Indeed, the
emergent effective 2D model for the surface states can only
describe the experimentally observed QSH phase at 4 and 5
QLs if its parameters are adjusted appropriately a posteriori.
This amounts to disregarding the values that naturally arise
from the projection in favor of a different set of parameters
taken from experiment. In this work we have shown that this
becomes unnecessary upon the inclusion of bulk states further
away from the Fermi level. Our extended eight-band model
precisely captures the topological properties computed via ab
initio calculations in the whole range of 1 to 6 QLs, and is
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FIG. 6. Local density of states of the edge modes on a ribbon of width
𝐿𝑦 = 100 nm. The states span an energy range of roughly 200 meV
and penetrate about 8 nm into the interior at both edges. The red
dashed line marks the position of the Dirac point, where we find two
states with a tiny gap. The inset shows slices of the density of states
at various energies, with the ones corresponding to the Dirac point
labeled as DP. The vertical dashed lines mark a distance of 8 nm from
the edges, showing the spatial extent of the edge states that agrees
with the experiment on colloidal nanosheets.

close to the experimental findings except for 3 and 6 QLs. We
find that the band inversion of the surface-like bands, which
determines the presence or absence of topology, can only be
observed upon the inclusion of additional bulk-like bands. This
provides a new and more complete picture that is missing if
one simply reparametrizes the surface bands of the four-band
model. This observation, which to the best of our knowledge
has not been reported before, constitutes one of the main points
of this article.

Despite the very good agreement of our eight-band model
with a recent experiment and previous DFT calculations, two
brief comments are in place. Firstly, we have found that the
UVB is not inverted in the regime of intermediate thicknesses
of 6 QLs and beyond. Hence, a quantitative analysis of this
regime would require projection onto a higher number of states.
Note, however, that their inclusion does not further change the
topology, i.e., the topological properties can be fully explained
by the eight-band model. Secondly, our results for 3 and 6 QLs
seem to clash with the recent experimental efforts involving
Bi2Se3 nanocrystals in a way which indicates that both gap
closings take place at a slightly larger thickness. It is important
to note that in this article we have employed the 3D bulk
parameters as fitted from ab initio calculations. To further
test our eight-band model it would thus be desirable to directly
input the parameters from experimental studies of bulk Bi2Se3.
We expect that more precise knowledge of the bulk parameters
will account for this discrepancy, as the values of 𝐿𝑧 at which
the gap closes are quite sensitive to the former.

Our model is in principle not restricted to Bi2Se3, but also
applicable to Bi2Te3 and Sb2Te3 if we use the appropriate pa-
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rameter values. Experimental research in all of these materials
would thus be a useful benchmark for our eight-band model
as well. In the future we want to test our eight-band model
in more general settings geared towards potential practical
applications. One interesting possibility in this regard is het-
erostructures, in particular those involving a superconducting
substrate which induces a proximity effect on the Bi2Se3 slab.
Another intriguing avenue for which our combined surface-
bulk Hamiltonian is especially well suited involves hybrid ex-
citons, where an electron on the surface is coupled to a hole
in the bulk, or vice-versa. This system has been the subject of
a recent experiment [54] and can be studied theoretically by
combining our eight-band model with our approach to excitons

in Ref. [55]. We hope that the considerations presented in this
article will be useful for research in these and other fascinating
areas of topological phases of matter.
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