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Figure 1. Left: Sparse view setting of a 360◦ camera rig with 8 views. Right: 3D reconstructions with existing SotA methods. Due to the
sparsity and wide spacing of the camera views, methods such as NeRS [65] and RegNeRF [40] reconstruct surfaces with visible artifacts.
COLMAP∗ [46, 47] returned a valid mesh only with 50 views (so is used only as a reference). Methods such as DS [16] obtain better
reconstructions, but with fewer details than with our approach. Most methods make use of masks to segment the object in each view. In
contrast, our method can work without this additional supervision and still obtain accurate 3D reconstructions (compare to the GT).

Abstract
We propose a novel method for 3D object reconstruc-

tion from a sparse set of views captured from a 360-degree
calibrated camera rig. We represent the object surface
through a hybrid model that uses both an MLP-based neu-
ral representation and a triangle mesh. A key contribution
in our work is a novel object-centric sampling scheme of
the neural representation, where rays are shared among all
views. This efficiently concentrates and reduces the num-
ber of samples used to update the neural model at each
iteration. This sampling scheme relies on the mesh repre-
sentation to ensure also that samples are well-distributed
along its normals. The rendering is then performed effi-
ciently by a differentiable renderer. We demonstrate that
this sampling scheme results in a more effective training of
the neural representation, does not require the additional
supervision of segmentation masks, yields state of the art
3D reconstructions, and works with sparse views on the
Google’s Scanned Objects, Tank and Temples and MVMC
Car datasets. Code available at: https://github.
com/llukmancerkezi/ROSTER

1. Introduction
The task of reconstructing the 3D surface of an object from
multiple calibrated views is a well-established problem with

a long history of methods exploring a wide range of 3D rep-
resentations and optimization methods [11–13, 53]. Recent
approaches have focused their attention on deep learning
models [6, 21, 27, 34, 35, 39, 50, 65]. In particular, meth-
ods based on neural rendering such as NeRF and its vari-
ants [3, 5, 35, 42, 61], have not only shown impressive view
interpolation capabilities, but also the ability to output 3D
reconstructions as a byproduct of their training.

NeRF’s neural rendering drastically simplifies the gen-
eration of images given a new camera pose. It altogether
avoids the complex modeling of the light interaction with
surfaces in the scene. A neural renderer learns to output the
color of a pixel as a weighted average of 3D point samples
from the NeRF model. Current methods choose these sam-
ples along the ray defined by the given pixel and the camera
center (see Figure 2 left). Because each camera view de-
fines a separate pencil of rays, the 3D samples rarely over-
lap. Thus, each view will provide updates for mostly inde-
pendent sets of parameters of the NeRF model, which can
lead to data overfitting. In practice, overfitting means that
views used for training will be rendered correctly, but new
camera views will give unrealistic images. Such overfitting
is particularly prominent when training a NeRF on only a
sparse set of views with a broad object coverage (e.g., see
the 360◦ camera rig in Figure 1).

In this work, we address overfitting when working
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Figure 2. Sampling schemes. Left: NeRF view-centric
sampling scheme. Right: Our object-centric sampling
scheme. The view-centric sampling scheme uses separate
sets of 3D samples for each camera view. This leads to
overfitting when views are sparse. Object-centric sampling
instead shares the same 3D samples across multiple views.

with sparse views by proposing an object-centric sampling
scheme that is shared across all views (see Figure 2 right
and Figure 3). We design the scheme so that all (visible)
views can provide an update for the same 3D points on a
given sampling ray. To do so, we introduce a hybrid 3D rep-
resentation, where we simultaneously update a Multi Layer
Perceptron (MLP) based implicit surface model (similarly
to a NeRF) and an associated triangle mesh. The MLP
model defines an implicit 3D representation of the scene,
while the mesh is used to define the sampling rays. These
rays are located at each mesh vertex and take the direction
of the normal to the mesh. Then, the mesh vertex of the cur-
rent object surface is updated by querying the MLP model
at 3D samples on the corresponding ray. We use a similar
deep learning model to associate color to the mesh. We then
image the triangle mesh in each camera view via a differen-
tiable renderer. Because of our representation, the queried
3D samples can be shared across multiple views and thus
avoid the overfitting shown by NeRF models in our settings.

Notice that a common practice to handle overfitting in
NeRF models trained on sparse views is to constrain the
3D reconstruction through object masks. Masks provide a
very strong 3D cue. In fact, a (coarse) reconstruction of an
object can even be obtained from the masks alone, a tech-
nique known as shape from silhouette [24]. We show that
our method yields accurate 3D reconstructions even with-
out mask constraints. This confirms experimentally the ef-
fectiveness of our sampling scheme in avoiding overfitting.

To summarize, our contributions are
• A novel object-centric sampling scheme that efficiently

shares samples across multiple views and avoids overfit-
ting; the robustness of our method is such that it does not
need additional constraints, such as 2D object masks;

• A 3D reconstruction method that yields state of the art
results with a sparse set of views from a 360-degree cam-
era rig (on the Google’s Scanned Objects [10], Tank and

Figure 3. View vs object-centric sampling (see Figure 2).
Computational efficiency: The view-centric approach uses
8 × K samples per mesh vertex, with K camera views.
In contrast, the object-centric approach uses only 8 sam-
ples per vertex regardless of the number of camera views.
Object-centric sampling is not only more efficient but also
avoids overfitting. For more details, please check Section 3.

Temples [23] and MVMC Car datasets [65]).

2. Prior Work
Mesh-based methods. With the development of differ-
entiable renderers [6, 18, 20, 52], object reconstruction
is now possible through gradient descent (or backpropa-
gation in the context of deep learning). A common ap-
proach to predict the shape of an object using differen-
tiable rendering is to use category level image collections
[15, 19, 36, 49, 55, 63]. Recently, some methods aim to es-
timate the shape of an object in a classic multi-view stereo
setting and without any prior knowledge of the object cat-
egory [16, 37, 59, 60, 65]. Several methods also propose
different ways to update the surface of the reconstructed ob-
ject. The methods proposed by Goel et al. [16] and Worchel
et al. [59] update the mesh surface by predicting vertex off-
sets to the template mesh. Zhang et al. [65] use a neu-
ral displacement field over a canonical sphere, but restrict
the geometry to model only genus-zero topologies. Xu et
al. [60], after getting a smooth initial shape via [62], pro-
poses surface-based local MLPs to encode the vertex dis-
placement field for the reconstruction of surface details.
Munkberg et al. [37] use a hybrid representation as we do in
our method. They learn the signed distance field (SDF) of
the reconstructed object. The SDF is defined on samples on
a fixed tetrahedral grid and then converted to a surface mesh
via deep marching tetrahedra [48]. In contrast, we adapt the
samples to the surface of the object as we reconstruct it.
Implicit representations for volume rendering. Recently,
Neural Radiance Field (NeRF)-based methods have shown
great performance in novel view synthesis tasks [2, 26, 32,
35, 45, 51, 56, 66]. However, these methods require a dense
number of training views and camera poses to render realis-
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tic views. Methods that tackle novel view rendering from a
small set of training views usually exploit two directions.
The methods in the first group pre-train their models on
large scale calibrated multiview datasets of diverse scenes
[5, 7, 25, 28, 43, 58, 64]. In our approach, however, we
consider training only on a small set of images.

The methods in the second group add an additional reg-
ularization term to their optimization cost to handle the lim-
ited number of available views. Diet-Nerf [17] incorpo-
rates an additional loss that encourages the similarity be-
tween the pre-trained CLIP features between the training
images and rendered novel views. RegNerf [40] incorpo-
rates two additional loss terms: 1) color regularization to
avoid color shifts between different views and 2) geome-
try regularization to enforce smoothness between predicted
depths of neighboring pixels. InfoNerf [22] adds a ray en-
tropy loss to minimize the entropy of the volume density
along each ray (thus, they encourage the concentration of
the volume density on a single location along the ray). This
is not suitable for sparse 360-degree camera rigs, where the
camera positions lie at the same elevation angle (as in our
case) as a ray can be shared by two opposite camera centers.
They also add a loss that minimizes the KL-divergence be-
tween the normalized density profiles of two neighboring
rays. DS-Nerf [9] instead improves the reconstruction qual-
ity by adding depth supervision. As they report, its perfor-
mance is only as good as the estimates of depth obtained
by COLMAP [46, 47]. Common to all of the above meth-
ods is that they require some sort of additional training (ex-
cept InforNerf [22]), while our method reconstructs objects
without any additional pre-training.

Implicit representations for surface rendering. [54] pro-
vides an overview of methods that use implicit represen-
tations for either volume or surface rendering. This fam-
ily of approaches uses a neural SDF or an occupancy field
as an implicit surface representation. DVR [39] and IDR
[61] are pioneering SDF methods that use only images for
training. They both provide a differentiable rendering for-
mulation using implicit gradients. However, both methods
require accurate object masks as well as appropriate weight
initialization due to the difficulty of propagating gradients.
IRON [67] proposes a method to estimate edge derivatives
to ease the optimization of neural SDFs. Some of the meth-
ods combine implicit surface models with volumetric ones
[41, 57, 62] and also implicit surface models with explicit
ones [8, 33, 44]. One advantage of the methods that com-
bine implicit surface models with volumetric ones is that
they do not require mask supervision and are more stable.
However, they heavily depend on a large number of train-
ing images. SparseNeuS [29] can work in the sparse view
setting, but requires pre-training on a multi-view dataset of
multiple scenes. Additionally, it is pretrained only for the
narrow view setup, as opposed to the 360-degree one.

3. Sparse 3D Reconstruction
3.1. Problem Formulation

Our goal is to reconstruct the 3D surface of the object de-
picted in N images I = {I1, I2, · · · , IN} given their corre-
sponding calibrated camera views Π = {π1, π2, · · · , πN},
where πi denotes the 3D camera pose and intrinsic camera
calibration parameters. We consider the sparse setting, i.e.,
when N is small (e.g., 8−15 views). We mostly use camera
views distributed uniformly in a 360◦ rig (see Figure 1), but
our method can also work for the narrow view setup (see
the supplementary material for experiments with this set-
ting). We pose the 3D reconstruction task as the problem
of finding the 3D surface and texture such that the images
Ir = {Ir1 , . . . , IrN} rendered with the given camera views
Π, best match the corresponding set of captured images I .

3.2. 3D Representation

We describe the surface of the 3D object via a hybrid model
that maintains both an implicit (density-based) and explicit
(mesh-based) representation. The two representations serve
different purposes. The explicit one is used to efficiently
render views of the object and is directly obtained from the
implicit representation. The advantage of the implicit rep-
resentation is that it can smoothly transition through a gen-
eral family of 3D shapes (e.g., from a sphere to a torus).
This is especially useful when the 3D reconstruction is
achieved through iterative gradient-based optimization al-
gorithms. Such transition is typically much more difficult
to achieve with a lone explicit representation. More specif-
ically, the implicit representation is based on the Implicit
Surface Neural Network (ISNN) Fshape : R3 → R, that out-
puts the object density value σ

.
= Fshape(X) at a 3D point

X ∈ R3. The explicit representation is obtained by convert-
ing the implicit representation in Fshape to a triangle mesh
G = (V,F) consisting of M vertex locations V and a face
list F . A triangle in F is the triplet of indices of the vertices
in V that form that triangle. The conversion of Fshape to the
explicit representation mesh is based on the selection of a
finite set of 3D points, which we call samples and discuss
in detail in the next section.

3.3. Object-Centric Sampling

In Figure 4, we show a 2D slice of the implicit represen-
tation of the COW 3D shape. The implicit representation
will have a density σ that is close to 1 at the surface of the
object and 0 elsewhere. In an iterative procedure, we can
assume that we already have some existing mesh that is suf-
ficiently close to the current surface of the implicit repre-
sentation (recall that the implicit representation will be up-
dated through the optimization procedure). To also update
the mesh, we use its existing mesh vertices and normals to
define segments that are approximately normal to the up-

3



dated implicit surface and to select samples on the segments
in equal number on either side of the surface.

More formally, for each vertex Vi ∈ V , i = 1, . . . ,M ,
in the current out-of-date mesh, we define a sampling ray
Ri, such that Ri ∝ Ni, where Ni is the surface normal at
the vertex Vi. Along the ray Ri we draw K 3D samples
Xi,1, . . . , Xi,K (in Figure 4 we show K = 4). We define
outward and inward point samples by drawing K equally
spaced 3D points from the segments [Vi, Vi + tout

i Ni] and
[Vi − tin

i Ni, Vi], where tin
i , t

out
i > 0. The range factors tin

i

and tout
i are defined independently so that samples on ei-

ther one of the two segments stay always either inside or
outside the mesh, with a maximum possible range. This
choice allows to deal with the reconstruction of thin struc-
tures of the mesh (e.g., the leg of a horse). For each 3D point
we obtain corresponding densities σi,1, · · · , σi,K from the
ISNN via σi,j = Fshape(Xi,j). We then compute normal-
ized weights via the softmax function as wi,j ∝ exp(σi,j),
such that

∑K
j=1 wi,j = 1. Finally, we define the updated

mesh vertex Vi as the following weighted sum

V̂i =

K∑
k=1

wi,kXi,k. (1)

See Figures 6 and 4 for an illustration of these steps.
Remark. In view-centric methods, such as NeRF, the sam-
pling rays are defined via the camera directions. The view-
centric approach presents two drawbacks: Firstly, the num-
ber of points grows linearly with the number of cameras.
Secondly, when using view-centric (VC) sampling, the sur-
face can only evolve within the subspace determined by the
camera poses, resulting in elongated shapes (as observed in
Figure 3). This limitation becomes particularly challenging
in scenarios with sparse camera views.
Adding Texture. Instead of obtaining color directly from
the ISNN as in NeRF models [2, 32, 35, 51, 66], we intro-
duce a separate model, the Texture Neural Network (TNN)
Ftexture : RP 7→ R3, where P is the size of the 3D posi-
tion embedding. Given the updated 3D vertex location V̂i,
we compute its positional embedding γ(V̂i), where γ(·) de-
notes the positional encoding operator, and then obtain the
color Ci

.
= Ftexture(γ(V̂i)).

Image Rendering. The above procedure yields an updated
triangle mesh Ĝ = (V̂,F), where V̂ = {V̂1, . . . , V̂M}, with
corresponding vertex colors C = {C1, . . . , CM}. We ren-
der the image viewed by the j-th camera with calibration
πj , j ∈ {1, . . . , N}, by feeding Ĝ and the vertex colors C
to a differentiable renderer [6, 18, 20, 52]. This yields the
rendered image Irj = Renderer(Ĝ, C, πj) (see Figure 5).
Reconstruction Loss. Fshape and Ftexture are parametrized
as Multi Layer Perceptron (MLP) networks (more details of
their architectures are in section 4.1). We train their param-

ISNN

(𝑥, 𝑦, 𝑧, 𝑣) 𝜎

Output Density Mesh SurfaceObject Centric Sampling

Updated Vertex Location

Figure 4. Detailed model representation. We feed the
object-centric points to ISNN and obtain a density value.
Then, we update the vertex location via eq. (1) using the
points sampled along the vertex normal. We repeat this op-
eration for all vertices to get the updated mesh surface.

TNN

(𝑥, 𝑦, 𝑧) 𝑅𝐺𝐵

Mesh Surface

Renderer

CameraTextured Mesh

Loss

Figure 5. We assign a color to each vertex of the mesh by
querying the TNN model at that vertex. Then, we feed the
textured mesh and a camera viewpoint as input to a differ-
entiable renderer to synthesize a view of the scene. The
reconstruction task is based on minimizing the difference
between the synthesized view and a captured image (with
the same viewpoint) in both L1 and perceptual norms.

eters by minimizing the following loss on the images I

L = Limages(I, I
r) + Lperceptual(I, I

r) + λLlaplacian(Ĝ) (2)

where Limages(I, I
r) =

∑N
i=1 |Ii − Iri |1 is the L1 loss be-

tween the rendered images and captured images. Lperceptual
is the same loss as Limages, but where instead of the L1 loss
we use the perceptual loss [68] and LLaplacian is the Lapla-
cian loss of the mesh Ĝ [38], which we use to regularize the
reconstructed 3D vertices V̂ through the parameter λ > 0.
We optimize the loss L using the AdamW optimizer [31].

3.4. Technical Details

We employ several ideas to make the optimization robust
and accurate.
Mesh Initialization. We use a robust initialization proce-
dure to obtain a first approximate surface mesh. We start
from a predefined sphere mesh with radius ρ. This sphere
defines vertices and triangles of the mesh G. Then, for each
vertex Vi ∈ V we cast a ray Ri in the radial direction from
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ISNN

(𝑥, 𝑦, 𝑧) 𝜎

Updated Vertex Location

Radial Point Cloud Output Density Mesh Surface

Figure 6. Mesh initialization. The points in the radial point cloud
are fed to ISNN to obtain a density value. Then, for each ray we
update the vertex location using eq. (1). By repeating this opera-
tion for all rays, we obtain the mesh surface.

the origin of the sphere towards the vertex Vi and draw
K equally spaced points Xi,1, · · · , Xi,K along the ray Ri,
such that |Xi,K |2 = ρ (see Figure 6). These 3D points are
never changed throughout this initial model training. The
mesh vertices are then computed as in eq. (1). Because each
linear combination considers only samples Xi,1, · · · , Xi,K

along a ray, the initial representation F init
shape can only move

the updated vertices radially. Although the reconstructed
mesh can model only genus zero objects and only describe
a radial structure, it gives us a very reliable initial mesh.
Surface Normals. Surface normals are computed by av-
eraging the normals of the faces within the second order
neighbourhood around Vi.
Re-meshing. Every 100 iterations during the first 2500 it-
erations, and then every 250 iterations afterwards, we ap-
ply a re-meshing step that regularizes and removes self-
intersections from the mesh G. This is a separate step that
is not part of the optimization of the loss eq. (2) (i.e., there
is no backpropagation through these operations). Through
re-meshing, the mesh can have genus different from zero
and its triangles are adjusted so that they have similar sizes.
We use the implementation available in PyMesh - Geome-
try Processing Library [1]. For more details, see the supple-
mentary material. Notice that the total time for the above
calculations during training is almost negligible as we do
not apply these operations at every iteration and they are
highly optimized.
Inside/Outside 3D Points. For the identification of which
3D samples are inside/outside the 3D surface we use the
generalized winding number technique, which is also avail-
able in the PyMesh - Geometry Processing Library [1].
Texture Refinement. During training, we observe that the
TNN model does not learn to predict sharp textures. There-
fore, we run a final phase during which the mesh is kept
constant and we fine-tune the TNN separately. Following
IDR [61], we feed the vertex location, the vertex normal
and the camera viewing direction to the TNN so that it can
describe a more general family of reflectances. These quan-

Table 1. Reported 3D metrics on the GSO Dataset. *Note that
we obtained COLMAP-reconstructed point clouds using 50 views.
(**All scores have been multiplied by 104). Notice the robust-
ness of our method even when not using the mask constraints.

Method Mask CH-L2* ↓ CH-L1 ↓ Normal ↑ F@10 ↑
NeRS yes 18.58 0.052 0.54 98.10
RegNeRF yes 60.19 0.107 0.30 91.44
Munkberg yes 13.32 0.047 0.56 98.65
DS yes 13.21 0.042 0.71 98.58
NeuS no 1217.00 0.495 0.37 32.40
NeuS yes 13.85 0.049 0.70 98.79
COLMAP* yes 34.35 0.049 - 99.11
Our wo/BCG yes 8.69 0.034 0.75 99.24
Our w/BCG no 11.08 0.038 0.75 98.85

Table 2. GSO Dataset: Quantitative evaluation of generated views
on the test set. Notice the robustness of our method even when not
using the mask constraints.

Method Mask PSNR ↑ MSE ↓ SSIM ↑ LPIPS ↓
NeRS yes 20.108 0.0185 0.874 0.126
RegNeRF yes 20.217 0.013 0.882 0.143
Munkberg et al. yes 26.838 0.002 0.955 0.067
DS yes 24.649 0.004 0.944 0.081
Our wo/BCG yes 29.029 0.001 0.967 0.028
Our w/BCG no 27.370 0.002 0.964 0.038

tities are concatenated to γ(V̂i) and then fed as input to
Ftexture. As described earlier on, in this final phase, we opti-
mize eq. (2) only with respect to the parameters of Ftexture.

Handling the Background. So far, we have not discussed
the presence of a background in the scene and have focused
instead entirely on the surface of the object. Technically,
unless a mask for each view is provided, there is no ex-
plicit distinction between the object and the background.
Masks give a strong 3D cue about the reconstructed sur-
face, so much so that they can do most of the heavy-lifting
in the 3D reconstruction. Thus, to further demonstrate the
strength of our sampling and optimization scheme, we in-
troduce a way to avoid the use of user pre-defined seg-
mentation masks. We extend our model with an approxi-
mate background mesh representation. For simplicity, we
initialize the background on a fixed mesh (a cuboid) that
is sufficiently separated from the volume of camera frus-
trums’ intersections. When we reconstruct the background,
we only optimize the texture assigned to each vertex of
the background. Note that we add a separate TNN to esti-
mate the texture of the background and the texture is view-
independent at all stages. See also the supplementary mate-
rial for further details.
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Table 3. MVMC Car Dataset: Quantitative evaluation of
generated views on the test set. Our wo/BCG* and Our w/
BCG are trained with the same pre-processing as in NeRS.

Method Mask PSNR ↑ MSE ↓ SSIM ↑ LPIPS ↓
NeRS yes 18.381 0.015 0.852 0.080
RegNeRF yes 15.776 0.028 0.751 0.259
Munkberg et al. yes 15.145 0.031 0.761 0.239
DS yes 18.608 0.015 0.835 0.139
Our w/BCG* no 18.301 0.015 0.855 0.132
Our wo/BCG* yes 20.030 0.010 0.867 0.095
Our w/BCG no 18.450 0.014 0.865 0.142
Our wo/BCG yes 21.563 0.007 0.883 0.091

4. Experiments
In this section, we present implementation details and re-
sults obtained on the standard datasets. For more compre-
hensive ablation studies as well as for more visual results,
we refer to the supplementary material.

4.1. Implementation Details

We parameterize F init
shape, Fshape and Ftexture as MLPs with 5,

5, and 3 layers respectively and a hidden dimension of 256
for all. The initialization mesh uses 2500 vertices, while the
mesh for the object reconstruction uses a maximum of 10K
vertices. For the background mesh we use a vertex resolu-
tion of 10K. When training the texture network TNN in the
final step, we upsample the mesh resolution to 250K ver-
tices. The scale tin and tout for the detailed model recon-
struction are both set to 0.15. The number of samples along
the rays for F init

shape and Fshape is 16 and 8 respectively. The
learning rate for the training of the initialization, shape, and
texture models is 10−5, 5×10−5, and 10−3. The Laplacian
regularization may change across datasets. For objects with
non-Lambertian surfaces, e.g., specular surfaces, we use a
higher Laplacian regularization, as in this case the Fshape
network can overfit and generate spiky surfaces due to the
lack of multiview consistency across the views. We will re-
lease the code of all components of our work to facilitate
further research and allow others to reproduce our results.

4.2. Datasets

Google’s Scanned Objects (GSO) [10]. We test our algo-
rithm on 14 different objects. For training, we use 8 views,
and for validation 100 views. Camera poses are uniformly
spread out around the object where the elevation angle is
uniformly sampled in [0◦, 15◦]. The background image is
generated by warping a panorama image onto a sphere.
MVMC Car dataset [65]. We run our algorithm on 5 dif-
ferent cars from the MVMC dataset. We use the optimized
camera poses provided in the dataset. Although they are op-
timized, we find that some of them are not correct. Thus, we

Table 4. Tank and Temples Dataset: Quantitative evaluation of
generated views on the test set.

Scene Method Mask PSNR ↑ MSE ↓ SSIM ↑ LPIPS ↓

Truck

RegNeRF yes 18.078 0.018 0.657 0.254
Munkberg et al. yes 18.398 0.018 0.673 0.245
Our wo/BCG yes 18.315 0.017 0.701 0.252
Our w/BCG no 13.168 0.0508 0.666 0.343

Ignatius

RegNeRF yes 21.123 0.105 0.866 0.108
Munkberg et al. yes 22.720 0.007 0.873 0.073
Our wo/BCG yes 23.022 0.007 0.896 0.080
Our w/BCG no 17.845 0.021 0.875 0.153

eliminated those views for both training and testing. We fol-
low a leave-one-out cross-validation setup, where we leave
one view for validation and the rest is used for training. We
repeat this 5 times for each car. Note that this dataset is
more challenging than the GSO Dataset [10] as the cam-
era locations are not spread out uniformly around the ob-
ject. Most of the views are placed mainly on two opposite
sides of the cars. Furthermore, the surface of cars is not-
Lambertian, and there are many light sources present in the
scene too.
Tank and Temple dataset [23]. We evaluate our method
on images from 2 objects, Truck and Ignatius. We use 15
images for training and the rest as the test set. We obtain
the image masks of each object by rendering its correspond-
ing laser-scanned ground-truth 3D point cloud. The camera
poses are computed via COLMAP’s SfM pipeline [46].

4.3. Evaluation

Metrics. For the datasets with a 3D ground truth, we
compare the reconstructed meshes with the ground-truth
meshes or point clouds. More specifically, we report the L2-
Chamfer and L1-Chamfer distances, normal consistency,
and F1 score, following [14]. We also report texture met-
rics to evaluate the quality of the texture on unseen views.
More specifically, we employ Mean-Square Error (MSE),
Peak Signal-to-Noise Ratio (PSNR), and Structural Similar-
ity Index Measure (SSIM), and Learned Perceptual Image
Patch Similarity (LPIPS) [68].
Baselines. We compare our method with the following
methods: (1) RegNerf [40], a volume rendering method, (2)
Munkberg et al. [37], a hybrid-based method, (3) DS [16],
a mesh-based method, (4) COLMAP [46, 47], a multi-view
stereo method, (5) NeUS [57], neural surface reconstruc-
tion method, and (6) NeRS [65] a neural reflectance surface
method. Further details about these baseline methods can
be found in the supplementary material.

4.4. Results

We run our algorithm under two settings: with background
(w/BCG) and by removing the background (wo/BCG), the
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Input Images RegNeRF NeRS Munkberg et al. [37] DS our w/BCG* our wo/BCG GT

Figure 7. Qualitative Results on the GSO Dataset. Note that in our w/BCG* column we remove the background rendering in
the w/BCG column to simplify the visual comparisons.

Input RegNeRF NeRS* Munkberg et al. [37] DS our w/BCG* our wo/BCG GT

Figure 8. Qualitative Results on the MVMC Car dataset. NeRS*: the original NeRS implementation crops the images before
training and thus changes their aspect ratio during training. Thus, the rendered images have an aspect ratio of 1, while the
original ones do not. For more information, see section 4.3. Note that we remove the background rendering in the w/BCG*
column to simplify the visual comparisons.

latter of which is akin to using a mask. We present both
qualitative (Figure 17 and Figure 9) and quantitative (Ta-
ble 1 and Table 2) result on the GSO dataset. We observe
that our proposed method for both w/BCG and wo/BCG
is able to recover the original shape with high accuracy.
DS, Munkberg et al. [37] and NeuS (with mask supervi-
sion) show the closest performance to ours. We observe
that NeuS without mask supervision struggles to accurately
reconstruct the original shape for seven out of the fourteen
objects. NeRS is also able to recover the shape, but cannot

recover genus 1 objects. RegNeRF shows blur artifacts as
a result of the inherent ambiguity of sparse input data and
also may miss some parts of the original object, e.g., the leg
of the cow object. RegNeRF does not always recover the
thin parts of the object, e.g., legs of the horse, and thus the
reconstructed geometry is not fully accurate. When we run
COLMAP with 8 views we find that for most objects the
reconstructed point cloud is mostly empty and the object is
not recognizable (see also the supplementary material for
visual results). This is not surprising since we have only 8
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RegNeRF NeRS Munkberg et al. DS NeuS w/BCG NeuS wo/BCG Our w/BCG Our wo/BCG GT

Figure 9. Reconstructed meshes for the COW object in the GSO Dataset.

Table 5. Tank and Temples Dataset: 3D metrics. *Note that we ob-
tained the COLMAP*-reconstructed point clouds using 50 views.

Scene Method Mask Chamfer-
L2 ↓

Chamfer-
L1 ↓

F@10
↑

Truck

RegNeRF-clean yes 0.059 0.342 42.56
Munkberg et al. yes 0.072 0.355 50.11

DS yes 0.110 0.479 31.73
COLMAP* yes 0.056 0.298 57.74

NeuS no 3.342 2.417 6.50
NeuS yes 0.629 1.253 11.93

Our wo/BCG yes 0.094 0.406 48.14
Our w/BCG no 0.225 0.613 45.78

Ignatius

RegNeRF-clean yes 0.106 0.423 43.45
Munkberg et al. yes 0.022 0.189 81.75

DS yes 0.024 0.207 77.68
COLMAP* yes 0.013 0.166 86.90

NeuS no 0.155 0.572 31.95
NeuS yes 0.061 0.3878 37.72

Our wo/BCG yes 0.018 0.147 87.12
Our w/BCG no 0.139 0.480 55.32

views covering 360-degrees of the object. Furthermore, in
this setting, any surface is visible at most from 3 views and
the objects does not have a rich texture. Because of this rea-
son, we run COLMAP with 50 views and present the results
in all tables just for reference.

In Figure 24 and Table 3 we present qualitative and quan-
titative results for car objects on MVMC Car dataset. We
qualitatively observe that our method wo/BCG shows bet-
ter view renderings than other methods. Our method fails
to recover the texture around transparent surfaces, e.g., the
car window. The model in the w/BCG case is able to re-
cover the main shape of the car, but it misses some parts,
e.g., the tires of the car that are attached to the ground due
to overlaps with the background mesh. Additionally, the
tires contain poor texture, e.g., mostly they are black, so
this can be easily captured by the background texture net-
work and thus introduce an ambiguity in the reconstruction.
We note that the performance for NeRS is consistent across
different cars. This is not surprising as they use the mask
and their initial template is also car-like. We do not run
COLMAP on this dataset as the dataset has a limited num-
ber of views. DS has weaker performance on this dataset

compared to the GSO. The main reason for poor texture
quality is that texture is obtained by 3D back-projections of
the mesh to the input views. Thus, incorrect geometry leads
to poor texture quality. We observe that the quality of the re-
constructions from RegNeRF and Munkberg et al. [37] lack
realism. There are two main reasons for this. Firstly, the
camera locations are not uniformly spread out around the
object. Most of them are located on two sides of the cars.
In this case, the methods struggle to recover the original
shape. Secondly, because of the many light sources present
in the scene and non-Lambertian surfaces, the multi-view
consistency across the views is not satisfied. As can be ob-
served, our method is more robust to the above issues. The
main reason for that is that during the training of ISNN, the
output color of TNN does not depend on the camera view
and thus it is less prone to overfitting.

In Table 5 and Table 4 we present quantitative results
for two objects in the Tank and Temple datasets. Note that
the performance of all methods is drastically decreased es-
pecially in the recovered 3D shape compared to the GSO
dataset. This is expected as the ground-truth point clouds
are hollow (without the bottom), e.g. Truck, and the reported
numbers only approximate the quality of the shape. Our wo/
BCG has a higher Chamfer distance compared to the others
although it looks visually better. This is because the corre-
sponding ground-truth shape does not only include the tar-
get object, but also some other components from the back-
ground, as, e.g., in the Truck scene. For visual results and
more details, see the supplementary material.

5. Conclusion
We have introduced a novel multi-view stereo method that
works with sparse views from a 360 rig. The method can
handle this extreme setting by using a novel object-centric
sampling scheme and a corresponding hybrid surface repre-
sentation. The sampling scheme allows to concentrate the
updates due to multiple camera views to the same compo-
nents of the surface representation and to structure the up-
dates so that they result in useful surface changes (along its
normals, rather than its tangent space). We have demon-
strated the robustness of this method by working without
the common mask supervision constraint, by using datasets
with diverse 3D objects (GSO Dataset), on scenes with

8



complex illumination sources and with non-Lambertian sur-
faces (MVMC Car).
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A. Comparing with Baselines
For all baselines, we run them using their default hyperpa-
rameters unless explicitly specified.
RegNeRF [40]1. The released implementation does not in-
clude the appearance regularization loss. We recover the
geometry from the predicted density by running the march-
ing cubes [30] algorithm. We note that the extracted mesh
contains noisy parts at times. For a fair comparison, we
clean out these parts manually and report the results for the
manually cleaned mesh. We employ the iterative-closest-
point (ICP) [4] algorithm to align the predicted mesh to the
ground truth. We train the models by removing the back-
ground.
Munkberg et al. [37]2. We run the method without any
modification.
NeRS [65]3. The original implementation of the code crops
the objects around their mask and thus changes the original
aspect ratio of the original images. For a fair comparison,
we run our method for both original images and modified
images.
DS [16]4. We optimize only the mesh and the texture as the
camera poses are given.
COLMAP [46, 47]5 We run the COLMAP by removing the
background as our aim is to estimate the 3D of the object in
the scene.
NeuS [57]6. We run the NeuS under two settings: with
mask supervision and without mask supervision. As our
aim is to recover the 3D of an object we define the regions of
interest by pointcloud of COLMAP output for both settings
as it is explained in the original repository.

B. Ablations

C. Ablations
Narrow view reconstruction. As described in the main pa-
per, our method can also work in the narrow view configura-
tion. In Figure 10 we present reconstructions given only two

1https : / / github . com / google - research / google -
research/tree/master/regnerf

2https://github.com/NVlabs/nvdiffrec
3https://github.com/jasonyzhang/ners
4https://github.com/shubham-goel/ds
5https://colmap.github.io/
6https://github.com/Totoro97/NeuS

30 degree 90 degree 30 degree 90 degree

Figure 10. Reconstructions with narrow camera views. Input
views (top), reconstructed meshes (middle) and GT meshes (bot-
tom).

Table 6. 3D metrics on the GSO dataset (without background) for
a different number of training views. Note that the result with 6
views is better than other baselines (see Table 1 in paper) and the
result with 5 views is better than NerS [57]. *All scores have been
multiplied by 104.

# of viewsCH-L2* ↓CH-L1 ↓Normal ↑F@10 ↑
3 59.88 0.090 0.53 93.89
4 22.04 0.063 0.61 98.26
5 16.09 0.053 0.67 98.85
6 12.55 0.048 0.68 99.17
7 11.88 0.048 0.68 99.26
8 8.69 0.034 0.75 99.24

views each with a relative pose difference of 30 degree and
90 degree. The algorithm successfully reconstructs com-
plete shapes, albeit with noticeable surface deformations.
Performance vs. the number of views. In this experiment,
we measure the performance of our algorithm for a different
number of training views in the GSO dataset (see Table 6
and Figure 15). By observing the Figure 15 we see that our
algorithm can produce approximately correct shapes even
with 5 camera views. Note that for 3 camera views, the
coarse shape estimate is reasonable, but the shapes either
miss some parts (e.g., the back leg of the horse, the sword
of the ninja) or some parts are not distinguishable enough
(e.g., face of Mario) due to the high ambiguity of potential
valid 3D models.
Number of samples along the ray. In this ablation study,
we explore the influence of the number of ray samples. To
achieve this, we applied our algorithm to the Ninja object
(with background) using 2, 4, and 8 samples along the ray.
Figure 11 showcases the reconstructions. Notably, our al-
gorithm manages to reconstruct almost all the shape even
with only 4 samples along the ray. Nonetheless, there are
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Table 7. 3D metrics on the GSO dataset where we skip the first
stage. *All scores have been multiplied by 104. **We run for
more iterations, i.e., 15K in total.

Method CH-L2* ↓CH-L1 ↓Normal ↑F@10 ↑
Our w/BCG 13.75 0.041 0.75 98.79
Our w/BCG** 11.44 0.040 0.76 98.99
Our w/BCG-Full 11.08 0.038 0.75 98.85

still noticeable artifacts, such as the division of the sword
into two parts.
Using a sphere as a coarse shape initialization. In Fig-
ure 23 we show the shape evolution during the training.
As we mention in the paper, the coarse model reconstruc-
tion provides us with the robust initialization for the de-
tailed model stage. However, one can start directly from
the sphere mesh by skipping the first stage and still obtain
decent shapes. To verify this, we start directly from the de-
tailed model stage by skipping the first stage in the GSO
dataset. In Table 7 we present our quantitative results. Al-
though the performance dropped by a little amount the per-
formance is still satisfactory.

Figure 14 shows reconstructed meshes, where the ini-
tial template mesh was a sphere. We observe that the de-
tailed model representation is strong enough to recover the
correct shape even from a basic initial shape (a sphere in
this case). However, reconstructions with such initialization
show some artifacts. More tuning and longer training might
help to remove these artifacts. To verify this assumption, we
run the algorithm for more iterations and observe that the
performance noticeably improves. On the other hand, start-
ing from the coarse shape that our method produces leads
to a more stable training and a faster convergence.
The role of the mesh resolution. In Figure 12 we show
the effect of the mesh resolution on the reconstruction of
objects with thin parts. Recovering these parts requires a
higher mesh resolution, i.e., more triangles. Note that for
this case the training is longer.
The role of the Laplacian. In Figure 13, we show the effect
of the Laplacian regularizer on an object from the MVMC
Car [65] dataset. To recover a smooth shape of objects with
non-Lambertian surfaces, one needs to use more regulariza-
tion. Note that for the lower regularization the Fshape net-
work overfits and generates spiky surfaces around the win-
dows of the car.
Calculation of the surface normal. In the paper, we cal-
culate the normal to the vertex Vi in the detailed model rep-
resentation by averaging the normals of the faces within the
second order neighborhood around Vi. In Figure 16, we
show reconstructions obtained by calculating the normal to
a vertex by averaging the normals of the faces within the
first, second and third order neighbourhoods around Vi. We

2 samples 4 samples

8 samples GT

Figure 11. Number of samples along the ray.

Input Images 10K 20K GT

Figure 12. We show our reconstructions using 10K and 20K ver-
tices for the watch object. Using 10K vertices is insufficient to
recover the circle on top of the watch. Increasing the mesh resolu-
tion, e.g., to 20K vertices, can fix this easily.

Input Images λ = 2 λ = 5 λ = 20

Figure 13. Reconstructed cars for different values λ of the Lapla-
cian regularization. The two rows show the mesh of the same ob-
ject from two different views.

see that using the third order neighbourhood to calculate
the normals does not allow the optimization to fully recover
thinner parts of the shape. This is expected since the nor-
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Input Images Our - view 1 GT - view 1 Our - view 2 GT - view 2

Figure 14. Reconstructed meshes of some objects in the GSO [10]
dataset by starting from a sphere (i.e., we skip the Coarse Model
Reconstruction stage). Recovered meshes are shown from two dif-
ferent views (columns 1 and 3) with their corresponding GT view
on their right hand side (columns 2 and 4). The reconstructions in
the first and the third rows are satisfactory. However, the recon-
structions on the second and the fourth rows have some artifacts,
e.g., spiky surfaces, which do not appear with the coarse model
initialization.

mal field is smoother in this case (there is more averaging).
One can handle this by increasing the mesh resolution. A
first order neighbourhood does not allow to recover the thin-
ner parts of the original shape too. On the other hand, the
second order neighbourhood allows to recover thin object
parts.

D. Implementation Details
For remeshing we use the pseudocode 1 described here.7

The algorithm receives the mesh and the target edge length
as input. It refines/fixes the mesh by applying the following
sequence of operations: 1) removing degenerated triangles,
2) splitting long edges, 3) collapsing short edges, 4) remov-
ing obtuse triangles, and 5) computing the outer hull of the
mesh. Notice that computing the outer hull allows us to
change the topology of the mesh. In our experiments, our
meshes have around 10K vertices. In order to match this
resolution, we start from the initial target edge length and
call the pseudocode. If the new mesh has more than 10K
vertices we increase the target edge length threshold and run

7https : / / github . com / PyMesh / PyMesh / blob /
384ba882b7558ba6e8653ed263c419226c22bddf/scripts/
fix_mesh.py#L14

it until we have the mesh that has around 10K vertices. For
the objects in the GSO dataset, we observe that the remesh-
ing and the classification of inside/outside of the 3D points
take around 15% of the total time in the detailed model
reconstruction stage. The method takes about 2 hours for
training on NVIDIA RTX A5000. Specifically, the coarse
shape reconstruction accounts for roughly 15% of the total
time, while the fine reconstruction takes up about 35%, and
the remaining 50% is for texture refinement.

E. Additional Results

In Figure 19 and Figure 20 we show qualitative results for
the Tank and Temple datasets. Note that, for the truck object
our w/BCG is able to reconstruct the object, but not the bot-
tom part around it as this was part of the background mesh
during training. For the ignatius object, our w/BCG could
not recover the bottom (seddle) part and our wo/BCG could
recover it partially. The part that was not recovered has a
high brightness (almost white color) and there is not enough
signal (feedback) from the RGB loss to recover that part.
Observe that the performance of NeUS shows a significant
decrease when the background is present (without mask su-
pervision). We have smoother meshes for both objects than
the baselines. One can increase the vertex resolution to re-
cover more details. In Figures 21, 18 and 24 we show recon-
structions for more objects in the GSO dataset and MVMC
car dataset respectively. Figure 22 shows the reconstructed
mashes for NeuS w/BCG. Notice that the method cannot
accurately estimate the mesh for most of the objects.
COLMAP results. In order to increase the quality of
the reconstructions we eliminate the background from the
raw images and run the COLMAP with the white back-
ground. Figure 25 shows dense point clouds reconstructed
via COLMAP from 8 views in the GSO dataset. We ob-
serve that the reconstructed point clouds are either indis-
tinguishable or miss many parts from the object. This is
due to the sparse view setting since any part of the object is
seen from at most 3 views and as well as the poor texture
of the objects. In Figure 26 and 27 we show reconstructed
dense point clouds and meshes with 50 views in the GSO
dataset and Tank and Temple dataset respectively. The re-
constructed point clouds are noticeably better than the ones
with 8 views. However, they still might have artifacts, i.e.,
holes and also it might still not work for objects with uni-
form texture, i.e., the porcelain white pitcher (third row-last
column). Note that also the reconstructed meshes are not
smooth and not watertight. One needs to post-process them
via remeshing to remove many of these artifacts.

F. Discussion

Even though our proposed method performs well, it has lim-
itations. For objects with thinner surfaces, one needs to in-
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Figure 15. Reconstructed object with different number of input views for objects in the GSO dataset.

14



First Order Second Order Third Order GT

Figure 16. Reconstructed meshes for the ninja object using av-
eraging of the face normals in the first, second and third order
neighbourhood around a vertex.

Algorithm 1: Python style pseudocode remeshing
def remesh(mesh, target len):

# target len: target edge length
#
# It removes triangles having collinear
vertices i.e. zero areas

mesh =
pymesh.remove degenerated triangles(mesh)

# It split long edges into 2 or more shorter
edges

mesh = pymesh.split long edges(mesh,
target len)

# It collapses short edges
mesh = pymesh.collapse short edges(mesh, 1e-6)
mesh = pymesh.collapse short edges(mesh,
target len, preserve feature = True

# It removes obtuse triangles i.e. triangles
having one of the interior angles more than
90 degrees

mesh = pymesh.remove obtuse triangles(mesh,
150, 100)

mesh = pymesh.resolve self intersection(mesh)
# It removes vertices with nearly same
coordinates

mesh = pymesh.remove duplicated faces(mesh)
# It computer the outer hull of the input mesh
mesh = pymesh.compute outer hull(mesh, 100)
mesh = pymesh.remove duplicated faces(mesh)
mesh = pymesh.remove obtuse triangles(mesh,
179, 5)

# It removes vertices not referred by any face
mesh = pymesh.remove isolated triangles(mesh)
return mesh

crease the mesh resolution (see Figure 12) and this affects
the computational load of the method. Although in our ex-
periments we found that 10K vertices works fine for most
of the objects, one needs to adjust the mesh resolution for
objects having more details.

The method can easily update its topology via remeshing
during the learning. This allows reconstructing objects that
are not homeomorphic to spheres. However if there is a hole
at the center of the ground truth object our model would not
handle that as our initial shape is either a sphere or a coarse
shape that is homeomorphic to a sphere.

We handle the background by fixing its geometry to a
simple shape, e.g., a cuboid, and by updating only its tex-
ture. Thus, the background is multiview consistent as well.
Note that, in this study our goal is to model only the main
object in the scene, not the whole scene. We observed
that the method is working sufficiently well if the back-
ground geometry is locally correct around the main object
in the scene. One can consider different options, i.e., gen-
erating separate background images for each training im-
age like Monnier et al. [36] or model the background like
NeRF++ [66]. In both cases, the background texture would
not be multiview consistent and this would break the train-
ing. The current model might have an issue when the back-
ground is close to the foreground object, as, e.g., in the
MVMC Car dataset. Handling this case is quite challenging
and still an open problem. To our knowledge, we are the
first among the explicit mesh-based representation methods
to propose including the background in the pipeline. We
leave handling more complex background models to future
work.
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Input Images RegNeRF NeRS Munkberg et al. [37] DS our w/BCG* our wo/BCG GT

Figure 17. Qualitative Results on the GSO Dataset. Note that in our w/BCG* column we remove the background from our w/BCG for
better visualization. Differences can be better appreciated by zooming in.

our w/BCG GT our w/BCG GT our w/BCG GT our w/BCG GT

Figure 18. Additional qualitative results on the GSO Dataset.

RegNeRF Munkberg et al. [37] DS NeuS w/BCG NeuS wo/BCG Our w/BCG Our wo/BCG

Figure 19. Reconstructed meshes for the truck and ignatius. Note that our meshes are smoother due to the vertex resolution.
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Input Images RegNeRF Munkberg et al.[37] our w/BCG our w/BCG* our wo/BCG GT

Figure 20. Qualitative results on the Tank and Temple Dataset. The reconstructed objects are rendered from three views. Note that in our
w/BCG* column we remove the background from our w/BCG for better visualization.
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RegNeRF NeRS Munkberg et al. [37] DS NeuS wo/BCG Our w/BCG Our wo/BCG GT

Figure 21. Reconstructed meshes for more objects in the GSO Dataset.

Figure 22. Reconstructed meshes for NeuS with background. The corresponding GT meshes are shown in Figure 21 (from top to bottom)

18
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Figure 23. Evolution of the shape over iteration time for coarse and detailed model training on the Ninja Turtles Leonardo (top) and Breyer
Horse (bottom) from the GSO dataset with 8 views and with the background. We show the mesh normals in false colors.

Input RegNeRF NeRS* Munkberg et al. [37] DS our w/BCG* our wo/BCG GT

Figure 24. Qualitative results on the MVMC Car dataset. NeRS*: the original NeRS implementation crops the images before training and
thus changes their aspect ratio during training. Thus, the rendered images have an aspect ratio of 1, while the original ones do not. Note
that in our w/BCG* column we remove the background from our w/BCG results for better visualization.

Hereford Bull Nintendo Mario Ninja Turtles Michelangelo Lalaloopsy Peanut

view 1 view 2 view 1 view 2 view 1 view 2 view 1 view 2

Ninja Turtles Leonardo Fire Engine Breyer Horse Porcelain White Pitcher

view 1 view 2 view 1 view 2 view 1 view 2 view 1 view 2

Figure 25. . COLMAP-reconstructed dense point clouds with 8 input views from known ground-truth cameras for objects in the GSO
Dataset. Better viewed by zooming in.
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Figure 26. COLMAP-reconstructed dense point clouds with 50 input views from known ground-truth cameras for objects in the GSO
Dataset. Better viewed by zooming in.

Figure 27. COLMAP-reconstructed dense point clouds with 50 input views from known ground-truth cameras for Truck and Ignatius
objects. Better viewed by zooming in.
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