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Abstract
We determine the low-energy spectrum and Parisi replica symmetry breaking function for the spin glass phase

of the quantum Ising model with infinite-range random exchange interactions and transverse and longitudinal (h)

fields. We show that, for all h, the spin glass state has full replica symmetry breaking, and the local spin spectrum

is gapless with a spectral density which vanishes linearly with frequency. These results are obtained using an action

functional—argued to yield exact results at low frequencies—that expands in powers of a spin glass order parameter,

which is is bilocal in time, and a matrix in replica space. We also present the exact solution of the infinite-range

spherical quantum p-rotor model at nonzero h: here, the spin glass state has one-step replica symmetry breaking,

and gaplessness only appears after imposition of an additional marginal stability condition. Possible connections to

experiments on random arrays of trapped Rydberg atoms are noted.
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I. INTRODUCTION

Modern advances in the development and control of programmable quantum simulators [1–4] have led to

remarkable implementations of the idea of solving classical optimization problems by quantum tunnelling

[5, 6]. In a recent experiment, for instance, Ebadi et al. [1] used a two-dimensional Rydberg atom array to

investigate quantum optimization algorithms and demonstrated a superlinear quantum speedup in finding

exact solutions.

In such a setup, each atom can be either in the atomic ground state or in a highly excited Rydberg

state (with a large principal quantum number), thus realizing a quantum two-level system, which can be

represented by the eigenstates of the Pauli operator Zi on atom i. The laser-induced Rabi flipping is then

described by the operator g
∑

iXi, while the laser detuning is given by ∆
∑

i Zi. The long-ranged van der
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Waals interactions between two atoms is active only when both are in the Rydberg state, so an interaction

Jij between atoms i and j, Jij(1+Zi)(1+Zj)/4, provides a route to implementing pairwise constraints on

the optimization problems [1, 7–10]. The atoms, which are trapped in optical tweezers, can be arranged

in arbitrary geometries, and positioning them on randomly site-diluted lattices—as in Ref. 1—introduces

an element of spatial disorder in the Hamiltonian.

Inspired by the success of random, infinite-range models in understanding classical optimization prob-

lems [11], we will examine here the equilibrium dynamics of the infinite-range Ising spin glass in a field,

h, with the Hamiltonian

H =
∑
i<j

JijZiZj − g
∑
i

Xi − h
∑
i

Zi (1.1)

where i, j = 1 . . . N denote the lattice sites, and the interactions between them, Jij , are taken as indepen-

dent random numbers drawn from the probability distribution

P (Jij) ∝ exp

[
−N

2

J2
ij

J2

]
. (1.2)

This model has been much studied in the quantum spin glass literature [12–26], but only a few results

have been obtained for the model with a nonzero field, h ̸= 0 [18, 25, 26], which is an essential ingredient

in the optimization toolbox of Rydberg quantum simulators. Here, we shall provide exact results for the

equilibrium long-time dynamics of the N = ∞ model with h nonzero. Our results here are a prelude to

the study of the experimental case where the couplings are time-dependent, but nonequilibrium results

will not be presented here.

The equilibrium solution for the N = ∞ quantum Ising model with independent random interactions

requires the self-consistent solution of a (0+1)-dimensional replicated Ising model with long-range inter-

actions [25, 26]. Such a model is not exactly solvable, so a full solution at all times requires Monte Carlo

simulations. However, it was argued in Ref. 18 that a Landau-theory-like strategy of expanding the quan-

tum action functional in powers of an appropriately subtracted Z autocorrelation function (which is also

a matrix in replica space) can provide the exact form of the long-time correlations in the N = ∞ model.

Here, we shall implement this strategy for the h ̸= 0 model, and obtain the low-frequency dynamic spin

spectrum, along with the Parisi spin glass order parameter with full replica symmetry breaking.

Given the difficulty in obtaining the exact solution of the N = ∞ quantum Ising model at all times,

we will also study a cousin of the quantum Ising model which has been the focus of some attention in the

literature, but only at zero field: this is the ‘spherical quantum p-rotor model’ [20, 27–31]. In the literature,

this model has been referred to as a ‘p-spin’ model rather than a ‘p-rotor’ model. While the distinction
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between spins and rotors is not important for classical systems, it is crucial for quantum systems. ‘Spin’

usually refers to a quantum degree of freedom whose components do not commute with each other, while

the components of a rotor all commute. Accordingly, we will use the ‘p-rotor’ terminology in this paper.

As an aside, we also note studies of the Heisenberg spin glass model [32–42], which will not be considered

in the present paper. In the Heisenberg model, the states on each site i have a twofold degeneracy, unlike

both the Ising and rotor models considered here. An important consequence is that there is no trivial

paramagnetic state in the Heisenberg model. In contrast, the Ising and rotor models have a gapped

paramagnet with a nondegenerate ground state at large g.

We define the spherical quantum p-rotor model here by an imaginary time (τ) path integral over

continuous real rotor/spin coordinates σi, which are the analogs of the discrete Zi = ±1 Ising spins. The

partition function of this model at an inverse temperature β = 1/T , and in a field h is

Z[Ji1...ip ] =

∫
Dσi(τ) exp

−∫ β

0
dτ

 1

2g
σ̇i(τ)σ̇i(τ) +

∑
i1<...<ip

Ji1...ipσi1(τ) . . . σip(τ)− h
∑
i

σi(τ)

 ,

(1.3)

with repeated indices summed over, and σ̇i(τ) ≡ dσi/dτ . Importantly, in order to keep the energy finite,

we equip the rotors with a spherical constraint

N∑
i=1

σi(τ)σi(τ) = N , (1.4)

i.e., the rotor degrees of freedom lie on an N -dimensional sphere of radius
√
N . These rotors interact with

p-rotor couplings Ji1...ip , and all of these couplings are taken to be independent random variables with

distribution

P (Ji1...ip) ∝ exp

[
−Np−1

p!

J2
i1...ip

J2

]
, (1.5)

where the width of the distribution over couplings is set by the scale J . The factor of Np−1 ensures that

the Hamiltonian is of order N , and accordingly, enforces an extensive scaling of the energy and free energy.

Owing to the global nature of the constraint in (1.4), the solution of the spherical p-rotor model is

simpler than that of the Ising model with a local constraint Zi = ±1 on every site i. On the other hand, the

global constraint also makes the p-rotor model a less physical generalization of the Rydberg experiments.

The solution of the p-rotor model requires analysis of a closed set of self-consistent Schwinger-Dyson

equations, in which the self energies are written as polynomials of the Green’s functions. Such Schwinger-

Dyson equations have been numerically studied earlier at h = 0 and in imaginary time and frequency

[27, 29]; here, we will extend the numerical solution to h ̸= 0 and obtain the full dynamic rotor spectrum
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by direct solution in real-frequency space. We will also compute the Parisi spin glass order parameter and

find that as in the spherical classical p-rotor model [43–47] (obtained by taking the g = 0 limit of (1.3)),

there is only one-step replica symmetry breaking.

A. Main results

Our results are expressed in terms of a field Qab(τ1, τ2) which is bilocal in imaginary time and a matrix

in replica space with indices a, b = 1, . . . , n. This field is related to the spin/rotor autocorrelation functions

via

Qab(τ1, τ2) ∼


1

N

∑
i

Zia(τ1)Zib(τ2) , Ising model

1

N

∑
i

σia(τ1)σib(τ2) , p-rotor model
, (1.6)

where a, b are replica indices. Time-translational symmetry requires that the N = ∞ solution take the

form

Qab(τ1, τ2) =
1

β

∑
νn

Qab(iνn)e
iνn(τ1−τ2) , (1.7)

where νn is a bosonic Matsubara frequency. We choose the following ansatz for Qab:

Qab(iνn) =

 Qr(iνn) + βqEAδνn,0, a = b

βqabδνn,0, a ̸= b
. (1.8)

The replica off-diagonal terms in Qab are chosen to be time-independent, because there is no correlation

between the time evolution of the spins in distinct replicas [18]. We have parameterized these off-diagonal

terms in terms of a Parisi matrix qab; as in the classical spin glass theory [48], this matrix has an ultrametric

structure which is characterized by the Parisi function q(u), with q(1) ≡ qEA, the Edwards-Anderson order

parameter at T = 0. We have included an additive factor of βqEA in the replica diagonal term of (1.8) for

convenience. We will find that this ensures the solution for Qr(τ) vanishes as τ → ∞ at T = 0. Also, the

diagonal components qaa do not appear in the above, and we use this freedom to choose qaa = 0.

For the Ising model studied in Sec. II, we find that low-frequency (ω) spectrum in the replica-symmetry-

breaking phase with h ̸= 0 is the same as that obtained earlier [18, 22, 26] at h = 0:

ImQr(ω) ∼ ω. (1.9)

Note that a gapless spectrum for h ̸= 0 is more surprising than at h = 0 because there is no Zi → −Zi

symmetry that can be broken in the spin glass phase. The replica symmetry breaking is characterized by
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FIG. 1: The Parisi spin glass order parameter for the Ising model at h ̸= 0.
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FIG. 2: The Parisi spin glass order parameter for the spherical quantum p-rotor model for p ≥ 3.

the Parisi function q(u) shown in Fig. 1. This function has the same form as that found for the classical

Ising model with g = 0 [49]. The function q(u) is nonanalytic at u = x, and the value of x vanishes linearly

with T as T → 0 as (see Eq. (2.27))

x =
2y

κ
T qEA, (1.10)

where y and κ are couplings of order unity in the Landau action (see Eq. (2.8)). Thus, although the replica

symmetry breaking vanishes at T = 0, it is nevertheless important that the T - and h-dependent structure

in Fig. 1 be included to obtain the gapless spectrum at T = 0 in (1.9). The smaller u plateau in Fig. 1 is

at [18, 49]

qh =

(
3h2

8y

)1/3

. (1.11)

The results for the spherical quantum p-rotor model, p ≥ 3, studied in Sec. III, do have differences from

the Ising model tied to the one-step replica symmetry breaking in the former, shown in Fig. 2, which is in

turn tied to the nonlocal rotor constraint in (1.4). This q(u) is characterized by a break-point at u = x,

and the large-N saddle-point equations leave the value of x undetermined. The mathematical solution of

the classical problem at g = 0 [47] implies we should compute the free energy F , and then use the solution
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FIG. 3: Behavior of the zero-temperature spectral function ρ(ω) = ImQr(ω)/π, as determined by Eqs. (3.49)–(3.56),
for the one-step replica-symmetry-breaking solution of the p = 3 spherical quantum p-rotor model at different
values of the transverse field g (with J = 1). The marginal stability condition (3.45) is imposed. The spectrum is
independent of h as long as we are in the replica-symmetry-breaking phase in Fig. 10.

of ∂F/∂x = 0 to determine x. At such an x, and indeed at all generic values of x, the spectrum of Qr(ω)

turns out to have a gap. Earlier work [27, 28, 50] has advocated use of a ‘marginal stability’ condition,

which leads to precisely the value of x for which the spectrum is gapless. We find that such a gapless

spectrum obeys (1.9), and show a plot of ImQr(ω) for all frequencies in Fig. 3. The lower plateau at q0 in

Fig. 2 vanishes as h→ 0 as q0∼h2, unlike (1.11) for the Ising model. The value of x still vanishes linearly

with T , as in the Ising model. We note that the p=2 spherical model has no replica symmetry breaking,

and the rotor spectrum is always gapped for h ̸= 0.

II. ISING MODEL

A. Landau action

We motivate the structure of the Landau action for the Ising model by recalling the solution of the

spherical model for the p = 2 case [17], in which the interactions have the same form as in the Ising model,

but the local Ising constraint has been replaced by the global constraint in (1.4). At h = 0, the large-N

solution in the paramagnetic phase is of the form (see Appendix C, and Chapter 33 in Ref. 51)

Qab(iνn) =
2gδab

ν2n + (∆2 + Λ2)/2 + [(ν2n +∆2)(ν2n + Λ2)]1/2
, (2.1)

where νn is a Matsubara frequency, ∆ is a small energy gap, and Λ is a high cutoff frequency. In the spin

glass phase of the spherical model, the solution is gapless and replica symmetric:

Qab(iνn) = βqEAδνn,0 +
2gδab

ν2n + Λ2/2 + |νn| [ν2n + Λ2]1/2
, (2.2)
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where qEA is the Edwards-Anderson order parameter.

We shall be interested in extending this solution beyond the spherical limit to the Ising model—at low

frequency scales in the vicinity of the quantum critical point, where |νn|, ∆, T ≪ Λ, qEA is small—and

allow for replica symmetry breaking. In this regime, we can approximate the paramagnetic solution of the

spherical model by

Qab(iνn) = δab

[
A−B

√
ν2n +∆2 + . . .

]
, (2.3)

where A,B are positive constants, while the spin glass solution is

Qab(iνn) = βqEAδνn,0 + δab [A−B|νn|] + . . . . (2.4)

We now notice that if we shift Q by a frequency-independent and replica-diagonal constant,

Qab(iνn) → Qab(iνn)−Aδab, (2.5)

then the shifted Qab(iνn) becomes small at the relevant low-frequency scales on both sides of the quantum

critical point. This makes the shifted Qab(iνn) a suitable field in which to carry out the Landau expansion

of the Ising model. In terms of the original bilocal field, the shift is

Qab(τ1, τ2) → Qab(τ1, τ2)−Aδab δ(τ1 − τ2), (2.6)

and the constant A characterizes nonuniversal, short-time physics not of interest to us.

Working with this shifted field, the important low-order terms in the Landau expansion for the action

of the Ising model are [18]

Ah = A− h2

2

∑
ab

∫
dτ1dτ2Qab(τ1, τ2)−

β

2
χhbh

2, (2.7)

where h is the longitudinal field, χhb is a background contribution to the linear spin susceptibility, and

the h = 0 Landau action is

A =
1

κ

∫
dτ
∑
a

[
∂

∂τ1

∂

∂τ2
+ r

]
Qaa(τ1, τ2)

∣∣∣∣
τ1=τ2=τ

− κ

3

∫
dτ1dτ2dτ3

∑
abc

Qab(τ1, τ2)Qbc(τ2, τ3)Qca(τ3, τ1)

+
U

2

∫
dτ
∑
a

Qaa(τ, τ)Qaa(τ, τ)−
y

6

∫
dτ1dτ2

∑
ab

[Qab(τ1, τ2)]
4 ; (2.8)

see Appendix A of Ref. 18 for a derivation of Eq. (2.8) from (1.1). Here, r is the parameter which tunes

across the spin glass transition at h = 0: it is analogous to the coupling g in the Ising Hamiltonian in

(1.1). The cubic term κ is analogous to the cubic term in Parisi’s original theory of classical spin glasses
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[48, 52]. The U term only involves a single replica, and is a quantum self-interaction of the soft Ising

order parameter. The y term is analogous to a quartic term in the classical case [48], where it is the term

responsible for full replica symmetry breaking in the spin glass phase; however, the dynamic quantum

effects of y are weak, and can be treated perturbatively.

Note that (2.8) does not contain the allowed quadratic term
∫
dτ1dτ2[Qab(τ1, τ2)]

2. We have removed

such a term by exploiting the shift in (2.6). We will see below that such a choice is equivalent to the

requirement for the validity of the Landau theory that the full function Qab(iνn) is small near the quantum

critical point. This shift strategy is analogous to that followed for the critical theory of the Yang-Lee edge

singularity [53, 54].

Our analysis of the physics of the action Ah will examine the behavior as a function of the tuning

parameter across the spin glass transition r, the longitudinal field h, and the temperature T . We will

keep the couplings κ and U of order unity and obtain results for small y. We find that for h > 0 there

are contributions nonanalytic in y that are important to include; however, analytic corrections in integer

powers of y are not crucial, and these are relegated to Appendix A.

The analysis of thermodynamic properties in the spin glass phase in Ref. 18 was carried out with a

vanishing coefficient of the quartic term, y = 0: in this case the order parameter has replica symmetry.

Here, we will extend the solution to small y ̸= 0, and show that the solution has broken replica symmetry.

We also show that the spin fluctuation spectrum remains gapless both at y = 0 and y ̸= 0.

B. Free energy

Inserting the time-translational symmetric ansatz of (1.7) into (2.7) and (2.8), we obtain the free energy

Fh = F − h2

2

∑
ab

Qab(iνn = 0)− 1

2
χhbh

2 , (2.9)

where the h-independent free energy is

F =
1

βκ

∑
a

∑
νn

(ν2n + r)Qaa(iνn)−
κ

3β

∑
abc

∑
νn

Qab(iνn)Qbc(iνn)Qca(iνn) +
U

2

∑
a

[
1

β

∑
νn

Qaa(iνn)

]2
− y

6β3

∑
ab

∑
νn,ν′n,ν

′′
n

Qab(iνn)Qab(iν
′
n)Qab(iν

′′
n)Qab(−iνn − iν ′n − iν ′′n). (2.10)

We now insert (1.8) into (2.10) and obtain the free energy

Fh

n
= Fsg,h + FQ, (2.11)

which consists of two pieces: a ‘spin glass’ and a ‘quantum’ component.
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The first ‘spin glass’ component in (2.11) is given by

Fsg,h = Fsg −
βh2

2n

∑
ab

qab −
h2

2
Qr(0)−

βh2

2
qEA − 1

2
χhbh

2 , (2.12)

where the h-independent terms are

Fsg =−R1
1

n
Trq2 − R2

3

1

n
Trq3 − R3

6

1

n

∑
ab

q4ab

+ r
qEA

κ
− κ

3β

[
(Qr(0) + βqEA)

3 −Qr(0)
3
]
− βy

6
q4EA − 2y

3
q3EAQr(0) , (2.13)

with

R1 = βκ(Qr(0) + βqEA), R2 = κβ2, R3 = βy. (2.14)

The terms involving qab in (2.13) are identical to those the Landau theory of the classical spin glass in

Section 3.4 of Ref. 48.

The second ‘quantum’ component in (2.11) is h-independent

FQ =
1

βκ

∑
νn

(ν2n + r)Qr(iνn)−
κ

3β

∑
νn

Q3
r(iνn) +

U

2

[
1

β

∑
νn

Qr(iνn) + qEA

]2

−
yq2EA

β

∑
νn

Qr(iνn)Qr(−iνn)−
2yqEA

3β2

∑
νn,ν′n

Qr(iνn)Qr(iν
′
n)Qr(−iνn − iν ′n)

− y

6β3

∑
νn,ν′n,ν

′′
n

Qr(iνn)Qr(iν
′
n)Qr(iν

′′
n)Qr(−iνn − iν ′n − iν ′′n). (2.15)

We will solve the saddle-point equations for Fsg exactly, while those for FQ can be solved order-by-order

in y. We will present the y0 solution below, while the y1 solution is presented in Appendix A. It turns out

that the solution of Fsg contains terms nonperturbative in y for h ̸= 0, so it is important to treat the spin

glass terms exactly.

C. Saddle-point equations

The saddle-point equations are most easily determined by taking the derivative of (2.10) with respect

to Qab(iνn):

βh2

2
δνn,0 =

1

κ
(ν2n + r)δab − κ

∑
c

Qac(iνn)Qcb(iνn) + Uδab
1

β

∑
ν′n

Qaa(iν
′
n)

− 2y

3β2

∑
ν′n,ν

′′
n

Qab(iν
′
n)Qab(iν

′′
n)Qab(−iνn − iν ′n − iν ′′n). (2.16)
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The replica off-diagonal equation of (2.16) is

βh2

2
= −2R1qab −R2

∑
c

qacqcb −
2R3

3
q3ab , (2.17)

while the replica diagonal part gives

0 =
1

κ
(ν2n + r)− κ [Qr(iνn)]

2 +
U

β

∑
ν′n

Qr(iν
′
n) + uqEA

− 2y

3β2

∑
ν′n,ν

′′
n

Qr(iν
′
n)Qr(iν

′′
n)Qr(−iνn − iν ′n − iν ′′n)

− 2y

β
qEA

∑
ν′n

Qr(iν
′
n)Qr(iνn − iν ′n)− 2yq2EAQr(iνn)

+ δνn,0

[
−κβ2

∑
c

qacqca − κβ2q2EA − 2κβqEAQr(0)−
2βy

3
q3EA − βh2

2

]
. (2.18)

D. Zero-field limit

In this section, we first rederive the results obtained earlier [18, 36] at h=0, which we will then contrast

with the case for a nonzero field later in Sec. II E.

1. Quantum paramagnet

In the paramagnetic phase, with qEA = 0 and qab = 0, the spin glass free energy is Fsg = 0. At h = 0,

Fsg,h = 0 wherefore only the quantum component survives, and Eq. (2.18) simplifies to an equation for

Qr(iνn) alone:

0 =
1

κ
(ν2n + r)− κ [Qr(iνn)]

2 +
U

β

∑
ν′n

Qr(iν
′
n)−

2y

3β2

∑
ν′n,ν

′′
n

Qr(iν
′
n)Qr(iν

′′
n)Qr(−iνn − iν ′n − iν ′′n) . (2.19)

This can be solved iteratively in powers of y. At order y0, the solution agrees with the form in (2.3)

Qr0(iνn) = −
√

ν2n +∆2

κ
, (2.20)

where the gap ∆ is given by the solution of

∆2 = r − U

β

∑
|νn|<Λ

√
ν2n +∆2, (2.21)

and we have introduced a frequency cutoff to make the frequency summation finite. We will also need

the cutoff at higher orders in y, but the low-frequency dynamics should remain cutoff-independent. The
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FIG. 4: The Parisi spin glass order parameter for the Ising model at h = 0.

critical point r = rc0 is obtained by setting ∆ = 0, and is given by

rc0 =
U

β

∑
|νn|<Λ

|νn| . (2.22)

The order y1 corrections to the saddle point appear in Appendix A 1 a.

a. Free energy: As mentioned above, for the case of the paramagnet, we have Fsg = 0 for the spin

glass component of the free energy in (2.11). The free energy FQ in (2.11) at order y0 is

F0
Q = − 2

3κ2β

∑
νn

(ν2n +∆2)3/2 −
[
∆2 − r

]2
2κ2u

, (2.23)

where ∆ is the solution of (2.21). The order y1 correction to FQ appears in Appendix A 1 a.

2. Spin glass

We begin by solving (2.17) at h=0, which is the same equation of state as that obtained for the classical

spin glass. In terms of the Parisi function q(u) characterizing the n→ 0 limit of the replica matrix qab, we

can write (2.17) at h = 0 as (see Appendix E)

2R1q(u) +
2R3

3
q3(u) = R2

[
2q(u)

∫ 1

0
q(v)dv +

∫ u

0
dv(q(u)− q(v))2

]
. (2.24)

This is the same as Eq. (3.74) in Ref. 48 for the classical case. A replica-symmetric solution with q(u) =

constant is possible, but this is not the preferred solution at h = 0 (as in the classical case, and, as we will

see in Sec. II E, for the quantum h ̸= 0 case). So, we only consider the replica-symmetry-breaking solution

here, as shown in Fig. 4:

q(u) =

 qEAu/x , 0 < u < x

qEA , x < u < 1
, (2.25)
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with

qEA =
R2 − (R2

2 − 4R1R3)
1/2

2R3
,

x =
2R3qEA

R2
. (2.26)

Using (2.14), we can exactly simplify (2.26) to

Qr(0) = −y

κ
q2EA, x = 2yqEA/(βκ) . (2.27)

It can now be verified that the term proportional to δνn,0 in (2.18) vanishes

κβ2

∫ 1

0
du[q(u)]2 − κβ2q2EA − 2κβqEAQr(0)−

2βy

3
q3EA = 0 . (2.28)

We can therefore conclude that the complete saddle-point equations for Qr(iνn) and q(u) reduce to the

following three equations for Qr(iνn), qEA and x:

0 =
1

κ
(ν2n + r)− κ [Qr(iνn)]

2 +
U

β

∑
ν′n

Qr(iν
′
n) + uqEA

− 2y

3β2

∑
ν′n,ν

′′
n

Qr(iν
′
n)Qr(iν

′′
n)Qr(−iνn − iν ′n − iν ′′n)

− 2y

β
qEA

∑
ν′n

Qr(iν
′
n)Qr(iνn − iν ′n)− 2yq2EAQr(iνn), (2.29)

yq2EA = −κQr(0), (2.30)

βκx = 2yqEA. (2.31)

a. Gapless condition: Now, let us analytically continue (2.29) to real frequency, and assume that

Qr(ω → 0) = Qr(0) + |ω|α [a+ ib sgn(ω)] (2.32)

with α > 0. Then, at T = 0, the terms of order Q2
r and Q3

r in (2.29) will have imaginary parts which

vanish faster than |ω|α as |ω| → 0. Collecting all terms of order |ω|α in the imaginary part of (2.29), we

obtain the condition

−2κQr(0)− 2yq2EA = 0, (2.33)

which is automatically satisfied from (2.30). So, the spin dynamics are gapless at all values of y in the

spin glass phase with h = 0. We will see in the explicit solution below that the exponent α = 1, so that

ImQr(ω → 0) ∼ ω.
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b. Solution: The equations (2.29–2.31) can be solved iteratively in powers of y. At order y0, we have

qEA0 =
1

βκ

∑
νn

|νn| −
r

κU
≡ 1

κU
(rc0 − r),

Qr0(iνn) = −|νn|
κ

,

x = 0 . (2.34)

The order y1 corrections to the saddle point appear in Appendix A 1 b.

c. Free energy: Inserting the solution (2.25)–(2.27) back into (2.13), and using the relation (see

Appendix E)

−R1
1

n
Trq2 − R2

3

1

n
Trq3 − R3

6

1

n

∑
ab

q4ab

= R1

∫ 1

0
du[q(u)]2 − R2

3

∫ 1

0
du

[
u[q(u)]3 + 3q(u)

∫ u

0
dv[q(v)]2

]
+

R3

6

∫ 1

0
du[q(u)]4, (2.35)

we obtain

Fsg =
rqEA

κ
+

y2q5EA

5κ
. (2.36)

This is the full expression for Fsg in (2.11), valid to all orders in y in terms of the exact qEA. However,

qEA is known only to order y1 in (A8).

As in the paramagnet, we will only determine FQ in (2.11) order-by-order in y. At order y0, the value

of FQ is

F0
Q = −rqEA0

κ
− 2

3κ2β

∑
νn

|νn|3/2 −
r2

2Uκ2
. (2.37)

The order y1 correction to FQ appears in Appendix A 1 b.

3. Phase diagram

At order y0, the system is the spin glass phase for r < r0c, where rc0 is given by Eq. (2.22). In the

classical limit, T ≫ Λ, we need only consider the νn = 0 term, so the phase boundary is at r = 0. In the

quantum limit T ≪ Λ, we can evaluate the summation over Matsubara frequencies using the identity

1

β

∑
νn

D(iνn) =

∫ ∞

0

dν

π
D(iν) + 2

∫ ∞

0

dΩ

π

ImD(Ω)

eΩ/T − 1
(2.38)

for odd spectral functions ImD(Ω) = −ImD(−Ω). Then, we obtain the phase boundary at

r = U
Λ2

2π
− U

πT 2

3
. (2.39)
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E. Nonzero field

Having reviewed the results in the absence of a longitudinal field above, we now address the h ̸= 0 case

and determine its phase diagram.

1. Replica-symmetric solution

Due to the longitudinal magnetic field, there is an average moment on each site, so qEA is always

nonzero; therefore, the replica-symmetric solution is nothing but the paramagnet. For qab = qEA(1− δab),

Eq. (2.17), together with (2.14), reads

3h2 + 12κqEAQr(0) + 4yq3EA = 0 . (2.40)

Resultantly, the term proportional to δνn,0 in (2.18) vanishes so that the equation for Qr(iνn) remains

unchanged from that in (2.29). The gapless condition in (2.33) is not satisfied by (2.40), even though

qEA ̸= 0. Thus, the solution for Qr(iν) will have a gap.

At order y0, the solution for Qr0(iνn) from (2.18) has the same form as (2.20), but the equation for

the gap ∆ in (2.21) is now modified to [18]

∆2 = r +
Uκh2

4∆
− U

β

∑
|νn|<Λ

√
ν2n +∆2 (2.41)

while

qEA0 =
h2

4∆
. (2.42)

The solutions to Eq. (2.41) are shown in Fig. 5. The order y1 corrections to the saddle point appear in

Appendix A 2 a.

a. Free energy: Inserting the solution for Qr(0) in (2.40) into (2.12) we obtain the spin glass com-

ponent of the free energy

Fsg,h =
qEAr

κ
+

y2q5EA

9κ
+

h2q2EAy

6κ
+

h4

16qEAκ
− 1

2
χhbh

2. (2.43)

Note that we need to insert the solution for qEA in (A15) into (2.43).

For the quantum component, the order y0 contribution to the free energy in (2.15) is

F0
Q = − 2

3κ2β

∑
νn

(ν2n +∆2)3/2 −
[
∆2 − r

]2
2κ2U

− h2(r −∆2)

4κ∆
, (2.44)

which reduces to (2.23) at h = 0. The order y1 correction to FQ appears in Appendix A 2 a.
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Gap as a function of (r,h)
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0.6

0.8

FIG. 5: The gap ∆ of the replica-symmetric solution of the Ising model as a function of r and h for various
temperatures, as determined from (2.41). The parameters U , κ, and Λ have all been set to unity in these calculations.

2. Replica symmetry breaking

From (2.17), the equation (2.24) for the Parisi function is modified to

βh2

2
+ 2R1q(u) +

2R3

3
q3(u) = R2

[
2q(u)

∫ 1

0
q(v)dv +

∫ u

0
dv(q(u)− q(v))2

]
. (2.45)

The solution of (2.45) is modified from (2.25) to that shown in Fig. 1

q(u) =


qh, 0 < u < (qh/qEA)x

qEAu/x, (qh/qEA)x < u < x

qEA, x < u < 1

. (2.46)

The function q(u) is nonanalytic at u = (qh/qEA)x and u = x, but has no discontinuities. The values of

qEA and x are unchanged from those in (2.27), and the value of qh is in (1.11). The result in (1.11) is the

origin of the nonanalytic dependence on y.

It can now be verified that the term proportional to δνn,0 in (2.18) vanishes, and the equations for

Qr(iνn), x, qEA remain unchanged from those in (2.29)–(2.31). Indeed, the only change from the h = 0

solution in Sec. IID 2 is in the form of q(u) for x < (qh/qEA)x in (2.46).

Hence, the gapless condition in (2.33) is now satisfied, and the solutions for Qr(iνn) and qEA remain

unchanged from that for the gapless spectrum in Sec. II D 2 b.

a. Free energy: Inserting the solution (2.46), (1.11) into (2.12), we obtain the extension of (2.36) to

nonzero h

Fsg,h =
qEAr

κ
+

y2q5EA

5κ
+

3(9h10y)1/3

40κ
− 1

2
χhbh

2, (2.47)

which agrees with (2.36) at h = 0.

17



RSB RS

Phase diagram at T = 0.20

RSB RSRSB RS

RSB

RS

FIG. 6: Phase diagram of the Ising model in the (r, h) plane for various values of y at T = 0.2, illustrating the
replica-symmetric (RS) and replica-symmetry-breaking (RSB) phases. The value of ∆ at each point in parameter
space is obtained from Fig. 5, and U, κ,Λ have been set to unity, as previously.

As the introduction of h does not modify the values of Qr(iνn) and qEA, the free energy FQ remains

the same as that in Sec. II D 2 c.

3. Phase diagram

To obtain the phase boundary between the replica-symmetric and replica-symmetry-breaking phases,

we compare their free energies at leading nontrivial order in y.

For the gapped replica-symmetric phase we have the free energy given by (2.42)–(2.44)

Frs = Fsg,h + F0
Q =

h2∆

2κ
− 2

3κ2β

∑
|νn|<Λ

(ν2n +∆2)3/2 −
[
∆2 − r

]2
2κ2U

− 1

2
χhbh

2 , (2.48)

where the gap ∆ is given by the solution of (2.41),

For the gapless replica-symmetry-breaking phase we have from (2.37) and (2.47)

Frsb = Fsg,h + F0
Q =

3(9h10y)1/3

40κ
− 2

3κ2β

∑
|νn|<Λ

|νn|3/2 −
r2

2κ2U
− 1

2
χhbh

2 . (2.49)

The summations in (2.41), (2.48), and (2.49) can be evaluated for T,∆ ≪ Λ using identities obtained

from (2.38):

1

β

∑
|νn|<Λ

(ν2n +∆2)1/2 =
Λ2

2π
+

∆2

4π

(
1 + ln(4Λ2/∆2)

)
− 2

∫ ∞

∆

dΩ

π

(Ω2 −∆2)1/2

eΩ/T − 1
,

1

β

∑
|νn|<Λ

(ν2n +∆2)3/2 =
Λ4

4π
+

3Λ2∆2

4π
+

3∆4

32π

(
3 + ln(16Λ4/∆4)

)
+ 2

∫ ∞

∆

dΩ

π

(Ω2 −∆2)3/2

eΩ/T − 1
. (2.50)

The phase diagram so obtained in shown in Fig. 6; note that due to the n → 0 limit, we have to choose

the phase with the maximum free energy [49]. We observe that the extent of the RSB phase in parameter
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space, which occurs for r < 0, shrinks with increasing h and as y is reduced. Note that ∆ remains finite,

albeit small, at the transition point for h > 0 (it vanishes at the transition for h = 0), indicating a

first-order transition.

III. QUANTUM SPHERICAL p-ROTOR MODEL

We now turn to the analysis of the p-rotor model described in Eq. (1.3). The classical infinite-range

spin glass with p-spin interactions, but without any spherical constraints, was originally introduced by

Derrida [55, 56]. Gross and Mézard [43] first studied the generalization of this model to nonzero magnetic

fields, obtaining an exact solution for p→∞. The classical spherical model [46] can also be solved for any

finite p, including in the presence of an external field [45, 57]. Quantum extensions of these models, by

adding a noncommuting transverse field, have been investigated both with (for p = 3) [27, 29] and without

(for p→∞) [58] the supplementary spherical constraint. However, the problem of the quantum model in

a longitudinal field, which we examine next, has remained unexplored so far.

A. Effective action

To begin, we derive the effective action for the quantum spherical p-rotor model, which will then form

the basis for our subsequent saddle-point calculations. In the path integral, the spherical constraint (1.4)

can be enforced using the exponential representation of the Dirac delta function

δ

(
N∑
i=1

σi(τ)σi(τ)−N

)
=

∫
Dz exp

[
i

∫ β

0
dτ z(τ)

(
N∑
i=1

σi(τ)σi(τ)−N

)]
, (3.1)

which is then inserted into Eq. (1.3) at the expense of introducing an auxiliary field z(τ).

At this stage, since the disorder is quenched, we average the free energy logZ[Ji1...ip ] over disorder—

using the replica trick—instead of the partition function Z[Ji1...ip ] itself (which would correspond to the

annealed average). The replicated partition function is given by

Zn =

∫
dJi1...ipP (Ji1...ip)

∫
Dσa

i Dza exp

[
i

∫ β

0
dτ za(τ)

(
σa
i (τ)σ

a
i (τ)−N

)
(3.2)

−
∫ β

0
dτ

(
1

2g
σ̇a
i (τ)σ̇

a
i (τ) +

∑
i1<...<ip

Ji1...ipσ
a
i1(τ) . . . σ

a
ip(τ) + h

∑
i

σa
i (τ)

)]
,

where a = 1, . . . , n is the replica index. Now, we can perform the disorder average by evaluating simple

Gaussian integrals to find

Zn =

∫
Dσa

i Dza exp

[
−
∫ β

0
dτ

(
1

2g
σ̇a
i (τ)σ̇

a
i (τ)− iza(τ)

(
σa
i (τ)σ

a
i (τ)−N

)
+ h

∑
i

σa
i (τ)

)
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+
J2

4Np−1

∫ β

0

∫ β

0
dτ dτ ′

n∑
a,b=1

(
N∑
i=1

σa
i (τ)σ

b
i (τ

′)

)p ]
. (3.3)

Note that the overlap between two different replicas of the system

Qab(τ, τ
′) ≡ 1

N

N∑
i=1

⟨σa
i (τ)σ

b
i (τ

′)⟩, (3.4)

where the overline denotes an average over disorder realizations, appears naturally in Eq. (3.3). We then

insert the identity

1 =

∫
DQab δ

(
N Qab(τ, τ

′)−
N∑
i=1

σa
i (τ)σ

b
i (τ

′)

)

=

∫
DQabDλab exp

[
i

∫ β

0

∫ β

0
dτdτ ′ λab(τ, τ

′)

(
N Qab(τ, τ

′)−
N∑
i=1

σa
i (τ)σ

b
i (τ

′)

)]
(3.5)

into the partition function, which, in terms of the collective variables Qab, λab, reads

Zn =

∫
Dσa

i DzaDQabDλab exp

[
−
∫ β

0
dτ

(
1

2g
σ̇a
i (τ)σ̇

a
i (τ)− iza(τ)σa

i (τ)σ
a
i (τ) + h

∑
i

σa
i (τ)

)
(3.6)

− i

∫ β

0

∫ β

0
dτ dτ ′ σa

i (τ)λab(τ, τ
′)σb

i (τ
′)

]

× exp

[
−Ni

n∑
a=1

∫ β

0
dτza(τ) +N

∫ β

0

∫ β

0
dτdτ ′

iλab(τ, τ
′)Qab(τ, τ

′) +
J2

4

n∑
a,b=1

(
Qab(τ, τ

′)
)p].

Here, we have replaced bilinears of σi with Qab wherever possible and collected in the first two lines

all the remaining terms involving the σi fields, which we will integrate out in the next step. Using, for

concreteness, the convention∫
Dv(x) exp

[
−1

2

∫ ∫
dx dx′v(x)M(x, x′)v(x′) +

∫
dx j(x)v(x)

]
=

√
(2π)n

detM
exp

[
1

2

∫ ∫
dx dx′j(x)M−1(x, x′) j(x′)

]
for n-dimensional vectors v, j and an n× n matrix M, we obtain

Zn =

∫
DzaDQabDλab det

−N/2

[
− 1

π
δabδ(τ − τ ′)

(
1

2g
∂2
τ ′ + i za(τ)

)
+

i

π
λab(τ, τ

′)

]
(3.7)

× exp

{
Nh2

2

∫ β

0

∫ β

0
dτ dτ ′

∑
ab

(
2G(τ, τ ′) + 2iλ(τ, τ ′)

)−1

ab

}

× exp

[
−Ni

n∑
a=1

∫ β

0
dτza(τ) +N

∫ β

0

∫ β

0
dτdτ ′

(
iλab(τ, τ

′)Qab(τ, τ
′) +

J2

4

n∑
a,b=1

(
Qab(τ, τ

′)
)p)]

,
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≡
∫

DzaDQabDλab exp(−Seff), (3.8)

with the matrix G defined in replica and imaginary-time space as

Gab(τ, τ
′) ≡ −δab δ(τ − τ ′)

(
1

2g
∂2
τ ′ + i za(τ)

)
. (3.9)

The replicated effective action can thus be extracted as

Seff

N
=

1

2
log det

[
1

π

(
Gab(τ, τ

′) + iλab(τ, τ
′)
)]

+ i
n∑

a=1

∫ β

0
dτ za(τ) (3.10)

−
∫ β

0

∫ β

0
dτ dτ ′

iλab(τ, τ
′)Qab(τ, τ

′) +
J2

4

n∑
a,b=1

(
Qab(τ, τ

′)
)p

+
h2

4

n∑
a,b=1

(
G(τ, τ ′) + iλ(τ, τ ′)

)−1

ab

 .

One of the advantages of the replica approach we are now positioned to harness is that since the effective

action (3.10) is proportional to N , the saddle-point approximation is exact in the limit N → ∞.

B. Saddle-point equations

We will only be interested in the saddle point of the theory (3.10), in which case we can assume that

all fields are time-translation invariant and transform to Matsubara frequency space, as in (1.7). Then,

we have

Seff

N
=

1

2

∑
ωn

log det

[
1

π

(
δab

(
1

2g
ω2
n − iza

)
+ iλab(ωn)

)]
+ iβ

n∑
a=1

za (3.11)

−
n∑

a,b=1

∑
ωn

iλab(−ωn)Qab(ωn)−
βh2

4

[
− iδabz

a + iλab(ωn = 0)

]−1

ab

− J2

4

∫ β

0

∫ β

0
dτdτ ′

(
Qab(τ − τ ′)

)p
.

We now employ a slight change of notation to obtain expressions similar to those in Ref. 51, defining

−iza =
λ

2g
, iλab(ωn) = −Σab(ωn)

2g
, (3.12)

in terms of which, the effective action is

Seff

N
=

1

2

∑
ωn

log det

[
1

2πg

(
δab

(
ω2
n + λ

)
− Σab(ωn)

)]
− β

n∑
a=1

λ

2g
(3.13)

+
n∑

a,b=1

(
1

2g

∑
ωn

Σab(−ωn)Qab(ωn)−
βh2g

2

[
λδcd − Σcd(ωn = 0)

]−1

ab

− J2

4

∫ β

0

∫ β

0
dτdτ ′

(
Qab(τ − τ ′)

)p)
.

Now, we use the identity (E21) to absorb the h2 term into the log det as

Seff

N
=

1

2

∑
ωn

log det

[
1

2πg

(
δab

(
ω2
n + λ

)
− Σab(ωn)− βh2gδωn,0

)]
− β

n∑
a=1

λ

2g
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+
n∑

a,b=1

(
1

2g

∑
ωn

Σab(−ωn)Qab(ωn)−
J2

4

∫ β

0

∫ β

0
dτdτ ′

(
Qab(τ − τ ′)

)p)
. (3.14)

Then, the saddle-point equation with respect to Σab(ωn) is

Qab(ωn) = g

[
δab

(
ω2
n + λ

)
− Σab(ωn)− βh2gδωn,0

]−1

ab

. (3.15)

Inserting this back into (3.14), we obtain an effective action just for Qab and λ:

Seff

N
=− 1

2

∑
ωn

log detQab(ωn)− β
n∑

a=1

λ

2g
(3.16)

+
n∑

a,b=1

(
1

2g

∑
ωn

[
(ω2

n + λ)δab − βh2gδωn,0

]
Qab(ωn)−

J2

4

∫ β

0

∫ β

0
dτdτ ′

(
Qab(τ − τ ′)

)p)
.

From this, the saddle-point equations for Qab and λ can be read off as

1 =
1

β

∑
ωn

Qaa(ωn),

Σab(τ) =
pgJ2

2
(Qab(τ))

p−1 ,

gQ−1
ab (ωn) = δab(ω

2
n + λ)− Σab(ωn)− βh2gδωn,0, (3.17)

with the Fourier transform defined by

Qab(ωn) =

∫ β

0
dτ Qab(τ)e

iωnτ , (3.18)

and similarly for Σab(ωn). We numerically study these equations for the replica-symmetric and one-

step replica-symmetry-breaking cases for specific values of p. In the discussion below, we focus on the

p=3 model since, as we show below, it exhibits an interesting and nontrivial phase diagram due to the

competition between these solutions.

For completeness, the solution of the p = 2 model is presented in Appendix C. Note that with p = 2

and h = 0, Eq. (3.17) reduce to (33.32) and (33.33) in [51]. Moreover, for p=4, h=0 the equations (3.17)

are very similar to Eqs. (S50–S53) in Ref. 59, the main difference being that ω2
n is replaced by iωn.

C. Replica-symmetric solution

In this section, we numerically determine the replica-symmetric (RS) solution of the p = 3 model as a

function of transverse and longitudinal fields (g and h, respectively), while choosing the temperature to

be close to zero.
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FIG. 7: Behavior of the order parameter q for the replica-symmetric solution of the quantum spherical p = 3 model
as a function of the transverse field g for different values of longitudinal fields h (with J = 1, T = 0.005). The phase
transition between the replica-symmetric and paramagnetic solutions occurs only for h = 0 and is continuous.

The ansatz (1.8) for the replica overlap functions in the RS case necessarily has a replica off-diagonal

component

Qab(ωn) = βqδωn,0 +Qr(ωn)δab,

Σab(ωn) = βϱδωn,0 +Σr(ωn)δab, (3.19)

since, for nonzero h, the static moment is always nonzero. Then, using the identities in Appendix E, the

equations in (3.17) become (for p = 3)

1 = q +
1

β

∑
ωn

Qr(ωn), (3.20)

Σr(τ) =
3gJ2

2
(q +Qr(τ))

2 − 3gJ2

2
q2, (3.21)

ϱ =
3

2
gJ2q2, (3.22)

g

Qr(ωn)
= ω2

n + λ− Σr(ωn), (3.23)

g q

Qr(ωn = 0)2
= ϱ+ gh2. (3.24)

We solve these equations self-consistently in the imaginary-frequency domain for the order parameter

q as a function of the transverse field g at low temperatures for several values of the longitudinal field, as

shown in Fig. 7. In this model, the phase transition between the RS phase (q ̸= 0) and the paramagnet

(PM, q = 0) occurs only at zero longitudinal field. With even a slight increase in h, the replica-symmetric

solution becomes equivalent to the paramagnet for all values of g, as in Sec. II E 1.

Regardless of the value of the longitudinal field, we can show that the spectrum of the RS solution

is gapped. To do so, we compute the dynamic spin susceptibility of the system, which requires analytic
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continuation of the equations (3.20)–(3.24) to real frequencies. Taking the zero-temperature limit, we

obtain equations of the form

ρ(ω) =
g

π

Σ′′
r(ω)

(Σ′′
r(ω))

2 + (−ω2 + λ− Σ′
r(ω))

2
, (3.25)

Σ′′
r(ω) = 3πgJ2

(
qρ(ω) +

1

2

∫ ω

0
dω1ρ(ω1)ρ(ω − ω1)

)
, (3.26)

Σ′
r(ω) = 2

∫ +∞

0

dν

π

νΣ′′
r(ν)− ωΣ′′

r(ω)

ν2 − ω2
, (3.27)

ϱ =
3

2
gJ2q2, (3.28)

q =
gϱ+ g2h2

[λ− Σ′
r(ω = 0)]2

, (3.29)

1 = q +

∫ +∞

0
dωρ(ω), (3.30)

where the spectral representation of the regular component of the replica overlap Qab(iωn) is

Qr(z) =

∫ ∞

−∞
dω

ω ρ(ω)

z2 + ω2
, (3.31)

and Σ′
r(ω) and Σ′′

r(ω) are the real and imaginary parts of Σr(iωn), respectively. The spectral function

is related to the retarded Green’s function as ρ(ω) = ImQr(ω)/π. Taking the z → ∞ limit above, the

associated sum rule becomes
∫ +∞
0 dω ωρ(ω) = g/2.

We note that the equations above, strictly speaking, permit several solutions, one of which has a

discontinuity at zero frequency given by ρ(ω = 0) = 1/(2πJ
√
6q). To avoid this, we initialize the system

with a simple step function with a small gap and let the equations converge (defined as when the error

reaches 10−20). As a final step, we also check that the sum rule is satisfied.

The spectral functions obtained in this fashion are presented in Fig. 8. For h = 0, we observe that as g

increases, the gap saturates to a finite value and eventually, after the transition point, the system becomes

a quantum-disordered paramagnet, as shown in Appendix D. However, at a finite field, the gap increases

with increasing g without a visible saturation since the replica-symmetric solution and the paramagnet

are one and the same.

D. One-step replica symmetry breaking

In this section, we now allow for nontrivial structure in the replica off-diagonal space. In general,

replacing Eq. (3.19), we can write

Qab(ωn) = βqabδωn,0; a ̸= b,
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(a) (b)

FIG. 8: Spectral functions of the quantum spherical p = 3 model for (a) h = 0 and (b) h = 1 at zero temperature
(with J = 1). (a) The phase transition between the RS phase and the quantum paramagnet occurs at a finite g > 3,
and the gap thus eventually saturates upon increasing g. (b) The replica-symmetric solution persists for all values
of g with a gap that grows with increasing g.

Σab(ωn) = βϱabδωn,0; a ̸= b. (3.32)

The matrices qab and ϱab are characterized by Parisi functions q(u) and ϱ(u) with u∈ [0, 1]. For the

diagonal components, we make the same ansatz as in (3.19)

Qaa(ωn) = βq1 δωn,0 +Qr(ωn),

Σaa(ωn) = βϱ1 δωn,0 +Σr(ωn). (3.33)

We consider the one-step replica-symmetry-breaking (RSB) ansatz, for which (see Fig. 2)

q(u) =


q1 , x < u < 1

q0 , 0 < u < x

, and ϱ(u) =


ϱ1 , x < u < 1

ϱ0 , 0 < u < x

. (3.34)

Using the identities in Appendix E, the equations in (3.17) now become

1 = q1 +
1

β

∑
ωn

Qr(ωn), (3.35)

ϱ1 +Σr(τ) =
pgJ2

2
(q1 +Qr(τ))

p−1, (3.36)

ϱ1 =
pgJ2

2
qp−1
1 , (3.37)

ϱ0 =
pgJ2

2
qp−1
0 , (3.38)

Qr(ωn) =
g

ω2
n +m2 − Σr(ωn) + Σr(ωn = 0)

, (3.39)

gh2 + ϱ1 =
q1g +m2βx(q1 − q0)

2

[g/m2 + βx(q1 − q0)]2
, (3.40)
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gh2 + ϱ0 =
gq0

[g/m2 + βx(q1 − q0)]2
, (3.41)

where we have simplified the equations by changing variables and introducing m2 = λ− Σr(ωn = 0).

There are eight unknowns, namely, m2, Qr, Σr, q1, q0, ϱ1, ϱ0, and βx, in the equations above. All

but one of these variables can be determined by solving the seven equations (3.35)–(3.41). However, the

value of the breakpoint βx is undetermined and can be fixed either by demanding a gapless solution, as in

Appendix 3 of Ref. 59, or by requiring the free energy to be stationary with respect to x. The additional

equation then makes the system complete and the solution can be obtained by solving the set of equations

self-consistently. In the following, we derive this extra equation in both cases: by imposing the gapless

constraint, and by using the free energy.

1. Gapless condition

Let us first determine the condition for a gapless spectrum in the RSB case; our approach here is similar

to the analysis in Ref. 59. For a gapless spectrum, we expect the low-frequency expansion of Qr, for real

ω, to have the form

Qr(ω + iη) =
g

m2
+ |ω|α [a+ ib sgn(ω)] + . . . , (3.42)

for some α> 0, b> 0. From (3.36), we find that the leading singularity in Σr(ω) is given by the linear-in-

Qr(ω) term in (3.36), so

ImΣr(ω + iη) =
p(p− 1)gJ2

2
qp−2
1 ImQr(ω + iη),

=
p(p− 1)gJ2

2
qp−2
1 b |ω|α sgn(ω) . (3.43)

However, from (3.39), for low frequencies, we also have

ImΣr(ω + iη) = −g Im [Qr(ω + iη)]−1 =
m4

g
b |ω|α sgn(ω) . (3.44)

Therefore, comparing equations (3.43) and (3.44), we arrive at the constraint on the variable m that has

to be satisfied for the gapless solution to exist:

m4 =
p(p− 1)g2J2

2
qp−2
1 . (3.45)

It is easy to check that for the special case of p = 2, this expression precisely agrees with Eq. (33.41) in

Ref. 51 and is similar to Eq. (4.11) in Ref. 29.
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It is important to note that upon solving the replica-symmetric equations self-consistently, we did not

obtain a gapless solution. One way to understand this is to plug the gapless constraint (3.45) into the

equations for the replica-symmetric case (3.20)–(3.24), which expressly demonstrates that the constraint

cannot be satisfied for any values of h. Therefore, the replica-symmetric solution always has a gap.

2. Free energy

Another way to fix x is to determine the saddle point of the free energy with respect to x. To do so, we

rewrite the effective action of the p-rotor model (3.16) explicitly for the one-step replica-symmetry-breaking

case

Seff

Nn
=− 1

2

∑
ωn

log[Qr(ωn)]−
1

2

βq0
Qr(ωn = 0) + βx(q1 − q0)

+
1

2x
ln

Qr(ωn = 0)

Qr(ωn = 0) + βx(q1 − q0)

− βλ

2g
+

1

2g

∑
ωn

(ω2
n + λ)Qr(ωn) +

λβq1
2g

− βh2

2
[Qr(ωn = 0) + βx(q1 − q0)]

− βJ2

4

∫ β

0
dτ [(Qr(τ) + q1)

p − qp1(1− x)− qp0x] . (3.46)

This action allows one to directly verify that the saddle-point equations are in fact correct: taking the

derivative of (3.46) with respect to q0 and λ, we see that the equations (3.35) and (3.41) indeed hold after

a change of variables to m2 = λ− Σr(ωn = 0).

To obtain an equation for x, we differentiate the action with respect to the breakpoint and obtain

∂Seff

∂x
= 0 ⇒ J2β2

4
(qp1 − qp0)−

1

2x2
log

[
1 +

βx(q1 − q0)

Qr(ωn = 0)

]
+

β2h2

2
(q1 − q0) +

β(q1 − q0)(Qr(ωn = 0) + βq1x− 2βq0x)

2x(Qr(ωn = 0) + βx(q1 − q0))2
= 0. (3.47)

Although such a saddle-point condition has been employed to obtain the equilibrium state for the classical

model [47], we will not use (3.47) here. It what follows, we instead use the gapless constraint to determine

the breakpoint x.

3. Spectral functions

As for the replica-symmetric case before, we are interested in the behavior of the spectral functions in

the RSB case. To this end, we analytically continue the equations on the imaginary-frequency axis (3.35)–

(3.38) and (3.39)–(3.41), focusing on the p = 3 case at zero temperature. After such analytic continuation,

we obtain

1 = q1 +

∫ +∞

0
dωρ(ω), (3.48)
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Σ′′
r(ω) = 3πgJ2

(
q1ρ(ω) +

1

2

∫ ω

0
dω1ρ(ω1)ρ(ω − ω1)

)
, (3.49)

Σ′
r(ω) = 2

∫ +∞

0

dν

π

νΣ′′
r(ν)− ωΣ′′

r(ω)

ν2 − ω2
, (3.50)

ϱ1 =
3gJ2

2
q21, (3.51)

ϱ0 =
3gJ2

2
q20, (3.52)

ρ(ω) =
g

π

Σ′′
r(ω)− Σ′′

r(ω = 0)

(Σ′′
r(ω)− Σ′′

r(ω = 0))2 + (ω2 −m2 +Σ′
r(ω)− Σ′

r(ω = 0))2
, (3.53)

gh2 + ϱ1 =
q1g +m2βx(q1 − q0)

2

[g/m2 + βx(q1 − q0)]2
, (3.54)

gh2 + ϱ0 =
gq0

[g/m2 + βx(q1 − q0)]2
. (3.55)

For the final equation, as mentioned, we use the gapless constraint

m4 = 3g2J2q1, (3.56)

derived above in (3.45), and this gapless behavior should also be reflected in the spectral functions.

Therefore, we are allowed to make a linear ansatz

ρ(ω) = ω f(ω). (3.57)

We insert this ansatz in Eqs. (3.49)–(3.55) and solve the equations self-consistently for f(ω). It is quite

challenging to obtain the self-consistent solution to these equations for all unknowns. Instead, we simplify

this task by solving the equations on the imaginary-frequency axis and self-consistently obtain the value

of the order parameter q1 at a temperature close to zero with a high precision. Then, we use this result

to obtain the behavior of the spectral functions. To ensure that the converged solution is meaningful, we

check the sum rule, which, in this case, is given by
∫ +∞
0 dω ω2f(ω) = g/2.

We sketch the behavior of the spectral functions ImQr(ω) in Fig. 3. From the equations above, it is

clear that spectral functions are independent of h, βx and q0. Only two parameters, namely, q0 and βx,

depend on h. This is similar to the behavior of the Ising model in Sec. II E 2, where the only change from

the h = 0 solution in Sec. II D 2 was in the form of q(u) for u < (qh/qEA)x in (2.46). It is also instructive

to determine the dependence of q0 and βx on h in the h → 0 limit, which can be calculated from the

equations (3.54) and (3.55). We find that, to the lowest order, the dependence is simply

q0 =
4g2

m4
h2; βx =

g

q1m
2
− 4g2

3m2J2q31
h2, (3.58)

which, as noted in Sec. I A, is in distinction to the h2/3 scaling observed for the Ising spin glass.
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(a) (b)

FIG. 9: (a) Behavior of q0 and q1 as a function of g for the spherical quantum p=3-rotor model in a longitudinal
field with T = 0.005 and J = 1. Note that q1 is independent of h but q0 is not. (b) Boundary of stability of the
RSB phase as determined by setting q0(g, h

∗)= q1(g). For h > h∗(g), the necessary condition q0 ≤ q1 required for
the RSB solution no longer holds.

E. Phase diagram

Finally, having assembled all the necessary ingredients, we now compute the phase diagram of the

quantum spherical p=3-rotor model in a longitudinal field at low temperatures. To do so, we first

determine the boundary of stability of the RSB solution by self-consistently computing the spin glass order

parameter from equations (3.35)–(3.41) and comparing q0 and q1. For the stability of the RSB solution,

one has to require q0≤ q1 [46], and the solution ceases to be physical when q0>q1. Our numerical results in

this regard are displayed in Fig. 9. In particular, Fig. 9(a) presents q0 and q1 as a function of g for various

values of h; the RSB solution exists only for q0 that lie below the line q1(g). Based on this information,

Fig. 9(b) traces, in g-h space, the line h∗(g) along which q0(g, h
∗)= q1(g). Since this marks the boundary

of stability of the RSB solution, the phase transition between the RSB and RS phases may occur at this

line.

To check whether this is indeed the case, we compute the free energies of both the RS and RSB

solutions. The free energy in the RS case can be written using (3.16) and we obtain

F rs
eff

Nn
=− 1

2β

∑
ωn

log[(ω2
n + Γ2)Qr(ωn)/g]−

1

2

q

Qr(ωn = 0)
− λ

2g
+

λq

2g
+

1

2gβ

∑
ωn

[
(ω2

n + λ)Qr(ωn)− g
]

− h2

2
Qr(ωn = 0)− J2

4

∫ β

0
dτ
[
(q +Qr(τ))

3 − q3
]
+

Γ

2
+

1

β
ln
[
1− e−βΓ

]
, (3.59)

where we inserted a factor of (ω2
n + Γ2)/g into the argument of the logarithm to regularize the behavior

at large |ωn|, and subtracted a constant to regulate the frequency summation in the term linear in Qr.

This is equivalent to normalizing the path integral with an oscillator of frequency Γ. In order to make the
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FIG. 10: Phase diagram of the spherical quantum p=3-rotor model in a longitudinal field with T = 0.005 and J = 1.
The phase diagram is evaluated by calculating the difference between the free energies of the replica-symmetric
(RS, 3.59) and replica-symmetry-breaking (RSB, 3.60) solutions. The orange line on the phase boundary traces the
function h∗(g) plotted in Fig. 9(b).

resulting expression independent of Γ, we subtracted the free energy of this oscillator. For the RSB case,

we use the expression for the free energy computed above, focusing on p = 3,

F rsb
eff

Nn
=− 1

2β

∑
ωn

log[(ω2
n + Γ2)Qr(ωn)/g]−

1

2

q0
Qr(ωn = 0) + βx(q1 − q0)

+
1

2βx
ln

Qr(ωn = 0)

Qr(ωn = 0) + βx(q1 − q0)

− λ

2g
+

1

2gβ

∑
ωn

[
(ω2

n + λ)Qr(ωn)− g
]
+

λq1
2g

− h2

2
[Qr(ωn = 0) + βx(q1 − q0)]

− J2

4

∫ β

0
dτ
[
(q1 +Qr(τ))

3 − q31(1− x)− q30x
]
+

Γ

2
+

1

β
ln
[
1− e−βΓ

]
. (3.60)

Here, we use the same regularization as for the free energy of the replica-symmetric solution. In both

cases, Γ has to be much smaller than the Matsubara frequency cutoff.

We evaluate the difference in free energies between the RSB and RS solutions to find the parameter

regions where each phase is dominant. Following the discussion in Ref. 49, we pick the ground state as the

one that has a larger free energy. The resulting phase diagram is shown in Fig. 10; we find that the phase

boundary obtained by comparing the free energies coincides (to a precision of |F rsb
eff −F rs

eff |/(Nn) < 10−5)

with the line h∗(g) demarcating the stability of the RSB solution in Fig. 9(b).

IV. CONCLUSIONS

Motivated by the quantum simulation of spatially disordered long-ranged interacting systems for solving

combinatorial optimization problems [1, 60], we have studied the equilibrium dynamic properties of two
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quantum spin glass models with infinite-range interactions: the Ising model in (1.1), and the spherical

p-rotor model in (1.3) and (1.4). In addition to random couplings between spins/rotors, both models have

an applied longitudinal field h, and do not break any global symmetry in any phase. A coupling g tunes

the strength of the quantum fluctuations, and at large g, we obtain a gapped paramagnetic phase. Our

primary interest was in the small-g regime, where replica symmetry breaking leads to a quantum spin

glass phase.

For the Ising model, we employed the Landau theory approach of Ref. 18 to show that the spin glass

phase has full replica symmetry breaking, with the Parisi function sketched in Fig. 1. We computed the

spin autocorrelation function in this spin glass phase, and showed that it is generically gapless, with a

spectral density which vanishes linearly with frequency (see (1.9) and Secs. IID 2 b and II E 2).

In contrast, the spherical p-rotor model (p ≥ 3) has a different behavior in the spin glass phase. There

is only one-step replica symmetry breaking (see Fig. 2), and the breakpoint x remains undetermined by

the saddle-point equations for the matrix spin glass order parameter. Rigorous mathematical work on the

classical g = 0 model [47] has shown that the equilibrium value of x is determined by the stationarity of

the free energy with respect to x. For this x, we showed that the spin glass state has an energy gap. In

contrast, if a marginal stability condition [27, 28, 50] is used to determine x, we found a gapless spectrum

with a linear frequency dependence at small frequency (see Fig. 3), similar to that of the Ising model.

Our results on the nature of the spin glass phase also find relevance in the context of quantum optimiza-

tion problems since the properties of the gap—or lack thereof—directly inform the feasibility of preparing

low-energy states via adiabatic algorithms [61–63].

Looking ahead, it would be useful to obtain the results described here without the replica method, using

a path integral on the Schwinger-Keldysh contour. This has already been studied for the spherical p-rotor

model [28, 37, 64], where the breakpoint of one-step replica symmetry breaking, x, has been connected to

an effective temperature of the aging dynamics. Moreover, the equation for a gapless spectrum in (3.45)

is the same as Eq. (6.24) obtained in Ref. 28 from aging dynamics. However, the aging dynamics of the

quantum Ising model have not been studied so far, and it would be interesting to relate that to the full

replica symmetry breaking characterized by Fig. 1. Such a computation would be the analog of earlier

studies [65–69] of aging dynamics in classical spin glasses described by Langevin equations, and we expect

that there would be significant differences [69, 70] between the Ising model and the spherical model in the

quantum problem too.
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Appendix A: Terms of order y1 in FQ for the Ising model

This appendix contains the O(y) corrections to the free energy and saddle-point values from the ‘quan-

tum’ contribution to the free energy, FQ.

1. Zero longitudinal field

As in the main text, we first consider the h = 0 case of Sec. II D.

a. Paramagnet

Here, we continue the analysis of Sec. IID 1.

For the saddle point at order y1, we write

Qr(iνn) = −
√
ν2n +∆2 + y∆2

1 − yΣ(iν)

κ
, (A1)

where we can choose Σ(0) = 0 without loss of generality by adjusting the value of ∆2
1. Then, from (2.19),

we obtain

0 =−
[
y∆2

1 − yΣ(iνn)
]
− U

β

∑
ν′n

[√
ν ′2n +∆2 + y∆2

1 − yΣ(iν ′n)−
√

ν ′2n +∆2

]
+

2y

3β2κ2

∑
ν′n,ν

′′
n

√
ν ′2n +∆2

√
ν ′′2n +∆2

√
(νn − ν ′n − ν ′′n)

2 +∆2 . (A2)

After subtracting from (A2) its value at νn = 0, we determine

Σ(iνn) = − 2

3β2κ2

∑
ν′n,ν

′′
n

√
ν ′2n +∆2

√
ν ′′2n +∆2

[√
(νn − ν ′n − ν ′′n)

2 +∆2 −
√
(ν ′n + ν ′′n)

2 +∆2
]
. (A3)

Then, ∆2
1 can be obtained from (A2) as the solution of

∆2
1 =

2

3β2κ2

∑
νn,ν′n

√
ν ′2n +∆2

√
ν2n +∆2

√
(ν ′n + νn)2 +∆2 +

U

2β

∑
νn

Σ(iν)√
ν2n +∆2

− lim
y→0

U

yβ

∑
νn

[√
ν2n +∆2 + y∆2

1 −
√

ν2n +∆2

]
. (A4)

At the critical point, where ∆2+ y∆2
1 = 0 and r = rc0+ yrc1, using (2.21) and (2.22), we can write the

term proportional to u in (A2) as

y∆2
1 + yrc1 +

Uy

2β

∑
νn

Σ(iνn)|∆=0

|νn|
, (A5)
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where Σ(iνn) is to be evaluated from (A3) at ∆ = 0. Then, (A2) at ν = 0 yields the shift in the position

of the critical point at order y as

rc1 = − 2

3β2κ2

∑
νn,ν′n

|ν ′n||νn||ν ′n + νn| −
U

2β

∑
νn

Σ(iνn)|∆=0

|νn|
. (A6)

For the free energy at order y1, with FQ = F0
Q+ yF1

Q, we can just insert the O(y0) saddle-point values

into the terms explicitly dependent upon y in (2.15):

F1
Q = − 1

6β3κ4

∑
νn,ν′n,ν

′′
n

√
ν2n +∆2

√
ν ′2n +∆2

√
ν ′′2n +∆2

√
(νn + ν ′n + ν ′′n)

2 +∆2. (A7)

b. Spin glass

We continue here the analysis of Sec. II D 2.

For the saddle-point equations at order y1, we write

qEA =
1

κU
(rc0 − r) + yqEA1,

Qr(iνn) = −|νn|
κ

+ yQr1(iνn). (A8)

Then, Eqs. (2.29) and (2.30) yield

0 =2|νn|Qr1(iνn) +
U

β

∑
ν′n

Qr1(iν
′
n) + uqEA1 +

2

3κ3β2

∑
ν′n,ν

′′
n

|ν ′n||ν ′′n||νn − ν ′n − ν ′′n|

− 2

κ2β
qEA0

∑
ν′n

|ν ′n||νn − ν ′n| − 2Qr1(0)|νn|, (A9)

q2EA0 =− κQr1(0). (A10)

From (A9,2.30), we determine that

qEA1 = − 1

β

∑
νn

Qr1(iνn)−
2

3κ3Uβ2

∑
νn,ν′n

|ν ′n||νn||ν ′n + νn|+
2

κ2Uβ
qEA0

∑
νn

|νn|2, (A11)

and

Qr1(iνn) = −
q2EA0

κ
− 1

3κ3β2|νn|
∑
ν′n,ν

′′
n

(
|ν ′n||ν ′′n||νn − ν ′n − ν ′′n| − |ν ′n||ν ′′n||ν ′n + ν ′′n|

)
+

1

βκ2|νn|
qEA0

∑
ν′n

(
|ν ′n||νn − ν ′n| − |ν ′n|2

)
. (A12)

At T = 0, we obtain, with a frequency cutoff |νn| < Λ,

Qr1(iνn) = −
q2EA0

κ
− 1

6πκ3

(2Λ3

3
|νn| −

Λ2

3
|νn|2 +

1

20
|νn|4

)
+

1

6πκ2
qEA0|νn|2. (A13)
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The shift in the quantum critical point is obtained by setting r = rc0 + yrc1 in (A11) and (A12), and

this yields the same value of rc1 as that obtained from the vanishing gap condition on the paramagnetic

side in (A6).

For the free energy at order y1, we now obtain from (2.15)

F1
Q = −

rqEA1

κ
−
q2EA0

βκ2

∑
νn

ν2n+
2qEA0

3κ3β2

∑
νn,ν′n

|νn||ν ′n||νn+ν ′n|−
1

6β3κ4

∑
νn,ν′n,ν

′′
n

|νn||ν ′n||ν ′′n||νn+ν ′n+ν ′′n|. (A14)

2. Nonzero longitudinal field

Next, we consider the case of h ̸= 0 studied in Sec. II E.

a. Replica-symmetric solution

This section continues the analysis of Sec. II E 1.

For the saddle point at order y1, we write as in (A1)

Qr(iνn) = −
√
ν2n +∆2 + y∆2

1 − yΣ(iν)

κ
,

qEA = qEA0 + qEA1, (A15)

where we can again choose Σ(0) = 0 without loss of generality by adjusting the value of ∆2
1. Then, from

(2.18), we obtain

0 =−
[
y∆2

1 − yΣ(iνn)
]
− U

β

∑
ν′n

[√
ν ′2n +∆2 + y∆2

1 − yΣ(iν ′n)−
√

ν ′2n +∆2

]
+ UκyqEA1 +

2y

3β2κ2

∑
ν′n,ν

′′
n

√
ν ′2n +∆2

√
ν ′′2n +∆2

√
(νn − ν ′n − ν ′′n)

2 +∆2

− 2y

βκ
qEA0

∑
ν′n

√
ν ′2n +∆2

√
(νn − ν ′n)

2 +∆2 + 2yq2EA0

√
ν2n +∆2 . (A16)

After subtracting from (A16) its value at νn = 0, we determine

Σ(iνn) =− 2

3β2κ2

∑
ν′n,ν

′′
n

√
ν ′2n +∆2

√
ν ′′2n +∆2

[√
(νn − ν ′n − ν ′′n)

2 +∆2 −
√

(ν ′n + ν ′′n)
2 +∆2

]
+

2

βκ
qEA0

∑
ν′n

[√
ν ′2n +∆2

√
(νn − ν ′n)

2 +∆2 − (ν ′2n +∆2)
]
− 2q2EA0

[√
ν2n +∆2 −∆

]
. (A17)

Then, ∆2
1 obeys, from (A16),

∆2
1 = UκqEA1 +

2y

3β2κ2

∑
ν′n,ν

′′
n

√
ν ′2n +∆2

√
ν ′′2n +∆2

√
(νn − ν ′n − ν ′′n)

2 +∆2
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− 2y

βκ
qEA0

∑
ν′n

√
ν ′2n +∆2

√
(νn − ν ′n)

2 +∆2 + 2yq2EA0

√
ν2n +∆2

+
U

2β

∑
νn

Σ(iν)√
ν2n +∆2

− lim
y→0

U

yβ

∑
νn

[√
ν2n +∆2 + y∆2

1 −
√
ν2n +∆2

]
. (A18)

Determination of qEA1 and ∆1 requires solution of (A16), along with a second equation obtained from

(2.40)

−3qEA0

∆2
1

2∆
− 3∆qEA1 + q3EA0 = 0 . (A19)

For the free energy at order y1, we now obtain from (2.15)

F1
Q =−

yq2EA0

βκ2

∑
νn

(ν2n +∆2) +
2yqEA0

3κ3β2

∑
νn,ν′n

√
ν2n +∆2

√
ν ′2n +∆2

√
(νn + ν ′n)

2 +∆2

− y

6β3κ4

∑
νn,ν′n,ν

′′
n

√
ν2n +∆2

√
ν ′2n +∆2

√
ν ′′2n +∆2

√
(νn + ν ′n + ν ′′n)

2 +∆2. (A20)

Appendix B: Classical spherical p-rotor model

In the classical limit g = 0, all components of Qab(τ) and Σab(τ) are independent of τ , and the theory

should reduce to that in Ref. 45. So, we have Qab(ωn) = βQab(τ)δωn,0 ≡ βQabδωn,0, and similarly for Σab

and λab. Then, the effective action in (3.11) becomes

Seff

N
=

1

2
log det

[
1

π
(−iδabz

a + iβλab)

]
+ iβ

n∑
a=1

za

−
n∑

a,b=1

(
β2 iλabQab +

βh2

4

[
− iδabz

a + iβλab

]−1

ab

+
β2J2

4
(Qab)

p

)
. (B1)

Let us now change our notation a bit to obtain expressions similar to those in Ref. 51. We define

−iza = z , iλab = −σab. (B2)

Then, the effective action is

Seff

N
=

1

2
log det

[
1

π
(δabz − βσab)

]
− β

n∑
a=1

z +
n∑

a,b=1

(
β2 σabQab −

βh2

4

[
zδcd − βσcd

]−1

ab

− β2J2

4
(Qab)

p

)
.

(B3)

Now, as before, we use the identity (E21) to absorb the h2 term into the log det

Seff

N
=

1

2
log det

[
1

π

(
δabz − βσab −

βh2

2

)]
− β

n∑
a=1

z +
n∑

a,b=1

(
β2 σabQab −

β2J2

4
(Qab)

p

)
. (B4)
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The saddle-point equation with respect to σab is

βQab =
1

2

[
δabz − βσab −

βh2

2

]−1

ab

. (B5)

Inserting this back into (B4), we obtain an effective action just for Qab and z,

Seff

N
= −1

2
log detQ− β

n∑
a=1

z +

n∑
a,b=1

(
βzδabQab −

β2h2

2
Qab −

β2J2

4
(Qab)

p

)
. (B6)

Then, the remaining saddle-point equations are

1 = Qaa,

Q−1
ab = 2βzδab − β2h2 − pβ2J2

2
(Qab)

p−1 . (B7)

1. Replica-symmetric solution

Now, we use the replica-symmetric ansatz

Qab = q +Qrδab,

σab = ϱ+ σrδab. (B8)

Then, using the identities in Appendix E, the equations in (B7) become

1 = q +Qr, (B9)

σr =
pJ2

4
(q +Qr)

p−1 − pJ2

4
qp−1, (B10)

ϱ =
pJ2

4
qp−1, (B11)

1

βQr
= 2(βz − βσr), (B12)

q

Q2
r

= β2h2 +
pβ2J2

2
qp−1. (B13)

Focusing on p = 2 first, we can simplify the above to

1 = q +Qr, (B14)

βQr =
1

z +
√
z2 − J2

, (B15)

q =
J2q + h2

(z +
√
z2 − J2)2

. (B16)

These equations are easily seen to be equivalent to the classical limit of Eqs. (C1,C5,C7) derived for

the quantum model later. Figure 11 showcases the temperature dependence of the order parameter q for

nonzero h. For p=2, h=0, it is known [71] that the replica-symmetric solution is stable and optimal, and

we expect that this statement continues to hold for any h ̸= 0 as well [45].
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FIG. 11: Spin glass order parameter q of the classical spherical p = 2-rotor model (with J =1), as a function of the
temperature T for several values of the longitudinal field h. For the replica-symmetric solution considered here, the
spin glass phase transition occurs at T = 1.

2. One-step replica symmetry breaking

The classical spherical p-rotor model can be solved exactly for all p, temperatures, and fields, and hosts

a one-step RSB phase for any p > 2 [45] (akin to the model without the spherical constraint [44]). In this

case, for the diagonal elements of Qab and σab, we use the ansatz

Qaa = q1 +Qr,

σaa = ϱ1 + σr, (B17)

while the off-diagonal elements are as in (3.34). The equations analogous to (3.20)–(3.24) are

1 = q1 +Qr, (B18)

σr =
pJ2

4
(q1 +Qr)

p−1 − pJ2

4
qp−1
1 , (B19)

ϱ1 =
pJ2

4
qp−1
1 , (B20)

ϱ0 =
pJ2

4
qp−1
0 , (B21)

1

βQr
= 2(z − βσr), (B22)

q1Qr + x(q1 − q0)
2

Qr(Qr + x(q1 − q0))2
= β2h2 +

pβ2J2

2
qp−1
1 , (B23)

q0
(Qr + x(q1 − q0))2

= β2h2 +
pβ2J2

2
qp−1
0 . (B24)

We are mainly interested in the β → ∞ limit. From the equations above, we see that this limit exists
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if we write

q1 = q̂ − θ

β
, x =

µ

β
, (B25)

where q̂ is a β-independent constant, and θ and µ are finite as β → ∞. For the present classical theory,

q̂ = 1, but we will see that q̂ < 1 in the g ̸= 0 theory.

a. Gapless condition

The gapless condition, obtained in the g → 0 limit of (3.45) is

1

β2Q2
r

=
p(p− 1)J2

2
qp−2
1 . (B26)

b. Free energy

The classical limit of the action (3.46) is

Seff

Nn
=− 1

2
log[Qr]−

1

2

q0
Qr + x(q1 − q0)

+
1

2x
ln

Qr

Qr + x(q1 − q0)
(B27)

− βz + βz(Qr + q1)−
β2h2

2
[Qr + x(q1 − q0)]−

β2J2

4
[(Qr + q1)

p − qp1(1− x)− qp0x] .

We can now confirm that the equations (B18)–(B24) are indeed the saddle-point equations obtained from

Eq. (B27).

The stationarity condition with respect to the breakpoint yields

∂Seff

∂x
= 0 ⇒ J2β2

4
(qp1 − qp0)−

1

2x2
log

[
1 +

x(q1 − q0)

Qr

]
+

β2h2

2
(q1 − q0) +

(q1 − q0)(Qr + q1x− 2q0x)

2x(Qr + x(q1 − q0))2
= 0. (B28)

One can use either (B26) or (B28) to determine x.

Appendix C: Replica-symmetric solution for the h ̸= 0 quantum spherical p = 2 model

We now consider the quantum version of the spherical p=2-rotor model in a longitudinal field h. As

discussed in Ref. 17, for h = 0, the replica-symmetric solution is the optimal one. Anticipating the same

conclusion to hold for the case of h ̸= 0, in what follows, we focus on the replica-symmetric solution.

For p=2, the equations (3.17), combined with the replica-symmetric ansatz (3.19), reduce to

1 = q +
1

β

∑
ωn

Qr(ωn), (C1)
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ϱ = gJ2q, (C2)

Qr(ωn) =
g

ω2
n + λ− gJ2Qr(ωn)

, (C3)

q =
gϱ+ g2h2

[λ− gJ2Qr(ωn = 0)]2
. (C4)

Specifically, the equation for Qr(ωn) can be written as

Qr(ωn) =
2g

ω2
n + λ+

√
(ω2

n + λ)2 − 4g2J2
, (C5)

Qr(ωn = 0) =
1

2gJ2

(
λ−

√
λ
2 − 4g2J2

)
. (C6)

Then, the order parameter is given by

q = 4g2
J2q + h2[

λ+

√
λ
2 − 4g2J2

]2 . (C7)

From the equation above, we observe that the condition λ ≥ 2gJ has to be satisfied for the order parameter

to be a real number. Note that for h = 0, we find

λ|h=0 = 2Jg, (C8)

which is consistent with Eq. (33.41) of Ref. 51. For h ̸= 0, the equation for the order parameter can be

formulated as

q =
4g2h2[

λ+

√
λ
2 − 4g2J2

]2
− 4g2J2

=
2g2h2

λ
2 − 4g2J2 + λ

√
λ
2 − 4g2J2

. (C9)

We can simplify the expression above further to

q = − h2

2J2

λ
2 − 4g2J2 − λ

√
λ
2 − 4g2J2

λ
2 − 4g2J2

= − h2

2J2

λ∗2 − λλ∗

λ∗2 = − h2

2J2

λ∗ − λ

λ∗ =
h2

2J2

(
λ

λ∗ − 1

)
, (C10)

where we introduce the notation

λ∗2 = λ
2 − 4g2J2. (C11)

We note that the order parameter has to be positive, q > 0, so λ > λ∗. In addition, we require λ > 2gJ

such that λ∗ > 0.

Finally, we rewrite the correlator Qr(ωn) in terms of our new notation as

Qr(ωn) =
2g

ω2
n + λ+

√
ω4
n + 2ω2

nλ+ λ∗2
. (C12)
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(a) (b)

FIG. 12: (a) Gap in the spectrum (C13) as a function of the longitudinal field strength h for the quantum spherical
p = 2-rotor model, taking g=1. The system is gapless in the limit h → 0. (b) The order parameter q as a function
of the transverse magnetic field for several values of h, illustrating the absence of a sharp phase transition at any
nonzero g and h.

Since λ∗ > 0, there is always a gap in the spectrum. The gap is given by the value of the frequency at

which the square root in the Green’s function (analytically continued to the real frequency) changes sign.

This value is simply

∆ =

√
λ− 2gJ, (C13)

which is always greater than zero in the presence of a nonzero field h. The resulting behavior of the gap

as a function of the longitudinal field is shown in Fig. 12(a).

To find the value of the spin glass order parameter, we need to find λ according to

q =
h2

2J2

(
λ

λ∗ − 1

)
, (C14)

Qr(ωn) =
2g

ω2
n + λ+

√
ω4
n + 2ω2

nλ+ λ∗2
, (C15)

1 = q +
1

β

∑
ωn

Qr(ωn). (C16)

The numerical solution for q as a function of g is shown in Fig. 12(b). For h = 0, one can also compute

the critical point, gc, analytically to find

gc =
9π2J

16
≈ 5.55J, (C17)

which reproduces the result obtained in Ref. 51.
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Appendix D: Replica-symmetric solution for the h = 0 quantum spherical p = 3 model at large g

In the limit of large longitudinal fields g, one can analytically solve the equations (3.20)–(3.24) at h = 0.

We first note that in this limit, the order parameter q is zero, i.e., the system is in a paramagnetic phase

as shown in Fig. 7. To obtain the solution in this phase, we rewrite the saddle-point equations in the

following form:

1 = Qr(τ = 0), (D1)

Σr(τ) =
3

2
gJ2Q2

r(τ), (D2)

Qr(ωn) =
g

ω2
n + λ− Σr(ωn)

. (D3)

We numerically solve these equations for several values of g and infer that λ grows faster with g than Σr,

which can be seen in Fig. 13(a). In addition, Σr(ωn) is close to a constant in this limit as evidenced by

Fig. 13(b). We can therefore assume that, to leading order,

Qr(ωn) =
g

ω2
n + λ

. (D4)

The resulting analytical solution yields

λ =
g2

4
, Qr(ωn) =

g

ω2
n + λ

, Σr(τ) =
3g

2
e−g|τ |, Σr(ωn) =

3g2

g2 + ω2
n

≈ 3

g2
(g2 − ω2

n). (D5)

To improve upon our earlier approximation, we compute the Green’s function to second order in 1/g.

At this order, we obtain the following result:

λ =
g2

4
+

9

4
, (D6)

(a) (b)

FIG. 13: (a) Behavior of λ and Σr(ωn = 0) as a function of g for the quantum spherical p = 3-rotor model; λ grows
significantly faster with g than Σr. In addition, Σr(ωn = 0) ≪ λ, which justifies the leading-order approximation
made in (D4). (b) Self-consistent solution of the paramagnetic equations (D1)–(D3) for the self energy, Σr, for large
values of g. The self energy becomes a constant in the limit g → ∞.
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Qr(ωn) =
g

ω2
n(1 + 3/g2) + (λ− 3)

, (D7)

Σr(τ) =
3g5

2(g4 − 9)
e
−g|τ |

√
g2−3

g2+3 , (D8)

Σr(ωn) =
3g6√
g4 − 9

1

g2(g2 − 3) + ω2
n(g

2 + 3)
. (D9)

We therefore conclude that at large g, the spectral function has the form of a delta function

ρ(ω) =
g3

g2 + 3
δ

(
ω2 − g2

4

g2 − 3

g2 + 3

)
, (D10)

with a finite gap. Thus, within this approximate framework, we expect the replica-symmetric solution to

persist up to g ≈
√
3.

Appendix E: Replica identities

We consider n × n replica matrices Aab whose off-diagonal elements are parametrized by the Parisi

function a(u), u ∈ [0, 1], and the diagonal element Aaa = ã (similarly for Bab and Cab). We find it useful

to define

⟨a⟩ ≡
∫ 1

0
du a(u), (E1)

and

[a](u) ≡ −
∫ u

0
dva(v) + ua(u) . (E2)

For the replica-symmetric case, we take

a(u) = a, ã = a+ σa . (E3)

For the case of one-step replica symmetry breaking, we take

ã = a1 + σa,

a(u) =


a1 , x < u < 1

a0 , 0 < u < x

. (E4)

Then, we have ⟨a⟩ = a1 − x(a1 − a0), and

[a](u) =


x(a1 − a0) , x < u < 1

0 , 0 < u < x

. (E5)

We now present some useful identities for matrix operations in the limit n → 0.
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1. Term-by-term sum

1

n

n∑
a,b=1

Aab = ã− ⟨a⟩. (E6)

2. Matrix product

For

Cab =
n∑

c=1

AacBcb , (E7)

we have [72]

c̃ = ãb̃− ⟨ab⟩,

c(u) = (b̃− ⟨b⟩)a(u) + (ã− ⟨a⟩)b(u)−
∫ u

0
dv(a(u)− a(v))(b(u)− b(v)). (E8)

3. Matrix inverse

To determine B = A−1, we set C = 1 in the matrix product to obtain the relations

1 = ãb̃− ⟨ab⟩,

0 = (b̃− ⟨b⟩)a(u) + (ã− ⟨a⟩)b(u)−
∫ u

0
dv(a(u)− a(v))(b(u)− b(v)). (E9)

With replica-symmetric matrices, we have

σb =
1

σa
,

b = − a

σ2
a

. (E10)

For the case of one-step replica symmetry breaking, we have

1 = ãb̃− a0b0x− a1b1(1− x),

0 = (b̃− b0x− b1(1− x))a0 + (ã− a0x− a1(1− x))b0,

0 = (b̃− b0x− b1(1− x))a1 + (ã− a0x− a1(1− x))b1 − x(a1 − a0)(b1 − b0). (E11)

Solving these equations, we obtain

σb =
1

σa
,
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b1 = − a1σa + x(a1 − a0)
2

σa(σa + x(a1 − a0))2
,

b0 = − a0
(σa + x(a1 − a0))2

. (E12)

4. Term-by-term inverse sum

If A−1 = B, then from (E6)

1

n

∑
ab

A−1
ab = b̃− ⟨b⟩. (E13)

From (E9), we have

1 = ãb̃− ⟨ab⟩,

0 = (b̃− ⟨b⟩)⟨a⟩+ (ã− ⟨a⟩)⟨b⟩ − ⟨ab⟩+ ⟨a⟩⟨b⟩. (E14)

Taking the difference, we obtain

1

n

∑
ab

A−1
ab =

1

ã− ⟨a⟩
. (E15)

5. Term-by-term product

For the product

Dab =
n∑

c,d=1

AacBdb , (E16)

we use the fact that
∑

cAac is independent of the index a for replica matrices. This yields a replica-

symmetric matrix Dab, which is of independent a, b and using (E6) we have

d̃ = d(u) = (ã− ⟨a⟩)(b̃− ⟨b⟩). (E17)

For the replica-symmetric case, d̃ = d = σaσb, and σd = 0. With one-step replica symmetry breaking

d̃ = d0 = d1 = (σa + x(a1 − a0))(σb + x(b1 − b0)), and σd = 0.

6. Trace log

The trace log is needed in the computation of the free energy. We have [72]

1

n
Tr lnA = ln(ã− ⟨a⟩) + a(0)

ã− ⟨a⟩
−
∫ 1

0

du

u2
ln

ã− ⟨a⟩ − [a](u)

ã− ⟨a⟩
. (E18)
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In the replica-symmetric case, we have

1

n
Tr lnA = ln(σa) +

a

σa
. (E19)

With one-step replica symmetry breaking, we have

1

n
Tr lnA = ln(σa) +

a0
σa + x(a1 − a0)

− 1

x
ln

σa
σa + x(a1 − a0)

. (E20)

Let us now consider Tr ln(A+B), where B is a constant matrix, i.e., b̃ = b(u) = b, and σb = 0. Then,

we have

1

n
Tr ln(A+B) =

1

n
Tr lnA+

b

ã− ⟨a⟩
. (E21)

7. Cubic term

According to (3.72) in Ref. 48, for the matrix qab with q̃ = 0,

1

n
Trq3 =

∫ 1

0
du

[
u[q(u)]3 + 3q(u)

∫ u

0
dv[q(v)]2

]
. (E22)

[1] S. Ebadi, A. Keesling, M. Cain, T. T. Wang, H. Levine, D. Bluvstein, G. Semeghini, A. Omran, J. G.
Liu, R. Samajdar, X. Z. Luo, B. Nash, X. Gao, B. Barak, E. Farhi, S. Sachdev, N. Gemelke, L. Zhou,
S. Choi, H. Pichler, S. T. Wang, M. Greiner, V. Vuletić, and M. D. Lukin, Quantum optimization of maximum
independent set using Rydberg atom arrays, Science 376, 1209 (2022), arXiv:2202.09372 [quant-ph].

[2] A. D. King, J. Raymond, T. Lanting, R. Harris, A. Zucca, F. Altomare, A. J. Berkley, K. Boothby, S. Ejtemaee,
C. Enderud, E. Hoskinson, S. Huang, E. Ladizinsky, A. J. R. MacDonald, G. Marsden, R. Molavi, T. Oh,
G. Poulin-Lamarre, M. Reis, C. Rich, Y. Sato, N. Tsai, M. Volkmann, J. D. Whittaker, J. Yao, A. W. Sandvik,
and M. H. Amin, Quantum critical dynamics in a 5,000-qubit programmable spin glass, Nature (London) 617,
61 (2023), arXiv:2207.13800 [quant-ph].

[3] F. B. Maciejewski, S. Hadfield, B. Hall, M. Hodson, M. Dupont, B. Evert, J. Sud, M. Sohaib Alam, Z. Wang,
S. Jeffrey, B. Sundar, P. A. Lott, S. Grabbe, E. G. Rieffel, M. J. Reagor, and D. Venturelli, Design and execution
of quantum circuits using tens of superconducting qubits and thousands of gates for dense Ising optimization
problems, arXiv e-prints (2023), arXiv:2308.12423 [quant-ph].

[4] M. Dupont, B. Evert, M. J. Hodson, B. Sundar, S. Jeffrey, Y. Yamaguchi, D. Feng, F. B. Maciejewski,
S. Hadfield, M. Sohaib Alam, Z. Wang, S. Grabbe, P. A. Lott, E. G. Rieffel, D. Venturelli, and M. J. Reagor,
Quantum Enhanced Greedy Solver for Optimization Problems, arXiv e-prints (2023), arXiv:2303.05509 [quant-
ph].

[5] J. Brooke, D. Bitko, T. F. Rosenbaum, and G. Aeppli, Quantum annealing of a disordered magnet, Science
284, 779 (1999).

[6] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, A Quantum Adiabatic Evolution
Algorithm Applied to Random Instances of an NP-Complete Problem, Science 292, 472 (2001), arXiv:quant-
ph/0104129 [quant-ph].

[7] M. Kim, K. Kim, J. Hwang, E.-G. Moon, and J. Ahn, Rydberg quantum wires for maximum independent set
problems, Nat. Phys. 18, 755 (2022).

46

https://doi.org/10.1126/science.abo6587
https://arxiv.org/abs/2202.09372
https://doi.org/10.1038/s41586-023-05867-2
https://doi.org/10.1038/s41586-023-05867-2
https://arxiv.org/abs/2207.13800
https://arxiv.org/abs/2308.12423
https://arxiv.org/abs/2303.05509
https://arxiv.org/abs/2303.05509
https://doi.org/10.1126/science.284.5415.779
https://doi.org/10.1126/science.284.5415.779
https://doi.org/10.1126/science.1057726
https://arxiv.org/abs/quant-ph/0104129
https://arxiv.org/abs/quant-ph/0104129
https://doi.org/10.1038/s41567-022-01629-5


[8] A. Byun, M. Kim, and J. Ahn, Finding the Maximum Independent Sets of Platonic Graphs Using Rydberg
Atoms, PRX Quantum 3, 030305 (2022).

[9] M.-T. Nguyen, J.-G. Liu, J. Wurtz, M. D. Lukin, S.-T. Wang, and H. Pichler, Quantum Optimization with
Arbitrary Connectivity Using Rydberg Atom Arrays, PRX Quantum 4, 010316 (2023), arXiv:2209.03965 [quant-
ph].

[10] S. Jeong, M. Kim, M. Hhan, and J. Ahn, Quantum Programming of the Satisfiability Problem with Rydberg
Atom Graphs, (2023), arXiv:2302.14369 [quant-ph].

[11] M. Mézard and A. Montanari, Information, Physics, and Computation, Oxford Graduate Texts (Oxford Uni-
versity Press, Oxford, 2009).

[12] T. Yamamoto and H. Ishii, A perturbation expansion for the Sherrington-Kirkpatrick model with a transverse
field, J. Phys. C: Solid State Phys. 20, 6053 (1987).

[13] T. K. Kopeć, K. D. Usadel, and G. Büttner, Instabilities in the quantum Sherrington-Kirkpatrick Ising spin
glass in transverse and longitudinal fields, Phys. Rev. B 39, 12418 (1989).

[14] P. Ray, B. K. Chakrabarti, and A. Chakrabarti, Sherrington-Kirkpatrick model in a transverse field: Absence
of replica symmetry breaking due to quantum fluctuations, Phys. Rev. B 39, 11828 (1989).

[15] G. Büttner and K. D. Usadel, Stability analysis of an Ising spin glass with transverse field, Phys. Rev. B 41,
428 (1990).

[16] J. Miller and D. A. Huse, Zero-temperature critical behavior of the infinite-range quantum Ising spin glass,
Phys. Rev. Lett. 70, 3147 (1993).

[17] J. Ye, S. Sachdev, and N. Read, Solvable spin glass of quantum rotors, Phys. Rev. Lett. 70, 4011 (1993),
arXiv:cond-mat/9212027 [cond-mat].

[18] N. Read, S. Sachdev, and J. Ye, Landau theory of quantum spin glasses of rotors and Ising spins, Phys. Rev.
B 52, 384 (1995), arXiv:cond-mat/9412032 [cond-mat].

[19] M. J. Rozenberg and D. R. Grempel, Dynamics of the Infinite-Range Ising Spin-Glass Model in a Transverse
Field, Phys. Rev. Lett. 81, 2550 (1998).

[20] M. P. Kennett, C. Chamon, and J. Ye, Aging dynamics of quantum spin glasses of rotors, Phys. Rev. B 64,
224408 (2001), arXiv:cond-mat/0103428 [cond-mat.dis-nn].

[21] L. Arrachea and M. J. Rozenberg, Dynamical Response of Quantum Spin-Glass Models at T = 0, Phys. Rev.
Lett. 86, 5172 (2001).

[22] A. Andreanov and M. Müller, Long-Range Quantum Ising Spin Glasses at T=0: Gapless Collective Excitations
and Universality, Phys. Rev. Lett. 109, 177201 (2012).

[23] S. Mukherjee, A. Rajak, and B. K. Chakrabarti, Classical-to-quantum crossover in the critical behavior of the
transverse-field Sherrington-Kirkpatrick spin glass model, Phys. Rev. E 92, 042107 (2015), arXiv:1412.2973
[cond-mat.stat-mech].

[24] S. Mukherjee, A. Rajak, and B. K. Chakrabarti, Possible ergodic-nonergodic regions in the quan-
tum Sherrington-Kirkpatrick spin glass model and quantum annealing, Phys. Rev. E 97, 022146 (2018),
arXiv:1706.01446 [cond-mat.stat-mech].

[25] A. P. Young, Stability of the quantum Sherrington-Kirkpatrick spin glass model, Phys. Rev. E 96, 032112
(2017), arXiv:1707.07107 [cond-mat.stat-mech].

[26] A. Kiss, G. Zaránd, and I. Lovas, Exact Solution for the Transverse Field Sherrington-Kirkpatrick Spin Glass
Model with Continuous-Time Quantum Monte Carlo Method, (2023), arXiv:2306.07337 [cond-mat.dis-nn].

[27] L. F. Cugliandolo, D. R. Grempel, and C. A. da Silva Santos, Imaginary-time replica formalism study of a
quantum spherical p-spin-glass model, Phys. Rev. B 64, 014403 (2001), arXiv:cond-mat/0012222 [cond-mat.dis-
nn].

[28] L. F. Cugliandolo and G. Lozano, Real-time nonequilibrium dynamics of quantum glassy systems, Phys. Rev.
B 59, 915 (1999), arXiv:cond-mat/9807138 [cond-mat].

[29] T. Anous and F. M. Haehl, The quantum p-spin glass model: a user manual for holographers, J. Stat. Mech.
2021, 113101 (2021).

[30] S. J. Thomson, P. Urbani, and M. Schiró, Quantum Quenches in Isolated Quantum Glasses out of Equilibrium,
Phys. Rev. Lett. 125, 120602 (2020), arXiv:1904.03147 [cond-mat.dis-nn].

[31] M. Winer, R. Barney, C. L. Baldwin, V. Galitski, and B. Swingle, Spectral form factor of a quantum spin glass,
JHEP 09, 032, arXiv:2203.12753 [cond-mat.stat-mech].

47

https://doi.org/10.1103/PRXQuantum.3.030305
https://doi.org/10.1103/PRXQuantum.4.010316
https://arxiv.org/abs/2209.03965
https://arxiv.org/abs/2209.03965
https://arxiv.org/abs/2302.14369
https://arxiv.org/abs/2302.14369
https://books.google.com/books?id=jhCM7i0a6UUC
https://doi.org/10.1088/0022-3719/20/35/020
https://doi.org/10.1103/PhysRevB.39.12418
https://doi.org/10.1103/PhysRevB.39.11828
https://doi.org/10.1103/PhysRevB.41.428
https://doi.org/10.1103/PhysRevB.41.428
https://doi.org/10.1103/PhysRevLett.70.3147
https://doi.org/10.1103/PhysRevLett.70.4011
https://arxiv.org/abs/cond-mat/9212027
https://doi.org/10.1103/PhysRevB.52.384
https://doi.org/10.1103/PhysRevB.52.384
https://arxiv.org/abs/cond-mat/9412032
https://doi.org/10.1103/PhysRevLett.81.2550
https://doi.org/10.1103/PhysRevB.64.224408
https://doi.org/10.1103/PhysRevB.64.224408
https://arxiv.org/abs/cond-mat/0103428
https://doi.org/10.1103/PhysRevLett.86.5172
https://doi.org/10.1103/PhysRevLett.86.5172
https://doi.org/10.1103/PhysRevLett.109.177201
https://doi.org/10.1103/PhysRevE.92.042107
https://arxiv.org/abs/1412.2973
https://arxiv.org/abs/1412.2973
https://doi.org/10.1103/PhysRevE.97.022146
https://arxiv.org/abs/1706.01446
https://doi.org/10.1103/PhysRevE.96.032112
https://doi.org/10.1103/PhysRevE.96.032112
https://arxiv.org/abs/1707.07107
https://arxiv.org/abs/2306.07337
https://doi.org/10.1103/PhysRevB.64.014403
https://arxiv.org/abs/cond-mat/0012222
https://arxiv.org/abs/cond-mat/0012222
https://doi.org/10.1103/PhysRevB.59.915
https://doi.org/10.1103/PhysRevB.59.915
https://arxiv.org/abs/cond-mat/9807138
https://doi.org/10.1088/1742-5468/ac2cb9
https://doi.org/10.1088/1742-5468/ac2cb9
https://doi.org/10.1103/PhysRevLett.125.120602
https://arxiv.org/abs/1904.03147
https://doi.org/10.1007/JHEP09(2022)032
https://arxiv.org/abs/2203.12753


[32] D. Chowdhury, A. Georges, O. Parcollet, and S. Sachdev, Sachdev-Ye-Kitaev models and beyond: Window into
non-Fermi liquids, Rev. Mod. Phys. 94, 035004 (2022), arXiv:2109.05037 [cond-mat.str-el].

[33] S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev.
Lett. 70, 3339 (1993), cond-mat/9212030.

[34] O. Parcollet and A. Georges, Non-Fermi-liquid regime of a doped Mott insulator, Phys. Rev. B 59, 5341 (1999),
cond-mat/9806119.

[35] A. Georges, O. Parcollet, and S. Sachdev, Mean Field Theory of a Quantum Heisenberg Spin Glass, Phys. Rev.
Lett. 85, 840 (2000), arXiv:cond-mat/9909239 [cond-mat.dis-nn].

[36] A. Georges, O. Parcollet, and S. Sachdev, Quantum fluctuations of a nearly critical Heisenberg spin glass,
Phys. Rev. B 63, 134406 (2001), arXiv:cond-mat/0009388 [cond-mat.str-el].

[37] G. Biroli and O. Parcollet, Out-of-equilibrium dynamics of a quantum Heisenberg spin glass, Phys. Rev. B 65,
094414 (2002), arXiv:cond-mat/0105001 [cond-mat.str-el].

[38] L. Arrachea and M. J. Rozenberg, Infinite-range quantum random Heisenberg magnet, Phys. Rev. B 65, 224430
(2002), cond-mat/0203537.

[39] A. Camjayi and M. J. Rozenberg, Quantum and Thermal Fluctuations in the SU(N) Heisenberg Spin-Glass
Model near the Quantum Critical Point, Phys. Rev. Lett. 90, 217202 (2003), cond-mat/0210407.

[40] H. Shackleton, A. Wietek, A. Georges, and S. Sachdev, Quantum Phase Transition at Nonzero Doping in a
Random t-J Model, Phys. Rev. Lett. 126, 136602 (2021), arXiv:2012.06589 [cond-mat.str-el].

[41] P. T. Dumitrescu, N. Wentzell, A. Georges, and O. Parcollet, Planckian metal at a doping-induced quantum
critical point, Phys. Rev. B 105, L180404 (2022), arXiv:2103.08607 [cond-mat.str-el].

[42] M. Christos, F. M. Haehl, and S. Sachdev, Spin liquid to spin glass crossover in the random quantum Heisenberg
magnet, Phys. Rev. B 105, 085120 (2022), arXiv:2110.00007 [cond-mat.str-el].

[43] D. Gross and M. Mézard, The simplest spin glass, Nucl. Phys. B. 240, 431 (1984).
[44] E. Gardner, Spin glasses with p-spin interactions, Nucl. Phys. B. 257, 747 (1985).
[45] A. Crisanti and H. J. Sommers, The spherical p-spin interaction spin glass model: the statics, Z. Physik B -

Condensed Matter 87, 341 (1992).
[46] T. Castellani and A. Cavagna, Spin-glass theory for pedestrians, J. Stat. Mech. 2005, 05012 (2005), arXiv:cond-

mat/0505032 [cond-mat.dis-nn].
[47] M. Talagrand, Free energy of the spherical mean field model, Probab. Theory Relat. Fields 134, 339 (2006).
[48] K. Fischer and J. Hertz, Spin Glasses (Cambridge University Press, Cambridge, 1993).
[49] D. J. Thouless, J. R. L. de Almeida, and J. M. Kosterlitz, Stability and susceptibility in Parisi’s solution of a

spin glass model, J. Phys. C: Solid State Physics 13, 3271 (1980).
[50] L. F. Cugliandolo and J. Kurchan, Analytical solution of the off-equilibrium dynamics of a long-range spin-glass

model, Phys. Rev. Lett. 71, 173 (1993), arXiv:cond-mat/9303036 [cond-mat].
[51] S. Sachdev, Quantum Phases of Matter (Cambridge University Press, Cambridge, 2023).
[52] G. Parisi, Infinite Number of Order Parameters for Spin-Glasses, Phys. Rev. Lett. 43, 1754 (1979).
[53] M. E. Fisher, Yang-Lee Edge Singularity and ϕ3 Field Theory, Phys. Rev. Lett. 40, 1610 (1978).
[54] J. L. Cardy, Conformal Invariance and the Yang-Lee Edge Singularity in Two Dimensions, Phys. Rev. Lett.

54, 1354 (1985).
[55] B. Derrida, Random-Energy Model: Limit of a Family of Disordered Models, Phys. Rev. Lett. 45, 79 (1980).
[56] B. Derrida, Random-energy model: An exactly solvable model of disordered systems, Phys. Rev. B 24, 2613

(1981).
[57] A. Cavagna, J. P. Garrahan, and I. Giardina, Quenched complexity of the mean-field p-spin spherical model

with external magnetic field, J. Phys. A: Math. Gen. 32, 711 (1999).
[58] Y. Y. Goldschmidt, Solvable model of the quantum spin glass in a transverse field, Phys. Rev. B 41, 4858

(1990).
[59] M. Christos, D. G. Joshi, S. Sachdev, and M. Tikhanovskaya, Critical metallic phase in the overdoped random

t-J model, Proc. Nat. Acad. Sci. 119, e2206921119 (2022), arXiv:2203.16548 [cond-mat.str-el].
[60] B. Tasseff, T. Albash, Z. Morrell, M. Vuffray, A. Y. Lokhov, S. Misra, and C. Coffrin, On the emerging potential

of quantum annealing hardware for combinatorial optimization, (2022), arXiv:2210.04291 [math.OC].
[61] T. Albash and D. A. Lidar, Adiabatic quantum computation, Rev. Mod. Phys. 90, 015002 (2018).

48

https://doi.org/10.1103/RevModPhys.94.035004
https://arxiv.org/abs/2109.05037
https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1103/PhysRevLett.70.3339
https://arxiv.org/abs/cond-mat/9212030
https://doi.org/10.1103/PhysRevB.59.5341
https://arxiv.org/abs/cond-mat/9806119
https://doi.org/10.1103/PhysRevLett.85.840
https://doi.org/10.1103/PhysRevLett.85.840
https://arxiv.org/abs/cond-mat/9909239
https://doi.org/10.1103/PhysRevB.63.134406
https://arxiv.org/abs/cond-mat/0009388
https://doi.org/10.1103/PhysRevB.65.094414
https://doi.org/10.1103/PhysRevB.65.094414
https://arxiv.org/abs/cond-mat/0105001
https://doi.org/10.1103/PhysRevB.65.224430
https://doi.org/10.1103/PhysRevB.65.224430
https://arxiv.org/abs/cond-mat/0203537
https://doi.org/10.1103/PhysRevLett.90.217202
https://arxiv.org/abs/cond-mat/0210407
https://doi.org/10.1103/PhysRevLett.126.136602
https://arxiv.org/abs/2012.06589
https://doi.org/10.1103/PhysRevB.105.L180404
https://arxiv.org/abs/2103.08607
https://doi.org/10.1103/PhysRevB.105.085120
https://arxiv.org/abs/2110.00007
https://doi.org/https://doi.org/10.1016/0550-3213(84)90237-2
https://doi.org/https://doi.org/10.1016/0550-3213(85)90374-8
https://doi.org/10.1007/BF01309287
https://doi.org/10.1007/BF01309287
https://doi.org/10.1088/1742-5468/2005/05/P05012
https://arxiv.org/abs/cond-mat/0505032
https://arxiv.org/abs/cond-mat/0505032
https://doi.org/10.1007/s00440-005-0433-8
https://doi.org/10.1017/CBO9780511628771
https://doi.org/10.1088/0022-3719/13/17/017
https://doi.org/10.1103/PhysRevLett.71.173
https://arxiv.org/abs/cond-mat/9303036
https://doi.org/10.1017/9781009212717
https://doi.org/10.1103/PhysRevLett.43.1754
https://doi.org/10.1103/PhysRevLett.40.1610
https://doi.org/10.1103/PhysRevLett.54.1354
https://doi.org/10.1103/PhysRevLett.54.1354
https://doi.org/10.1103/PhysRevLett.45.79
https://doi.org/10.1103/PhysRevB.24.2613
https://doi.org/10.1103/PhysRevB.24.2613
https://doi.org/10.1088/0305-4470/32/5/004
https://doi.org/10.1103/PhysRevB.41.4858
https://doi.org/10.1103/PhysRevB.41.4858
https://doi.org/10.1073/pnas.2206921119
https://arxiv.org/abs/2203.16548
https://arxiv.org/abs/2210.04291
https://arxiv.org/abs/2210.04291
https://doi.org/10.1103/RevModPhys.90.015002


[62] M. Cain, S. Chattopadhyay, J.-G. Liu, R. Samajdar, H. Pichler, and M. D. Lukin, Quantum speedup for
combinatorial optimization with flat energy landscapes, (2023), arXiv:2306.13123 [quant-ph].

[63] B. F. Schiffer, D. S. Wild, N. Maskara, M. Cain, M. D. Lukin, and R. Samajdar, Circumventing superexponential
runtimes for hard instances of quantum adiabatic optimization, (2023), arXiv:2306.13131 [quant-ph].

[64] G. Biroli and L. F. Cugliandolo, Quantum Thouless-Anderson-Palmer equations for glassy systems, Phys. Rev.
B 64, 014206 (2001), arXiv:cond-mat/0011028 [cond-mat.dis-nn].

[65] H. Sompolinsky and A. Zippelius, Dynamic Theory of the Spin-Glass Phase, Phys. Rev. Lett. 47, 359 (1981).
[66] H. Sompolinsky, Time-Dependent Order Parameters in Spin-Glasses, Phys. Rev. Lett. 47, 935 (1981).
[67] H. Sompolinsky and A. Zippelius, Relaxational dynamics of the Edwards-Anderson model and the mean-field

theory of spin-glasses, Phys. Rev. B 25, 6860 (1982).
[68] L. F. Cugliandolo and J. Kurchan, On the out-of-equilibrium relaxation of the Sherrington-Kirkpatrick model,

J. Phys. A: Math. Gen. 27, 5749 (1994), arXiv:cond-mat/9311016 [cond-mat].
[69] A. Altieri, G. Biroli, and C. Cammarota, Dynamical mean-field theory and aging dynamics, J. Phys. A: Math.

Gen. 53, 375006 (2020), arXiv:2005.05118 [cond-mat.dis-nn].
[70] S. Franz, M. Mézard, G. Parisi, and L. Peliti, Measuring Equilibrium Properties in Aging Systems, Phys. Rev.

Lett. 81, 1758 (1998), arXiv:cond-mat/9803108 [cond-mat.stat-mech].
[71] J. M. Kosterlitz, D. J. Thouless, and R. C. Jones, Spherical Model of a Spin-Glass, Phys. Rev. Lett. 36, 1217

(1976).
[72] Marc Mézard and Giorgio Parisi, Replica field theory for random manifolds, J. Phys. I France 1, 809 (1991).

49

https://arxiv.org/abs/2306.13123
https://arxiv.org/abs/2306.13131
https://arxiv.org/abs/2306.13131
https://doi.org/10.1103/PhysRevB.64.014206
https://doi.org/10.1103/PhysRevB.64.014206
https://arxiv.org/abs/cond-mat/0011028
https://doi.org/10.1103/PhysRevLett.47.359
https://doi.org/10.1103/PhysRevLett.47.935
https://doi.org/10.1103/PhysRevB.25.6860
https://doi.org/10.1088/0305-4470/27/17/011
https://arxiv.org/abs/cond-mat/9311016
https://doi.org/10.1088/1751-8121/aba3dd
https://doi.org/10.1088/1751-8121/aba3dd
https://arxiv.org/abs/2005.05118
https://doi.org/10.1103/PhysRevLett.81.1758
https://doi.org/10.1103/PhysRevLett.81.1758
https://arxiv.org/abs/cond-mat/9803108
https://doi.org/10.1103/PhysRevLett.36.1217
https://doi.org/10.1103/PhysRevLett.36.1217
https://doi.org/10.1051/jp1:1991171

	Equilibrium dynamics of infinite-range quantum spin glasses in a field
	Abstract
	Contents
	Introduction
	Main results

	Ising model
	Landau action
	Free energy
	Saddle-point equations
	Zero-field limit
	Quantum paramagnet
	Spin glass
	Phase diagram

	Nonzero field
	Replica-symmetric solution
	Replica symmetry breaking
	Phase diagram


	Quantum spherical p-rotor model
	Effective action
	Saddle-point equations
	Replica-symmetric solution
	One-step replica symmetry breaking
	Gapless condition
	Free energy
	Spectral functions

	Phase diagram

	Conclusions
	Terms of order y1 in FQ for the Ising model
	Zero longitudinal field
	Paramagnet
	Spin glass

	Nonzero longitudinal field
	Replica-symmetric solution


	Classical spherical p-rotor model
	Replica-symmetric solution
	One-step replica symmetry breaking
	Gapless condition
	Free energy


	Replica-symmetric solution for the h=0 quantum spherical p=2 model
	Replica-symmetric solution for the h = 0 quantum spherical p=3 model at large g
	Replica identities
	Term-by-term sum
	Matrix product
	Matrix inverse
	Term-by-term inverse sum
	Term-by-term product
	Trace log
	Cubic term

	References


