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We demonstrate the existence of a non-equilibrium “Floquet Fermi Liquid” state arising in partially
filled Floquet Bloch bands weakly coupled to ideal fermionic baths, which possess a collection of
“Floquet Fermi surfaces” enclosed inside each other, resembling matryoshka dolls. We elucidate
several properties of these states, including their quantum oscillations under magnetic fields which
feature slow beating patterns of their amplitude reflecting the different areas of the Floquet Fermi
surfaces, consistent with those observed in microwave induced resistance oscillation experiments.
We also investigate their specific heat and thermodynamic density of states and demonstrate how
by controlling properties of the drive, such as its frequency, one can tune some of the Floquet Fermi
surfaces towards non-equilibrium van-Hove singularities without changing the electron density.

Introduction. This study addresses the fate of Fermi
liquids and their Fermi surfaces when they are driven far
away from equilibrium by periodic time-dependent per-
turbations. To address this we will revisit a more general
problem that has attracted recent attention [1–10]: how
should Floquet states be occupied by fermions? To an-
swer this question it is important to consider a system in
contact with a bath, because periodically driven closed
systems that are thermalizing tend to have trivial infi-
nite temperature steady states [11–13], and those that are
not thermalizing tend to retain memory of initial condi-
tions [12, 14–18], making their steady states not unique.
We will consider an “all fermion” setting, where the sys-
tem and the bath are both comprised only of fermions.

Within such setting, we have a found a remarkable an-
swer to this question: a non-equilibrium steady state with
a sizable energy density difference relative to the ground
state but which retains its quantum nature, which we
call the Floquet Fermi Liquid. Unlike its equilibrium
counterpart where states are occupied according to the
Fermi Dirac distribution, the Floquet Fermi Liquid fea-
tures a staircase-shaped occupation of the Floquet band
with multiple jumps that evolve into sharp discontinu-
ities at zero temperature giving rise to a collection of
enclosed Floquet Fermi Surfaces (See Fig.1). We will in-
vestigate the fingerprints left by Floquet Fermi Surfaces
in various observables, such as the appearance of a slow
beating of the quantum oscillations amplitude, as well as
the density of states and the specific heat.

Fermi Dirac Staircase Periodic Gibbs Ensemble. Con-
sider a model of non-interacting fermions in contact with
a fermionic bath, with a single particle Hamiltonian of
the system plus bath of the form:

H(t) =

[
HS(t) HSB

HBS HB

]
. (1)
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FIG. 1. Fermi Dirac Staircase occupation of Floquet states
(left), from Eq.(3), and its associated Floquet Fermi surfaces
(right) from Eq.(5).

The system can be viewed as a tight-binding model,
where each site can tunnel (via HSB) to a collection of
bath sites that are a set of independent energy levels (de-
scribed byHB). This is a “grand-canonical” setting where
the energy and particle number of the system can fluc-
tuate. We assume the bath to be “featureless”, namely
with energy-independent density of states and tunneling
amplitudes over a band-width that is much larger than
the system’s, as it is frequently assumed [9, 19–28].

Crucially, the system Hamiltonian, HS(t), can be time-
dependent, allowing us to drive it away from thermal
equilibrium with the bath. By assuming that the bath
is prepared in a thermal ensemble in a distant past with
a Fermi Dirac distribution, f0(ϵ) = 1/[1 + eβ(ϵ−µ)] with
inverse temperature β and chemical potential µ, one can
rigorously show (see Appendix A), that at late times the
system approaches a unique steady state, with its exact
one-body density-matrix given by:

ρS(t) = Γ

∫ +∞

−∞

dϵ
π
f0(ϵ)UΓ(t, ϵ)U

†
Γ(t, ϵ),

UΓ(t, ϵ) =

∫ t

−∞
dt′eΓ(t

′−t)−iϵt′US(t, t
′),

(2)

where US(t, t
′) satisfying i∂tUS(t, t

′) = HS(t)US(t, t
′) is
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the unitary evolution operator of the isolated system and
Γ = λ2ν0/2 is the particle tunneling rate into the bath,
which parametrizes the strength of system-bath coupling.
Equation (2) generalizes Eq.(41) of Ref. [9] to arbitrary
off-diagonal time-dependent system Hamiltonians. Now
by assuming that the drive is periodic, H(t) = H(t+T ),
and the coupling to the bath is infinitesimal, Γ → 0, so
that it would act as an “ideal” bath in equilibrium, then
Eq. (2) reduces to (see appendix B):

lim
Γ→0

ρS(t) =
∑
a

fa |ψF
a (t)⟩ ⟨ψF

a (t)| ,

fa =

+∞∑
l=−∞

∣∣φa,l

∣∣2f0(ϵFa + lΩ),

(3)

Here |ψF
a (t)⟩ are the complete basis of solutions of the sin-

gle particle time dependent Schrodinger equation, ϵFa are
their Floquet energies, Ω = 2π/T ,

∣∣φa,l

∣∣2 ≡ ⟨φa,l|φa,l⟩
with |φa,l⟩ the l-th harmonic of the Floquet wave-
function, related as |ψF

a (t)⟩ =
∑

l e
−iϵFa t−ilΩt |φa,l⟩ [29].

Equation (3) is an example of a periodic Gibbs en-
semble [12, 14–16], but in contrast to the setting of
Refs. [12, 14–16] we have obtained this ensemble by
coupling the system to a bath and not as a result
of many-body self-thermalization. In the context of
self-thermalization the occupations, fa, would not be
fixed but determined by initial conditions of the quasi-
particles, but in our context the fa are uniquely fixed
by the state of the bath. Notably the occupations, fa,
viewed as a function of the Floquet energy, ϵFa , are not
given by the equilibrium Fermi-Dirac function but in-
stead by a Fermi-Dirac Staircase (see Fig. 1), generalizing
the results of Ref. [9] to off-diagonal Hamiltonians. These
staircase occupations have also appeared in Eq. (12) of
Ref. [1] and Eq.(1) of Ref. [10], and in discussions of the
Tien-Gordon effect [30, 31] in driven mesoscopic systems.

The Floquet Fermi Liquid. Let us now specialize to the
case of a Floquet Bloch band. For simplicity, we take
a system with a single band arising from a tight-biding
model with one site per unit cell with dispersion ϵ(k), and
driven by a time-periodic and spatially uniform electric
field with vector potential A(t) = A(t + T ) so that the
Hamiltonian remains diagonal in crystal momentum and
is given by ϵk(t) ≡ ϵ(k−A(t)). In this case, the density
matrix is indeed time-independent and the occupations
can be obtained from Eq.(3) by replacing a→ k:

fk =
∑
l

|φk,l|2f0(ϵFk + lΩ). (4)

where the Floquet energy and the harmonics of the Flo-
quet wavefunctions are given by ϵFk = ⟨ϵk(t)⟩T , φk,l =

⟨e−i
∫ t
0

dt′[ϵk(t′)−ϵFk −lΩ]⟩T , and ⟨· · · ⟩T =
∫ T

0
(· · · )dt/T de-

notes the time average over one period. fk in Eq.(4)
describes the occupation of canonical crystal momentum
k, which is related to the physical gauge invariant crystal

momentum via kphys = k−A(t). Since the occupation of
canonical momenta is time-independent, the occupation
of physical momenta oscillates as A(t). Therefore, the
occupation develops a collection of sharp steps at several
surfaces in crystal momentum that are enclosed inside
each other and are given by:

ϵFk = µ− lΩ, l ∈ Z. (5)

We will refer to these surfaces as the Floquet Fermi
Surfaces (FFS) and the corresponding non-equilibrium
steady state as the Floquet Fermi Liquid (FFL). Notice
that the height of the jump at the l-th FFS, given by
|φk,l|2, is in general a function of the momentum within
a given FFS.

Quantum Oscillations of the FFL. As we have seen, a
periodically driven system of fermions in contact with
a fermionic bath approaches a non-trivial FFL steady
state with a collection of enclosed FFS’s. We would like
to investigate how these FFS’s manifest directly through
observable properties [32].

Systems with a Fermi surface display characteristic
quantum oscillations of many observables in the presence
of applied magnetic fields, with a periodicity of the form
∼ cos(S/B), where S is the area of the Fermi surface. As
we will show, the FFSs give rise to a sum quantum oscilla-
tions with different frequencies ∼ cos(Sl/B), where Sl is
the area of the l-th FFS. We will show that in the regime
where the cyclotron energy is smaller than the driving
frequency this will lead to a slow beating of the ampli-
tude of quantum oscillations, which, remarkably, has the
same period measured in two-dimensional electron sys-
tems in the regime where microwave induced resistance
oscillations (MIRO) coexist with the Shubnikov–de Haas
(SdH) oscillations [33, 34], suggesting that the Floquet
Fermi liquid has indeed already been achieved in these
experiments.

To illustrate this, we consider parabolic fermions, cou-
pled simultaneously to a uniform magnetic field, B =
∇ × A0(r), and a time-dependent electric field, E(t) =
−∂tA(t) = Ee−iΩt + c.c., with Hamiltonian: HS(t) =
[k−A0(r)−A(t)]2/(2m). The solutions of the time de-
pendent Schrödinger equation for this Hamiltonian are
time-dependent Landau levels wave-functions, |ψF

N (t)⟩,
with Floquet energy ϵFN and labeled by a principal cy-
clotron index N = 0, 1, 2.., and with a guiding-center
degeneracy Nϕ (see Appendix C 2). By replacing a→ N
in the formula for the steady state from Eq.(3), we can
compute various observables of the system. Here we will
focus on the oscillations of an effective Floquet free en-
ergy defined as follows:

βG ≡ −Nϕ

∑
N,l

|φN,l|2 log
[
1 + e−β(ϵFN+lΩ−µ)

]
. (6)

This free energy approaches the equilibrium free energy
in the limit of static Hamiltonians (A(t) → 0): βGeff →
− lnZ(β, µ), where Z(β, µ) is the Grand-canonical parti-
tion function in the absence of drive [35]. In the absence
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FIG. 2. Illustration of Floquet Landau levels (top right)
and free energy oscillations computed from Eq.(7), for T =
0.05µ,Ω = 0.2µ,E/(Ω

√
mµ) = 0.05 ·nE/∥nE∥, nE = (1, i/2).

of magnetic fields, and to second order in driving elec-
tric fields, only the Floquet bands shifted in energy by
±ℏΩ contribute. In a magnetic field to second order in
electric fields, we would have two Floquet copies of the
Landau level spectrum (see Fig.[2]), since higher Floquet
harmonics have weights with higher powers of electric
field (see Appendix C). We will thus compute this free
energy to second order in the electric fields. By perform-
ing a similar analysis to the equilibrium calculation [36],
we have found the oscillating part of the Floquet free en-
ergy in the limit where many Landau levels are occupied
µ≫ ℏωc is (see Appendices C 2 and D for details):

δG

Nϕℏωc
≈

∑
l=±1,0

∞∑
k=1

GkRk

(
δl,0 +

blµl

ℏωc

)
cos

(kSl

B

)
, (7)

where Gk = (−1)k/(2k2π2), Rk = λk/ sinh(λk) is the
Lifshitz-Kosevich factor, λ = 2π2/(βℏωc), Sl ≈ 2mπ(µ−
lΩ) is the area of l-th FFS, b±1 = −b0/2 = R+ =
|z+|2/(ωc − Ω)2+ |z−|2/(ωc +Ω)2, and |z±|2 = ωc(|E|2±
i[E×E∗]z)/(2mΩ2). We therefore see that the FFSs give
rise to additional frequencies of the quantum oscillations
controlled by their effective areas, resembling a multi-
band system in equilibrium, as illustrated in Fig. (2).

The above oscillations resemble closely those observed
in two-dimensional electron systems in the regime where
MIRO and SdH oscillations coexist [33], where a rich va-
riety of non-equilibrium phenomena have been observed
[37–41], that also have been realized for electrons in the
surface of Helium [42] and more recently in graphene [43].
To make a more direct connection with these, let us com-
pute also the oscillations of an effective non-equilibrium
thermodynamic density of states (DoS), defined as:

ν ≡
(
∂n

∂µ

)
T

, n =
1

2πl2

∑
N

fN , (8)

where l2 = ℏc/eB is the magnetic length, and µ, T are
the chemical potential and temperature of the bath. This

non-equilibrium DoS reduces to the equilibrium DoS in
the absence of drive, and the oscillations of DoS tend
to resemble those of resistivity in equilibrium [36, 44],
making them a more relevant observable to contrast with
MIRO photoconductivity measurements. The oscillatory
part of the DoS (see Appendix D), can be shown to be:

δν ≈ 2

hωcl2

∞∑
k=1

(−1)kRkFE cos
(
k
S

B

)
, (9)

where the factor FE = 1 − 4R+(µ/ℏωc) sin
2(πΩ/ωc)

describes the oscillations of the envelope of the fast
oscillations (see Fig.[2]), imprinted by the AC drive.
The frequency and phase of these envelope oscillations
agrees exactly with that of photo-resistivity theories from
Refs.[40, 41]. The frequency of oscillations of the en-
velope also agrees with those of the photo-resistivity in
MIRO experiments but not with their phase [33], for
which there is no current detailed understanding, al-
though it is expected to depend on the intensity of radia-
tion [41], and on details of the scattering mechanisms [40].
Therefore, The FFL and its collection of FFSs, provides a
simple overarching conceptual framework that positions
MIRO as a natural non-equilibrium counterpart to con-
ventional equilibrium quantum oscillations. We hope this
picture can contribute to clarify and guide experiments
in the future [45].

DoS and non-equilibrium van-Hove singularities of the
FFL. The thermodynamic DoS plays a central role in
equilibrium and is directly measurable via capacitive
measurements of compressibility [46–50] [51]. Notably, a
non-interacting system with its chemical potential tuned
at a van-Hove singularity, for which the DoS diverges,
would generically become unstable towards broken sym-
metry states for weak interactions (see e.g. Ref.[52]).
Here we would like to demonstrate that FFLs possess
a greater degree of tunability relative to their equilib-
rium counterparts, because the parameters controlling
the radiation, such as the frequency, can be used to tune
it towards a van-Hove singularity of its non-equilibrium
DoS, without the need to change the electron density. To
demonstrate this we consider a single band model. Using
Eq. (4), the non-equilibrium DoS can be expressed as a
sum of an effective DoS of each FFS:

ν(µ) = lim
T→0

(∂n/∂µ)T =
∑
l

νl(µ),

νl(µ) =

∫
ddk

(2π)d
∣∣φk,l

∣∣2δ(µ− lΩ− ϵFk ).

(10)

Therefore, the frequency can be used to shift the effective
chemical potential of l-th FFS as µ − lΩ. As an exam-
ple, consider a 2D square lattice with nearest neighbor
hopping amplitude t, so that in equilibrium it would have
dispersion ϵk = −2t cos(kx)−2t cos(ky), with a van-Hove
singularity at µ = 0 originating from the states near the
two special momenta (π, 0), (0, π) (see Fig. 3(a)). In the
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FIG. 3. (a) DoS for the non-driven (blue) and driven (red)
square lattice model from Eq.(10). Dashed lines are the ad-
ditional van-hove singularities from Eq.(12). Green, purple,
and orange lines are contributions making the red-line com-
ing from l = 0,±2,±4 harmonics respectively. (b) Correction
∆(µ) to the equilibrium specific heat coefficient from Eq.(14).
Parameters: Ω = 1/4, Ax = Ay = 4/3, ϕx = 0, ϕy = π/2.

driven case, A(t) = [Ax sin(Ωt + ϕx), Ay sin(Ωt + ϕy)],
the Floquet band energy is (see Appendix F):

ϵFk = −2t
[
cos(kx)J0(Ax) + cos(ky)J0(Ay)

]
, (11)

where J0 is the Bessel function of first kind. This Floquet
problem retains a k → −k symmetry which pins the ori-
gin of van-Hove singularities of the higher order FFSs to
the same two special momenta (π, 0), (0, π). This sym-
metry also leads to a vanishing of the odd Floquet wave-
functions at these momenta, namely φ(0,π),l = φ(π,0),l =
0 for odd l (see Appendix F). However, for l even, the
Floquet amplitudes remain finite near these points and
as a result such FFSs display additional van-Hove sin-
gularities in the non-equilibrium DoS, at the following
chemical potentials (see Fig. 3(a)):

µ = lΩ±
[
J0(Ax)− J0(Ay)

]
, l even. (12)

This model illustrates the tantalizing potential of engi-
neering the properties of the AC drive to tune some FFSs
into van-Hove singularities, even if at equilibrium there
is no DoS singularity at the chemical potential.
Non-equilibrium specific heat of the FFL. In equilibrium,
the low temperature specific heat, CV , in a Landau-Fermi
liquid is related to the thermodynamic DoS via [53]:

lim
T→0

CV

π2

3 kBT
= (1 + F s

0 ) lim
T→0

(∂n
∂µ

)
T
, (13)

where CV is the specific heat at constant volume, and
F s
0 is the spin symmetric Landau parameter, which is

non-zero only in the presence of interactions. There-
fore for non-interacting fermions, the linear in T coef-
ficient of the specific heat also measures the DoS. How-
ever, interestingly, the FFLs violate the above relation
between specific heat and thermodynamic DoS even for

non-interacting fermions. To show this, we begin by
defining the non-equilibrium the specific heat, CV , as
CV ≡ (∂Ē/∂T )n, where Ē is the system energy time-
averaged over one period, and the derived is computed at
fixed particle density. For our model with single Floquet
Band, we obtain the following relation (see Appendix E):

lim
T→0

CV

π2

3 kBT
= lim

T→0

(∂n
∂µ

)
T
+∆(µ), (14)

where ∆(µ) = ω
∑

l1l2
(l2 − l1)νl1(µ)ν

′
l2
(µ)/(

∑
l νl(µ)).

The additional van-Hove singularities in the non-
equilibrium DoS also manifest themselves as singular-
ities in the non-equilibrium specific heat as illustrated
in Fig. 3(a) and 3(b) for the same square lattice tight-
binding model of the previous section.

Discussion. We have demonstrated the existence of a
non-equilibrium FFL steady state in Floquet bands that
features a collection of FFSs enclosed inside each other.
To realize these states in experiments essentially two cri-
teria should be met: first the driving frequency should
exceed thermal broadening ℏΩ ≫ kBT [54], so that the
multiple Floquet quasi-energy bands can be resolved. In
addition, the size of the additional jumps of the Fermi
Dirac Staircase occupation, which are the dimensionless
numbers |φa,l

∣∣2 in Eq.(3), should be sizable. The first
non-trivial jump scales as |φl=±1

∣∣2 ∼ (evF |E|/ℏΩ2)2, at
small field amplitudes, therefore the second criterion is
that the light intensity, I = cϵ0|E|2/2, is comparable to
the intensity scale I0 = ℏΩ4/(8παv2F ), with α ≈ 1/137
the fine structure constant. We believe that these criteria
can be comfortably met in a variety of platforms, and,
in fact, are likely met in several of those in which MIRO
and SdH oscillations are seen to coexist [33, 34]. For ex-
ample for MIRO experiments [34] with a frequencies of
Ω/2π = 10GHz, and vF = 2×105m/s, the intensity scale
is just I0 ≈ 0.2W/m2, illustrating that low frequencies
greatly help in reducing the required power. However,
we believe there can be completely different conditions
and material platforms for accessing the FFL regime.
For example, for the experiments of Ref.[55] that studied
Floquet-Bloch states in the surface of topological insula-
tors with mid-infrared pulses of frequency ℏΩ = 120meV,
it is estimated that |φl=±1

∣∣2 ∼ (evF |E|/ℏΩ2)2 ∼ 0.25,
and therefore meets the criteria. For the experiments of
Ref.[56] realizing the light-induced anomalous Hall effect
in graphene (vF = 106m/s) with a similar mid-infrared
frequency, the intensity scale is I0 ≈ 4 × 1012W/m2,
which is the same as their typical pulse peak intensity.
Therefore, these type of experiments are well posed to
prepare the FFL with pump pulses and investigate its
subsequent decay.
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SUPPLEMENTAL MATERIAL FOR “THE FLOQUET FERMI LIQUID”

Appendix A: Density matrix of a general system Hamiltonian coupled to the featureless fermionic bath

In Refs. [9, 28], we focused on analyzing the case of a diagonal system Hamiltonian. In the current study, we
broaden our scope by considering more general, non-diagonal system Hamiltonian.

Following Eqs. (2) to (16) from Ref. [9], we have the open-system Schrödinger’s equation for a generic system
coupled to the featureless fermionic bath:

i∂t |ψ(j)
n (t)⟩ =

[
HS(t)− iΓ

]
|ψ(j)

n (t)⟩+ λe−iεj(t−t0) |χn⟩ , (A-1)

where λ is the tunneling amplitude onto the bath, and Γ = ν0λ
2/2, with ν0 the density of states of the bath. This

equation is a non-Hermitian version of the Schrödinger equation in which the system Hamiltonian is dressed by a
constant imaginary part “−iΓ”, accounting for the decay into the bath. And it crucially includes an inhomogeneous
term (the one proportional to λ) which accounts for the bath feedback effect (see Refs. [9, 28] for details). The
one-body density matrix projected onto the system at time t is then given by

ρS(t) =
∑
n,j

f0(εj) |ψ(j)
n (t)⟩ ⟨ψ(j)

n (t)| , (A-2)

Let’s denote the time evolution operator of the closed system by US(t, t
′), so that it satisfies the following equation:

i∂tUS(t, t
′) = HS(t)US(t, t

′). (A-3)

Next, we define an auxiliary state |ψ̃(j)
n (t)⟩ from the state |ψ(j)

n (t)⟩ as follows:

|ψ(j)
n (t)⟩ ≡ e−Γ(t−t0)US(t, t

′) |ψ̃(j)
n (t)⟩ . (A-4)

By substituting Eq. (A-4) into Eq. (A-1), we derive the open-system Schrödinger equation for the auxiliary state
|ψ̃(j)

n (t)⟩:

i
∂

∂t
|ψ̃(j)

n (t)⟩ = λUS(t
′, t) |χn⟩ e−i(εj+iΓ)(t−t0), (A-5)

where we used the identity US(t, t
′)US(t

′, t) = US(t, t) = 1. The solution for |ψ̃(j)
n (t)⟩ is therefore:

|ψ̃(j)
n (t)⟩ = −iλ

∫ t

t0

US(t
′, t′′) |χn⟩ e−i(εj+iΓ)(t′′−t0)dt′′. (A-6)

Thus, the solution for the amplitude of the open system problem is

|ψ(j)
n (t)⟩ = −iλe−Γ(t−t0)

∫ t

t0

US(t, t
′) |χn⟩ e−i(εj+iΓ)(t′−t0)dt′ (A-7)

By inserting Eq. (A-7) into Eq. (A-2) and taking t0 → −∞ to obtain the late time steady state, we achieve the Eq. (2)
in the main text:

ρS(t) = Γ

∫ +∞

−∞

dϵ
π
f0(ϵ)UΓ(t, ϵ)U

†
Γ(t, ϵ), UΓ(t, ϵ) =

∫ t

−∞
dt′eΓ(t

′−t)−iϵt′US(t, t
′), (A-8)

where we utilized the property that the featureless fermionic bath has a constant density of state νB(ϵ) = 2π
∑

j δ(ϵ−
εj) ≡ ν0, and used Γ ≡ λ2ν0/2.

We note that we have used an initial condition in writing Eq. (A-6) so that |ψ(j)
n (t0)⟩ = 0, namely that in a distant

past all particles are located in the bath. This assumption is convenient because it eliminates the transient part of
the solutions, but it is not strictly necessary. This is because Eq. (A-1) is a inhomogeneous equation for which one
can always add any solution to the homogeneous equation (the one with λ = 0) in order to satisfy any given initial
condition. But such solutions of the homogeneous equation would all decay to zero as t → ∞ for any finite Γ > 0.
This can be viewed as a type of “irreversible radiation” of the information of the initial state of the system onto the
bath, which eventually erases all such information leading to the unique late-time steady state from Eq. (A-8).
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Appendix B: Density matrix of a Floquet system Hamiltonian coupled to the ideal fermionic bath

We will now restrict to periodic Hamiltonians, H(t) = H(t+ T ). We will consider the situation when the coupling
to the bath is weak (as indicated by Γ → 0), such that the bath operates as an “ideal” thermal bath. Our objective
is to demonstrate that under these conditions, Eq. (2) from the main text simplifies to Eq. (3).

First, we denote Floquet eigenstates as |ψF
a (t)⟩ satisfying:

i∂t |ψF
a (t)⟩ = HS(t) |ψF

a (t)⟩ . (B-1)

From the Floquet’s theorem, |ψF
a (t)⟩ can be expressed in terms of its Floquet harmonics:

|ψF
a (t)⟩ =

∑
l

e−i(ϵFa +lΩ)t |φa,l⟩ , Ω = 2π/T. (B-2)

Using this formulation, we can express the unitary evolution operator for the system, denoted as US(t, t
′), as follows:

US(t, t
′) =

∑
a

|ψF
a (t)⟩ ⟨ψF

a (t
′)| =

∑
a,l1,l2

e−iϵFa (t−t′)e−iΩ(l1t−l2t
′) |φa,l1⟩ ⟨φa,l2 | . (B-3)

Next, we substitute Eq. (B-3) into Equation (A-8) and obtain:

UΓ(t, ϵ) =
∑

a,l1,l2

|φa,l1⟩ ⟨φa,l2 |
e−iΩ(l1−l2)te−iϵt

iϵFa + iΩl2 − iϵ+ Γ
. (B-4)

Upon integrating over ϵ, we obtain:

ρS(t) =
∑

a,b,l1,l2

|φa,l1⟩ e−iΩl1t

(∑
l3,l4

⟨φa,l3 |φb,l4⟩ e−iΩ(l4−l3)t

× Γ

2Γ− i(l4Ω+ ϵFb − l3Ω− ϵFa )
[f+(ϵ

F
a + l3Ω) + f−(ϵ

F
b + l4Ω)]

)
eiΩl2t ⟨φb,l2 | ,

(B-5)

where f+(ϵ) = [f−(ϵ)]
∗ and they are given by:

f±(ϵ) =
1

2
± i

π
Ψ(0)

(1
2
± iβ

ϵ∓ iΓ− µ

2π

)
, (B-6)

with Ψ(0) the 0-th order Polygamma function (or the digamma function).
Assuming a weak coupling to the bath (i.e., Γ → 0), only the terms that satisfy the equation l4Ω+ϵFb − l3Ω−ϵFa = 0

are retained. Provided that Floquet band crossings are avoided, the equality l4Ω + ϵFb − l3Ω − ϵFa = 0 imposes the
conditions a = b and l3 = l4. Consequently, the density matrix simplifies to:

lim
Γ→0

ρS(t) =
∑
a

pa |ψF
a (t)⟩ ⟨ψF

a (t)| , pa =
∑
l

⟨φa,l|φa,l⟩ f0(ϵFa + lΩ). (B-7)

where we used the limit

lim
Γ→0

1

2

[
f+(ϵ) + f−(ϵ)

]
= f0(ϵ). (B-8)

in obtaining Eq. (B-7). From the above we can see that Eq. (2) indeed simplifies to Eq. (3) in the main text.

Appendix C: Floquet petrurbation theory

1. General theory

In this Section, we introduce the detailed scheme for how to perturbatively solve the Schrodinger equation in the
presence of a periodic drive, where the state’s dynamics is defined by (for instructive purposes in this part of the
appendix, we restore the units):

iℏ∂t |ψa(t)⟩ = HS(t) |ψa(t)⟩ = (H0 + V (t)) |ψa(t)⟩ . (C-1)
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Due to the time periodicity of the Hamiltonian HS(t) = HS(t + T ) we can use the following Floquet expansion for
the states:

|ψa(t)⟩ = e−iϵFa (t−t0)/ℏ
∞∑

l′=−∞

e−il′Ω(t−t0)
∑
b

cl
′

a,b |χb⟩ (C-2)

where ϵFa is the Floquet energy of the state and |χb⟩ are the solutions of the unperturbed problem H0 |χb⟩ = E
(0)
b |χb⟩.

Essentially, we expanded the r.h.s. of the Eq.(B-2) in the known basis |φa,l⟩ =
∑

b c
l
a,b |χb⟩. Since the Flouqet energy

is not uniquely defined but up to a shift on kℏΩ where k ∈ Z [kΩ can be absorbed into the dummy index l′ in
Eq.(C-2)], without losing the generality, we fix this ambiguity or the Floquet gauge by setting cl,0a,b = δl,0δa,b in the
absence of the perturbation. Meaning that state |ψa(t)⟩ is adiabatically connected to the unperturbed state |χa(t)⟩.

Next, we substitute Eq.(C-2) into Eq.(C-1) and project the equation onto mode l obtaining:

(E(0)
a + lℏΩ−H0)

∑
b

cla,b |χb⟩ =
∫ T

0

dt

T

∞∑
l′=−∞

(V (t)−∆a)e
i(l−l′)Ω(t−t0)

∑
b

cl
′

a,b |χb⟩ . (C-3)

where ∆a = ϵFa − E
(0)
a = O(V 1) is a perturbation induced correction to the a-th state’s energy. The form of

the equation above is convinient since righthandside V (t) − ∆a is at least of the order of the perturbation, while
E

(0)
a + lℏΩ−H0 is unperturbative. Eq.(C-3) is sufficient to determine all the Floque amplitudes and energies.
By projecting Eq.(C-3) on the state ⟨χa|:

(∆a + lℏΩ)cna,a = ⟨χa|
∫ T

0

dt

T

∞∑
l′=−∞

V (t)ei(l−l′)Ω(t−t0)
∑
b

cl
′

a,b |χb⟩ , (C-4)

we obtain the equation used to determine the ∆a. For l ̸= 0 from projectiong the Eq.(C-3) onto a state different from
a, namely ⟨χc| ≠ ⟨χa| we obtain:

cla,c =
1

E
(0)
a − E

(0)
c + lℏΩ

⟨χc|
∫ T

0

dt

T

∞∑
l′=−∞

(V (t)−∆a)e
i(l−l′)Ω(t−t0)

∑
b

cl
′

a,b |χb⟩ , (C-5)

which is correct for any a, c assuming that E(0)
c − E

(0)
a ̸= lℏΩ for any a, b and l. The above is used to obtain

coefficients cl ̸=0
a,c . For l = 0, the inverse operator H −E

(0)
a is well defined on the space ortogonal to |χa⟩. Thus, using

P⊥
a =

∑
d ̸=a |χd⟩ ⟨χd|, we can write:

c0a,c = δa,c + ⟨χc|
P⊥
a

E
(0)
a −H0

∫ T

0

dt

T

∞∑
l′=−∞

(V (t)−∆N )e−il′Ω(t−t0)
∑
b

cl
′

a,b |χb⟩ , (C-6)

that determines remaining cl=0
a,c coeficinets. Note, δa,c was added as a solution of the homogeneous equation.

By using the perturbation expansions of states and energies in powers of their smallness:

cla,c = δl,0δa,c + cl,(1)a,c + cl,(2)a,c + . . . ,

∆a = ∆(1)
a +∆(2)

a + . . . ,
(C-7)

where the superscript (n) indicates the correction’s order, we find perturbed states |ψa(t)⟩. After these states are
normalised, we find the Floque amplitudes using their definition in Eq.(3) of the main text.

2. Application to parabolic fermions

We now apply our theory to parabolic fermions coupled simultaneously to a constant magnetic and periodic electric
field. The corresponding Hamiltonian is H(k, t) = [ℏk− eA0(r)− eA(t)]2/(2m), which using

π = ℏk− eA0(r), a =
l√
2ℏ

(πx − iπy), a† =
l√
2ℏ

(πx + iπy), [a, a†] = 1, l =

√
cℏ
eB

, (C-8)
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we rewrite as:

H(k, t) = ℏωca
†a− az∗t − a†zt + c(t), (C-9)

here zt = e
√
ℏωc/(2m)(Ax(t)− iAy(t)), c(t) = ℏωc/2 + e2A(t)2/2m, ωc is the cyclotron frequency, m is the electron

mass. The solutions of the above equation, in the absence of the electric field, are the Landau level states.
We consider V (t) to be small. Note, the magnetic field is threated unperturbatively and is part of H0 = ℏωca

†a.
We absorb the time-dependant constant term of the Hamiltonian, c(t), into a phase of the wave-function as follows
|ψN (t)⟩ = e−iC(t) |N(t)⟩, where C(t) = c0 +

∫ t

t0
c(t′)dt′/ℏ. Now, we can write:

iℏ
d

dt
|N(t)⟩ = (H0 + V (t)) |N(t)⟩ , V (t) = −a(z∗+eiΩt + z∗−e

−iΩt)− a†(z+e
−iΩt + z−e

iΩt). (C-10)

Next we apply the theory from Eq.(C-1-C-6) for |χb⟩ = |M⟩(0) to be unperturbed Landau states with E
(0)
M =

Mℏωc,M ∈ [0 . . .+∞], where ℏωc/2 energy shift was absorbed to the phase C(t). We find the first order coefficients
to be:

c
1,(1)
N,N−1 = −

z∗−
√
N

ℏωc + ℏΩ
, c

1,(1)
N,N+1 = − z+

√
N + 1

−ℏωc + ℏΩ
,

c
−1,(1)
N,N−1 = −

z∗+
√
N

ℏωc − ℏΩ
, c

−1,(1)
N,N+1 = − z−

√
N + 1

−ℏωc − ℏΩ
,

(C-11)

and ∆
(1)
N = 0. Note the states are yet to be normalised. All the coefficients beyong those appearing above are second

or higher order in powers of electric field, which contribute as at least of third order correction to the amplitudes.
The second order correction to the energy is found to be ∆

(2)
N = −|z+|2/(ℏωc − ℏΩ)− |z−|2/(ℏωc + ℏΩ), where:

|z±|2 =
ℏωce

2

2mΩ2
(|E|2 ± i[E×E∗]z). (C-12)

After the state normalization using Eqs. (C-11) we find the the Floquet amplitudes up to the second order in powers
of the electric field, which are given by:

|φN,±1|2 =
ϵFN
ℏωc

R+ ± R−

2
+O(E4), |φN,0|2 = 1− 2

ϵFN
ℏωc

R+ +O(E4), (C-13)

and the Floquet energy of the N-th Landau level given by ϵFN = (N + 1/2)ℏωc +∆E, where

R± =
|z+|2

(ℏωc − ℏΩ)2
± |z−|2

(ℏωc + ℏΩ)2
, ∆E =

e2|E|2

mΩ2
− |z+|2

ℏωc − ℏΩ
− |z−|2

ℏωc + ℏΩ
, (C-14)

We can see that the oscillating electric field produces a uniform (N independent) energy shift to all the Landau
levels energies, which effectively redefines the chemical potential. Note, the dominant contribution to the oscillation
of the Geff comes from the terms in summation over N (see Eq.(6)), when ϵFN ≈ µ, namely levels close to the Fermi
Surface. For large chemical potentials, ϵFN/ℏωc ≫ 1, the factor R− in Eq.(C-13) is negligible, yet it is interesting
to note that R− is responsible for the imbalance of the occupation of the l = 1 vs l = −1 Floquet Fermi surfaces.
Notice also that both R±, according to Eq.(C-12), are sensitive to the electric field polarization and, therefore, can
be controlled by changing the degree of the polarization (e.g. linear vs circular) of the driving electric field.

Appendix D: Magnetic oscillations

In this Section, we show the detailed derivation of the system magnetic oscillations of several quantities, including
the time-averaged system energy. We will employ the following Poisson summation formula:

∞∑
N=0

F (N + 1/2) =

∫ ∞

0

F (x)dx+ 2

∞∑
k=1

∫ ∞

0

(−1)kF (x) cos(2πkx)dx. (D-1)
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Let us assume that the function F (x) = f0(x)g(x) can be represented as a multiplication of the f0, Fermi-Dirac
function, with a real function g(x). Then the second integral of the r.h.s. of the Eq.(D-1) can be rewritten as:∫ ∞

0

F (x) cos(2πkx)dx =

∫ ∞

0

f0(x)g(x) cos(2πkx)dx =

∫ ∞

0

f0(x)d
[ ∫ x

0

g(y) cos(2πky)
]

= −
∫ ∞

0

df0(x)

dx

[ ∫ x

0

g(y) cos(2πky)dy
]
dx ≈ −Re

{∫ ∞

−∞

df0(x)

dx

[ ∫ x

0

g(y)e2πikydy
]
dx

}
,

(D-2)

where the surface term vanishes since the f0(∞) → 0 and term at x = 0 is zero due to the integral in the brakets.
We replaced the lower limit of the integration to −∞, which is a good approximation if µ/ℏωc ≫ 1. In the last step,
we also rewrote cos(2πkx) as an exponent since this form simplifies the integration over x. We aim to compute the
magnetic oscillations up to the second order in powers of the electric field, also assuming µ≫ ℏωc, µ≫ kBT = β−1.

Interestingly, the expression in the square brackets in the last part of Eq.(D-2) is the zero-temperature result of
the full expression if we set x = µ (note for T = 0 df0[ϵ]/dϵ ∼ δ(ϵ − µ)). This is the reason why calculations for the
magnetic oscillations are often carried out at zero temperature and, later on, weighted with the spectral weight of the
Fermi-Dirac function:

∂f0
∂ϵ

[ϵ] = −
∫ ∞

−∞

dλ

2π

πλ/β

sinh(πλ/β)
e−iλ(ϵ(x)−µ) = −β

2

1

1 + cosh(β(ϵ− µ))
. (D-3)

To be more concrete, let us assume ϵ(x) = ℏωcx+∆E and g(y) to be a polynomial of y. Then the following shows
the idea behind the further steps of the calculation:∫ ∞

0

F (x) cos(2πkx)dx ≈ ℏωcRe
{∫ ∞

−∞

∫ ∞

−∞

dλ

2π

πλ/β

sinh(πλ/β)
eiλ(µ−∆E)e−iλℏωcx

[ ∫ x

0

g(y)e2πikydy
]
dx

}
=

= ℏωcRe
{∫ ∞

−∞

dλ

2π

πλ/β

sinh(πλ/β)
eiλ(µ−∆E)

∫ ∞

−∞
dxe−iλℏωcx

[
G(x)e2πikx +G0

]}
≈

≈ Re
{∫ ∞

−∞
dλ

πλ/β

sinh(πλ/β)
eiλ(µ−∆E)G

(
i∂λ
ℏωc

)
δ

(
2πk

ℏωc
− λ

)}
≈

≈ RT (k)Re
{
ei

2πk
ℏωc

(µ−∆E)G

(
µ−∆E

ℏωc

)}
︸ ︷︷ ︸

zero temperature result

, (D-4)

where
∫ x

0
g(y)e2πikydy = G(x)e2πikx +G0. Polynomial G(x) is to be determined for each quantity of interest, and in

this sketch we discarded G0 as a non-oscillating contribution. For the last step we performed integration by parts,
and approximated −i∂λ ≈ µ−∆E +O(kBT ).

1. Energy oscillations

Let us now apply the above for the system time average energy calculation. The time average system energy up to
the second order in EF can be found using Eq.(3) of the main text and Eqs.(C-2,C-11) as follows:

Ē(t) = Nϕ

∫ T

0

dt

T
Tr[ρS(t)H] = Nϕ

∫ T

0

dt

T

∞∑
N=0

p(ϵFN ) ⟨ψN (t)| iℏdt |ψN (t)⟩

= Nϕ

∞∑
N=0

[ ∞∑
l=−∞

f0(ϵ
F
N + lℏΩ)|φN,l|2

][ ∞∑
l′=−∞

[ϵFN + l′ℏΩ]|φN,l′ |2
] (D-5)

where we employed the Schrodinger equation H(t) |ψN (t)⟩ = iℏdt |ψN (t)⟩, and employed the normalised Floquet
amplitudes as |φN,l|2 =

∑
b |clN,b|2/(

∑
b,N |clN,b|2), keeping terms up to the second order in powers of electric field.

Using Eq.(C-13) and ϵFN = (N + 1/2)ℏωc +∆E we can rewrite the r.h.s. of the Eq.(D-5) as a functions of the N -th
sate Floqet energy:

∞∑
l=−∞

f0(ϵ
F
N + lℏΩ)|φN,l|2 = p(ϵFN ),

∞∑
l′=−∞

[ϵFN + l′ℏΩ]|φN,l′ |2 = ε(ϵFN ), (D-6)
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where up to the second order in powers of electric field, these functions are (see Eq.(C-14)):

p(ϵ) = f0(ϵ) +
ϵ

ℏωc
R+

[
f0(ϵ+ ℏΩ) + f0(ϵ− ℏΩ)− 2f0(ϵ)

]
+R−

[
f0(ϵ+ ℏΩ)− f0(ϵ− ℏΩ)

]
(D-7)

and ε(ϵ) = ϵ+ 2ℏΩR−. Next, we employ the Poisson formula from Eq.(D-1) to get:

Ē(B,µ, T ) = Nϕ

∫ ∞

0

dxp(ϵF (x))ε(ϵF (x)) + 2Nϕ

∞∑
k=1

(−1)k
∫ ∞

0

p(ϵF (x))ε(ϵF (x)) cos(2πkx)dx (D-8)

where ϵF (x) = xℏωc + ∆E. Note, the form of the l.h.s. in Eq.(D-1) is evaluated at x = N + 1/2. The first term
in the equation above contains the Landau orbital diamagnetic effect, while the second is related to the magnetic
oscillations, which are of our interest and we focus on the second term only.

The integration of the magnetic oscillation term we perform using Eqs.(D-2-D-4), while neglecting terms of order
kBT and assuming µ/ℏωc ≫ 1. Note that p(ϵ) in Eq.(D-7) is a sum of multiple terms of the form f0(x+ a)g(x), thus
according to Eqs.(D-2-D-4) this already guarantees oscillations at multiple frequencies. After applying the procedure
to each of them, we obtain the following result for the magnetic oscillations:

δĒ(B,µ, T )−Nϕ
ℏωc

24
= Nϕ

∑
l=±1,0

∞∑
k=1

ℏωc(−1)k

2k2π2
RT (k)

([
al + 2bl

µl

ℏωc

]
cos

(
2πk

µl

ℏωc

)
+

[
2πk

(
al + bl

µl

ℏωc

) µl

ℏωc

]
sin

(
2πk

µl

ℏωc

))
,

(D-9)

where a1 = −a−1 = R−, a0 = 1, b1 = b−1 = R+, b0 = −2R+ and µη = µ− ηℏΩ−∆E. The RT factor comes directly
from the Fourier representation of the derivative of the Fermi-Dirac function in the Eq.(D-3), while the oscillations
are the result of the integration in brackets of Eq.(D-2) over y.

The part of the oscillations in Eq.(D-9) proportional to the sin arise because the bath does not conserve particle
number whereas the part proportional to cos is the free energy oscillations discussed in the main text. One can also
rewrite the oscillations in terms of the Fermi surface ratio to the magnetic field by employing:

µ =
ℏ2πk2F
2πm

=
ℏ2S
2πm

, ωc =
eB

m
, 2π

µ

ℏωc
=

ℏS
eB

, (D-10)

where S is the area of the main Fermi surface and in the main text we adopted e = ℏ = c = 1.

2. Floquet free energy oscillations

In this subsection, we provide some details on the derivation of the Floquet free energy oscillations, discussed in
the main text. Using the definition Eq.(6) of the main text, Eq.(D-1) and |φl,N |2 = |φl(ϵ

F
N )|2, we rewrite the Floquet

free energy as:

− G

NϕkBT
=

∞∑
l=−∞

∫ ∞

0

dx|φl(ϵ
F (x))|2 log

[
1 + e−β(ϵF (x)+lΩ−µ)

]
+

+ 2

∞∑
l=−∞

∞∑
k=1

(−1)k
∫ ∞

0

|φl(ϵ
F (x))|2 log

[
1 + e−β(ϵF (x)+lΩ−µ)

]
cos(2πkx)dx. (D-11)

For the next step, we will keep the generality of the derivation. We perform a similar protocol shown in Eq.(D-2),
yet here we integrate by parts twice, obtaining:

δG

NϕkBT
= 2β

∞∑
l=−∞

∞∑
k=1

(−1)k
∫ ∞

0

df0(ϵ
F (x) + lΩ)

dx

{∫ x

0

dz
dϵF (z)

dz

[∫ z

0

|φl(ϵ
F (y))|2 cos(2πky)dy

]}
dx. (D-12)

Next, we move to the perturbative consideration, which allows us to simplify the above, obtaining:

δG

NϕkBT
≈ 2βℏωc

1∑
l=−1

∞∑
k=1

(−1)k
∫ ∞

0

df0(ϵ
F (x) + lΩ)

dx

{∫ x

0

dz

[∫ z

0

|φl(ϵ
F (y))|2 cos(2πky)dy

]}
dx, (D-13)
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which by using
∫ z

0
dx

∫ x

0
f(y)dy =

∫ z

0
(z − y)f(y)dy becomes:

δG

NϕkBT
≈ 2βℏωc

1∑
l=−1

∞∑
k=1

(−1)k
∫ ∞

0

df0(ϵ
F (x) + lΩ)

dx

[∫ x

0

(x− y)|φl(ϵ
F (y))|2 cos(2πky)dy

]
dx. (D-14)

Finally, by discarding contributions of order kBT , the oscillations are found as:

δG ≈ Nϕ

∑
l=±1,0

∞∑
k=1

ℏωc

2k2π2
(−1)kRT (k)

(
δl,0 + bl

µl

ℏωc

)
cos

(
2πk

µl

ℏωc

)
, (D-15)

which is the result reported in the main text.

3. Particle number oscillations

In this subsection we provide some details on the derivation of the DoS oscillation. We start from the particle
number calculation that by definition is:

n(B,µ, T ) =
1

2πl2

∞∑
N=0

p(ϵF (N + 1/2)) =
1

2πl2

∫ ∞

0

dxp(ϵF (x)) +
1

πl2

∞∑
k=1

(−1)k
∫ ∞

0

p(ϵF (x)) cos(2πkx)dx (D-16)

and perform similar calculation as in the previous subsection obtaining the following oscillation part of the particle
number:

δn(B,µ, T ) =
1

πl2

∑
l=±1,0

∞∑
k=1

(−1)k

4k2π2
RT (k)

[
bl cos

(
2πk

µl

ℏωc

)
+ 2πk

(
al + bl

µη

ℏωc

)
sin

(
2πk

µl

ℏωc

)]
, (D-17)

which allows us to immediately find the oscillating part of DoS as:

δν = lim
T→0

∂δn

∂µ
≈ 1

πl2ℏωc

∑
l=±1,0

∞∑
k=1

(−1)kRT (k)

(
al + bl

µl

ℏωc

)
cos

(
2πk

µl

ℏωc

)
≈ 2

hωcl2

∞∑
k=1

(−1)kRT (k)

[
1− 4R+

µ̄

ℏωc
sin2

(
πk

Ω

ωc

)]
cos

(
2πk

µ

ℏωc

)
,

(D-18)

where we kept the leading term in µl/(ℏωc). Note, for the above summation to converge, one has to assume arbitrarily
small, but non-zero temperature of the bath.

Appendix E: Non-equilibrium specific heat at fixed particle number

In this section we aim to derive the non-equilibrium specific heat at a fixed particle number, by defining it as the
derivative of the time-averaged energy of the system with respect to temperature. This derivation follows Eq. (10)
mentioned in the main text.

First, we establish the relationship between the chemical potential µ and the temperature T , keeping the particle
number constant. For the Floquet case, following Eq. (10) in the main text, the total particle number is expressed as
a function of both temperature and chemical potential:

n0 =

+∞∑
l=−∞

∫ +∞

−∞
f0(ϵ)νl(ϵ)dϵ =

+∞∑
l=−∞

∫ µ

−∞
νl(ϵ)dϵ+

π2

6
(kBT )

2
+∞∑

l=−∞

ν′l(µ) +O(T 4) (E-1)

In the equation above, we have used the Sommerfeld expansion at low temperatures:∫ ∞

−∞

g(ε)

e(ε−µ)/kBT + 1
dε =

∫ µ

−∞
g(ε)dε+

π2

6
(kBT )

2g′(µ) +O(T )4 (E-2)
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By recasting µ = µ0 + δµ, and expanding the right-hand side of Eq. (E-1) up to the first order of δµ, we can deduce
the relation between µ and T at low temperatures:

µ ≈ µ0 −
π2

6
(kBT )

2

∑+∞
l=−∞ ν′l(µ0)∑+∞
l=−∞ νl(µ0)

. (E-3)

Subsequently, we calculate the non-equilibrium specific heat at a fixed particle number. In the Floquet case, the
averaged total energy is given by:

Ē(µ, T ) =

+∞∑
l=−∞

∫
dk

(2π)d
∣∣φk,l

∣∣2f0(ϵFk + lΩ)ϵFk =

+∞∑
l=−∞

∫ +∞

−∞
dϵf0(ϵ)νl(ϵ)(ϵ− lΩ). (E-4)

By again using the Sommerfeld expansion at low temperature, we obtain

Ē(µ, T ) =

+∞∑
l=−∞

[ ∫ µ

−∞
(ϵ− lΩ)νl(ϵ)dϵ+

π2

6
(kBT )

2
(∂[(ϵ− lΩ)νl(ϵ)]

∂ϵ

)
ϵ=µ

+O(T 4)

]
(E-5)

We then make use of the chain rule

CV =
∂Ē(µ, T )

∂T
=
∂Ē(µ, T )

∂µ

∂µ

∂T
+
∂Ē(µ, T )

∂T
, (E-6)

then substituting ∂µ/∂T from Eq. (E-3) into the equation above, we obtain the non-equilibrium specific heat, CV , at
fixed particle number as follows:

CV =
π2

3
kBT

+∞∑
l=−∞

νl(µ0) +
π2

3
kBT

Ω∑
l νl(µ0)

∑
l2l1

(l2 − l1)νl1(µ0)ν
′
l2(µ0), (E-7)

which is the Eq. (14) shown in the main text.

Appendix F: Floquet amplitudes and van-Hove singularities in square lattice tight-binding Models

This section provides a discussion on the Floquet amplitude in the context of tight-binding models represented on
a square lattice.

1. Harmonics of the periodic energy

We begin by considering a tight-binding model on a square lattice with a lattice constant a = 1, described by the
dispersion relation

ϵk = −2t cos(kx)− 2t cos(ky). (F-1)

We introduce a monochromatic AC driving expressed as

A(t) = [Ax sin(Ωt+ ϕx), Ay sin(Ωt+ ϕy)]. (F-2)

As a result, the dispersion relation of the system evolves periodically as

ϵk → ϵk(t) = −2t cos[kx −Ax sin(Ωt+ ϕx)]− 2t cos[ky −Ay sin(Ωt+ ϕy)]. (F-3)

Applying the Jacobi-Anger expansion allows us to derive the harmonics of the periodic energy as follows:

ϵ
(l)
k =

∫ T

0

dt

T
ϵk(t) exp(+ilΩt) = 2t

[
− e−il(ϕx+π)

2
J+l(−Ax)e

+ikx − e−il(ϕx+π)

2
J+l(+Ax)e

−ikx

− e−il(ϕy+π)

2
J+l(−Ay)e

+iky − e−il(ϕy+π)

2
J+l(+Ay)e

−iky

]
.

(F-4)
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Consequently, the Floquet energy can be calculated as

ϵ
(0)
k = −2t cos(kx)J0(Ax)− 2t cos(ky)J0(Ay). (F-5)

And we pay special attention to k points at X = (π, 0) and Y = (0, π) within the Brillouin zone, for which we obtain
the following expressions

ϵ
(l)
X =

1 + (−1)l

2
[+e−il(ϕx+π)J+l(+Ax)− e−il(ϕy+π)J+l(+Ay)],

ϵ
(l)
Y =

1 + (−1)l

2
[−e−il(ϕx+π)J+l(+Ax) + e−il(ϕy+π)J+l(+Ay)].

(F-6)

From the above it follows that

ϵ
(l)
X = −ϵ(l)Y =

{
0 l is odd
non-zero l is even

(F-7)

2. Amplitudes of Floquet harmonics

We now consider the amplitudes of Floquet harmonics, as expressed by the following equations:

φk,l =
1

T

∫ T

0

dt

[
exp(+ilΩt)× exp

(
− i

∫ t

0

dt′[ϵk(t
′)− ϵFk ]

)]
= exp

(
−

+∞∑
l1=−∞
l1 ̸=0

ϵ
(l1)
k

l1Ω

)
×

∫ T

0

dt

T
exp

( +∞∑
l1=−∞
l1 ̸=0

ϵ
(l1)
k e−il1Ωt

l1Ω
+ ilΩt

)
.

(F-8)

Note that the phase factor −
∑

l1 ̸=0 ϵ
(l1)
k /(l1Ω) is purely imaginary due to the fact that ϵ(l1)k = [ϵ

(−l1)
k ]∗ which can be

seen from Eq. (F-4). To compute |φ(l)
k |2, we can disregard the global phase factor outside the integral and focus on

the integral within it:

ϕk,l =

∫ T

0

dt

T
exp

( +∞∑
l1=−∞
l1 ̸=0

ϵ
(l1)
k e−il1Ωt

l1Ω
+ ilΩt

)
, |ϕk,l|2 = |φk,l|2. (F-9)

We perform a change of variable, z = exp(iΩt):

ϕk,l =
1

2πi

∮ arg[z]=2π

arg[z]=0

+∞∏
l1=−∞
l1 ̸=0

exp
(ϵ(l1)k z−l1

l1Ω

)
zl
dz

z
, (F-10)

We then express this equation by expanding the exponential functions using Taylor series and performing Cauchy’s
residue theorem:

ϕk,l = δ0,l +
∑

n1×l1=l

1

n1!

(ϵ(l1)k

l1Ω

)n1

+
∑

n1×l1+n2×l2=l

1

n1!

(ϵ(l1)k

l1Ω

)n1 1

n2!

(ϵ(l2)k

l2Ω

)n2

+ · · · .

(l1,2,3,··· ̸= 0; n1,2,3,··· ≥ 1)

(F-11)

Building upon equation (F-11), we deduce the following: if l is odd, then

n1 × l1 + n2 × l2 + n3 × l3 + · · · ∈ odd → at least odd numbers of (ni ∈ odd, li ∈ odd) pairs (F-12)

We then incorporate the conclusion from Eq. (F-7) which states that ϵ(l)X = −ϵ(l)Y = 0 when l is odd, into Eq. (F-11).
This yields:

ϕX,l = ϕY,l = 0, l ∈ odd. (F-13)

This result confirms that the contributions associated with the odd harmonics have vanishing weight at these special
momenta, namely φ(0,π),l = φ(π,0),l = 0 for odd l.
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3. Floquet van-Hove singularities

Let us first consider the DoS for equilibrium band without driving for the dispersion from Eq. (F-1). For this model,
the density of state is given by

ν(µ) =
4

|2t|

∫ +π

0

dkx
2π

∫ +π

0

dky
2π

δ(− cos(kx)− cos(ky)− µ̃), µ̃ = µ/2t. (F-14)

By performing a change of variables, u = − cos(kx) and v = − cos(ky), we obtain

ν(µ) =
2

|t|
1

(2π)2

∫ +1

−1

du

∫ +1

−1

dv
1√

1− u2
√
1− v2

δ(u+ v − µ). (F-15)

Notably, the singularity in the above equation originates from the singularities of the integrand at

u = +1, v = −1 or u = −1, v = +1 (F-16)

or equivalently, from the following special k points:

X = (π, 0) or Y = (0, π), (F-17)

leading to divergence of the integral at µ̃ = u+ v = 0 at half filling.

We now proceed to introduce the driving as per Eqs. (F-2) and (F-3). Following the definitions given in Eqs. (4)
and (10) in the main text, we obtain the following relationships:

ν(µ) =

+∞∑
l=−∞

νl(µl), µl = µ− lΩ, (F-18)

and

νl(µl) =

∫ +π

−π

dkx
2π

∫ +π

−π

dky
2π

|ϕ(l)k |2δ(ϵ(0)k − µl) =
∑

ηx,ηy=±1

ν
(ηx,ηy)
l (µl). (F-19)

Here, ν(ηx,ηy)
l (µl) correspond to different patches of the Brillouin zone, which we define as follows:

ν
(−1,−1)
l (µl) =

∫ 0

−π

dkx
2π

∫ 0

−π

dky
2π

|ϕ(l)k |2δ(ϵ(0)k − µl), ν
(−1,+1)
l (µl) =

∫ 0

−π

dkx
2π

∫ +π

0

dky
2π

|ϕ(l)k |2δ(ϵ(0)k − µl),

ν
(+1,−1)
l (µl) =

∫ +π

0

dkx
2π

∫ 0

−π

dky
2π

|ϕ(l)k |2δ(ϵ(0)k − µl), ν
(+1,+1)
l (µl) =

∫ +π

0

dkx
2π

∫ +π

0

dky
2π

|ϕ(l)k |2δ(ϵ(0)k − µl),

(F-20)

where ηx,y = ±1 indicates four different patches of the Brillouin zone. This division allows for a one-to-one change of
variables given by

u = − cos(kx)J0(Ax), v = − cos(ky)J0(Ay), (F-21)

which subsequently results in Jacobians on different patches as shown below:∣∣∣∂(kx, ky)
∂(u, v)

∣∣∣(ηx,ηy)

=
|ηxηy|√

J2
0 (Ax)− u2

√
J2
0 (Ay)− v2

, ηx,y = ±1. (F-22)

By incorporating these transformations, we can express ν(ηx,ηy)
l (µl) as

ν
(ηx,ηy)
l (µl) =

2

|t|
1

(2π)2

∫ +|J0(Ax)|

−|J0(Ax)|
du

∫ +|J0(Ay)|

−|J0(Ay)|
dv

|ϕηx,ηy

l (u, v)|2√
J2
0 (Ax)− u2

√
J2
0 (Ay)− v2

δ(u+ v − µ̃l). (F-23)

Here, ϕηx,ηy

l (u, v) represents the transformation from ϕk,l on each of the four patches. This means that we need to
choose different signs for sin(kx) and sin(ky) based on the values of ηx and ηy.
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Examining Eq. (F-23), it becomes evident that, unlike in the non-driven case, each of the νl(µl) can potentially
have two separate van-Hove singularities that could originate from the singularities of the integrand at

u = +J0(Ax), v = −J0(Ay) or u = −J0(Ax), v = +J0(Ay), (F-24)

or, equivalently, from the special k points

X = (π, 0) or Y = (0, π), (F-25)

which create van-Hove singularities when the conditions

µ̃l = +J0(Ax)− J0(Ay) or µ̃l = −J0(Ax) + J0(Ay) (F-26)

are met, in which µ̃l = (µ− lΩ)/(2t). Moreover, we also observe that:

(i) when Ax = Ay, the two distinct singularities merge into a single singularity;

(ii) as demonstrated in Eq. (F-13), for odd values of l, the conditions ϕX,l = ϕY,l = 0 and therefore |φX,l|2 =
|φY,l|2 = 0 hold, which prevent the appearance of van-Hove singularities for νl(µl) when l is odd in the current
model.;

(iii) Equations (F-4), (F-8), and (F-23), with particular emphasis on Eq.(F-9), offer a non-perturbative expression
for numerically determining the density of states. The convergence stems from the relationship ϵ(l)k ∼ Jl(Ax,y), which
decays rapidly as l increases for a given Ax,y. For our numerical evaluations concerning Eq.(F-9), we sum over values
of l1 ranging from −100 to +100, ensuring well-converged results.
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