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The Ekedahl-Oort Stratification and the

Semi-Module Stratification

Ryosuke Shimada

Abstract

In this paper we compare the J-stratification (or the semi-module strat-
ification) and the Ekedahl-Oort stratification of affine Deligne-Lusztig vari-
eties in the superbasic case. In particular, we classify the cases where the
J-stratification gives a refinement of the Ekedahl-Oort stratification, which
include many interesting cases such that the affine Deligne-Lusztig variety
admits a simple geometric structure.

1 Introduction

The affine Deligne-Lusztig variety was introduced by Rapoport in [30], which plays
an important role in understanding geometric and arithmetic properties of Shimura
varieties. The uniformization theorem by Rapoport and Zink [29] allows us to de-
scribe the Newton strata of Shimura varieties in terms of Rapoport-Zink spaces,
whose underlying spaces are special cases of affine Deligne-Lusztig varieties.

Let F be a non-archimedean local field with finite field Fq of prime characteristic
p, and let L be the completion of the maximal unramified extension of F . Let σ
denote the Frobenius automorphism of L/F . Further, we write O (resp. OF ) for the
valuation ring L (resp. F ). Finally, we denote by ̟ a uniformizer of F (and L) and
by vL the valuation of L such that vL(̟) = 1.

Let G be an unramified connected reductive group over OF . Let B ⊂ G be
a Borel subgroup and T ⊂ B a maximal torus in B, both defined over OF . For
µ, µ′ ∈ X∗(T ) (resp. X∗(T )Q), we write µ′ � µ if µ − µ′ is a non-negative integral
(resp. rational) linear combination of positive coroots. For a cocharacter µ ∈ X∗(T ),
let ̟µ be the image of ̟ ∈ Gm(F ) under the homomorphism µ : Gm → T .

Set K = G(O). We fix a dominant cocharacter µ ∈ X∗(T )+ and b ∈ G(L). Then
the affine Deligne-Lusztig variety Xµ(b) is the locally closed reduced Fq-subscheme
of the affine Grassmannian Gr = G(L)/K defined as

Xµ(b) = {xK ∈ Gr | x−1bσ(x) ∈ K̟µK}.
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The closed affine Deligne-Lusztig variety is the closed reduced Fq-subscheme of Gr
defined as

X�µ(b) =
⋃

µ′�µ

Xµ′(b).

Both Xµ(b) and X�µ(b) are locally of finite type in the equal characteristic case and
locally perfectly of finite type in the mixed characteristic case (cf. [15, Corollary 6.5],
[14, Lemma 1.1]). Finally, the affine Deligne-Lusztig varieties Xµ(b) and X�µ(b)
carry a natural action (by left multiplication) by the σ-centralizer of b

Jb(F ) = {g ∈ G(L) | g−1bσ(g) = b}.

The geometric properties of affine Deligne-Lusztig varieties have been studied by
many people. For example, the non-emptiness criterion and the dimension formula
are already known for the affine Deligne-Lusztig varieties in the affine Grassmannian
(see [5], [35] and [13]). Let B(G) denote the set of σ-conjugacy classes of G(L).
Thanks to Kottwitz [24], a σ-conjugacy class [b] ∈ B(G) is uniquely determined by
two invariants: the Kottwitz point κ(b) ∈ π1(G)/((1 − σ)π1(G)) and the Newton
point νb ∈ X∗(T )Q,+. Set B(G, µ) = {[b] ∈ B(G) | κ(b) = κ(̟µ), νb � µ⋄}, where
µ⋄ denotes the σ-average of µ. Then Xµ(b) 6= ∅ if and only if [b] ∈ B(G, µ). If this
is the case, then we have

dimXµ(b) = 〈ρ, µ− νb〉 −
1

2
def(b),

where ρ is the half sum of positive roots and def(b) is the defect of b. Moreover,
the parametrization problem of the set of irreducible components IrrXµ(b) is also

known. Let Ĝ be the Langlands dual of G defined over Ql with l 6= p. Surprisingly,
there exists a natural bijection between Jb(F )\ IrrXµ(b) and a certain weight space

of the crystal basis Bµ of the irreducible Ĝ-module Vµ of highest weight µ. This is
conjectured by Chen and Zhu, and proved in general by Nie [28].

Besides them, it is known that in certain cases, the closed affine Deligne-Lusztig
variety admits a simple description. In [8], [10] and [11], a notion of “Coxeter type”
was introduced by Görtz, He and Nie. They proved that if (G, µ) is of Coxeter type
and if b is the unique basic element in B(G, µ), then X�µ(b) is naturally a union
of classical Deligne-Lusztig varieties (in fact, they studied the cases with arbitrary
parahoric level). This stratification is the so-called Bruhat-Tits stratification, a
stratification indexed in terms of the Bruhat-Tits building of Jb(F ), see [11, §2.4].
These simple descriptions of closed affine Deligne-Lusztig varieties have been applied
to number theory especially when (G, µ) corresponds to a Shimura datum (cf. [11,
§1]). For example, the cases of Coxeter type include the case for certain unitary
groups of signature (1, n − 1) studied in [37] by Vollaard and Wedhorn, which has
been used in the Kudla-Rapoport program [25].
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To give a conceptual way to explain the relationship between the geometry of
affine Deligne-Lusztig varieties and the Bruhat-Tits building of Jb(F ) indicated by
above examples, Chen and Viehmann [1] introduced the J-stratification, where J
stands for Jb(F ). The J-strata are locally closed subsets of Gr. By intersecting
each J-stratum with X�µ(b), we obtain the J-stratification of X�µ(b) (see §2.4 for
details). In [6], Görtz showed that the Bruhat-Tits stratification coincides with the
J-stratification. In fact the Bruhat-Tits stratification is a refinement of the Ekedahl-
Oort stratification (see §2.2 for the latter). So the J-stratification is also a refinement
of the Ekedahl-Oort stratification when (G, µ) is of Coxeter type. This does not hold
in general even if µ is minuscule. See [1, Example 4.1] for a counterexample in the
case G = GL9. Therefore the cases when J-stratification is a refinement of the
Ekedahl-Oort stratification should be special cases, which are of particular interest.

Usually it seems very difficult to study the J-stratification. However, in the case
that G = GLn and b is superbasic (i.e., κ(b) ∈ Z is coprime to n), the J-stratification
coincides with a stratification by semi-modules ([1, Proposition 3.4]). The notion of
semi-modules was first considered by de Jong and Oort [2] (see §3.1) for minuscule
cocharacters. Later Viehmann [35] introduced a notion of extended semi-modules
for arbitrary cocharacters, which generalizes the notion of semi-modules. It played
a crucial role to prove the dimension formula (for split groups) and the Chen-Zhu
conjecture mentioned above. This is because for these problems, we can reduce the
general case to the case that G = GLn and b is superbasic.

The aim of this paper is to compare the Ekedahl-Oort stratification and the
semi-module stratification (for G = GLn). To state the main results, we need some
notation. Let W0 be the (finite) Weyl group of T in G and let W̃ be the Iwahori-
Weyl group of T in G. Then W̃ = X∗(T )⋊W0. We denote the projection W̃ →W0

by p. For µ ∈ X∗(T )+, we denote by Adm(µ) the admissible subset of W̃ . Let
SAdm(µ) be a certain subset of Adm(µ), which is the index set of the Ekedahl-Oort
stratification of X�µ(τµ) (see §2.2). We fix (a representative in G(L) of a) length
0 element τµ ∈ W̃ whose σ-conjugacy class in G(L) is the unique basic element in
B(G, µ). Finally, let LP(w) ⊆W0 be the length positive elements for w (see §2.5).

Theorem A (See Theorem 7.2). Let G = GLn and let µ ∈ X∗(T )+. Assume that
τµ is superbasic. Then the following assertions are equivalent.

(i) The J-stratification (or the semi-module stratification) of X�µ(τµ)( 6= ∅) gives
a refinement of the Ekedahl-Oort stratification.

(ii) For any w ∈ SAdm(µ) whose corresponding Ekedahl-Oort stratum is non-
empty, there exists v ∈ LP(w) such that v−1p(w)v is a Coxeter element.
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(iii) The cocharacter µ has one of the following forms modulo Zωn:

ω1, ωn−1, (n ≥ 1),

ω2, 2ω1, ωn−2, 2ωn−1, (odd n ≥ 3),

ω2 + ωn−1, 2ω1 + ωn−1 ω1 + ωn−2, ω1 + 2ωn−1, (n ≥ 3),

ω3, ωn−3, (n = 7, 8),

3ω1, 3ωn−1, (n = 4, 5),

ω1 + ω2, ω3 + ω4, (n = 5),

4ω1, ω1 + 3ω2, 4ω2, 3ω1 + ω2, (n = 3),

mω1 with m odd, (n = 2).

Here ωk denotes the cocharacter of the form (1, . . . , 1, 0, . . . , 0) in which 1 is repeated
k times.

See §2.4 for the reason why we choose τµ. In fact, this choice is the reasonable one
suggested in [1, Remark 2.1], which is unique in this case. Also we can deduce the
geometric structure of each J-stratum. In many cases, it is universally homeomorphic
to (the perfection of) an affine space (see Theorem 7.2 and Remark 7.3).

Although the cocharacters ω1 and ωn−1 are of Coxeter type for any n, the cochar-
acters 2ω1 and ω2 are of Coxeter type only when n = 2 and n = 4 respectively (cf.
[11, Theorem 1.4]). In Theorem A, these two cocharacters are no longer exceptional
cases. Note also that the condition (ii) works for general G. It would be interesting
to study this condition in general.

Cyclic semi-modules are certain simple elements in the set of extended semi-
modules. It is easy to see that if there exists a non-cyclic semi-module for µ, then
the semi-module stratification of Xµ(τµ) never gives a refinement of the Ekedahl-
Oort stratification (Corollary 3.10). Along the way of proving Theorem A, we also
prove the following classification theorem, which ensures that there exists a non-
cyclic semi-module in many cases.

Theorem B (See Theorem 4.17). Every top extended semi-module (the semi-
module whose corresponding stratum is top-dimensional) for µ is cyclic if and only
if µ has one of the following forms modulo Zωn:

(i) ωi with 1 ≤ i ≤ n− 1 such that i is coprime to n.

(ii) ω1 + ωi or ωn−1 + ωn−i with 1 ≤ i ≤ n− 1 such that i+ 1 is coprime to n.

(iii) (nr+ i)ω1 or (nr+ i)ωn−1 with r ≥ 0 and 1 ≤ i ≤ n− 1 such that i is coprime
to n.
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(iv) (nr + i− j)ω1 + ωj or (nr + i− j)ωn−1 + ωn−j with r ≥ 1, 2 ≤ j ≤ n− 1 and
1 ≤ i ≤ n− 1 such that i is coprime to n.

The paper is organized as follows. In §2 we introduce the affine Deligne-Lusztig
variety and stratifications of it. We also recall the length positive elements and the
non-emptiness criterion of the affine Deligne-Lusztig variety in the affine flag variety.
In §3 and §4, we recollect known results on semi-modules and crystal bases respec-
tively. Also in §4, we prove Theorem B using combinatorics on Young tableaux. The
key ingredient here is the explicit construction of top extended semi-modules from
crystal bases via the natural map in the Chen-Zhu conjecture. This is established in
[33] by the author. In §5 and §6, we examine the semi-module stratification and the
Ekedahl-Oort stratification respectively by an explicit calculation of semi-modules
and elements in SAdm(µ). In particular, using the non-emptiness criterion men-
tioned above, we show that Theorem A (ii) does not hold for many µ. Finally in §7
we prove the main theorem, combining Theorem B and the results in §5 and §6.

Acknowledgments: The author is grateful to his advisor Yoichi Mieda for his
constant support and encouragement. This work was supported by the WINGS-
FMSP program at the Graduate School of Mathematical Science, the University of
Tokyo. This work was also supported by JSPS KAKENHI Grant number JP21J22427.

2 Preliminaries

Keep the notations in §1.

2.1 Notation

Let Φ = Φ(G, T ) denote the set of roots of T in G. We denote by Φ+ (resp. Φ−) the
set of positive (resp. negative) roots distinguished by B. Let ∆ be the set of simple
roots and ∆∨ be the corresponding set of simple coroots. Let X∗(T ) be the set of
cocharacters, and let X∗(T )+ be the set of dominant cocharacters.

The Iwahori-Weyl group W̃ is defined as the quotient NG(L)T (L)/T (O). This
can be identified with the semi-direct product W0 ⋉ X∗(T ), where W0 is the finite
Weyl group of G. We denote the projection W̃ → W0 by p. Let S ⊂ W0 denote
the subset of simple reflections, and let S̃ ⊂ W̃ denote the subset of simple affine
reflections. We often identify ∆ and S. The affine Weyl group Wa is the subgroup
of W̃ generated by S̃. Then we can write the Iwahori-Weyl group as a semi-direct
product W̃ = Wa⋊Ω, where Ω ⊂ W̃ is the subgroup of length 0 elements. Moreover,
(Wa, S̃) is a Coxeter system. We denote by ≤ the Bruhat order on W̃ . For any
J ⊆ S̃, let JW̃ be the set of minimal length elements for the cosets in WJ\W̃ , where
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WJ denotes the subgroup of W̃ generated by J . We also have a length function
ℓ : W̃ → Z≥0 given as

ℓ(w0̟
λ) =

∑

α∈Φ+,w0α∈Φ−

|〈α, λ〉+ 1|+
∑

α∈Φ+,w0α∈Φ+

|〈α, λ〉|,

where w0 ∈ W0 and λ ∈ X∗(T ).
For w ∈ Wa, we denote by supp(w) ⊆ S̃ the set of simple affine reflections

occurring in every (equivalently, some) reduced expression of w. Note that τ ∈ Ω
acts on S̃ by conjugation. We define the σ-support suppσ(wτ) of wτ as the smallest
τσ-stable subset of S̃. We call an element wτ ∈ Waτ a σ-Coxeter element if exactly
one simple reflection from each τσ-orbit on suppσ(wτ) occurs in every (equivalently,
any) reduced expression of w.

For w,w′ ∈ W̃ and s ∈ S̃, we write w
s
−→σ w

′ if w′ = swσ(s) and ℓ(w′) ≤ ℓ(w).
We write w →σ w

′ if there is a sequence w = w0, w1, . . . , wk = w′ of elements in W̃
such that for any i, wi−1

si−→σ wi for some si ∈ S. If w →σ w
′ and w′ →σ w, we write

w ≈σ w
′.

For α ∈ Φ, let Uα ⊆ G denote the corresponding root subgroup. We set

I = T (O)
∏

α∈Φ+

Uα(̟O)
∏

β∈Φ−

Uβ(O) ⊆ G(L),

which is called the standard Iwahori subgroup associated to the triple T ⊂ B ⊂ G.
In the case G = GLn, we will use the following description. Let χij be the

character T → Gm defined by diag(t1, t2, . . . , tn) 7→ titj
−1. Then we have Φ = {χij |

i 6= j}, Φ+ = {χij | i < j}, Φ− = {χij | i > j} and ∆ = {χi,i+1 | 1 ≤ i <
n}. Through the isomorphism X∗(T ) ∼= Zn, X∗(T )+ can be identified with the set
{(m1, · · · , mn) ∈ Zn|m1 ≥ · · · ≥ mn}. Let us write s1 = (1 2), s2 = (2 3), . . . , sn−1 =
(n − 1 n). Set s0 = ̟χ∨

1,n(1 n), where χ1,n is the unique highest root. Then
S = {s1, s2, . . . , sn−1} and S̃ = S∪{s0}. The Iwahori subgroup I ⊂ K is the inverse
image of the lower triangular matrices under the projection G(O) → G(Fq), ̟ 7→ 0.

Set τ =

(
0 ̟

1n−1 0

)
. We often regard τ as an element of W̃ , which is a generator

of Ω ∼= Z. Note that b ∈ GLn(L) is superbasic if and only if [b] = [τm] in B(GLn)
for some m coprime to n.

2.2 Affine Deligne-Lusztig Varieties

For w ∈ W̃ and b ∈ G(L), the affine Deligne-Lusztig variety Xw(b) in the affine flag
variety G(L)/I is defined as

Xw(b) = {xI ∈ G(L)/I | x−1bσ(x) ∈ IwI}.
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For µ ∈ X∗(T )+ and b ∈ G(L), the affine Deligne-Lusztig variety Xµ(b) in the affine
Grassmannian Gr = G(L)/K is defined as

Xµ(b) = {xK ∈ Gr | x−1bσ(x) ∈ K̟µK}.

The closed affine Deligne-Lusztig variety is the closed reduced Fq-subscheme of Gr
defined as

X�µ(b) =
⋃

µ′�µ

Xµ′(b).

Left multiplication by g−1 ∈ G(L) induces an isomorphism between Xµ(b) and
Xµ(g

−1bσ(g)). Thus the isomorphism class of the affine Deligne-Lusztig variety
only depends on the σ-conjugacy class of b. Moreover, we have Xµ(b) = Xµ+λ(̟

λb)
for each central λ ∈ X∗(T ).

The admissible subset of W̃ associated to µ is defined as

Adm(µ) = {w ∈ W̃ | w ≤ ̟w0µ for some w0 ∈ W0}.

Set SAdm(µ) = Adm(µ)∩ SW̃ . Then, by [8, Theorem 3.2.1] (see also [12, §2.5]), we
have

X�µ(b) =
⊔

w∈SAdm(µ)

π(Xw(b)),

where π : G(L)/I → G(L)/K is the projection. This is the so-called Ekedahl-Oort
stratification.

For any w ∈ SW̃ , set

Z(w) := {w0 ∈ W0 | w0w = ww0}.

Lemma 2.1. Let ̟µy ∈ SW̃ with µ dominant and y ∈ W0. Assume that Z(̟µy) =
{1}. Then the projection map π : X̟µy(b) → Xµ(b) is injective.

Proof. The proof is similar to [19, Lemma 5.4]. We may assume that X̟µy(b) 6= ∅.
Let gI, g′I ∈ X̟µy(b) such that π(gI) = π(g′I). Then g′−1g ∈ K and hence g′−1g ∈
IxI for some x ∈ W0. Since (g′−1g)(g−1bσ(g)) = (g′−1bσ(g′))(σ(g′−1g)), we have
(IxI)(I̟µyI) ∩ (I̟µyI)(IxI) 6= ∅. Note that (IxI)(I̟µyI) = Ix̟µyI because
̟µy ∈ SW̃ . This implies that x̟µy = ̟µyx. By our assumption, we must have
x = 1 and hence g′−1g ∈ I as desired.

Example 2.2. Let G = GLn and b = τm with m coprime to n, and let ̟µy ∈ SW̃
with µ dominant and y ∈ W0. If µ is minuscule, then it is easy to check that ̟µy =
τmy′ for some y′ ∈ W0. Since m is coprime to n, we conclude that Z(̟µy) = {1}. If
y is n-cycle and {s1, sn−1} * Z(̟µ), then we also have Z(̟µy) = {1}. Indeed, for
any x ∈ W0, x̟

µy = ̟µyx implies that xyx−1 = y and x ∈ Z(̟µ). Thus x = yk

for some 0 ≤ k ≤ n − 1 and ykµ = µ. Since {s1, sn−1} * Z(̟µ), we must have
k = 0.
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2.3 Deligne-Lusztig Reduction Method

The following Deligne-Lusztig reduction method was established in [7, Corollary
2.5.3].

Proposition 2.3. Let w ∈ W̃ and let s ∈ S̃ be a simple affine reflection. If
ch(F ) > 0, then the following two statements hold for any b ∈ G(L).

(i) If ℓ(swσ(s)) = ℓ(w), then there exists a Jb(F )-equivariant universal homeo-
morphism Xw(b) → Xswσ(s)(b).

(ii) If ℓ(swσ(s)) = ℓ(w)− 2, then there exists a decomposition Xw(b) = X1 ⊔ X2

such that

• X1 is open and there exists a Jb(F )-equivariant morphism X1 → Xsw(b),
which is the composition of a Zariski-locally trivial Gm-bundle and a
universal homeomorphism.

• X2 is closed and there exists a Jb(F )-equivariant morphismX2 → Xswσ(s)(b),
which is the composition of a Zariski-locally trivial A1-bundle and a uni-
versal homeomorphism.

If ch(F ) = 0, then the above statements still hold by replacing A1 and Gm by
A1,pfn and Gpfn

m respectively.

The following result is proved in [18, Theorem 2.10], which allows us to reduce
the study of Xw(b) for any w, via the Deligne-Lusztig reduction method, to the
study of Xw(b) for w of minimal length in its σ-conjugacy class.

Theorem 2.4. For each w ∈ W̃ , there exists an element w′ which is of minimal
length inside its σ-conjugacy class such that w →σ w

′.

Following [19, §3.4], we construct the reduction trees for w by induction on ℓ(w).
The vertices of the trees are the elements of W̃ . We write x ⇀ y if x, y ∈ W̃

and there exists x′ ∈ W̃ and s ∈ S̃ such that x ≈σ x
′, ℓ(sx′σ(s)) = ℓ(x′) − 2 and

y ∈ {sx′, sx′σ(s)}. These are (oriented) edges of the trees.
If w is of minimal length in its σ-conjugacy class of W̃ , then the reduction tree

for w consists of a single vertex w and no edges. Assume that w is not of minimal
length and that a reduction tree is given for any z ∈ W̃ with ℓ(z) < ℓ(w). By
Theorem 2.4, there exist w′ and s ∈ S̃ with w ≈σ w

′ and ℓ(sw′σ(s)) = ℓ(w′) − 2.
Then a reduction tree of w consists of the given reduction trees of sw′ and sw′σ(s)
and the edges w ⇀ sw′ and w ⇀ sw′σ(s).

Let T be a reduction tree of w. An end point of T is a vertex in T of minimal
length. A reduction path in T is a path p : w ⇀ w1 ⇀ · · · ⇀ wn, where wn is an

8



end point of T . Set end(p) = wn. We say that x ⇀ y is of type I (resp. II) if
ℓ(x) − ℓ(y) = 1 (resp. ℓ(x) − ℓ(y) = 2). For any reduction path p, we denote by
ℓI(p) (resp. ℓII(p)) the number of type I (resp. II) edges in p. We write Xp a locally
closed subscheme of Xw(b) which is Jb(F )-equivariant universally homeomorphic to
an iterated fibration of type (ℓI(p), ℓII(p)) over Xend(p)(b).

Let B(W̃ , σ) be the set of σ-conjugacy classes in W̃ . Let Ψ : B(W̃ , σ) → B(G)
be the map sending [w] ∈ B(W̃ , σ) to [ẇ] ∈ B(G). It is known that this map is
well-defined and surjective, see [17, Theorem 3.7]. By [19, Proposition 3.9], we have
the following description of Xw(b).

Proposition 2.5. Let w ∈ W̃ and T be a reduction tree of w. For any b ∈ G(L),
there exists a decomposition

Xw(b) =
⊔

p is a reduction path in T ;

Ψ(end(p))=[b]

Xp.

In the case that G = GLn and b = τm with m coprime to n, we can count
the number of top irreducible components and rational points of Xw(b)

0 = {gI ∈
Xw(b) | κ(g) = vL(det(g)) = 0} using the reduction tree for w. By [18, Proposition
3.5], the σ-conjugacy class of τm in W̃ is the unique element in B(W̃ , σ) which maps
to [τm] ∈ B(G) under Ψ. Note also that τm is the unique minimal length element
in its σ-conjugacy class. We define a polynomial as

Fw,b :=
∑

p

(q− 1)ℓI(p)qℓII (p) ∈ N[q− 1],

where p runs over all the reduction paths in T with end(p) = τm.

Proposition 2.6. Assume that G = GLn and b = τm with m coprime to n. Let
w ∈ W̃ and let T be a reduction tree of w. Then the number of top irreducible
components of Xw(b)

0 is equal to the leading coefficient of Fw,b. Moreover, we have

|Xw(b)
0,σ| = Fw,b|q=q.

Proof. Note that each Jb(F )-orbit of an irreducible component of Xw(b) can be
represented by an irreducible component of Xw(b)

0. Moreover, it is known that
the stabilizer in Jb(F ) is a parahoric subgroup (cf. [39, Proposition 3.1.4]), i.e.,
Jb(F ) ∩ I = {g ∈ Jb(F ) | κ(g) = 0}. Then the statement follows from [19, Theorem
3.4 & Proposition 3.5] and [20, Corollary 4.4].

Remark 2.7. The polynomials Fw,b are called class polynomials. However, the
definition above is an ad hoc one. See [19, §3] for the definition in general and the
connection to reduction trees.
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2.4 The J-stratification

For any g, h ∈ G(L), let inv(g, h) denote the relative position, i.e., the unique
dominant cocharacter such that g−1h ∈ K̟inv(g,h)K. By definition, two elements
gK, hK ∈ G(L)/K lie in the same J-stratum if and only if for all j ∈ Jb(F ),
inv(j, g) = inv(j, h). Clearly, this does not depend on the choice of g, h. By [1,
Proposition 2.11], the J-strata are locally closed in Gr. By intersecting each J-
stratum with Xµ(b) (resp. X�µ(b)), we obtain the J-stratification of Xµ(b) (resp.
X�µ(b)).

As explained in [1, Remark 2.1], the J-stratification heavily depends on the choice
of b in its σ-conjugacy class. So we need to fix a specific representative to compare
the J-stratification on Xµ(b) (or X�µ(b)) to other stratification. In loc. cit., it
is pointed out that if b is basic, then a reasonable choice is the unique length 0
element in B(G, µ). Also, for any w ∈ W̃ , the Jẇ(F )-stratification is independent
of the choice of lift in G(L). See [6, Lemma 2.5].

In the case where G = GLn and b = τm with m coprime to n, there is a group-
theoretic way to describe the J-stratification, which we will call the semi-module
stratification. Indeed, by [1, Remark 3.1 & Proposition 3.4], the J-stratification on
Gr coincides with the stratification

G(L)/K =
⊔

λ∈X∗(T )

I̟λK/K.

So in this case, each J-stratum of Xµ(b) (resp. X�µ(b)) coincides with X
λ
µ(b) (resp.

Xλ
�µ(b)) for some λ ∈ X∗(T ), where X

λ
µ(b) = Xµ(b) ∩ I̟λK/K (resp. Xλ

�µ(b) =
X�µ(b) ∩ I̟λK/K). Set Jb(F )

0 = Jb(F ) ∩ K = Jb(F ) ∩ I. Note that τXλ
µ (b) =

Xτλ
µ (b) and Jb(F )/Jb(F )

0 = {τkJb(F )
0 | k ∈ Z}. Thus

Jb(F )X
λ
µ(b) =

⊔

k∈Z

Xτkλ
µ (b) and Jb(F )X

λ
�µ(b) =

⊔

k∈Z

Xτkλ
�µ (b).

See §3.1 for the precise definition of (extended) semi-modules. As we will explain
in §3.2, the set {λ ∈ X∗(T ) | X

λ
µ (b) 6= ∅} can be regarded as semi-modules for µ.

Let wmax be the longest element in W0. Then we have

{λ ∈ X∗(T ) | X
λ
−wmaxµ(b

−1) 6= ∅} = {−wmaxλ | λ ∈ Aµ,b}.

Indeed it is easy to check that the image of Xλ
µ(b) under the automorphism of Gr

by gK 7→ wmax
tg

−1
K is X−wmaxλ

−wmaxµ(b
−1). This gives the description of “dual” semi-

modules for µ.
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2.5 Length Positive Elements

We denote by δ+ the indicator function of the set of positive roots, i.e.,

δ+ : Φ → {0, 1}, α 7→

{
1 (α ∈ Φ+)

0 (α ∈ Φ−).

Note that any element w ∈ W̃ can be written in a unique way as w = x̟µy
with µ dominant, x, y ∈ W0 such that ̟µy ∈ SW̃ . We have p(w) = xy and
ℓ(w) = ℓ(x) + 〈µ, 2ρ〉 − ℓ(y). We define the set of length positive elements by

LP(w) = {v ∈ W0 | 〈vα, y
−1µ〉+ δ+(vα)− δ+(xyvα) ≥ 0 for all α ∈ Φ+}.

Then we always have y−1 ∈ LP(w). Indeed, y is uniquely determined by the con-
dition that 〈α, µ〉 ≥ δ+(−y−1α) for all α ∈ Φ+. Since δ+(α) + δ+(−α) = 1, we
have

〈y−1α, y−1µ〉+ δ+(y−1α)− δ+(xα) = 〈α, µ〉 − δ+(−y−1α) + δ+(−xα) ≥ 0.

Lemma 2.8. For any w = x̟µy ∈ W̃ as above, we define

Φw := {α ∈ Φ+ | 〈α, µ〉 − δ−(y−1α) + δ−(xα) = 0}.

Here δ− denotes the indicator function of the set of negative roots. Then we have

y LP(w) = {r−1 ∈ W0 | r(Φ+ \ Φw) ⊂ Φ+ or equivalently, r−1Φ+ ⊂ Φ+ ∪ −Φw}.

Proof. Let r ∈ W0 such that r(Φ+ \ Φw) ⊂ Φ+. Let α ∈ Φ+. If r−1α ∈ Φ+, then
we can check that y−1r−1 ∈ LP(w) similarly as the case r = 1 above. If r−1α ∈ Φ−,
then we must have r−1α ∈ −Φw. Since δ

−(−α) = δ+(α), it follows that

〈y−1r−1α, y−1µ〉+ δ+(y−1r−1α)− δ+(xr−1α)

=− (〈−r−1α, µ〉 − δ−(−y−1r−1α) + δ−(−xr−1α)) = 0.

Thus y−1r−1 ∈ LP(w). This shows {r−1 ∈ W0 | r(Φ+ \ Φw) ⊂ Φ+} ⊆ y LP(w).
Let v ∈ LP(w) and let α ∈ Φ+. If yvα ∈ Φ−, then

〈−yvα, µ〉 − δ−(−vα) + δ−(−xyvα) = −(〈vα, y−1µ〉+ δ+(vα)− δ+(xyvα)) ≤ 0.

On the other hand, by the characterization of y above, we have

〈−yvα, µ〉 − δ−(−vα) + δ−(−xyvα) = 〈−yvα, µ〉 − δ+(vα) + δ+(xyvα) ≥ 0.

Thus 〈−yvα, µ〉 − δ−(−vα) + δ−(−xyvα) = 0 and hence yvα ∈ −Φw. This shows
y LP(w) ⊆ {r−1 ∈ W0 | r(Φ+ \ Φw) ⊂ Φ+}. The proof is finished.
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The notion of length positive elements is defined by Schremmer in [31]. The
description of LP(w) in Lemma 2.8 is due to Lim [26].

We say that the Dynkin diagram of G is σ-connected if it cannot be written as
a union of two proper σ-stable subdiagrams that are not connected to each other.
The following theorem is a refinement of the non-emptiness criterion in [9], which is
conjectured by Lim in [26] and proved by Schremmer in [32, Proposition 5].

Theorem 2.9. Assume that the Dynkin diagram of G is σ-connected. Let b ∈ G(L)
be a basic element with κ(b) = κ(w). Then Xw(b) = ∅ if and only if the following
two conditions are satisfied:

(i) |Wsuppσ(w)| is not finite.

(ii) There exists v ∈ LP(w) such that suppσ(σ
−1(v)−1p(w)v) ( S.

Remark 2.10. If κ(b) 6= κ(w), then Xw(b) = ∅.

Remark 2.11. Let w ∈ W̃ , w0 ∈ W0 and let J ⊆ ∆ such that J = σ(J). Then we
say that w is a (J, w0, σ)-alcove element if the following conditions are both satisfied:

1. w−1
0 wσ(w0) ∈ W̃J := X∗(T )⋊WJ , and

2. For any α ∈ w0(Φ+ \ΦJ ), Uα∩
wI ⊆ Uα∩I, where ΦJ denotes the root system

generated by J .

In [32, Proposition 5], the condition (ii) in Theorem 2.9 is written as

(ii)’ There exist J ( ∆ and w0 ∈ W0 such that w is a (J, w0, σ)-alcove element.

The equivalence of (ii) and (ii)’ follows from [26, Lemma 3.7 & Lemma 3.9].

In the case G = GLn, there exists a length-preserving automorphism ς of W̃
defined as

w0̟
λ 7→ wmaxw0w

−1
max̟

−wmaxλ, w0 ∈ W0, λ ∈ X∗(T ).

Note that ς(τm) = τ−m, ς(s0) = s0 and ς(si) = sn−i for 1 ≤ i ≤ n−1. Let w = x̟µy
be as above. For any α ∈ Φ+ and v ∈ LP(w), we have

〈ς(v)(−wmaxα), ς(y
−1)(−wmaxµ)〉+ δ+(ς(v)(−wmaxα))− δ+(ς(xy)ς(v)(−wmaxα))

= 〈vα, y−1µ〉+ δ+(vα)− δ+(xyvα) ≥ 0.

Thus LP(ς(w)) = ς(LP(w)) = wmax LP(w)w
−1
max. In particular, there exists v ∈

LP(w) such that v−1p(w)v is a Coxeter element if and only if the same is true for
ς(w) and LP(ς(w)).
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3 Semi-Modules

From now and until the end of this paper, we set G = GLn and b = τm. For
µ ∈ X∗(T )+, let µ(i) denotes the i-th entry of µ. Then [τm] ∈ B(G, µ) if and only if
m = µ(1) + · · ·+ µ(n). We assume this from now. Also, without loss of generality,
we may and will assume that µ(n) = 0. Recall that wmax is the longest element in
W0.

3.1 Extended Semi-Modules

Here we recall the definition of extended semi-modules in a combinatorial way from
[35]. Note that although we choose the subgroup of upper triangular matrices B as
Borel subgroup in this paper, the fixed Borel subgroup in [35] is the subgroup of
lower triangular matrices.

Definition 3.1. A semi-module for m,n is a subset A ⊂ Z that is bounded below
and satisfies m+A ⊂ A and n+A ⊂ A. Set Ā = A \ (n+A). The semi-module A

is called normalized if
∑

a∈Ā a = n(n−1)
2

.

For a semi-module A, there exists a unique µ′ ∈ Nn satisfying the following
condition: Let a0 = min Ā and let inductively ai = ai−1+m−µ′(i)n for i = 1, . . . , n.
Then a0 = an and {a0, a1, . . . , an−1} = Ā. We call µ′ the type of A.

Lemma 3.2. There is a bijection between the set of normalized semi-modules for
m,n and the set of possible types µ′ ∈ Nn with νb � wmaxµ

′.

Proof. This is [35, Lemma 3.3].

Definition 3.3. An extended semi-module (A,ϕ) for µ ∈ X∗(T )+ is a normalized
semi-module A for m,n together with a function ϕ : Z → N ∪ {−∞} satisfying the
following properties:

(1) ϕ(a) = −∞ if and only if a /∈ A.

(2) ϕ(a+ n) ≥ ϕ(a) + 1 for all a ∈ Z.

(3) ϕ(a) ≤ max{k | a +m− kn ∈ A} for all a ∈ A. If b ∈ A for all b ≥ a, then the
two sides are equal.

(4) There is a decomposition of A into disjoint union of sequences a1j , . . . , a
n
j with

j ∈ N and the following properties:

(a) ϕ(alj+1) = ϕ(alj) + 1.
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(b) If ϕ(alj + n) = ϕ(alj) + 1, then alj+1 = alj + n. Otherwise alj+1 > alj + n.

(c) The n-tuple (ϕ(al0)) is a permutation of µ.

An extended semi-module such that the equality holds in (3) for all a ∈ A is called
cyclic.

For any λ ∈ X∗(T ), we denote by λdom the dominant conjugate of λ. Let µ′

be the type of a semi-module for m,n. Let ϕ be a function such that (1) and the
equation in (3) hold. Then it is easy to check that (A,ϕ) is a cyclic semi-module
for µ′

dom. In general, the following lemma holds.

Lemma 3.4. Let (A,ϕ) be an extended semi-module for µ and let µ′ be the type
of A. Then µ′

dom � µ and (A,ϕ) is cyclic if and only if µ′ ∈ W0µ. Moreover, if µ is
minuscule, then all extended semi-modules for µ are cyclic.

Proof. See [35, Lemma 3.6 & Corollary 3.7]. See also [13, Lemma 5.9].

Let e0, . . . , en−1 be the standard basis of Ln. Then the lattice On is generated
by e0, . . . , en−1. For i ∈ Z, we define ei by ei+n = ̟ei. Note that we have τei = ei+1

for any i. In the sequel, we identify Gr and {M ⊂ Ln lattice} by gK 7→ gOn.
Let Xµ(b)

0 be a Fq-subscheme of Xµ(b) defined as Xµ(b)
0 = {gK ∈ Xµ(b) |

κ(g) = 0}. We associate to M ∈ Xµ(b)
0 an extended semi-module for µ. Let

v ∈ Ln. Then we can write v =
∑

i∈Z αiei with αi ∈ Fq and αi = 0 for sufficiently
small i. Let

I : Ln \ {0} → Z, v 7→ min{i | αi 6= 0}.

For M ∈ Gr, we define the set

A(M) = {I(v) | v ∈M \ {0}}.

It is easy to check that if M ∈ Xµ(b)
0, then A(M) is a normalized semi-module for

m,n. We also define ϕ(M) : Z → N ∪ {−∞} by

a 7→

{
max{k | ∃v ∈M with I(v) = a,̟−kbσ(v) ∈ M} (a ∈ A(M))

−∞ (a /∈ A(M)).

Lemma 3.5. Let M ∈ Xµ(b)
0. Then (A(M), ϕ(M)) is an extended semi-module

for µ.

Proof. See [35, Lemma 4.1].

For an extended semi-module (A,ϕ) for µ, let

SA,ϕ = {M | A(M) = A,ϕ(M) = ϕ} ⊂ Gr.
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Lemma 3.6. The set SA,ϕ is a locally closed subscheme of Xµ(b)
0.

Proof. See [35, Lemma 4.2].

Let Aµ,b be the set of extended semi-modules for µ. Set Atop
µ,b = {(A,ϕ) ∈ Aµ,b |

dimSA,ϕ = dimXµ(b)}. By Proposition 3.7 below, Jb(F )\ IrrXµ(b) is parametrized
by Atop

µ,b . In the sequel, we also use the symbol A to denote the affine space as usual.
We hope our notation will not cause confusions.

For an extended semi-module (A,ϕ) for µ, let

V(A,ϕ) = {(a, c) ∈ A× A | c > a, ϕ(a) > ϕ(c) > ϕ(a− n)}.

Proposition 3.7. Let (A,ϕ) be an extended semi-module for µ. There exists a
non-empty open subscheme UA,ϕ ⊆ A|V(A,ϕ)| and a morphism UA,ϕ → SA,ϕ which
is bijective on Fq-valued points. In particular, SA,ϕ is irreducible and of dimension
|V(A,ϕ)|. Moreover if (A,ϕ) is a cyclic extended semi-module, then UA,ϕ = A|V(A,ϕ)|.

Proof. See [35, Theorem 4.3].

Here we briefly describe UA,ϕ and the map UA,ϕ → SA,ϕ. For any x ∈ F
|V(A,ϕ)|

q =

A|V(A,ϕ)|, we denote the coordinates of x by xa,c. We associate to every x a set of
elements {v(a) ∈ Ln | a ∈ A} which satisfies the following equations.

If a = max Ā, then

v(a) = ea +
∑

(a,c)∈V(A,ϕ)

[xa,c]v(c).

For any other element a ∈ Ā, we want

v(a) = v′ +
∑

(a,c)∈V(A,ϕ)

[xa,c]v(c),

where v′ = ̟−ϕ(a′)bσ(v(a′)) for a′ being minimal satisfying a′+m−ϕ(a′)n = a. For
a ∈ n+ A, we want

v(a) = ̟v(a− n) +
∑

(a,c)∈V(A,ϕ)

[xa,c]v(c).

Here [xa,c] denotes the Teichmüller lift of xa,c if chF = 0 and [xa,c] = xa,c if chF > 0.
The set {v(a) ∈ Ln | a ∈ A} is uniquely determined by the equations above. Hence
the map A|V(A,ϕ)| → Gr, x 7→ 〈v(a)〉a∈A is well-defined. By applying σ on the above
equations for x, we can easily check that this map is compatible with the action of
σ, i.e., σ(x) := (xqa,c) maps to σ〈v(a)〉a∈A. Let UA,ϕ be the preimage of SA,ϕ under
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this map. Then SA,ϕ and hence UA,ϕ are stable under σ (because σ(b) = b). In
particular, we have |Sσ

A,ϕ| = |Uσ
A,ϕ|. So if (A,ϕ) is cyclic, then |Sσ

A,ϕ| = q|V(A,ϕ)|.
Although not needed in this paper, it is also worth mentioning that if (A,ϕ) is
non-cyclic, then SA,ϕ is never universally homeomorphic to an affine space.

Proposition 3.8. If (A,ϕ) is non-cyclic, then |Sσ
A,ϕ| < q|V(A,ϕ)|. In particular, SA,ϕ

is never universally homeomorphic to an affine space.

Proof. Let x ∈ A|V(A,ϕ)|. Note that if xa,c = 0 for all (a, c) ∈ V(A,ϕ), then v(a) = ea
for all a ∈ A. Set M = 〈ea〉a∈A. Then it is easy to check that (A(M), ϕ(M)) is a
cyclic semi-module for the dominant conjugate of the type of A(M). So if (A,ϕ) is
not cyclic, then M /∈ SA,ϕ and hence |Sσ

A,ϕ| = |Uσ
A,ϕ| < q|V(A,ϕ)|. The last statement

follows from [3, Proposition 4.1.12 & Proposition 8.1.11 (ii)].

3.2 The Stratification by Extended Semi-Modules

For any λ ∈ X∗(T ), set A
λ = {(i − 1) + λ(i)n + Nn | 1 ≤ i ≤ n}. It is easy to

check that for a lattice M ∈ I̟λK/K, we have A(M) = Aλ. Thus we have the
following lemma, which relates the semi-module stratification to the stratification
by extended semi-modules.

Lemma 3.9. Let λ ∈ X∗(T ) with λ(1) + · · · + λ(n) = 0. Then Xλ
µ(b) 6= ∅ if and

only if there exists an extended semi-module (Aλ, ϕ) for µ. If this is the case, we
have

Xλ
µ(b) =

⊔

ϕ

SAλ,ϕ,

where ϕ runs over all the functions Z → N ∪ {−∞} such that the pair of Aλ and
the function is an extended semi-module for µ.

For λ ∈ X∗(T ) with Xλ
µ(b) 6= ∅, let 1 ≤ i0 ≤ n such that (i0 − 1) + λ(i0)n =

minAλ. Then

(i0 − 1) + λ(i0)n+m− (λ(i0) + λb,dom(c
m(i0))− λ(cm(i0)))n

=cm(i0)− 1 + λ(cm(i0))n ∈ Ā,

where c = s1 · · · sn−1. Repeating the same argument, we can check that the type
of Aλ is a conjugate of bλ − λ = cmλ + λb,dom − λ. By Lemma 3.4, an extended
semi-module (Aλ, ϕ) for µ is cyclic if and only if bλ− λ ∈ W0µ.

Corollary 3.10. Let µ ∈ X∗(T )+. If there exists a non-cyclic semi-module for µ,
then the semi-module stratification ofX�µ(b) is not a refinement of the Ekedahl-Oort
stratification.
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Proof. Let (Aλ, ϕ) be a non-cyclic semi-module for µ. Then we have (bλ−λ)dom ≺ µ
by Lemma 3.4. On the other hand, there always exists a cyclic semi-module (Aλ, ϕ′)
for (bλ − λ)dom. By Lemma 3.9, Xλ

�µ(b) intersects both Xµ(b) and X(bλ−λ)dom(b).
This implies that Xλ

�µ(b) is not contained in any set of the form π(Xw(b)) with

w ∈ W̃ , which finishes the proof.

For µ = (µ(1), . . . , µ(n−1), 0) ∈ X∗(T )+, set µ
∗ = (µ(1), µ(1)−µ(n−1), . . . , µ(1)−

µ(2), 0) and b∗ = τnµ(1)−m. If (Aλ, ϕ) is an extended semi-module for µ, then there
exists ϕ′ : Z → N ∪ {−∞} such that (A−wmaxλ, ϕ′) is an extended semi-module for
µ∗ (see §2.4). Clearly, bλ − λ ∈ W0µ if and only if b∗(−wmaxλ) + wmaxλ ∈ −W0µ

∗.
Thus we have the following lemma.

Lemma 3.11. There exists a non-cyclic extended semi-module for µ if and only if
the same is true for µ∗.

3.3 The Minuscule Case

In this subsection, we treat the minuscule case. Consider Gd with a Frobenius
automorphism given by

(g1, g2, . . . , gd) 7→ (g2, . . . , gd, σ(g1)).

For µ• = (µ1, . . . , µd) ∈ X∗(T )
d
+ and b• = (1, . . . , 1, b) ∈ Gd(L) with b ∈ G(L), we

define Xµ•
(b•) ⊂ Grd = Gd(L)/Kd as

Xµ•
(b•) = {x•K

d ∈ Grd | x−1
• b•σ(x•) ∈ Kd̟µ•Kd}.

Let us denote by IrrXµ•
(b•) the set of irreducible components ofXµ•

(b•). Through
the identification Jb(F ) ∼= Jb•(F ) given by g 7→ (g, . . . , g), this set is equipped with
an action of Jb(F ).

For minuscule µ• ∈ X∗(T )
d
+ and b• = (1, . . . , 1, b) ∈ Gd(L), we define

Atop
µ•,b•

:= {λ• ∈ X∗(T )
d | dimXλ•

µ•
(b•) = dimXµ•

(b•)}.

Here Xλ•

µ•
(b•) denotes Xµ•

(b•) ∩ Itλ•K/K. For λ•, λ
′
• ∈ Atop

µ•,b•
, we write λ• ∼ λ′•

if λ• = τkλ′• = (τkλ′1, . . . , τ
kλ′d) for some k ∈ Z. Let Atop

µ•,b•
denote the set of

equivalence classes with respect to ∼, and let [λ•] ∈ Atop
µ•,b•

denote the equivalence

class represented by λ• ∈ Atop
µ•,b•

. Then Jb(F )\ IrrXµ•
(b•) is parametrized by Atop

µ•,b•

as follows.

Proposition 3.12. Assume that µ• ∈ X∗(T )
d
+ is minuscule. Then the map λ• 7→

Xλ•

µ•
(b•) induces a bijection

Atop
µ•,b•

∼= Jb(F )\ IrrXµ•
(b•).
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Proof. See [14, Proposition 1.6]. Note that we have StabJb(F )(X
λ•

µ•
(b•)) = Jb(F )

0.

We also define

Aj
µ•,b•

:= {λ• ∈ X∗(T )
d | dimXλ•

µ•
(b•) = j}

for 1 ≤ j ≤ dimXµ•
(b•). We can similarly consider the equivalence relation ∼

as above. If d = 1, then Aj
µ,b := Aj

µ,b/ ∼ can be identified with (extended) semi-
modules for µ whose corresponding stratum has dimension i, see Lemma 3.4 and
Lemma 3.9.

Proposition 3.13. Set µ = ωi. Then we always have |Atop
µ,b | = |A0

µ,b| = 1. If

i = 2, n − 2, then |Aj
µ,b| = 1 for all 0 ≤ j ≤ dimXµ(b). If i = 3, n − 3, then

|AdimXµ(b)−1
µ,b | = 2.

Proof. We can easily check the equalities in the proposition using [14, Theorem 4.16]
(cf. [2, Remark 6.16]), which gives a combinatorial way of computing |Aj

µ,b|. In fact,
all of the assertions except the last assertion follow from [36, Proposition 5.5].

Example 3.14. We always have A0
ωi,b

= {[0]}.

4 Crystal Bases

Keep the notations and assumptions in §3.

4.1 Crystals and Young Tableaux

In this subsection, we first recall the definition of Ĝ-crystals from [38, Definition
3.3.1].

Definition 4.1. A (normal) Ĝ-crystal is a finite set B, equipped with a weight map
wt: B → X∗(T ), and operators ẽα, f̃α : B → B ∪ {0} for each α ∈ ∆, such that

(i) for every b ∈ B, either ẽαb = 0 or wt(ẽαb) = wt(b) + α∨, and either f̃αb = 0
or wt(f̃αb) = wt(b)− α∨,

(ii) for all b,b′ ∈ B one has b′ = ẽαb if and only if b = f̃αb
′, and

(iii) if εα, φα : B → Z, α ∈ ∆ are the maps defined by

εα(b) = max{k | ẽkαb 6= 0} and φα(b) = max{k | f̃k
αb 6= 0},

then we require φα(b)− εα(b) = 〈α,wt(b)〉.
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For a Ĝ-crystal B, let B∗ = {b∗ | b ∈ B} be the dual Ĝ-crystal. Setting 0∗ = 0, the
maps are given by

wt(b∗) = −wt(b), ẽα(b
∗) = (fαb)

∗, and f̃α(b
∗) = (ẽαb)

∗.

For λ ∈ X∗(T ), we denote by B(λ) the set of elements with weight λ for Ĝ,

called the weight space with weight λ for Ĝ. Let B1 and B2 be the two Ĝ-crystals.
A morphism B1 → B2 is a map of underlying sets compatible with wt, ẽα and f̃α.

In the sequel, we write ẽi and f̃i (resp. εi and φi) instead of ẽχi,i+1
and f̃χi,i+1

(resp. εχi,i+1
and φχi,i+1

) for simplicity.

Example 4.2. Let Bµ be the crystal basis of the irreducible Ĝ-module of highest
weight µ ∈ X∗(T )+. Then Bµ is a crystal. We call Bµ a highest weight crystal

of highest weight µ (cf. [38, Definition 3.3.1 (3)]). There exists a unique element
bµ ∈ Bµ satisfying ẽαbµ = 0 for all α, wt(bµ) = µ, and Bµ is generated from bµ

by operators f̃α. So wmaxbµ has the lowest weight wmaxµ. It is well-known that the
dual of Bµ is isomorphic to B−wmaxµ (see for example [21, Lemma 3.5.2]).

We give a realization of Bµ by Young tableaux. This allows us to treat it in a
combinatorial way.

Definition 4.3. A Young diagram is a collection of boxes arranged in left-justified
rows with a weakly decreasing number of boxes in each row. For a dominant cochar-
acter µ ∈ X∗(T )+, we denote by Yµ the Young diagram having µ(i) boxes in the ith
row. A skew Young diagram is a diagram obtained by removing a smaller Young di-
agram from a larger one that contains it. For dominant cocharacters µ, ν ∈ X∗(T )+
with ν(i) ≤ µ(i), we denote by Yµ/ν the skew Young diagram obtained by removing
Yν from Yµ.

Definition 4.4. A tableau is a (skew) Young diagram filled with numbers, one
for each box. A semi-standard tableau is a tableau obtained from a (skew) Young
diagram by filling the boxes with the numbers 1, 2, . . . , n subject to the conditions

(i) the entries in each row are weakly increasing from left to right,

(ii) the entries in each column are strictly increasing from top to bottom.

1 1 2 4

2 3 3

4

2 4

3 3

4
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Let Kµ/ν(λ) be the number of all semi-standard tableaux b of shape Yµ/ν such
that the number of i appearing in b is λ(i) for 1 ≤ i ≤ n. This is sometimes called
the Kostka number. In §4.3, we need the following well-known result.

Proposition 4.5. Let λ, λ′ ∈ X∗(T )+. If λ � λ′, then Kµ/ν(λ
′) ≤ Kµ/ν(λ). In

particular, Kµ/ν(λ
′) 6= 0 implies Kµ/ν(λ) 6= 0.

Proof. See [4, Proposition 1.2] and the remark right after the proposition.

We denote by B(Y ) the set of all semi-standard tableaux of shape Y .

Theorem 4.6. Let µ = (µ(1), . . . , µ(n)) ∈ X∗(T )+\{0} with µ(n) = 0. Then B(Yµ)
has a crystal structure. Moreover, the crystal B(Yµ) is isomorphic to Bµ.

Proof. This is [21, Theorem 7.3.6 & Theorem 7.4.1].

In the sequel, we identify Bµ and B(Y ) by Theorem 4.6. For a semi-standard
tableau b ∈ Bµ, let ki denote the number of i’s appearing in b. Then the weight
map wt on Bµ is given by wt(b) = (k1, . . . , kn). The following result is an explicit
description of the actions of ẽi and f̃i on Bµ.

Theorem 4.7. The actions of ẽi and f̃i on b ∈ Bµ can be computed by following
the steps below:

(i) In the Far-Eastern reading b1⊗· · ·⊗bN of b, we identify i (resp. i+ 1 ) by
+ (resp. −) and neglect other boxes.

(ii) Let ui(b) = u1u2 · · ·ul (uj ∈ {±}) be the sequence obtained by (i). If there is
“+−” in u(b), then we neglect such a pair. We continue this procedure as far
as we can.

(iii) Let ui(b)red = − · · ·−+ · · ·+ be the sequence obtained by (ii). Then ẽi changes
the rightmost − in u(b)red to +, and f̃i changes the leftmost + in u(b)red to
−. If there is no such − (resp. +), then ẽib = 0 (resp. f̃ib = 0).

Moreover, εi(b) (resp. φi(b)) is equal to the number of − (resp. +) in u(b)red.

Proof. The first statement is [23, Theorem 3.4.2]. The second statement follows
immediately from this.

Next we recall the Weyl group action on crystals. Let B be a Ĝ-crystal. For any
1 ≤ i ≤ n− 1 and b ∈ B, we set

sib =

{
f̃
〈χi,i+1,wt(b)〉
i b if 〈χi,i+1,wt(b)〉 ≥ 0

ẽ
−〈χi,i+1,wt(b)〉
i b if 〈χi,i+1,wt(b)〉 ≤ 0.
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Then we have the obvious relation

wt(sib) = si(wt(b)).

By [22, Theorem 7.2.2], this extends to the action of the Weyl groupW0 on B, which
is compatible with the action on X∗(T ).

Lemma 4.8. Let w,w′ ∈ W0 and b ∈ B. If w(wt(b)) = w′(wt(b)), then wb = w′b.

Proof. This is [33, Lemma 3.10].

Let b ∈ B(λ). If λ′ is a conjugate of λ, i.e., there exists w ∈ W0 such that
λ′ = wλ, then we call wb the conjugate of b with weight λ′. By Lemma 4.8, this
does not depend on the choice of w.

Finally we consider the minuscule case. If µ ∈ X∗(T )+ is minuscule, then
wt: Bµ → X∗(T ) gives an identification between Bµ and the set of cocharacters
which are conjugate to µ. Suppose µ• = (µ1, . . . , µd) ∈ X∗(T )

d
+ is minuscule. We

can also identify BĜd

µ•
:= Bµ1

×· · ·×Bµd
with the set of cocharacters in X∗(T )

d which
are conjugate to µ•.

For 1 ≤ k < n, let ωk be the cocharacter of the form (1, . . . , 1, 0, . . . , 0) in which
1 is repeated k times. Assume that each µi is equal to ωki for some 1 ≤ ki < n and
i < j if and only if ki ≤ kj. In the rest of paper, we call such µ• Far-Eastern. If µ•

is Far-Eastern, then |µ•| := µ1 + · · · + µd is dominant and its last entry is 0. Let

FE: B|µ•| → BĜd

µ•
be a map defined by decomposing b ∈ Bµ into its columns from

right to left. We call FE the Far-Eastern reading.

4.2 Construction of Extended Semi-Modules

In this subsection, we recall from [33, §4.2] the way of constructing extended semi-
modules. See [33, §4.3] for some examples of computation. Let µ• ∈ X∗(T )

d
+ be a

Far-Eastern cocharacter. Set µ = |µ•|.

Let λb denote the cocharacter whose i-th entry is ⌊ im
n
⌋ − ⌊ (i−1)m

n
⌋. Set λopb =

wmaxλb. For any b ∈ Bµ(λb), we denote by bop the conjugate of b with weight λopb .
Let 1 ≤ m0 < n be the residue of m modulo n. Note that each entry of λb is ⌊

m
n
⌋

or ⌊m
n
⌋ + 1 and λb(i) = λb(n + 1 − i) for any 2 ≤ i ≤ n− 1. Let i0 = 1 < i1 < i2 <

· · · < im0
= n be the integers such that λb(i1) = λb(i2) = · · · = λb(im0

) = ⌊m
n
⌋ + 1.

Then

λopb = w′
maxλb, where w′

max = (sim0−1
· · · sn−1) · · · (si1 · · · si2−1)(s1 · · · si1−1).

Here λb(i) = ⌊m
n
⌋ (resp. λb(i + 1) = ⌊m

n
⌋) if and only if si−1si ≤ w′

max (resp.
sisi+1 ≤ w′

max). By Lemma 4.8, it follows that bop can be computed by the action

21



of the Coxeter element w′
max. In this computation, each si acts as the action of ẽi

because ⌊m
n
⌋ − (⌊m

n
⌋+ 1) = −1. Therefore, if we write

FE(b) = (b1, . . . ,bd)

then there exists (w1, . . . , wd) ∈ W d
0 such that

FE(bop) = (w1b1, . . . , wdbd)

and each simple reflection appears exactly once in some supp(wj).

Lemma 4.9. The tuple (w1, . . . , wd) ∈ W d
0 as above is uniquely determined by b.

In particular, w(b) := w−1
1 · · ·w−1

d is a Coxeter element uniquely determined by b.

Proof. This is [33, Lemma 4.3].

Set w(b) = w−1
1 · · ·w−1

d and Υ(b) = {υ ∈ W0 | υ−1cmυ = w(b)}, where c =
s1s2 · · · sn−1. Clearly |Υ(b)| = n.

For any b′ ∈ Bµ, set

ξ(b′) = (ε1(b
′) + · · ·+ εn−1(b

′), ε2(b
′) + · · ·+ εn−1(b

′), . . . , εn−1(b
′), 0).

Let λ−b be the anti-dominant conjugate of λb, and let b− be the conjugate of b with
weight λ−b . For any b ∈ Bµ(λb) and υ ∈ Υ(b), we define ξ•(b, υ) ∈ X∗(T )

d by

ξj(b, υ) = υξ(υ−1b−) +
∑

1≤j′<j

υw−1
1 · · ·w−1

j′−1wt(bj′) (1 ≤ j ≤ d).

Let C ∈ IrrXµ(b)
0. By Proposition 3.7, C = SA,ϕ for some (A,ϕ) ∈ Atop

µ,b .
On the other hand, by Proposition 3.12 and [28, Proposition 3.13], there exists a
unique λ• ∈ Atop

µ•,b•
with λ1(1) + · · · + λ1(n) = 0 such that C = pr(Xλ•

µ•
(b•)). Here

pr : Grd → Gr denotes the projection to the first factor. The following theorem is
established in [33, Theorem 4.4] by the author.

Theorem 4.10. We have υξj(b,υ) = υw−1
1 · · ·w−1

j−1 and ξ•(b, υ) ∈ Atop
µ•,b•

. If υ′ is
an element in Υ(b) different from υ′, then ξ•(b, υ) ∼ ξ•(b, υ

′). Let ξ0•(b) be the
unique cocharacter in [ξ•(b, υ)] such that ξ01(b)(1) + · · · + ξ01(b)(n) = 0. Then for

any (A,ϕ) ∈ Atop
µ,b , there exists a unique b ∈ Bµ(λb) such that SA,ϕ = pr(X

ξ0
•
(b)

µ•
(b•)).

Proof. This is [33, Theorem 4.4].

This correspondence between Atop
µ,b and Bµ(λb) above is compatible with the nat-

ural bijection in Chen-Zhu conjecture constructed by Nie in [28].
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Corollary 4.11. Let (A,ϕ) ∈ Atop
µ,b . Let b ∈ Bµ(λb) such that SA,ϕ = pr(X

ξ0
•
(b)

µ•
(b•)).

Then (A,ϕ) is cyclic if and only if

∑

1≤j≤d

w−1
1 · · ·w−1

j−1wt(bj) ∈ W0µ.

Proof. By Lemma 3.9, we have A = Aξ01(b). Recall that (A,ϕ) is cyclic if and only
if bξ01(b)− ξ01(b) ∈ W0µ. Since bξ

0
1(b)− ξ01(b) is a conjugate of bξ1(b, υ)− ξ1(b, υ),

this is also equivalent to υ−1bξ1(b, υ)− υ−1ξ1(b, υ) ∈ W0µ. By Theorem 4.10,

υ−1bξ1(b, υ)− υ−1ξ1(b, υ) =
∑

1≤j≤d

w−1
1 · · ·w−1

j−1wt(bj).

This finishes the proof.

We call an element b ∈ Bµ(λb) cyclic if

λ(b) :=
∑

1≤j≤d

w−1
1 · · ·w−1

j−1wt(bj) ∈ W0µ.

Now we give another interpretation of Lemma 3.11. By Exmaple 4.2, B∗
µ is iso-

morphic to Bµ∗ . We denote by b∗ ∈ Bµ∗ the dual of b ∈ Bµ. Note that we have
(wb)∗ = wb∗ for any w ∈ W0. So if b ∈ Bµ(λb), then bop∗ = wmaxb

∗ ∈ Bµ∗(λb∗).

Lemma 4.12. We have λ(bop∗) = −w(b)−1λ(b) + (d, . . . , d). In particular, b ∈
Bµ(λb) is cyclic if and only if bop∗ ∈ Bµ∗(λb∗) is cyclic.

Proof. Note that if (µ1, . . . , µd) is Far-Eastern, then (µ∗
d, . . . , µ

∗
1) is Far-Eastern. So

if we write

FE(b) = b1 ⊗ · · · ⊗ bd and FE(bop) = w1b1 ⊗ · · · ⊗ wdbd

in Bµ1
⊗ · · · ⊗ Bµd

, then we have

FE(b∗) = b∗
d ⊗ · · · ⊗ b∗

1 and FE(bop∗) = wdb
∗
d ⊗ · · · ⊗ w1b

∗
1

in Bµ∗

d
⊗ · · · ⊗ Bµ∗

1
. Thus w(bop∗) = wd · · ·w1 = w(b)−1,Υ(bop∗) = Υ(b) and

λ(bop∗) = wt(wdb
∗
d) + wdwt(wd−1b

∗
d−1) + · · ·+ wd · · ·w2wt(w1b

∗
1)

= −w(b)−1λ(b) + (d, . . . , d),

as desired.
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4.3 Non-Cyclic Semi-standard Tableaux

The goal of this section is to specify the dominant cocharacters µ such that every
b ∈ Bµ(λb) is cyclic. Set d = µ(1).

Lemma 4.13. Assume that n ≥ 3. We have d ≥ 2⌊m
n
⌋+⌊2m0

n
⌋+1 or d ≥ 2⌊nd−m

n
⌋+

⌊2(n−m0)
n

⌋+ 1.

Proof. It suffices to show that d ≤ 2⌊m
n
⌋ + ⌊2m0

n
⌋ is equivalent to d ≥ 2⌊nd−m

n
⌋ +

⌊2(n−m0)
n

⌋+1. Note that ⌊m
n
⌋ = m−m0

n
, ⌊nd−m

n
⌋ = nd−m−(n−m0)

n
. So d ≤ 2⌊m

n
⌋+ ⌊2m0

n
⌋

is equivalent to (n−2)d ≤ 2(m−d−m0)+n⌊
2m0

n
⌋, and d ≥ 2⌊nd−m

n
⌋+⌊2(n−m0)

n
⌋+1

is equivalent to (n − 2)d ≤ 2(m − d −m0) + n(1 − ⌊2(n−m0)
n

⌋). Then the assertion

follows from the fact that ⌊2m0

n
⌋ = 0 (resp. 1) if and only if ⌊2(n−m0)

n
⌋ = 1 (resp.

0).

Lemma 4.14. Assume that n ≥ 3. Let µ ∈ X∗(T )+ such that d ≥ 2⌊m
n
⌋+ ⌊2m0

n
⌋+

1, µ(2) ≥ 2 and ⌊m
n
⌋ ≥ 2. Then Bµ(λb) contains at least one non-cyclic element.

Proof. First we consider the case n = 3. In this case, we have 2 ≤ µ(2) ≤ ⌊m
n
⌋.

Moreover, it is easy to check that w(b) = s2s1 and s1 ∈ supp(wd−⌊m
n
⌋) for any

b ∈ Bµ(λb). Let b be the unique element in Bµ(λb) whose second row contains
exactly one 3 .

1 · · · · · · 1 2 3 · · · 3

2 · · · 2 3

Since 2 ≤ µ(2) ≤ ⌊m
n
⌋, we have

w−1
1 · · ·w−1

d−µ(2) wt(bd−µ(2)+1) = (0, 1, 1) and w−1
1 · · ·w−1

d−1wt(bd) = (1, 0, 1).

Thus λ(b) /∈ W0µ because µ(n) = 0. This proves the case n = 3.
In the rest of the proof, we assume that n ≥ 4. Let λ be a conjugate of λb such

that (λ(1), λ(2), λ(3)) = (⌊m
n
⌋, ⌊m

n
⌋ + ⌊2m0

n
⌋, ⌊m

n
⌋+ 1) and λ(4) ≥ · · · ≥ λ(n). Set

µ0 = (3⌊
m

n
⌋+ ⌊

2m0

n
⌋+ 1−min{µ(2), ⌊

m

n
⌋},min{µ(2), ⌊

m

n
⌋}, 0, . . . , 0) ∈ X∗(T )+

and λ0 = (λ(1), λ(2), λ(3), 0, . . . , 0) ∈ X∗(T ). Note that we have µ(1) + µ(2) ≥
3⌊m

n
⌋ + ⌊2m0

n
⌋ + 1. Indeed if µ(1) + µ(2) ≤ 3⌊m

n
⌋ + ⌊2m0

n
⌋, then by µ(1) ≥ 2⌊m

n
⌋ +

⌊2m0

n
⌋+1, we have µ(2) ≤ ⌊m

n
⌋−1. This implies µ(3)+· · ·+µ(n−1) ≤ (n−3)(⌊m

n
⌋−1),

or equivalently 3⌊m
n
⌋+n+m0 − 3 ≤ µ(1)+ µ(2), which is a contradiction. Thus Yµ

contains Yµ0
.

Let b0 be the unique element in Bµ0
(λ0) whose second row contains exactly one

3 . We will show that there exists b′ ∈ Bµ(λ) that contains b0. It is easy to check

24



that µ(n − 1) ≤ ⌊m
n
⌋ and µ(n − 2) ≤ µ0(1). So each column in Yµ/µ0

has at most
n−3 boxes. By filling each column with the numbers 1, . . . , n−3 so that the entries
are starting with 1 and increasing by one from top to bottom, we obtain a skew
Young tableau of shape Yµ/µ0

. Let ki be the number of i in this tableau. Clearly
we have k1 ≥ · · · ≥ kn−3.

1 · · · · · · 1 2 3 · · · 3

2 · · · 2 3

1

1 · · · 1

1 · · · · · · 1 2

2

By (λ(4), . . . , λ(n)) � (k1, . . . , kn−3) and Proposition 4.5, there exists at least one
skew Young tableau of shape Yµ/µ0

such that the number of i is λ(i + 3) for each
1 ≤ i ≤ n− 3. By replacing 1, . . . , n− 3 by 4, . . . , n respectively, we obtain a skew
Young tableau of shape Yµ/µ0

such that the number of i is λ(i) for each 4 ≤ i ≤ n.
Let b′ be the tableau obtained by joining b0 and this skew tableau. Clearly we have
b′ ∈ Bµ(λ), which shows our claim.

Let b′ ∈ Bµ(λ) containing b0, and let b ∈ Bµ(λb) be the conjugate of b′. Then
s2s1 ≤ w(b) and s1 ∈ supp(wd−⌊m

n
⌋). Let k(b′) be the number of 4 in the second

row of b′. If k(b′) < ⌊m
n
⌋, then we have

(w−1
1 · · ·w−1

d−min{µ(2),⌊m
n
⌋} wt(bd−min{µ(2),⌊m

n
⌋}+1))(2) = 1

and
(w−1

1 · · ·w−1
d−1wt(bd))(2) = 0.

Thus λ(b) /∈ W0µ and hence b is non-cyclic. If k(b′) 6= 0, then λ(b)(1) = ⌊m
n
⌋ − 1.

Assume that µ(3) < ⌊m
n
⌋−1. Then b is always non-cyclic by the above argument.

Assume that µ(3) ≥ 2. Let b′
1 = j be the leftmost box in the third row of b′,

and let b′
2 = j′ be the box right to b′

1. Clearly 4 ≤ j ≤ j′.

1 · · · · · · 1 2 3 · · · 3

2 · · · 2 3 4 · · · 4

j j′

Then in b′, all j − 1 are in the first or second row. Since the number of j in the

first or second row is less than wt(b′)(j − 1), there exists at least one j − 1 such
that there is no box beneath it or the number in the box beneath it is greater than
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j. So the tableau obtained by replacing b′
1 by the rightmost one among such j − 1

is semi-standard. Repeating the same argument, we may assume j = 4. Similarly,
if ⌊m

n
⌋ ≥ 3, we may also assume j′ = 4. Indeed if j′ ≥ 6 and the leftmost column in

b′ contains j′ − 1 but does not contain j′ , we replace b′
2 by this j′ − 1 . In other

cases, by ⌊m
n
⌋ ≥ 3, there exists at least one j′ − 1 such that there is no box beneath

it or the number in the box beneath it is greater than j′, and we replace b′
2 by the

rightmost j′ − 1 among such j′ − 1 . Then the obtained tableau is semi-standard.

Thus if ⌊m
n
⌋ ≥ 3, there exists b′ containing b0 such that k(b′) < ⌊m

n
⌋, which is

non-cyclic by the above argument. If ⌊m
n
⌋ = 2 and n = 4, then b is non-cyclic

because k(b′) < 2. If ⌊m
n
⌋ = 2 and n ≥ 5, we may also assume j′ = 4 and hence b

is non-cyclic unless the third row of b′ contains three 5 . If ⌊m
n
⌋ = 2, n ≥ 5 and the

third row of b′ contains three 5 , then

(w−1
1 · · ·w−1

d−2wt(bd−1))(4) = 1 and (w−1
1 · · ·w−1

d−1wt(bd))(4) = 0.

Thus λ(b) /∈ W0µ and hence b is non-cyclic.

1 1 2 3 3

2 3 4 4

4 5 5 5

Assume that ⌊m
n
⌋ = 2 and µ(3) = 1. By the same argument as above, we may

assume that the leftmost column of b′ contains 4 . So b is non-cyclic when λ(4) = 2.

If µ(1) > 5 + ⌊2m0

n
⌋, we may assume that the first row of b′ also contains 4 . This

can be checked easily as above using µ(3) = 1. Thus if µ(1) > 5 + ⌊2m0

n
⌋, we obtain

a non-cyclic b.

1 1 2 3 3 4

2 3 4

4

If µ(1) = 5 + ⌊2m0

n
⌋, then we have n = 4 or 5. More precisely, we have

µ = (6, 4, 1, 0), (5, 5, 1, 1, 0), (6, 5, 1, 1, 0), (6, 6, 1, 0, 0), or (6, 6, 1, 1, 0),

and b′ contains one of the following smaller Young tableaux when λ(4) = 3.

1 1 2 3 3

2 3 4 4

4

1 1 2 2 3 3

2 3 4 4

4
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We can easily check that b is non-cyclic in every case.
Putting things together, we have proved the lemma.

Lemma 4.15. Assume that n ≥ 4. Let µ ∈ X∗(T )+ such that d ≥ 3+⌊2m0

n
⌋, µ(2) ≥

2 and ⌊m
n
⌋ = 1. Then Bµ(λb) contains at least one non-cyclic element.

Proof. Let λ be a conjugate of λb such that (λ(1), λ(2), λ(3)) = (λb(1), λb(2), λb(3))
and λ(4) ≥ · · · ≥ λ(n). Assume that (λb(1), λb(2), λb(3)) = (1, 2, 2) and µ(2) ≥ 3.
Similarly as the proof of Lemma 4.14, we can easily show that there exists b′ ∈ Bµ(λ)
containing the following smaller Young tableau.

1 2 3 4

2 3 4

Let b ∈ Bµ(λb) be the conjugate of b′. If µ(3) < 2, then b is non-cyclic because
λ(b)(2) = 2. If µ(3) ≥ 2, then similarly as the proof of Lemma 4.14, we may assume
that the second row of b′ does not contain 5 . In this case, the conjugate b ∈ Bµ(λb)
of b′ is non-cyclic because

(w−1
1 · · ·w−1

d−3wt(bd−2))(3) = 1 and (w−1
1 · · ·w−1

d−1wt(bd))(3) = 0.

Assume that (λb(1), λb(2), λb(3)) = (1, 2, 2) and µ(2) = 2. Then there exists
b′ ∈ Bµ(λ) containing one of the following smaller Young tableaux.

1 2 3 3 4

2 4

1 2 3 4

2 4

3

It is easy to check that the conjugate b ∈ Bµ(λb) of b
′ is non-cyclic.

Assume that (λb(1), λb(2), λb(3)) 6= (1, 2, 2). Then there exists b′ ∈ Bµ(λ) con-
taining one of the following smaller Young tableaux.

1 2 3 4

2 4

1 3 3 4

2 4

1 3 4

2 4

Let b ∈ Bµ(λb) be the conjugate of b
′. Since λ(b)(1) = 1, b is non-cyclic if µ(3) = 0.

If µ(3) ≥ 2, then similarly as the proof of Lemma 4.14, we may assume that the
second row of b′ does not contain 5 . In this case, b is non-cyclic because

(w−1
1 · · ·w−1

d−2wt(bd−1))(3) = 1 and (w−1
1 · · ·w−1

d−1wt(bd))(3) = 0.
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If µ(3) = 1 and µ(1) > 3 + ⌊2m0

n
⌋, then we may also assume that the second row of

b′ does not contain 5 and hence b is non-cyclic. If µ(3) = 1 and µ(1) = 3+ ⌊2m0

n
⌋,

then we may assume that the leftmost column of b′ contains 5 . We can easily
check that b is non-cyclic by an easy calculation.

1 2 3 4

2 4 5

5

1 3 3 4

2 4 5

5

1 3 4

2 4 5

5

This finishes the proof.

Lemma 4.16. Assume that n ≥ 5. Let µ ∈ X∗(T )+ such that ⌊m
n
⌋ = 0. If

(1) µ(2) ≥ 2 or (2) d ≥ 3, µ(2) = 1, then Bµ(λb) contains at least one non-cyclic
element.

Proof. Let 1 < i1 < i2 < · · · < im0
= n be the integers such that λb(i1) = λb(i2) =

· · · = λb(im0
) = 1. Let b be the Young tableau in Bµ(λb) obtained by filling Yµ with

i1, . . . , im0
from top to bottom, starting from the leftmost column.

i1 ik+1 · · · im

i2 ik+2
...

...
...

ik

If (1) holds, then b is non-cyclic because

wt(b1)(im) = 1 and (w−1
1 · · ·w−1

d−1wt(bd))(im) = 0.

Let k = max{i | µ(i) 6= 0}. If (2) holds, then the Young tableau c ∈ Bµ(λb) obtained

by replacing ik by ik+1 in b is non-cyclic because λ(c)(ik) = 2.

i1 ik ik+2 · · · im
...

ik−1

ik+1

This finishes the proof.
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Theorem 4.17. Every b ∈ Bµ(λb) is cyclic if and only if µ has one of the following
forms:

(i) ωi with 1 ≤ i ≤ n− 1 such that i is coprime to n.

(ii) ω1 + ωi or ωn−1 + ωn−i with 1 ≤ i ≤ n− 1 such that i+ 1 is coprime to n.

(iii) (nr+ i)ω1 or (nr+ i)ωn−1 with r ≥ 0 and 1 ≤ i ≤ n− 1 such that i is coprime
to n.

(iv) (nr + i− j)ω1 + ωj or (nr + i− j)ωn−1 + ωn−j with r ≥ 1, 2 ≤ j ≤ n− 1 and
1 ≤ i ≤ n− 1 such that i is coprime to n.

Proof. It is easy to check that every b ∈ Bµ(λb) is cyclic if µ is one of the cocharacters
in (i), (ii), (iii) and (iv). It remains to show that if µ does not belong to the list
above, then Bµ(λb) contains at least one non-cyclic element. By Lemma 4.12 and
Lemma 4.13, we may assume that d ≥ 2⌊m

n
⌋ + ⌊2m0

n
⌋ + 1. Then this follows from

Lemma 4.14, Lemma 4.15 and Lemma 4.16.

Remark 4.18. Even if every top extended semi-module for µ is cyclic, there might
be a non-cyclic extended semi-module for µ. In fact, such cases exist, see §5.4.

5 The Semi-Module Stratification

Keep the notations and assumptions in §3.

5.1 The Semi-Module Stratification for ωi

Recall that if µ is minuscule, then every extended semi-module is cyclic.

Lemma 5.1. For any 1 ≤ j ≤ n−3
2
(= dimXω2

(τ 2)), we have

Aj
ω2,τ2

=

{
{[χ∨

2,n−1 + χ∨
4,n−3 + · · ·+ χ∨

j,n−j+1]} (j even)

{[χ∨
1,n + χ∨

3,n−2 + · · ·+ χ∨
j,n−j+1]} (j odd).

Proof. By (the proof of) [36, Proposition 5.5], each normalized semi-module for 2, n
is of the form Aj = (2N− j)∪ (N+ j + 1) for some 1 ≤ j ≤ n−3

2
. It is easy to check

that

Aj =

{
Aχ∨

2,n−1+χ∨

4,n−3+···+χ∨

j,n−j+1 (j even)

Aχ∨

1,n+χ∨

3,n−2+···+χ∨

j,n−j+1 (j odd).

Let (Aj, ϕj) be the cyclic semi-module for ω2. Then n − 2 − j, n − 1 + j ∈ Āj and
ϕj(n−2− j) = ϕj(n−1+ j) = 1. It is also easy to check that |V(Aj , ϕj)| = j. This
finishes the proof.
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Lemma 5.2. Assume that n = 7. Then dimXω3
(τ 3) = 3 and

A1
ω3,τ3

= {[χ∨
1,7]}, A2

ω3,τ3
= {[χ∨

1,6], [χ
∨
2,7]}, A3

ω3,τ3
= {[χ∨

3,5]}.

Assume that n = 8. Then dimXω3
(τ 3) = 4 and

A1
ω3,τ3

= {[χ∨
1,8]}, A2

ω3,τ3
= {[χ∨

1,7], [χ
∨
2,8]},

A3
ω3,τ3

= {[χ∨
2,6], [χ

∨
3,7]}, A4

ω3,τ3
= {[χ∨

1,8 + χ∨
4,5]}.

Proof. Using Lemma 3.2, we can easily check the lemma by an easy calculation.

5.2 The Semi-Module Stratification for ω1 + ωn−2

Throughout this subsection, we set µ = ω1 + ωn−2. Also we assume that n ≥ 4.

Lemma 5.3. Every extended semi-module for µ is cyclic. For any 0 ≤ j ≤ n− 2(=
dimXµ(b)), we define A

j
µ,b similarly as in §3.3. Then we have A0

µ,b = ∅ and |Aj
µ,b| = j.

More precisely, if j is odd, then Aj
µ,b is equal to

{[χ∨
1,n−j+1],[χ

∨
1,n−j+3 + χ∨

2,n−j+2], . . . ,

[χ∨
1,n + χ∨

2,n−1 + · · ·+ χ∨
j+1

2
,n− j−1

2

], . . . , [χ∨
j−2,n + χ∨

j−1,n−1], [χ
∨
j,n]},

and if j is even, then Aj
µ,b is equal to

{[χ∨
1,n−j+1],[χ

∨
1,n−j+3 + χ∨

2,n−j+2], . . . ,

[χ∨
1,n−1 + χ∨

2,n−2 + · · ·+ χ∨
j
2
,n− j

2

], . . . , [χ∨
j−2,n + χ∨

j−1,n−1], [χ
∨
j,n]}.

Proof. Let (A,ϕ) be an extended semi-module for µ. Let µ′ be the type of A. If
(A,ϕ) is non-cyclic, then by Lemma 3.4, µ′

dom ≺ µ, i.e., µ′
dom = ωn−1. By Lemma

3.2, we have A = {0, 1, . . . , n − 1, . . .}. By Definition 3.3 (3), ϕ(a) = max{k |
a + n − 1 − kn ∈ A} for all a ∈ A. This contradicts to the assumption that (A,ϕ)
is non-cyclic. Thus (A,ϕ) is cyclic.

Since µ′ satisfies νb � wmaxµ
′, it is easy to check that

wmaxµ
′ = sl+1 · · · sn−3sn−2sk−1 · · · s2s1µ

for some 1 ≤ k ≤ n − 2 and k ≤ l ≤ n − 2. Let Ā = {a0, a1 . . . , an−1} with
a0 = min Ā. Then we have ϕ(a0) = 0, ϕ(an−l−1) = 0, ϕ(an−k) = 2 and ϕ(ai) = 1 for
i 6= 0, n− l − 1, n− k. Thus

V(A,ϕ) ={(an−k, an−l−1 + n), (an−k, an−l), (an−k, an−l+1), . . . , (an−k, an−k−1)}

∪{(an−k+1, an−l−1), (an−k+2, an−l−1), . . . , (an−1, an−l−1)}

and |V(A,ϕ)| = l. Then by Proposition 3.7, the description of Al
µ,b for each l in the

lemma follows from direct computation.
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5.3 The Semi-Module Stratification for ω1 + ωn−3

Throughout this subsection, we set µ = ω1 + ωn−3. Also we assume that n ≥ 7.

Lemma 5.4. Every extended semi-module for µ is cyclic. For any 1 ≤ j ≤ 3n−9
2

(=

dimXµ(b)), we define A
j
µ,b similarly as in §3.3. Then |A

3n−9
2

µ,b | = n− 3 and |A
3n−11

2

µ,b | ≤
2(n− 4).

Proof. Using Lemma 5.1, we can show the first assertion similarly as the proof of
Lemma 5.3. Indeed, for any semi-module Aλ in Lemma 5.1, there exists a unique ϕ
such that (Aλ, ϕ) is an extended semi-module for some µ ∈ X∗(T )+. The equality

|A
3n−9

2

µ,b | = n− 3 follows from the Chen-Zhu conjecture.
Let (A,ϕ) be an extended semi-module for µ with type µ′(∈ W0µ). Let 0 <

k1 < k2 be integers such that µ′(1) = µ′(k1 + 1) = µ′(k2 + 1) = 0, and let l be an
integer such that µ′(l + 1) = 2. Assume that νb � wmaxsk2+1µ

′. Let (B,ψ) be an
extended semi-module for µ with type sk2+1µ

′. Let a0 = min Ā (resp. b0 = min B̄)
and let inductively ai = ai−1+n−2−µ′(i)n (resp. bi = bi−1+n−2− (sk2+1µ

′)(i)n)
for i = 1, . . . , n. Then a0 = an (resp. b0 = bn) and {a0, a1, . . . , an−1} = Ā (resp.
{b0, b1, . . . , bn−1} = B̄). We will show that if l > k2 + 1 (resp. l = k2 + 1), then
|V(B,ψ)| ≤ |V(A,ϕ)| (resp. |V(B,ψ)| < |V(A,ϕ)| − 1). Moreover, the equality does
not hold if k2 − k1 ≤ 3.

Note that we have ϕ(a0) = ϕ(ak1) = ϕ(ak2) = 0, ϕ(al) = 2, ψ(b0) = ψ(bk1) =
ψ(bk2+1) = 0, ψ(bl) = 2. Note also that

V(A,ϕ) ={(a, a′) | a ∈ Ā with ϕ(a) = 1, a′ = ak1 or ak2}

⊔{(al, a
′) | al < a′, ϕ(a′) < 2}

and

V(B,ψ) ={(b, b′) | b ∈ B̄ with ψ(b) = 1, b′ = bk1 or bk2+1}

⊔{(bl, b
′) | bl < b′, ψ(b′) < 2}.

Let V(A,ϕ)1 (resp. V(B,ψ)1) be the first subset in V(A,ϕ) (resp. V(B,ψ)) above,
and let V(A,ϕ)2 (resp. V(B,ψ)2) be its complement.

If l > k2 + 1, then it follows that

bk =

{
ak + 1 (k 6= k2 + 1)

ak + 1− n (k = k2 + 1)
, ψ(bk) =

{
ϕ(ak) (k 6= k2, k2 + 1)

1− ϕ(ak) (k = k2, k2 + 1).

In particular, bk2+1−1 = ak2−2. So |V(B,ψ)1| > |V(A,ϕ)1| implies that |V(B,ψ)1| =
|V(A,ϕ)1| + 1 and bk2 < bk1 . By the fact (al, ak2+1) ∈ V(A,ϕ)2, we always have
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|V(B,ψ)2| < |V(A,ϕ)2|. Thus |V(B,ψ)| ≤ |V(A,ϕ)|. Moreover, if k2 − k1 ≤ 3, then
the equality does not hold because bk2 ≥ bk1 .

If l = k2 + 1, then it follows that

bk =

{
ak + 2 (k 6= k2 + 1)

ak + 2− 2n (k = k2 + 1)
, ψ(bk) =

{
ϕ(ak) (k 6= k2, k2 + 1)

2− ϕ(ak) (k = k2, k2 + 1).

In particular, bk2+1−2 = ak2 −2−n. By νb � wmaxsk2+1µ
′, we have k2 ≤

n−3
2
. Using

this, we can easily check that |V(B,ψ)| < |V(A,ϕ)1| and V(A,ϕ)2 = {(ak2+1, ak2 +
n)}. Thus |V(B,ψ)| < |V(A,ϕ)| − 1.

Assume that νb � wmaxsk1+1µ
′. Let (C, χ) be an extended semi-module for µ

with type sk1+1µ
′. Similarly as above, we can show that if l ≥ k1+1, then |V(C, χ)| ≤

|V(A,ϕ)|. Therefore, |V(A,ϕ)| ≥ 3n−11
2

holds only if k2 = 2 or l > k2 = 3. From

this and |A
3n−9

2

µ,b | = n− 3, we obtain |A
3n−11

2

µ,b | ≤ 2(n− 4).

5.4 The Semi-Module Stratification for ω1 + ω2, ωn−3 + ωn−1

Lemma 5.5. Assume that n = 5. Set µ = ω1 + ω2. Then every extended semi-
module for µ is cyclic. For any 1 ≤ j ≤ 3(= dimXµ(b)), we define Aj

µ,b similarly as
in §3.3. Then

A0
µ,b = ∅,A1

µ,b = ∅,A2
µ,b = {χ∨

1,4, χ
∨
2,5},A

3
µ,b = {χ∨

2,3, χ
∨
3,4}.

Proof. The first assertion follows similarly as the proof of Lemma 5.3. The second
assertion follows from direct computation.

Lemma 5.6. Assume that n = 7 or 8. Let µ be ω1 + ω2 or ω4 + ωn−1. Then there
exists a non-cyclic extended semi-module for µ.

Proof. As described in Lemma 5.2, there exists a unique top cyclic extended semi-
module (Aλ, ϕ) for ω3. We define ϕ′ : Z → N ∪ {−∞} by setting

ϕ′(a) =

{
ϕ(a) (a 6= 1)

0 (a = 1).

Then it is straightforward to check that (Aλ, ϕ′) is a non-cyclic extended semi-
module for ω1 + ω2. The proof for ω4 + ωn−1 is similar.

6 The Ekedahl-Oort Stratification

Keep the notations and assumptions in §3. For µ ∈ X∗(T )+, set

SAdm(µ)cyc = {w ∈ SAdm(µ) | p(w) is n-cycle}.

By Theorem 2.9, Xw(b) 6= ∅ if w ∈ SAdm(µ)cyc.
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6.1 The Ekedahl-Oort Stratification for µ = ωi

Throughout this subsection, we set µ = ωi and c = sisi+1 · · · sn−1si−1 · · · s2s1. By
[19, Theorem 2.7], we have dimX̟µc(b) = dimXµ(b) = 〈µ, ρ〉 − n−1

2
.

Let w ∈ W̃ . There exists a positive integer k such that wk = ̟λ for some
λ ∈ X∗(T ). Then we set νw = λ/k ∈ X∗(T )Q. This is independent of the choice of
k. Clearly suppσ(w) 6= S̃ implies that νw is central (cf. [26, Lemma 1.1]).

Lemma 6.1. Assume that n ≥ 9 and 4 ≤ i ≤ n − 4. Set y = csisi+1si−1 =
(1 i+1 i+3 i+4 · · · n i i− 2 · · · 3 2)(i− 1 i+2). Then we have ̟µy ∈ SAdm(µ)
and X̟µy(b) 6= ∅.

Proof. Under the assumption in the lemma, we have ℓ(̟µy) = 〈µ, 2ρ〉 − ℓ(y) and
hence ̟µy ∈ SAdm(µ) (cf. [27, (2.4.5)]). Note that suppσ(̟

µy) = S̃ because ν̟µy

is not central. So, by Lemma 2.8 and Theorem 2.9, X̟µy(b) 6= ∅ is equivalent to
saying supp(ryr−1) ( S for any r ∈ W0 such that r(Φ+ \ Φ̟µy) ⊂ Φ+. It is easy to
check that

Φ̟µy = Φ{χ1,2,χ2,3,...,χi,i+1} ∪ Φ{χi,i+1,χi+1,i+2,...,χn−1,n} ∪ {χi−2,i+2, χi−1,i+2, χi−1,i+3}.

In particular, we have χ1,i+2, χi−1,n ∈ Φ+ \Φ̟µy. Note that we can decompose ryr−1

into disjoint cycles as

(r(1) r(i+1) r(i+3) r(i+4) · · · r(n) r(i) r(i− 2) · · · r(3) r(2))(r(i− 1) r(i+2))

for any r ∈ W0. So if ryr−1 ∈
⋃

J(S WJ , then (r(i−1) r(i+2)) = (1 2) or (n−1 n).
This implies that rχ1,i+2 or rχi−1,n is negative and hence that r does not satisfy
r(Φ+ \ Φ̟µy) ⊂ Φ+. Thus we have X̟µy(b) 6= ∅.

Lemma 6.2. Assume that n ≥ 10 and i = 3 (resp. i = n− 3). Set y = cs3s4s5s6s2
(resp. y = csn−3sn−4sn−5sn−6sn−2). Then we have̟µy ∈ SAdm(µ) andX̟µy(b) 6= ∅.

Proof. We only treat the case i = 3. The proof for the case i = n− 3 is similar.
The first assertion is easy. To show the second assertion, by Lemma 2.8 and

Theorem 2.9, it suffices to check that ryr−1 /∈
⋃

J(SWJ for any r ∈ W0 such that
r(Φ+ \Φ̟µy) ⊂ Φ+. By an explicit calculation, it follows that χ1,7, χ2,9 ∈ Φ+ \Φ̟µy

and

ryr−1 = (r(1) r(4) r(6) r(8) r(9) · · · r(n) r(3))(r(2) r(5) r(7)).

If ryr−1 ∈
⋃

J(SWJ , then (r(2) r(5) r(7)) is equal to (1 2 3) or (n−2 n−1 n). This
implies that r does not satisfy r(Φ+ \Φ̟µy) ⊂ Φ+. Thus we have X̟µy(b) 6= ∅.

Lemma 6.3. Assume that n ≥ 10 and i = 3 (resp. i = n − 3). Let y be csisi−1 or
csisi+1. Then we have ̟µy ∈ SAdm(µ) and X̟µy(b) 6= ∅.
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Proof. The proof is similar to the proof of Lemma 6.1 and Lemma 6.2. Note that y
is n-cycle in this case.

Proposition 6.4. Assume that n ≥ 9 and 3 ≤ i ≤ n − 3. Then the semi-module
stratification of Xµ(b) is not a refinement of the Ekedahl-Oort stratification.

Proof. First assume that n ≥ 9 and 4 ≤ i ≤ n− 4. Let ̟µy ∈ SW̃ be as in Lemma
6.1. Let T be a reduction tree of ̟µy. By Proposition 2.6, we have

|X̟µy(b)
0,σ| =

∑

p

(q − 1)ℓI(p)qℓII(p),

where p runs over all the reduction paths in T with end(p) = τm. Set d =

dimXµ(b) = 〈µ, ρ〉 − n−1
2
. Suppose that the semi-module stratification of Xµ(b)

is a refinement of the Ekedahl-Oort stratification. By Lemma 2.1, Proposition 2.3
and dimX̟µc(b) = d, we have ℓI(p) + ℓII(p) ≤ dimX̟µy(b) ≤ d − 1 for any p.
On the other hand, we have ℓI(p) + 2ℓII(p) = ℓ(̟µy) = 2d − 3. Thus we have
ℓI(p) + ℓII(p) = d− 1 and ℓI(p) = 1 for any p. It follows that

|X̟µy(b)
0,σ| = k(q − 1)qd−2,

where k ≥ 1 is the number of irreducible components of X̟µy(b)
0. Again by Lemma

2.1 and the fact that each SA,ϕ is locally closed, we have |{(A,ϕ) | dimSA,ϕ =
d− 1, SA,ϕ ⊆ π(X̟µy(b)

0)}| = k. By Lemma 3.4, it follows that

k(q − 1)qd−2 = kqd−1 +
∑

0≤j≤d−2

kjq
j, kj ≥ 0,

which is a contradiction. This implies the proposition in this case.
Next assume that n ≥ 10 and i = 3, n − 3. Let ̟µy ∈ SW̃ be as in Lemma

6.2. Suppose that the semi-module stratification of Xµ(b) is a refinement of the
Ekedahl-Oort stratification. Similarly as above, we can check that

dimXcsisi−1
(b) = Xcsisi+1

(b) = d− 1.

By Lemma 2.1 and Proposition 3.13, we have dimX̟µy(b) ≤ d − 2. Similarly as
above, it follows that

k(q − 1)qd−3 = kqd−2 +
∑

0≤j≤d−3

kjq
j, kj ≥ 0,

where k is the number of irreducible components ofX̟µy(b)
0. This is a contradiction,

which finishes the proof.
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The following proposition is the complement of Proposition 6.4.

Proposition 6.5. We have

SAdm(ω1)cyc = {τ},
SAdm(ω2)cyc = {τ 2, s0sn−1τ

2, s0sn−1sn−2sn−3τ
2, . . . , s0sn−1 · · · s5s4τ

2} (n ≥ 5),
SAdm(ω3)cyc = {τ 3, s0s6τ

3, s0s6s1s0τ
3, s0s6s5s1τ

3, s0s6s5s1s0s6τ
3} (n = 7),

SAdm(ω3)cyc = {τ 3, s0s1τ
3, s0s7s6s5τ

3, s0s7s6s1τ
3, s0s7s6s5s1s0τ

3,

s0s7s6s1s0s7τ
3, s0s7s6s5s1s0s7s6τ

3} (n = 8).

Let ̟µy ∈ SW̃ be one of the elements above. Then there exists v ∈ LP(̟µy) such
that v−1yv is a Coxeter element. Moreover, Xw(b) = ∅ for any w ∈ SAdm(µ) \
SAdm(µ)cyc, and the semi-module stratification of Xµ(b) is a refinement of the
Ekedahl-Oort stratification.

Proof. The equalities in the proposition follow from easy calculations. For other
statements, we only prove the case for ω2. Other cases can be checked similarly.

Set d = n−3
2
. For 0 ≤ j ≤ d, we set wj = s0sn−1 · · · sn−2j+1τ

2. Then ℓ(wj) = 2j
and

p(wj) = (1 3 5 · · · n− 2j n− 2j + 1 · · · n 2 4 · · · n− 2j − 1).

Also it is easy to check that

Φ+ \ Φwj
= {χ1,n−2j+1, . . . , χ1,n−1, χ1,n}.

Clearly there exists r ∈ W0 with r(Φ+ \Φwj
) ⊂ Φ+ such that rp(wj)r

−1 is a Coxeter
element (cf. [33, Lemma 5.1]).

For an integer j, let 0 ≤ [j] < n denote its residue modulo n. For a, b ∈ N with
a− b ∈ 2Z, we define ta,b = s[b−2] · · · s[a+2]s[a]. Set

wj,0 = wj, wj,1 = t0,n−2j+1wjt
−1
0,n−2j+1, wj,2 = tn−1,n−2j+2t0,n−2j+1wjt

−1
0,n−2j+1t

−1
n−1,n−2j+2,

. . . , wj,j = tn−j+1,n−j · · · tn−1,n−2j+2t0,n−2j+1wjt
−1
0,n−2j+1t

−1
n−1,n−2j+2 · · · t

−1
n−j+1,n−j.

It is easy to check that the simple reflections in t0,n−2j+1, tn−1,n−2j+2, . . . , tn−j+1,n−j

define

wj = wj,0 →σ wj,1 = sn−1sn−2 · · · sn−2j+2τ
2 →σ wj,2 = sn−2sn−3 · · · sn−2j+3τ

2

→σ · · · →σ wj,j = τ 2.

Let p
j
be the reduction path (in a suitable reduction tree) defined by this reduction.

By Lemma 2.1, Proposition 2.5, Proposition 2.6 and Proposition 3.13, it follows that
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Xwj
(τ 2) = Xp

j
and Xw(τ

2) = ∅ for any w ∈ SAdm(ω2) \
SAdm(ω2)cyc. Note that

Xτ2(τ
2)0 = {I}. It is easy to check that

ℓ(tn−j+1,n−j · · · tn−1,n−2j+2t0,n−2j+1) = ℓ(tn−j+1,n−j)+· · ·+ℓ(tn−1,n−2j+2)+ℓ(t0,n−2j+1).

Thus by Proposition 2.3 (cf. [34, §3.3]), each element gI in Xwj
(τ 2)0 is contained

in a Schubert cell associated to tn−j+1,n−j · · · tn−1,n−2j+2t0,n−2j+1. By Lemma 5.1, it
follows that π(Xwj

(b)0) is equal to the unique semi-module stratum of dimension
j. This shows that the semi-module stratification of Xµ(b) is a refinement of the
Ekedahl-Oort stratification.

6.2 The Ekedahl-Oort Stratification for ω1 + ωn−2

Throughout this subsection, we set µ = ω1 + ωn−2. Also we assume that n ≥ 4.
Note that the unique dominant cocharacter µ′ with µ′ ≺ µ is ωn−1. Clearly we
have SAdm(ωn−1)cyc = {τn−1} and the semi-module stratification of Xωn−1

(τn−1) is
a refinement of the Ekedahl-Oort stratification.

Proposition 6.6. For any 1 ≤ j ≤ n − 2(= dimXµ(b)), there exist exactly j
elements of length 2j in SAdm(µ)◦cyc := SAdm(µ)cyc \ {τn−1}. Let ̟µy ∈ SW̃ be
one of such elements. Then there exists v ∈ LP(̟µy) such that v−1yv is a Coxeter
element. Moreover, Xw(b) = ∅ for any w ∈ SAdm(µ) \ SAdm(µ)cyc, and the semi-
module stratification of Xµ(b) is a refinement of the Ekedahl-Oort stratification.

Proof. We first prove by induction on n that there exist at least j elements of length
2j in SAdm(µ)◦cyc, each of which has finite part y such that ryr−1 is a Coxeter element
for some r ∈ W{s2,...,sn−2} satisfying r(Φ+ \ Φ̟µy) ⊂ Φ+ (cf. Lemma 2.8). Note that
if y ∈ W0 satisfies

y−1(2) < y−1(3) < · · · < y−1(n− 2) and y−1(n− 1) < y−1(n), (∗)

then by [34, Lemma 4.4], we have̟µy ∈ SAdm(µ). In particular, since ℓ(̟µ) = 3n−
5,̟µy is an element of length 2j in SAdm(µ)◦cyc for any n-cycle y of length 3n−2j−5.
If n = 4, then s1s2s3, s2s3s1 and s1s2s3s1s2 are 4-cycles satisfying (∗). Moreover,
s2(s1s2s3s1s2)s2 = s1s2s3 is a Coxeter element and s2(Φ+ \ Φ̟µs1s2s3s1s2) ⊂ Φ+. So
the claim is true for n = 4.

Suppose that n ≥ 5 and the claim is true for n − 1. Let y be a (n − 1)-cycle
in W{s1,s2,...,sn−2} such that y−1(2) < y−1(3) < · · · < y−1(n − 3) and y−1(n − 2) <
y−1(n−1). Then y′ := s1(1 2 · · · n)y(1 2 · · · n)−1 satisfies (∗) and ℓ(y′) = ℓ(y)+1.
So by the induction hypothesis, there exist at least j−1 elements inW0 which are n-
cycles of length 3n−2j−5 satisfying (∗). Note that for any r ∈ W{s2,...,sn−3}, we have
r′y′r′−1 = s1(1 2 · · · n)ryr−1(1 2 · · · n)−1, where r′ = (1 2 · · · n)r(1 2 · · · n)−1 ∈
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W{s2,...,sn−2}. So again by the induction hypothesis, it is easy to verify that there
exists r ∈ W{s2,...,sn−3} such that r′y′r′−1 is a Coxeter element and r′(Φ+ \ Φ̟µy′) ⊂
Φ+. Set c = sn−2sn−1sn−3 · · · s2s1. It is easy to check that if n is odd (resp. even),
then

c, csn−2sn−3, . . . , csn−2sn−3 · · · s2, csn−2sn−3 · · · s2s3s4, . . . ,

csn−2sn−3 · · · s2s3s4 · · · sn−2sn−1

(resp. c, csn−2sn−3, . . . , csn−2sn−3 · · · s3, csn−2sn−3 · · · s3s2s3, . . . ,

csn−2sn−3 · · · s3s2s3 · · · sn−2sn−1)

are n-cycles satisfying (∗). If y′ is one of the elements above, then Φ{χ2,3,...,χn−2,n−1}∩
Φ+ ⊂ Φ̟µy′ and there exists r′ ∈ W{s2,...,sn−2} such that r′y′r′−1 is a Coxeter element.
Thus the claim is also true for n. By induction, our claim is true for any n ≥ 4.

Clearly νw = νb for any w ∈ SAdm(µ)◦cyc. Since b = τn−1 is superbasic, the unique
minimal length element in the σ-cojugacy class of w is τn−1 (cf. [18, Proposition
3.5]). By Theorem 2.4, there exist a reduction tree T for w and a reduction path
in T such that end(p) = τn−1. Thus by Lemma 2.1, Proposition 2.6, Lemma 5.3
and the claim we have shown above, there exist exactly j elements of length 2j in
SAdm(µ)◦cyc. Moreover, it follows that π(Xw(b)

0) is irreducible of dimension ℓ(w)
2

for
any w ∈ SAdm(µ)◦cyc and that Xw(b) = ∅ for any w ∈ SAdm(µ) \ SAdm(µ)cyc.

It remains to show that the semi-module stratification of Xµ(b) is a refinement
of the Ekedahl-Oort stratification. We prove that for any w ∈ SAdm(µ)◦cyc, there
exists an extended semi-module (Aλ, ϕ) for µ such that π(Xw(b)

0) = SAλ,ϕ(= Xλ
µ(b)

by Lemma 3.9 and Lemma 5.3). We argue by induction on ℓ(w). If ℓ(w) = 2, i.e.,
w = ̟µcsn−2sn−3 · · · s2s3s4 · · · sn−2sn−1 = s0sn−1τ

n−1, then w →σ s0ws0 = τn−1. It
easily follows from Theorem 2.9 that Xτn−1s0(b) = ∅. So by Proposition 2.3, we have

Xw(b)
0 = Is0I/I and hence π(Xw(b)

0) = X
χ∨

1,n
µ (b).

Suppose that ℓ(w) ≥ 4 and the claim is true for any w′ ∈ SAdm(µ)◦cyc with

ℓ(w′) < ℓ(w). Since π(Xw(b)
0) is irreducible of dimension ℓ(w)

2
, there exists a unique

extended semi-module (Aλ, ϕ) for µ such that dim(π(Xw(b)
0)∩ SAλ,ϕ) =

ℓ(w)
2
. Also,

π(Xw(b)
0)∩SAλ,ϕ is open in both π(Xw(b)

0) and SAλ,ϕ. So the closure of π(Xw(b)
0)∩

SAλ,ϕ in Xµ(b) is equal to both the closure of π(Xw(b)
0) and SAλ,ϕ in Xµ(b). By [16,

Proposition 2.6] (see also [8, §3.3]), the closure of π(Xw(b)
0) is contained in

⊔

w′∈SAdm(µ)◦cyc,w
′≤Sw

π(Xw′(b)).

Here we write w′ ≤S w if there exists x ∈ W0 such that xw′x−1 ≤ w. By the above
description of the finite part of each element in SAdm(µ)◦cyc, it is easily checked
that if w′ ∈ SAdm(µ)◦cyc and ℓ(w) = ℓ(w′), then there is no x ∈ W0 such that
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xwx−1 = w′. So if w′ ∈ SAdm(µ)◦cyc, w
′ ≤S w and ℓ(w′) = ℓ(w), then w = w′.

Thus by the induction hypothesis, we have SAλ,ϕ ⊆ π(Xw(b)
0). By [1, Proposition

2.11 (5) & Proposition 3.4], the closure of SAλ,ϕ is contained in a union of semi-
module strata Tλ such that dim(Tλ \ SAλ,ϕ) < dimSAλ,ϕ. Thus by the induction
hypothesis and Lemma 5.3, we have π(Xw(b)

0) ⊆ SAλ,ϕ. Therefore it follows that
π(Xw(b)

0) = SAλ,ϕ, which completes the proof.

6.3 The Ekedahl-Oort Stratification for ω1 + ωn−3

Throughout this subsection, we set µ = ω1 + ωn−3. Also we assume that n ≥ 7.
Note that the unique dominant cocharacter µ′ with µ′ ≺ µ is ωn−2.

Proposition 6.7. There exist at least 2(n − 4) elements of length 3n − 11 in
SAdm(µ)◦cyc := SAdm(µ)cyc \

SAdm(ωn−2)cyc. There also exists an element w of
length 3n − 14 in SAdm(µ) such that its finite part is not n-cycle and Xw(b) 6= ∅.
Moreover, the semi-module stratification ofXµ(b) is not a refinement of the Ekedahl-
Oort stratification.

Proof. For any 1 ≤ j ≤ n − 4, set cj = sn−3sn−2sn−1sn−4 · · · sj+2sj+1s1 · · · sj−1sj .
For j = n − 3, set cn−3 = s1s2 · · · sn−1. Then we have ̟µcj ∈ SAdm(µ)◦cyc and
ℓ(̟µcj) = 3n − 9 for any 1 ≤ j ≤ n − 3. If 1 ≤ j ≤ n − 5, then cjsn−3sn−2 and
cjsn−3sn−4 are n-cycles of length 3n − 11 satisfying ̟µcjsn−3sn−2, ̟

µcjsn−3sn−4 ∈
SAdm(µ)◦cyc. Further cn−4sn−3sn−2 and cn−3sn−4sn−3 are also n-cycles of length
3n − 11 satisfying ̟µcn−4sn−3sn−2, ̟

µcn−3sn−4sn−3 ∈ SAdm(µ)◦cyc. Thus we have
found 2(n− 4) distinct elements of length 3n− 11 in SAdm(µ)◦cyc.

Set y = cn−5sn−3sn−2sn−4sn−6sn−5 = (1 2 · · · n−6 n−2 n n−3)(n−4 n−5 n−1).
Then ̟µy ∈ SAdm(µ) and χ1,n−1, χn−5,n ∈ Φ+ \Φ̟µy. By Theorem 2.9, X̟µy(b) 6=
∅. This shows the second assertion. We can easily check the last assertion using
Lemma 5.4, similarly as the proof of Proposition 6.4.

6.4 The Ekedahl-Oort Stratification for ω1 + ω2, ω4 + ωn−1

Note that the unique dominant cocharacter µ′ with µ′ ≺ ω1+ω2 is ω3. By an explicit
calculation, it is easy to verify the following statements (cf. Proposition 6.5).

Proposition 6.8. Assume that n = 5. Set µ = ω1 + ω2. For any 1 ≤ j ≤ 3(=
dimXµ(b)), set

SAdm(µ)◦cyc :=
SAdm(µ)cyc \

SAdm(ω3)cyc. Then we have

SAdm(µ)◦cyc = {s0s4s3s2s1s0τ
3, s0s1s4s3s0s4τ

3, s0s4s3s2τ
3, s0s1s4s3τ

3}.

Let̟µy ∈ SAdm(µ)◦cyc. Then there exists v ∈ LP(̟µy) such that v−1yv is a Coxeter
element. Moreover, Xw(b) = ∅ for any w ∈ SAdm(µ) \ SAdm(µ)cyc, and the semi-
module stratification of Xµ(b) is a refinement of the Ekedahl-Oort stratification.
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Lemma 6.9. Assume that n = 7 or 8. Let µ be ω1 + ω2 (resp. ω4 + ωn−1).
Set c = s1s2 · · · sn−1. Then ̟µcs1s2s3 ∈ SAdm(µ) and X̟µcs1s2s3(b) 6= ∅ (resp.
̟µc−1s5s4s3 ∈

SAdm(µ) and X̟µc−1s5s4s3(b) 6= ∅). Further cs1s2s3 (resp. c
−1s5s4s3)

is not n-cycle.

6.5 The Ekedahl-Oort Stratification for ω2 + ωn−3

We set µ = ω2 + ωn−3. Also we assume that n ≥ 5.

Lemma 6.10. If n is odd (resp. even), set y = s2s3 · · · sn−3s1s2 · · · sn−3 (resp. y =
s2s3 · · · sn−3s1s2 · · · sn−2). Then ̟

µy ∈ SAdm(µ), X̟µy(b) 6= ∅ and y is not n-cycle.

Proof. If n is odd (resp. even), then y = (1 3 · · · n − 2)(2 4 · · · n − 1 n) (resp.
(1 3 · · · n−1)(2 4 · · · n)) and ̟µy ∈ SAdm(µ). Note that χ1,n, χ2,n−1 ∈ Φ+ \Φ̟µy.
So by Lemma 2.9, X̟µy(b) 6= ∅. The proof is finished.

7 Comparison of Two Stratifications

Keep the notations and assumptions in §3.

7.1 Known Cases

The following results are known in (the proof of) [34, Corollary 5.5 & Theorem 5.9].

Proposition 7.1. Let ∼= denote a universal homeomorphism.

(i) Assume that n ≥ 3. Set µ = 2ω1, w = ̟µs1s2 · · · sn−1 and

λ =




χ∨
2,n−1 + χ∨

4,n−3 + · · ·+ χ∨
n−1
2

,n+3
2

(n−1
2

even)

χ∨
1,n + χ∨

3,n−2 + · · ·+ χ∨
n−1
2

,n+3
2

(n−1
2

odd).

Then we have Xµ(b)
0 = Xλ

µ(b) = π(Xw(b)
0) ∼= A

n−1
2 .

(ii) Assume that n ≥ 3. Set µ = 2ω1+ωn−1, wj = ̟µsn−1sn−2 · · · sn−j+1s1s2 · · · sn−j

and

λj =

{
χ∨
1,2j + χ∨

2,2j−1 + · · ·+ χ∨
j,j+1 (j ≤ n

2
)

χ∨
2j+1−n,n + χ∨

2j+2−n,n−1 + · · ·+ χ∨
j,j+1 (j ≥ n

2
).

for j = 1, 2, . . . , n− 1. Then we have Xµ(b)
0 =

⊔
1≤j≤n−1X

λj
µ (b) and X

λj
µ (b) =

π(Xwj
(b)0) ∼= An−1 for each j.
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(iii) Assume that n = 5. Set µ = 3ω1, w = ̟µs1s2s3s4 and λ = χ∨
1,2 + χ∨

3,4. Then
we have Xµ(b)

0 = Xλ
µ(b) = π(Xw(b)

0) ∼= A4.

(iv) Assume that n = 4. Set µ = 3ω1, w = ̟µs1s2s3 and λ = χ∨
3,2. Then we have

Xµ(b)
0 = Xλ

µ(b) = π(Xw(b)
0) ∼= A3.

(v) Assume that n = 3. Set µ = 4ω1, w = ̟µs1s2 and λ = χ∨
3,1. Then we have

Xµ(b)
0 = Xλ

µ(b) = π(Xw(b)
0) ∼= A3.

(vi) Assume that n = 3. Set µ = 3ω1+ω2, w1 = ̟µs1s2, w2 = ̟µs2s1, λ1 = χ∨
2,3 and

λ2 = χ∨
3,2. Then we have Xµ(b)

0 = Xλ1
µ (b)⊔Xλ2

µ (b) and X
λj
µ (b) = π(Xwj

(b)0) ∼=
A3 for each j.

(vii) Assume that n = 2. Set µ = mω1 with m ≥ 1, w = ̟µs1 and

λ =

{
m−1
2
χ∨
1,2 (m−1

2
odd)

m−1
2
χ∨
2,1 (m−1

2
even).

Then we have Xµ(b)
0 = Xλ

µ(b) = π(Xw(b)
0) ∼= A

m−1
2 .

7.2 Proof of the Main Theorem

Theorem 7.2. Let µ ∈ X∗(T )+. The following assertions are equivalent.

(i) The semi-module stratification of X�µ(b) gives a refinement of the Ekedahl-
Oort stratification.

(ii) For any w ∈ SAdm(µ) with Xw(b) 6= ∅, there exists v ∈ LP(w) such that
v−1p(w)v is a Coxeter element.

(iii) The cocharacter µ has one of the following forms:

ω1, ωn−1, (n ≥ 1),

ω2, 2ω1, ωn−2, 2ωn−1, (odd n ≥ 3),

ω2 + ωn−1, 2ω1 + ωn−1 ω1 + ωn−2, ω1 + 2ωn−1, (n ≥ 3),

ω3, ωn−3, (n = 7, 8),

3ω1, 3ωn−1, (n = 4, 5),

ω1 + ω2, ω3 + ω4, (n = 5),

4ω1, ω1 + 3ω2, 4ω2, 3ω1 + ω2, (n = 3),

mω1 with m odd, (n = 2).
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If one of the above conditions holds, then for any w ∈ SAdm(µ)cyc, there exist
µ′ ∈ X∗(T )+ with µ′ � µ and a cyclic extended semi-module (Aλ, ϕ) for µ′ such that
π(Xw(b)

0) = Xλ
�µ(b) = SAλ,ϕ. Moreover π(Xw(b)

0) is universally homeomorphic to
an iterated fibration over a point whose fibers are (the perfection of) A1.

Proof. For any w = ̟µy ∈ SW̃ with µ dominant, set w∗ = ̟(µ(1),...,µ(1))ς(w) (cf.
§2.5 and §3.2). Then w∗ ∈ SW̃ and p(w∗) = wmaxyw

−1
max (cf. §2.5 and §3.2). Note

that the arguments and results in §5 and §6 for (µ, w, b) also hold for (µ∗, w∗, b∗).
Thus in this proof, it suffices to treat the case for either µ or µ∗.

First assume that n ≥ 6. Let 1 ≤ m0 < n be the residue of m modulo n.
If 4 ≤ m0 ≤ n − 4, then ωm0

+ ⌊m
n
⌋ωn � µ. So by Lemma 6.1 and Proposition

6.4, µ satisfies neither (i) nor (ii). If n ≥ 10 and m0 = 3, then by Lemma 6.2,
µ satisfies neither (i) nor (ii). If n = 7, 8 and m0 = 3, then by Proposition 6.5,
µ = ω3 satisfies (i) and (ii). If moreover, µ 6= ω3, then ω1 + ω2 + ⌊m

n
⌋ωn � µ or

ω4 + ωn−1 + (⌊m
n
⌋ − 1)ωn � µ. So by Lemma 5.6 and Lemma 6.9, µ satisfies neither

(i) nor (ii). If m0 = n−2, then ω1+ωn−3+ ⌊m
n
⌋ωn � µ unless µ = ωn−2 or 2ωn−1. If

m0 = n− 1, then ω2 +ωn−3 + ⌊m
n
⌋ωn � µ unless µ = ωn−1, ω1 +ωn−2 or ω1 +2ωn−1.

Thus the equivalence of (i), (ii) and (iii) for m0 = n−2, n−1 follows from Theorem
4.17, Proposition 6.5, Proposition 6.7, Proposition 6.10 and Proposition 7.1.

Assume that n = 5. If m0 = 3, then ω1 + ω3 + ω4 + ⌊m
n
⌋ωn � µ unless µ =

ω3, 2ω4, ω1 + ω2 or 3ω1. If m0 = 4, then 2ω2 + ⌊m
n
⌋ωn � µ unless µ = ω4, ω1 + ω3

or ω1 + 2ω4. Set y5 = (1 5 3)(2 4). Then it is easy to check that ̟ω1+ω3+ω4y5 ∈
SAdm(ω1+ω3+ω4) and X̟ω1+ω3+ω4y5(τ

8) 6= ∅. Assume that n = 4. If m0 = 3, then
2ω2 + ω3 + ⌊m

n
⌋ωn � µ unless µ = ω3, ω1 + ω2, ω1 + 2ω3 or 3ω1. Set y4 = (1 3)(2 4).

Then it is easy to check that ̟2ω2+ω3y4 ∈ SAdm(2ω2 + ω3) and X̟2ω2+ω3y4(τ
7) 6=

∅. Assume that n = 3. If m0 = 2, then 2ω1 + 3ω2 + ⌊m
n
⌋ωn � µ unless µ =

ω2, 2ω1, ω1 + 2ω2, 3ω1 + ω2 or 4ω2. Set y3 = (1 3). Then it is easy to check that
̟2ω1+3ω2y3 ∈ SAdm(2ω1 + 3ω2) and X̟2ω1+3ω2y3(τ

8) 6= ∅. Thus the equivalence of
(i), (ii) and (iii) for n = 2, 3, 4, 5 also follows from Theorem 4.17, Proposition 6.5,
Proposition 6.10 and Proposition 7.1. The case for n = 1 is trivially true.

Assume that µ satisfies one of the conditions in the theorem, which is equiva-
lent to each other as we have just proved. Then the last assertion follows from the
proof of the results in §5 and §6 except the “moreover” part. Let w ∈ SAdm(µ)cyc.
By Lemma 2.1, the map Xw(b)

0 → π(Xw(b)
0) induced by π is universally bijec-

tive. Using [8, Proposition 3.1.1] and Proposition 2.3, we can easily check that
π−1(π(Xw(b)

0))∩ (
⋃

w′≤wXw(b)) = Xw(b)
0 (cf. the proof of [34, Lemma 5.8]). Since

π is proper, the map Xw(b)
0 → π(Xw(b)

0) is also proper. This implies that this
map is a universally homeomorphism. Again by the results in §5 and §6, Xw(b)

0

and hence π(Xw(b)
0) are universally homeomorphic to an iterated fibration over a

point whose fibers are (the perfection of) A1. This finishes the proof.
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Remark 7.3. Except the cases where µ or µ∗ is ω1+ωn−2 (n ≥ 3) or ω1+ω2 (n = 5),
it follows from [36, Theorem 5.3] and Theorem 7.1 that if one of the conditions in
Theorem 7.2 holds, then each Xλ

µ(b)( 6= ∅) is universally homeomorphic to an affine
space. We do not know this is true in general.
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