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Abstract

Spatially exponential distributions of material properties are ubiquitous in many natural and engineered systems, from the vertical
distribution of the atmosphere to acoustic horns and anti-reflective coatings. These media seamlessly interface different impedances,
enhancing wave transmission and reducing internal reflections. This work advances traditional transfer matrix theory by integrat-
ing analytical solutions for acoustic exponential materials, which possess exponential density and/or bulk modulus, offering a
more accurate predictive tool and revealing the physical mechanism of broadband anti-reflection for sound propagation in such
non-uniform materials. Leveraging this method, we designed an acoustic dipole array that effectively mimics exponential mass dis-
tribution. Through experiments with precisely engineered micro-perforated plates, we demonstrate an ultra-low reflection rate of
about 0.86% across a wide frequency range from 420 Hz to 10,000 Hz. Our modified transfer matrix approach underpins the design
of exponential materials, and our layering strategy for stacking acoustic dipoles suggests a pathway to more functional gradient
acoustic metamaterials.

Keywords: Exponential materials, Generalized eigenmodes, Impedance matching, Broadband anti-reflection, Acoustic
metamaterials

1. Introduction

In the presence of a gravitational field, matter density of-
ten adopts an exponential gradient distribution, as exemplified
by the atmospheric density variation with altitude [1, 2] or the
gradation observed in ground soil [3, 4] and marine sediments
[5, 6]. Remarkably, such media, despite their inhomogeneity,
allow sound waves to propagate without reflective energy loss.
This unique characteristic facilitates their use as intermediary
layers to minimize reflection losses between media of different
impedances, with the acoustic horn being a classic example.
The genesis of using graded materials to mitigate interface re-
flections dates back to the seminal works of Lord Rayleigh [7]
and Fraunhofer [8] in the 19th century. Since then, gradient
materials have found extensive applications across optical and
acoustic systems [9, 10], including optical fibers [11], light-
emitting diodes [12], lenses [13, 14], and absorbers [15, 16].
Unlike antireflection techniques reliant on Fabry-Pérot reso-
nances [17], gradient materials offer the significant advantage
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of broadband operation, an attribute crucial for applications in
solar cells [18, 19], disordered media [20, 21], aberrating layer
[22, 23], and cloaking devices [24].

Two prevalent mathematical approaches are employed to
model gradient media: the small reflection theory [17, 25] and
the transfer matrix method [17, 26]. The small reflection the-
ory offers a general solution for gradient materials, predicated
on the assumption of weak reflection and is particularly use-
ful for simulating multisection binomial and Chebyshev trans-
formers [27, 28] in TEM transmission lines [17, 25] under the
approximation of an almost constant refractive index. How-
ever, this theory falters when faced with the substantial refrac-
tive index variations typical of exponential materials (EMs). On
the other hand, the transfer matrix method, utilising a discreti-
sation strategy [29], is theoretically applicable to any gradient
medium. Yet, its accuracy is compromised in media with large
property gradients, necessitating a finer discretisation meshes
and increased computational resources to minimise cumulative
numerical errors [30]. Consequently, the development of more
efficient numerical techniques for EMs is imperative for the ad-
vanced design and optimisation in practical applications.

In this study, we innovate upon the classical transmission ma-
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Figure 1: (a) The profiles of ρ(x) and K(x) for an ideal and infinitely long EM in the reduce region in Figure (2). Here we take the values when µ1 = −2µ2/3
for example. (b-c) The calculated eigenmodes ,i.e., pressure p and velocity v, in this EM at dimensionless frequency ξ0 = f / f0 = 4/5. By plotting the results in
Table (1), the solid lines are real parts of exact solutions, while the dashed lines are the absolute values of asymptotic solutions. (d) The propagation of a Gaussian
pulse in exponential materials with no reflection is given by Eq. (7), as shown in the numerical results.

trix method for uniform media by incorporating a plane wave
eigen-solution specific to EMs. This refinement allows for a
substantial reduction in the number of discrete meshes nec-
essary for accurate simulations, thereby decreasing computa-
tional demands while enhancing precision [31, 32]. The re-
sulting method enables a more efficacious characterisation of
material response properties, which is instrumental in optimis-
ing parameters and improving design processes for applications
such as antireflection layers. Demonstrating the practical utility
of our approach, we engineered a series of broadband acous-
tic dipoles using a sequence of non-resonant micro-perforated
plates. These meta-layers were meticulously designed to yield
a gradient in effective mass density that adheres to an exponen-
tial spatial distribution. Here, the the prefix “meta” borrowed
from metamaterials [31, 32] emphasises the effective properties
were from designed structures rather than chemical composi-
tion. Experimental validation confirms the theoretical model,
with the structure exhibiting exceptional broadband reflection
suppression across an extensive frequency spectrum (an aver-
age reflectivity of 0.86% and less than 10% from 420 to 10,000
Hz), when backed by a rigid surface. These results highlight
the considerable potential to advance the application of EMs in
fields like antireflection technology.

2. Exponential medium and its general solution

Sound propagates as a spread of density variation within
a medium, a process characterized by localized interactions
rather than long-range effects. Therefore, the homogeneity in
the medium is not expected to affect the local momentum equa-
tion or alter the constitutive properties at a given point:

 ∂v/∂t + ∇p/ρ(x) = 0,
∂p/∂t + ρ(x)c(x)2∇ · v = 0.

(1)

Here, p is the pressure modulation by sound, v is the particle
velocity, ρ is the local density and c =

√
(∂p/∂ρ)S is the lo-

cal sound speed in adiabatic processes. By eliminating v, the
Eq. (1) gives the wave equation respect to p for the non-uniform
medium

ρ(x)∇ ·
[

1
ρ(x)
∇p(x)

]
−

1
c(x)2

∂2

∂t2 p(x) = 0. (2)

The problem reduces to one-dimensional if both ρ and c
change exponentially along a single axis, x, and remain con-
stant along the other two,
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 ρ(x) = ρ0 exp(µ1x),
c(x) = c0 exp(−µx/2),

(3)

provided that the sound propagation under consideration is in
the direction of the exponential variation. Where, ρ0 and c0 are
real-valued reference material constant defined at x = 0. Also,
we display the corresponding bulk modulus as

K(x) = ρc2 = K0 exp(−µ2x), (4)

where µ2 = µ − µ1 followed from Eq. (1). The schematic dia-
gram illustrating the exponential material properties is depicted
in Figs. (1a) and (1b). To find the solution to Eq. (2), we intro-
duce variable transformations for monochromatic sound1 with
the angular frequency ω,

x 7→ ξ ≡
2ω
µc0

exp(µx/2) and p 7→ Φ ≡ ξ−α1 p, (5)

where α1 = µ1/µ. So, Eq. (2) yields a Bessel equation:

ξ2
∂2Φ

∂ξ2
+ ξ
∂Φ

∂ξ
+

[
ξ2 − α2

1

]
Φ = 0. (6)

The relevant general solutions for sound pressure can be ex-
pressed by Hankel functions of the first and second kinds (re-
ferring to Supplementary Materials, Section S1 for details):

p(x, t) = e
µ1 x

2

∫ ∞

0

{
C1(ω)H(1)

α1
[ξ(ω)]+

+C2(ω)H(2)
α1

[ξ(ω)]
}

e−iωtdω. (7)

Here, C1 and C2 are determined by the initial condition of sound
pressure’s distribution at t = 0, ensuring that the requirement
p(x, 0) = e

µ1 x
2

∫ [
C1H(1)

α1 (ξ) +C2H(2)
α1 (ξ)

]
dω is satisfied.

As an example, assuming the initial state comprises a Gaus-
sian wave packet, p(x, 0) = exp(−(ax)2), the subsequent evolu-
tion of sound wave can be observed in Fig. (1d) (numerical cal-
culation steps are in Supplementary Materials, Section S2). The
wave traveling to the right is represented by the Hankel func-
tion H(1)

α1 (ξ) in Eq. (7) and manifests as
√

2/πξei(ξ− α1π
2 −

π
4 ) in the

far field, whose profiles we have plotted in Figs. (1b) and (1c).
Conversely, the wave moving to the left is denoted by H(2)

α1 (ξ)
in Eq. (7) and exhibits behaviour

√
2/πξe−i(ξ− α1π

2 −
π
4 ) at a signif-

icant distance from the source. The interpretation of standing
and traveling plane waves is justified by the extremum of power
flow (see a rigorous proof in Supplementary Materials, Section

1In this context, we assume a harmonic dependence of p as exp(−iωt), and
we globally adopt ∂/∂t → −iωt.
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Figure 2: The classification of EMs by the parameter space of µ1 and µ2, which
are the measure of non-uniformity of exponential density and bulk modulus,
respectively. In the center, µ1 = µ2 = 0, which represents the space for uniform
materials. We define EMs in other spaces, i.e., the farther away from the origin
the greater the non-uniformity. By leveraging the duality, we have the following
problems equivalent: A⇔ C and B⇔ D. Moreover, with parity symmetry, we
have A ⇔ D and B ⇔ C. Therefore, all possibilities of the solutions can be
contained in the reduced region A.

S3). Remarkably, despite the medium’s non-uniformity, no re-
flections are observed for either of the propagating pulses, a
distinctive characteristic of an EM.

In Table (1), we listed the plane-wave eigenmodes (in fre-
quency domain) with respect to p and v, of both uniform mate-
rials and EMs for comparison. The detailed derivation is avail-
able in Supplementary Materials, Section S1.

3. Classification of exponential materials

To lay the groundwork for advancing numerical methods ap-
plicable to exponential materials (EMs), it is instructive to first
categorize and examine general solutions through the lens of
symmetry. Eq. (1) bears resemblance to the electric-magnetic
duality (or Montonen–Olive duality) [26] found in Maxwell’s
equations; by interchanging p ↔ v and ρ ↔ K−1, we observe
that the equation retains its form, thereby exhibiting duality
symmetry. This symmetry permits an interchange of p and v by
simply swapping µ1 with µ2 and vice versa. Moreover, imple-
menting a parity transformation x↔ −x is also mathematically
tantamount to switching µ1 ↔ −µ1 and µ2 ↔ −µ2.

Nevertheless, existing references tend to name their materi-
als using either gradient impedance [34] or gradient index [35],
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Uniform Materials Exponential materials (EMs)
Properties ρ = ρ0,K = K0 ρ = ρ0eµ1 x,K = K0e−µ2 x

Solution type Exact Exact Asymptotic (ξ ≫ 1)
Pressure p
(Standing wave)

[
sin(k0x)
cos(k0x)

]
e
µ1 x

2

[
Jα1 (ξ)
Yα1 (ξ)

] (
2
πξ0

) 1
2 e

(µ1−µ2)x
4

 sin
(
ξ − α1

π
2 −

π
4

)
cos

(
ξ − α1

π
2 −

π
4

) 
Velocity v
(Standing wave)

−i
Z0

[
cos(k0x)
− sin(k0x)

]
−ie

µ2 x
2

Z0

[
J−α2 (ξ)
Y−α2 (ξ)

] (
2
πξ0

) 1
2 −ie−

(µ1−µ2)x
4

Z0

 sin
(
ξ + α2

π
2 −

π
4

)
cos

(
ξ + α2

π
2 −

π
4

) 
Pressure p
(Traveling wave)

[
eik0 x

e−ik0 x

]
e
µ1 x

2

[
H(1)
α1 (ξ)

H(2)
α1 (ξ)

] (
2
πξ0

) 1
2 e

(µ1−µ2)x
4

[
ei(ξ−α1

π
2−
π
4 )

e−i(ξ−α1
π
2−
π
4 )

]
Velocity v
(Traveling wave)

1
Z0

[
eik0 x

−e−ik0 x

]
−ie

µ2 x
2

Z0

[
H(1)
−α2

(ξ)
H(2)
−α2

(ξ)

] (
2
πξ0

) 1
2 −ie−

(µ1−µ2)x
4

Z0

[
ei(ξ+α2

π
2−
π
4 )

e−i(ξ+α2
π
2−
π
4 )

]
Table 1: Eigenmodes (p and v) of uniform and exponential materials (e−iωt omitted). The displayed analytical solutions for EMs are the generalized version of those
in uniform materials. In uniform materials, the wavenumber is defined as k0 = ω/c0. At the high frequency limit when ξ ≫ 1, the asymptotic eigenmodes [33] in
EMs share the similar forms with plane-wave solution in uniform materials. However, the amplitude of p (or v) is modulated by e(µ1−µ2)x/4 (or e−(µ1−µ2)x/4). The
velocity fields are obtained by substituting p into the first line of Eq. (1) with the additionally defined α2 = 1 − α1.

while ignoring the other. Here, we show the necessity of con-
sidering both material properties to obtain a complete classifi-
cation and to cover various EMs, as seen in the parameter space
for classifying EMs. In Fig. (2), we define the corresponding
characteristic impedance Z and refraction index n as Z(x) = Z0 exp

[
(µ1−µ2)x

2

]
n(x) = n0 exp

[
(µ1+µ2)x

2

] , (8)

where Z0 =
√
ρ0K0 and n0 = 1. Visualizing µ1 as the hori-

zontal axis and µ2 as the vertical axis, we can represent all po-
tential parameters of EMs on a two-dimensional plane. Given
the symmetries described, the solution space of Eq. (2) can be
effectively narrowed down to the shaded region A in Fig. (2),
characterized by µ1 − µ2 > 0 and µ1 + µ2 > 0. For the pur-
poses of our research, we will confine our analysis to this re-
gion without compromising generality. Along the boundary
where µ1 − µ2 = 0, the material exhibits a constant acoustic
impedance, Z = ρ0c0 exp[(µ1 −µ2)x/2], while along the bound-
ary where µ1 + µ2 = 0, the speed of sound within the material
remains invariant, which is the case of sound in a horn charac-
terized by Webster equation [36]. The point where µ1 = µ2 = 0
corresponds to a uniform medium, as depicted at the origin in
Fig. (2).

4. Modified transfer matrix method

4.1. Model setup

As shown in Fig. (3a), the basic model setup involves consid-
ering two uniform materials with distinct material properties.
The EM is embedded in between as an impedance transformer
with thickness L, and the material properties are ensured to be

continuously connected at the interfaces. In this way, the den-
sity and bulk modulus are defined as

ρ(x) =


ρ0 x ≤ 0

ρ0 exp (µ1x) 0 < x < L
ρ0 exp (µ1L) x ≥ L

, (9)

and

K(x) =


K0 x ≤ 0

K0 exp (−µ2x) 0 < x < L
K0 exp (−µ2L) x ≥ L

. (10)

As an additional constraint, we assume that the impedance con-
trast is a constant for all EMs with different testing α1, which
ensures that

ZL

Z0
= exp

[
(µ1 − µ2)L

2

]
= 7.4, (11)

which we will use as a demonstration value for all followed
numerical results.

4.2. Elements of modified transfer matrix

Since the analytical solutions obtained earlier in Table (1) are
accurate and universal, we now establish a modified transfer
matrix method (MTMM) by taking advantage of the general-
ized eigenmodes in EMs, to predict the scattering parameters.
The uniform material on the left (or right) side is associated
with Port 1 (or Port 2). The ABCD-matrix [17] of the 2-port
system relates the fields at different ports in following way p|x=0√

Z0

v|x=0
√

Z0

 =  A B
C D

  p|x=L√
ZL

v|x=L
√

ZL

 , (12)
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Methods ABCD-matrix Reflection (S 11)

Our theory MTMM
πξ0
2


√

ZL
Z0

e
µ2 L

2 F (α1,−α2, ξ0, ξL) −i
√

Z0
ZL

e
µ1L

2 F (α1, α1, ξ0, ξL)

−i
√

ZL
Z0

e
µ2L

2 F (−α2,−α2, ξ0, ξL)
√

Z0
ZL

e
µ1L

2 F (α1,−α2, ξL, ξ0)


where F (v1, v2, x1, x2) = Jv1 (x1) Yv2 (x2) − Jv2 (x2) Yv1 (x1)

Eq. (14)

Textbook SRT Not applicable Eq. (17)

TMM
( 1
√

Z0
0

0
√

Z0

)∏N
n=1

(
cos(kn

L
N ) −iZn sin(kn

L
N )

− i
Zn

sin(kn
L
N ) cos(kn

L
N )

) ( √
ZL 0
0 1

√
ZL

)
Eq. (14)

Table 2: The theories for modeling EMs. For modified transfer matrix method (MTMM), it is defined that ξ0 = ξ|x=0 and ξL = ξ|x=L. For small reflection
theory (SRT), there is no matrix element involved. For traditional transfer matrix method (TMM), the ABCD-matrix is obtained by multiplying N sub-matrices,
with the mesh size of L/N. In the nth layer, the wavenumber kn = ω

√
ρn/Kn and the characteristic impedance Zn =

√
ρnKn, where ρn = ρ0 exp(µ1nL/N) and

Kn = K0 exp(−µ2nL/N).

where A, B,C,D are dimensionless matrix elements that fol-
lows the convention of generalized scattering matrix formalism
[17, 37]. If we apply the incident excitation from left and right
sides respectively, the linear superposition of p and v can be
written as

 1 + S 11

1 − S 11

 =  A B
C D

  S 21

S 21

 S 12

−S 12

 =  A B
C D

  1 + S 22

− (1 − S 22)

 , (13)

where S i j are the scattering matrix elements whose absolute
values squared represents the energy ratio from Port i to Port
j. If i = j, |S ii|

2 denotes the reflected energy ratio at Port i.
By treating A, B,C,D as the known elements, we can attain the
scattering matrix


S 11 = (A + B −C − D)/(A + B +C + D)
S 12 = 2(AD − BC)/(A + B +C + D)
S 21 = 2/(A + B +C + D)
S 22 = (−A + B −C + D)/(A + B +C + D)

, (14)

where the analytical forms of A, B,C,D elements of MTMM
are given in Table (2), whose derivation has been placed in Sup-
plementary Materials, Section S4.

4.3. S-matrix analysis

Because our system is time-invariant, linear and with scalar
material properties, the reciprocity holds [37], which ensures
that S 12 = S 21 [thus AD − BC = 1, according to Eq. (14)].
Therefore, the reciprocity can guarantee symmetrical transmis-
sion, i.e.,

|S 12|
2 = |S 21|

2. (15)

Since the embedded EM is lossless, i.e., Im(ρ) = 0, Im(K) =
0, the absorption inside the EM should be zero, thus |S 12|

2 +

|S 11|
2 = 1 or |S 21|

2 + |S 22|
2 = 1. With the consideration of

Eq. (15), we can conclude that

|S 11|
2 = |S 22|

2, (16)

although S 11 , S 22 due to the phase difference. It should be
noted that Eq. (15) holds for all frequencies regardless of the
types of the EM, while Eq. (16) is valid only when the EM is
lossless (the case we focus on here). Symmetrical reflected en-
ergy allows us to focus on the case where the incident excitation
is from only Port 1, without losing the generality.

4.4. Our model vs textbook theories

To compare the proposed MTMM with the two representa-
tive theories in textbooks, we treat the reflection spectra ob-
tained from finite element method (FEM) model as the ref-
erence values. The commercial software, COMSOL Multi-
physics, was utilized to implement FEM calculation throughout
the paper. To ensure the correctness of FEM, the adopted mesh
size was sufficiently small compared to the wavelength λ. The
related results are displayed by the solid lines in Figs. (3b) and
(3c), for EMs with different α1. Remarkably, the corresponding
data given by the first line of Eq. (14) [see MTMM results in
Fig. (3c)] match the reference values for all α1 at all frequen-
cies, which shows the generality and accuracy of our theory.

For predicting reflection from impedance-varying materi-
als, small reflection theory (SRT) is a widely-used lightweight
method [17]. Its assumptions are that the reflection at each layer
is a small quantity, and that wave speed c0 (or n0) is constant,
i.e., α1 = ∞ in our definition. So, analytical solutions may be
obtained for special impedance distribution Z(x). For example,
for the EMs we considered, the overall reflection coefficient has
the following form [17, 25]
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(a) (b)

(d)

(c)

Figure 3: (a) The impedance transformer setup. The left and right sides are uniform materials with distinct material properties, which are connected with an
EM. The combination of (µ1, µ2) can be arbitrary, reflecting the universality of our model. (b) The reflection |S 11 |

2 predicted by traditional piece TMM (N = 6),
compared with that by FEM as reference value. (c) The reflection |S 11 |

2 predicted by MTMM and FEM. The green dashed lines in (b) and (c) are the same data
given by SRT. (d) The absolute error of TMM and MTMM, plotted as function of iteration number N. The coefficient α1 is adjusted for checking the generality and
accuracy of different models.

S 11 =

∫ L

0

e2ik0 x

2
d
dx

ln
(

Z(x)
Z0

)
dx = ln

(
ZL

Z0

)
eik0L sin(k0L)

2k0L
, (17)

where k0 = ω/c0. As shown by the green dashed lines in
Figs. (3b) and (3c), the data by SRT coincide with reference
values only for α1 → ∞ and when the reflection is lower than
0.05. This is consistent with the prescribed assumptions of SRT.

The second textbook method is traditional transfer matrix
method (TMM), which requires piecewise discretization of the
investigated materials. To yield S 11 coefficient, TMM also fol-
lows the similar procedure of obtaining ABCD-matrix, using
the same formula, i.e., Eq. (14). However, the overall ABCD-
matrix is generated from the one-by-one multiplication of N
sub-matrices. See the mathematical details of TMM in Supple-
mentary Materials, Section S4. As shown in Fig. (3b), when
N = 6, reflection spectra by TMM is accurate at low frequen-
cies (ωL/c0 < 4), while for high frequencies (ωL/c0 > 4),
TMM suffers from the discretization approximation. If N = 50,
the error becomes low enough but the computation time is
surged. Compared with SRT, TMM is general for all α1 but

the accuracy is not ensured if N is not sufficiently large.
From this perspective, SRT and TMM are neither general nor

accurate. TMM can be general with cost of iteration times N. In
Fig. (3d), we compare the absolute errors by TMM and MTMM
in our case of EMs, respectively. Absolute errors denotes the
frequency-averaged difference between the target theory and
FEM. So, MTMM outperforms TMM because only one-step
calculation is enough and the error of MTMM is smaller than
that of TMM with even N = 50.

By equating left-side terms of Eq. (12) and the first line
of Eq. (13), the reflection can be related with the specific
impedance Zs

S 11 =
Zs − Z0

Zs + Z0
, (18)

where Zs = (p/v)|x=0. The mechanism-level understanding
impedance matching and anti-reflection performance of EMs
in Fig. (3) requires analytical analysis on Zs, which will be ad-
dressed next.

5. Physical mechanism of broadband impedance matching

6



From Fig. (3c), it can be seen that in all cases, low-frequency
reflection is still significant, while from intermediate to high
frequency bands, the reflection tends to disappear, indicating
broadband impedance matching. It is necessary to first under-
stand how impedance behaves when there is a low-frequency
mismatch in order to comprehend how it changes as the fre-
quency increases.

5.1. Low frequency behavior

If ωL/c0 → 0, the ABCD-matrix of MTMM in Table (2)

becomes a diagonal matrix

 √ZL/Z0 0
0

√
Z0/ZL

, which has

been proved in the Supplementary Materials, Section S4. Ac-
cording to Eq. (12), we conclude

lim
ω→0

Zs = ZL, (19)

thus yielding the reflection S 11 = (ZL−Z0)/(ZL+Z0) = 0.58. So,
we can interpret it as the ‘bypassing’ effect in EMs with our an-
alytical model. From the perspective of impedance transfer, this
means that the impedance at x = L is transmitted unchanged to
x = 0. In other words, the long wavelength wave can ignore
impedance transition, and the reflection coefficient approaches
the case without an anti-reflection layer, i.e., step impedance
change.

5.2. High frequency behavior

As shown in Fig. (3c), ifωL/c0 → ∞, we observe a near-zero
reflection in all EMs. Now we explain why. The ABCD-matrix
of MTMM in Table (2) at the high frequency limit (ω → ∞)
has the asymptotic values A = D = 1 and B = C = 0 (i.e.
identity matrix). The related proof can also be found in the
Supplementary Materials, Section S4. By adopting these values
into Eq. (12), we have

lim
ω→∞

Zs = Z0
(p/v) |x=L

ZL
= Z0. (20)

The last equal in Eq. (20) is because the continuity impedance
ensured by Eq. (11), i.e., (p/v) |x=L = Z(L) = Z0e(µ1−µ2)/2. This
means that any end impedance will be transformed into the
impedance that matches Port 1, i.e., analytical evidence of the
excellent impedance-matching feature of EMs.

5.3. Intermediate frequency behavior

For the intermediate frequency range, we can see that
impedance matching condition of Eq. (20) is still a good ap-
proximation. This also explains why gradually varying media
always have excellent anti-reflection properties [10]. At high

frequencies, the short wavelength makes it difficult to detect
the non-uniformity of the material. As shown in Fig. (3c), it
can be seen that the anti-reflection properties can be maintained
over a wide frequency range, depending on how small of α1

can be achieved. For instance, if we define f1 as the threshold
at which the reflection is below 0.1, then f1 is lower and the
anti-reflection effect is wider in bandwidth as α1 approaches
1/2. In the following content, we will focus on the case where
α1 = 1, which is an achievable target in airborne acoustics.
Furthermore, we will also examine the case with lossy material
properties and its impact on impedance matching.

6. Lossless and lossy EMs

We first consider a lossless EM with α1 = 1 with the follow-
ing settings:

 ρ(x) = ρ0eµ1 x

K(x) = K0
, (21)

with Z(L) =
p
v

∣∣∣∣
x=L
= Z0eµ1L/2, (22)

as shown in Fig. (4a). Here, we set the impedance boundary
as Eq. (22), following the same definition in Fig. (3a). The
product µ1L should be determined by Eq. (11), i.e., µ1L = 4.
Here, Eq. (22) is regarded as leaky backing.

We already know from Fig. (3d) about the excellent anti-
reflection properties of such EM, and the same curve is dis-
played by blue data in Fig. (4e). Next, we consider the other
lossy EM, with the settings:

 ρ(x) = ρ̃0eµ1 x

K(x) = K0
, (23)

with Z(L) =
p
v

∣∣∣∣
x=L
= ∞, (24)

as shown in Fig. (4b). The proposed MTMM model is actu-
ally applicable to lossy EMs as well, but it requires complex ρ̃0,
whose dispersion should be determined by the concrete struc-
tures in real systems. For the subwavelength acoustic dipoles
based on perforated plates that we will realize in the experi-
ments, the dispersive material properties should adopt

ρ̃0 = ρ0χ(ω) = ρ0

1 + i

√
β

ω

 , (25)

where β is the dissipation factor. The derivation of Eq. (25) is
available in Supplementary Materials, Section S5. By replacing
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Eq. (21) by Eq. (23), we can derive the explicit form of the
reflection of a lossy EM with the hard boundary [Eq. (24)]

S 11 =
i
√
χF

(
1, 0, ξ̃0, ξ̃L

)
− F

(
0, 0, ξ̃0, ξ̃L

)
i
√
χF

(
1, 0, ξ̃0, ξ̃L

)
+ F

(
0, 0, ξ̃0, ξ̃L

) , (26)

where ξ̃0 = ξ0
√
χ, ξ̃L = ξL

√
χ, and F (v1, v2, x1, x2) follows

the same definition of Table (2). Since the dissipation is in-
evitable in real sample, our motivation is to consider a lossy
EM, whose β can be designed to make its reflection close to
that of the corresponding lossless EM, with a leaky backing. It
turns out that if β = 630 rad/s, the approximation is observed
to be valid when ωL/c0 > 0.4 [see Fig. (4e)]. It is displayed in
Figs. (4c) and (4d) that the impedance spectra are also similar in
the two cases, except the low frequency behaviors. The above
results indicate that a finite lossy EM can mimic the reflection
behavior of an ideal lossless EM with leaky backing boundary,
laying the foundation for our experimental realization of anti-
reflection meta-layer. It should be emphasized, however, that
the suitable dissipation β of a lossy EM actually depends on the
impedance contrast, given by Eq. (11).

7. Experimental realization of anti-reflection meta-layer

7.1. Acoustic dipoles with tunable density

To realize the lossy EM in Fig. (4b) with excellent anti-
reflection property, we seek real structures to realize these pre-
determined density properties. Therefore, the candidate we
found is the perforated plate [38], which is a type of acoustic
dipole in airborne acoustic systems. The geometric parame-
ters of a perforated plate include its thickness τ, hole diame-
ter d, and the spacing a between holes. We also specify that
the unit of the acoustic dipole is composed of air cavity with a
length of ℓ. In addition, the porosity is the perforated area ratio
ϕ = πd2/(2

√
3a2) for hexagonal pore distribution. According

to effective medium theory (EMT) [39, 40], in the non-resonant
band, the effective bulk modulus of a perforated plate is the
same as that of air2, i.e., Keff � K0 due to the pure dipole na-
ture. Here, the non-resonant band refers to the frequency range
where ℓ ≪ λ and the relevant effective properties are approxi-
mately non-dispersive. By contrast, the effective density is what
we can regulate, which writes

ρeff =
ρ0

ℓ

ℓ − τ + τ + δτϕ
1 + i

√
β

ω

 , (27)

2From now on, ρ0 and K0 denote the density and bulk modulus of air, re-
spectively.

where the end correction δτ = 0.85dF(ϕ) and the Fok function

F(ϕ) = 1− 1.41ϕ
1
2 + 0.34ϕ

3
2 + 0.07ϕ

5
2 − 0.02ϕ3 + 0.03ϕ

7
2 , (28)

which depicts the interaction between the adjacent pores [41].
The first and second terms in Eq. (27) are contributed by air cav-
ity and pore, respectively. The thermoviscous dissipation [42]
in the pore was taken account by β. Here, we adopt β = 8ν/d2

and the kinematic viscosity ν = 1.59 × 10−5 m2/s. Derivation
details of Eq. (27) can be found in Supplementary Materials,
Section S5. In our case, we obtain d = 0.45 mm by solving that
β(d) = 630 rad/s. Here, the proper dissipation ensures the sim-
ilarity between the reflection spectra in the lossy and lossless
cases in Fig. (4). By adjusting ϕ and ℓ, we can manipulate the
effective density over a wide range, thus acoustic dipole being
tunable.

7.2. Design scheme

By utilizing the tunable acoustic dipoles, we can now con-
struct an equivalent EM with gradient effective density. Our
idea is to stack unit cells of different acoustic dipoles to cre-
ate a meta-layer with a gradually varying effective property, in
order to experimentally verify the anti-reflection effect shown
in Fig. (4e). To inversely engineer geometric parameters of an
array of perforated plates under the constraint of exponential
density [see the fabricated sample photo in Fig. (5a)], we use
n to label each perforated plate and related parameters (the to-
tal number N = 39). For example, the length of the nth unit
cell is ℓn, and the porosity of the nth perforated plate is ϕn. Our
strategy is to let the real part of Eq. (27) to follow exponential
dependence

exp(µ1xn) =
1
ℓn

[
ℓn − τ +

τ + δτ(ϕn)
ϕn

]
, (29)

where xn is the coordinate of nth plate and we set τ = 0.7 mm.
We set x1 = 0, x2 = (ℓ1 + ℓ2)/2, xn = (ℓ1 + ℓn)/2 +

∑n−1
m=2 ℓm

(n ≥ 3), and the total length L = ℓ1/2 +
∑N

n=2 ℓn. To derive
the design of ϕn, we can assign ℓn = ℓ1e−µ1 xn/3 and solve ℓ1 by
designating the total length L = 0.2 m, which can determine
µ1 = 20 m−1 according to Eq. (11). The necessity of introduc-
ing gradient ℓn lies in the fact that the wavelength will be sup-
pressed if the sound speed becomes slower [see Figs. (1b) and
(1c)]. In this way, the subwavelength condition (ℓn ≪ λ) can
be maintained broadbandly. By numerically solving Eq. (29)
for the roots, we can obtain a list of the required values of ϕn

[see the outcome in Fig. (5b)]. As for the imaginary part of
Eq. (27), if ϕ ≪ 1 (this is true for most plates), we can approx-
imate Eq. (27) as the first line of Eq. (25). Hence, we can still
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(c)

(e)

(d)

(b)

(a)

Figure 4: Lossless and lossy EMs with exponential density (α1 = 1). (a) The setup for a lossless EM backed by a leaky impedance boundary Z(L) = Z0 exp
[
µ1L

2

]
.

(b) The setup for a lossy EM with complex density ρ̃0eµ1 x, backed by hard wall (i.e., Z(L) → ∞). (c-d) The impedance spectra of lossless and lossy EMs in the
setup of (a) and (b). (e) The reflection spectra of lossless and lossy EMs, given by Eq. (14) and Eq. (26) respectively. The MTMM-predicted data agree well with
those by FEM, showing the validity of our theory in lossy case.

𝐿

(a) (b) (c)

(d)
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𝑂

𝑥
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𝜙4

…
.
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𝜏
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𝑑
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𝑑

Figure 5: (a) The photo of the fabricated sample, with its cover removed for better illustration. The pore spacing is larger as the label n of ϕn increases. (b)
The porosity distribution generated by the proposed design scheme. The inset depicts the front view of the perforated plate. (c) The measured effective density of
individual unit cells at 1000 Hz, plotted as function of their location xn. In addition, the obtained fitting function is (1 + 0.04i) exp(19.4 [m−1]x). The inset is the
side view of a unit cell. (d) The measured reflection of the overall assembled sample. The gray region from 420 Hz to 10000 Hz is determined by 10% reflection
(or 90% absorption) as the threshold. Theoretical MTMM-based results are taken from Eq. (14) and Eq. (26), respectively. The inset is an enlarged view of the low
frequency band.

use MTMM with the consideration of loss by Eq. (25) to model
the meta-layer. In summary, in the design scheme, besides the
plate thickness τ and total length L, all other geometric param-
eters are reverse-engineered rather than obtained through large-

scale multi-parameter optimization. The detailed geometrical
parameters are listed in Supplementary Materials, Section S6.
As for the length scale relation, it should be noted that 1/µ (the
exponential decay length) > ln (the unit size) ≫ δν =

√
2ν/ω
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(the boundary layer thickness).

7.3. Effective density characterization

We used 3D printing technology to fabricate individual per-
forated plates with predetermined ϕn (The pore spacing was de-
termined by an = d[π/(2

√
3ϕn)]1/2). We performed experimen-

tal measurements of the effective density for each individual
plate before assembling individual perforated plates. The spe-
cific implementation was based on the four-microphone method
via impedance tube to measure the reflection (S 11) and trans-
mission (S 21) spectra (with phase information) of a single per-
forated plate at a measured frequency of 1000 Hz. Experimen-
tal details can be found in Supplementary Materials, Section
S7. According to Ref. [43], the measured effective density of
the nth plate is given by

ρeff(ω) = i
2Z0

ωℓn

1 + (S 11 − S 21)
1 − (S 11 − S 21)

. (30)

It is shown in Fig. (5c) that the measured effective density (cir-
cles) indeed follows exponential spatial dependence. The black
lines are the results predicted by EMT [see Eq. (27)]. We also
fitted the measured real and imaginary parts of effective density
by using exponential functions (purple and blue lines), which
agree well with those by EMT. The above characterization ex-
periment demonstrates the effectiveness of our design scheme.

7.4. Meta-layer preparation

To combine the individual fabricated perforated plates, we
also printed two corresponding shell covers. The interior of the
covers has designed grooves located at xn for the installation
of perforated plates. We used acoustic plasticine to seal pos-
sible gaps and assembled all components to form the overall
meta-layer. The bottom of the meta-layer is a hard wall [cor-
responding to the top of Fig. (5a)], and the incident port of
the sound wave is the bottom of Fig. (5a). The diameter of
the internal cavity of the sample is 2 cm, which is aligned with
the inner diameter of the circular impedance tube. The corre-
sponding cut-off frequency of the impedance tube is 10057 Hz,
which is enough to cover the range up to 10000 Hz, the upper
limit of our measurement. To assemble the individual perfo-
rated plates, we printed two corresponding shell covers with
designed grooves located at xn. We used acoustic adhesive to
seal possible gaps and assembled all components to form the
overall meta-layer. The bottom of the meta-layer corresponds
to the top of Fig. (5a), and the incident port of the sound wave
is at the bottom of Fig. (5a).

7.5. Reflection measurement

For the measurement of reflection, we used two-microphone
method to evaluate the anti-reflection performance of the meta-
layer. To cover such a broadband range, our experiments were
carried out in two rounds (implementation details and equip-
ment specifications available in Supplementary Materials, Sec-
tion S7). The experimental results show that the meta-layer pos-
sesses the low reflection of less than 10% from 420 Hz to 10000
Hz. Within this range, the averaged reflection

∫ f2
f1
|S 11( f )|2

( f2− f1) d f =
0.86%, where f1 = 420 Hz and f2 = 10000 Hz. The reflec-
tion tends to zero as the frequency increases, which is con-
sistent with our theoretical predictions [as shown in Fig. (5d)
comparing the theoretical (red line) and experimental (red cir-
cles) data]. This low reflection is corresponding to a high aver-
age absorption coefficient of 99.14%. The theoretical results
presented here used dimensional frequency as the horizontal
axis, which are actually the same data from Fig. (4e). Be-
cause the end of the sample we designed is a hard wall, all in-
cident energy except for the reflection will be absorbed. Com-
pared with other competitive acoustic absorber/anti-reflection
coatings, e.g., porous materials [44], absorbing metamaterials
[45, 46, 47], our meta-layer has the largest relative bandwidth,
i.e., Bw = 2( f2 − f1)/( f2 + f1) = 1.84, close to its upper limit 2.

8. Concluding remarks

Thus far, our results have shown an efficient and easily im-
plementable way to achieve an EM-based anti-reflection meta-
layer by manipulating the structure of multi-layer perforated
plates. Other examples suitable for demonstrating more gen-
eral acoustic EMs include temperature gradient pipes [48, 49]
and solid-fluid composites [50, 51, 52]. . We distinguish our
work with acoustic black holes [46, 53, 54], due to the use of
ideal reflectionless eigenmodes inside EMs. The precise de-
sign of the dissipation and exponential non-uniformity is also
unique for the final excellent anti-reflection performance. Fur-
thermore, our acoustic theory can be easily extended to the case
of electromagnetic waves by the following mapping ρ→ ϵK → µ−1 , (31)

where ϵ, µ are the permittivity and permeability, respectively.
The detailed derivations for the electromagnetic extension are
available in the Supplementary Materials, Section S8. Hence,
the proposed MTMM-based design scheme, together with the
excellent anti-reflection effect of EM, can have even broader
impacts in microwave and optical metamaterials [9, 55, 56].
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This article focuses on one-dimensional exponential mate-
rial properties. Other types of functions, such as Pöschl–Teller
function (sech2 type) [57, 58] and power series [48, 59] were
also examined. Additionally, Ref. [60] proposed a variational
approach to yield optimal impedance profiles, and Ref. [61]
systematically investigated the frequencies where waves can
go around an obstacle. It was also emphasized in Refs.
[62, 63, 64] that infinite number of solvable impedance pro-
files can be found with the aid of Liouville and Darboux trans-
formation. However, achieving broadband anti-reflection even
for one-dimensional problems is not easy. Universal broadband
impedance matching design were proposed in Refs. [35, 65].
Furthermore, Refs. [66, 67] demonstrated that if real and imag-
inary parts of the material parameters are associated by a spatial
Kramer-Kronig relation, omnidirectional anti-reflection effects
can be ensured with only passive components. For cases be-
yond one dimension, more general theories on reflectionless
modes can include aspects in multi-mode problems [68, 69],
reciprocity constraints [70], and disordered media [20, 71, 72].
The development of transformation acoustics/optics [24, 73]
can also be referenced for 2D and even 3D cases. However,
achieving broadband effective properties in experiments is of-
ten challenging, and the required material properties can be
anisotropic [24].

In conclusion, by taking advantage of the specific case of
EMs, our work provides a foundational complement to previ-
ous studies from the analytical perspective. Under the condition
of one-dimensional exponential material properties, we utilize
generalized plane-wave eigenmodes as an effective theoretical
analysis tool, to enhance our understanding of the impedance
matching mechanism of traditional gradient materials. Simul-
taneously, we simplify the design procedure with the updated
model, achieving unprecedented broadband anti-reflection per-
formance. Looking ahead, EM can also be integrated as a key
component into other anti-reflection devices. We expect that
our acoustic-EM-based theoretical and experimental research
paradigm can be extended to higher dimensions and other wave
systems to generate profound impacts.
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