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Abstract

The ‘operator entanglement’ of a quantum operator O is a useful indicator of its com-
plexity, and, in one-dimension, of its approximability by matrix product operators. Here
we focus on spin chains with a global U(1) conservation law, and on operators O with a
well-defined U(1) charge, for which it is possible to resolve the operator entanglement of
O according to the U(1) symmetry. We employ the notion of symmetry resolved opera-
tor entanglement (SROE) introduced in [Rath et al., PRX Quantum 4, 010318 (2023)]
and extend the results of the latter paper in several directions. Using a combination of
conformal field theory and of exact analytical and numerical calculations in critical free
fermionic chains, we study the SROE of the thermal density matrix ρβ = e−βH and of
charged local operators evolving in Heisenberg picture O = eitHOe−itH . Our main results
are: i) the SROE of ρβ obeys the operator area law; ii) for free fermions, local operators
in Heisenberg picture can have a SROE that grows logarithmically in time or saturates
to a constant value; iii) there is equipartition of the entanglement among all the charge
sectors except for a pair of fermionic creation and annihilation operators.
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1 Introduction

Quantum entanglement plays a pivotal role to understand emergent phenomena in quantum
many-body physics and numerical methods. In this context, the entanglement entropy has
received significant attention and has become the most popular measure of bipartite entan-
glement in quantum systems. It is relevant in various contexts, ranging from high-energy
physics [1–4] to condensed matter theory [5–8], when studying extended systems like quan-
tum field theories (QFTs) and lattice models. For example, it can be useful to detect and
describe phase transitions, even when a conventional order parameter is unavailable. In fact,
its behaviour as a function of the subsystem size allows us to discern if the system is in a
gapped or gapless phase and what are the universal features of critical systems. It turns out
that in the former case, the entanglement follows the area law [9], i.e. it is proportional to
the size of the border of the subsystem, in contrast to the thermal entropy which is charac-
terised by a volume law. However, for the ground state of gapless local Hamiltonians in one
dimension (1D), the area law is corrected by a logarithmic term [10–14].

One practical implication is that the presence of entanglement makes it difficult to simu-
late quantum many-body systems on a classical computer. For example, efficient simulations
based on Matrix Product States (MPS) work well in non critical 1D systems [15–19], but they
are less efficient when we approach a quantum critical point. The counterpart to MPS for
approximating operators are Matrix Product Operators (MPOs), which are tensor network
representations of operators, and it is natural to ask whether a quantity similar to the entan-
glement entropy exists to accurately capture the validity of this approximation [20–27]. The
answer lies in the concept of operator entanglement (OE), which quantifies the entanglement
between quantum operators acting on different parts of a quantum system [20–23,28–40]. The
results about the OE depends on the specific operator and on the framework in which it is em-
ployed. In this paper we continue the analysis initiated in Ref. [41] of the symmetry resolved
operator entanglement (SROE), which extends the notion of OE to consider the entanglement
properties of operators with respect to specific symmetries of the quantum system. The inter-
play between the entanglement of a state and symmetries has been intensively studied in the
last years through the symmetry-resolved entropies [42–44], both theoretically [45–53] and
experimentally [41, 54–56], for several entanglement measures [57–61]. The only symmetry
resolution for operators studied so far is the reduced density matrix after a quantum quench
from a product state [41] (see also for related quantities in open systems [27, 31]). As in the
non-resolved case, it exhibits an entanglement barrier [22, 62, 63]: it grows linearly in time
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as entanglement builds up between the local degrees of freedom, it then reaches a maximum,
and ultimately decays to a small finite value as the reduced density matrix converges to a
simple stationary state.

Before moving to the organisation of the paper, we introduce the main concepts: the OE,
and how to symmetry resolve it.

1.1 Definition of Operator Entanglement

The entanglement properties between a region A and its complementary B are usually defined
starting from a state |ψ⟩. Nevertheless, one can also study the entanglement properties of an
operator O by vectorizing it. Namely, if the operator O lives in End(HA)⊗End(HB), we can
view it equivalently as a vector in (HA ⊗HB)⊗ (H̄A ⊗ H̄B), where HA,B denotes the Hilbert
space in part A or B, and H̄A,B its dual. To work with a properly normalised state after the
vectorization, we divide the operator O by a normalisation factor

√
Tr(O†O). Operationally,

one can pick an orthonormal basis {|i⟩} for (HA ⊗HB) and the corresponding basis {|j⟩} for
its dual (H̄A⊗H̄B), and write O =

∑
ij Oij |i⟩ ⟨j|, where Oij = ⟨i|O |j⟩. Then the normalised

operator-state is obtained as [64,65]

|O⟩ = 1√
Tr(O†O)

∑
ij

Oij |i⟩ |j⟩ . (1)

Importantly, O admits a Schmidt decomposition,

O√
Tr(O†O)

=
r∑

i=1

λiOA,i ⊗OB,i, (2)

where r is the operator Schmidt rank, and the λi are real positive coefficients that satisfy∑r
i=1 λ

2
i = 1. The operators OA,i ∈ End(HA) (same for OB,i) obey the orthonormality condi-

tion Tr[O†
A,i, OA,j ] = δij . This can be seen by performing the ordinary Schmidt decomposition

of the pure state |O⟩ and eventually reverting the vectorization to get back to the space of
operators.

The OE is defined as follows. From the vectorization |O⟩, we can build the super-
reduced-density-matrix TrB⊗B(|O⟩ ⟨O|) —where ‘super’ refers to the operators in the space of
operators— which is a super-operator acting on operators on HA. Then the OE is the Rényi
entropy of that super-reduced-density-matrix,

Sn(O) =
1

1− n
log Tr[(TrB⊗B(|O⟩ ⟨O|))n]. (3)

Alternatively, the OE is given in terms of the Schmidt values λi in Eq. (2) as

Sn(O) =
1

1− n
log

r∑
i=1

(λ2i )
n. (4)

As usual, the limit n→ 1 produces the von Neumann OE

S(O) = −
r∑

i=1

λ2i log λ
2
i . (5)

1.2 U(1) charge and symmetry resolution of OE

We now assume that there is a charge operatorQ acting on the full Hilbert space H = HA⊗HB

which generates a U(1) symmetry, and which is a sum of the two charge operators acting on
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subsystems A and B, i.e. Q = QA ⊗ 1B + 1A ⊗ QB. A natural question is how to define
a symmetry resolution of the OE of an operator O that possesses a fixed charge qO, i.e.
[Q,O] = qOQ. The answer is based on the symmetry resolution for |O⟩, as we are going to
review. This problem has been already addressed in [26, 27, 41] and we report here the main
definitions we will use in this manuscript.

From the commutation relation between O and Q, the terms in the Schmidt decomposi-
tion (2) can be reorganised according to their charge q as [41,61]

O√
Tr(O†O)

=
∑
q

∑
j

λ
(q)
j O

(q)
A,j ⊗O

(qO−q)
B,j , (6)

where [
QA, O

(q)
A,j

]
= q O

(q)
A,j ,

[
QB, O

(qO−q)
B,j

]
= (qO − q)O

(qO−q)
B,j , (7)

such that [Q,O
(q)
A,j ⊗O

(qO−q)
B,j ] = qOO

(q)
A,j ⊗O

(qO−q)
B,j . The charge q that appears in these equa-

tions can be introduced as the eigenvalue of a charge ‘superoperator’ Q living in the Hilbert
space End(H)⊗ End(H̄)

Q = Q⊗ 1− 1⊗QT . (8)

Such superoperator satisfies the commutation relation

[|O⟩ ⟨O| ,Q] = 0, (9)

where we have used the vectorization introduced in Eq. (1). Using the local structure of Q in
A ∪B, we can write

Q = QA ⊗ 1B + 1A ⊗QB, QA = QA ⊗ 1A − 1A ⊗QA, (10)

and the following commutation relation holds

[TrB⊗B(|O⟩ ⟨O|),QA] = 0. (11)

We can exploit the result above such that TrB⊗B(|O⟩ ⟨O|) can be decomposed as

TrB⊗B(|O⟩ ⟨O|) =
⊕
q

p(q)TrB⊗B(|O⟩ ⟨O|)(q), p(q) ≡ Tr [ΠqTrB⊗B(|O⟩ ⟨O|)] , (12)

where Πq is a projector onto the eigenspace of QA with fixed q and TrB⊗B(|O⟩ ⟨O|)(q) denotes
the (normalised) reduced density matrix built from the vector |O⟩ and restricted to the charge
q. The partition function projected in a given charge sector reads

Z(n)
q (O) ≡ Tr[Πq (TrB⊗B(|O⟩ ⟨O|))n]

Tr(O†O)n
, (13)

and the SROE is given by

S(n)
q (O) =

1

1− n
log

Z(n)
q (O)

[Z(1)
q (O)]n

, Sq(O) = lim
n→1

S(n)
q (O). (14)

According to Eq. (12), the total von Neumann OE associated to O splits into

S(O) =
∑
q

p(q)Sq(O)−
∑
q

p(q) log p(q). (15)

As it was shown in detail in [41], using the uniqueness of the Schmidt coefficients, the set of
all (non-zero) values {λ(q)j } altogether must be the same as the set of values {λi} from Eq. (2).

Therefore, all quantities defined above can be defined in terms of {λ(q)j } as follows

p(q) =
∑
j

(λ
(q)
j )2, S(n)

q (O) =
1

1− n
log

∑
j

(
(λ

(q)
j )2

p(q)

)n . (16)
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1.3 Organization of the paper

Our goal is to extend our previous study on SROE [41]. The manuscript is organised as
follows. In Section 2 we review the known analytical techniques for computing the (non-
resolved) OE in CFT and in free fermion spin chains, and we extend these to include the
symmetry resolution. In Section 3 we apply these techniques to the case of the density matrix
of a critical 1D system at thermal equilibrium. In Section 4 we study the SROE of local
operators evolving in Heisenberg picture for free fermion chains. We draw our conclusions in
Section 5.

2 Techniques to compute the SROE

Before reviewing the technical tools necessary to evaluate the SROE, both in field theory
and in free fermionic lattice models, we summarise how to tackle the problem of symmetry
resolution of a U(1) symmetric state following Refs. [42,47].

2.1 U(1) symmetry resolution

In this section, we explain how to compute the symmetry resolved entanglement entropy in a
given charge sector for a state |ψ⟩, denoted by S(n)

q (|ψ⟩).
Let us consider a system with an internal U(1) symmetry and its bipartition into two

subsystems, A and B. Tracing out the degrees of freedom of B, we obtain the reduced
density matrix (RDM) of A, ρA = TrB |ψ⟩ ⟨ψ|. A measure of the entanglement between A
and its complementary part is provided by the Rényi entropies, defined as

S(n)(|ψ⟩) = 1

1− n
lnTrρnA, (17)

and the limit n→ 1 gives the von Neumann entropy as usual. When |ψ⟩ is an eigenstate of the
hermitian charge operator Q, by taking the partial trace of the commutator [|ψ⟩ ⟨ψ| , Q] = 0
over B one finds that [ρA, QA] = 0, using Q = QA ⊗ 1B + 1A ⊗ QB. This means that the
reduced density matrix ρA has a block-diagonal structure where each block corresponds to an
eigenvalue q′ of QA,

ρA = ⊕q′pA(q
′)ρA(q′), (18)

where pA(q′) is the probability of finding q′ in a measurement of QA in the RDM ρA, i.e.
pA(q

′) = Tr
(
Πq′ρA

)
. Within this convention, the density matrices ρA(q′) of different blocks

are normalised as trρA(q′) = 1. Thus, from the normalised ρA(q′), we can define the symmetry
resolved Rényi entropies as

S
(n)
q′ (|ψ⟩) ≡ 1

1− n
lnTrρnA(q

′) Sq′(|ψ⟩) = lim
n→1

S
(n)
q′ (|ψ⟩). (19)

The total von Neumann entanglement entropy associated to ρA in Eq. (18) admits a decom-
position as in Eq. (15),

S(|ψ⟩) =
∑
q′
p(q′)Sq′(|ψ⟩)−

∑
q′
p(q′) ln p(q′). (20)

The two terms are known as ‘configurational entanglement entropy’ and ‘fluctuation entan-
glement entropy’ (or ‘number entanglement entropy’) respectively [54]. The configurational
entropy is also related to the operationally accessible entanglement entropy of Refs. [66–68],
while the number entropy is the subject of a substantial recent activity [54,69–72].
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The calculation of the symmetry resolved entropies by the definition (19) is a difficult
task, especially for an analytic derivation. As proposed in Ref. [42], it is convenient to focus
on the charged moments of ρA, Tr

(
ρnAe

iQAα
)

[73–76]. Their Fourier transforms with respect
to α are the moments of the RDM restricted to the sector of fixed charge q′ [42], i.e.

Z(n)
q′ (|ψ⟩) ≡ Tr(Πq′ ρ

n
A) =

∫ π

−π

dα

2π
e−iq′αTr

(
ρnAe

iQAα
)
. (21)

Finally the symmetry resolved entropies are obtained as

S
(n)
q′ (|ψ⟩) = 1

1− n
ln

 Z(n)
q′ (|ψ⟩)(

Z(1)
q′ (|ψ⟩)

)n
 . (22)

We can apply the same machinery to compute the symmetry resolution of the OE in the
charge sectors of the operator in Eq. (10) starting from the charged moments of the super-
density-matrix built from |O⟩. They are defined as

Zn(α) ≡ Tr[(TrB⊗B(|O⟩ ⟨O|))n eiαQA ], (23)

and their Fourier transform gives

Z(n)
q (O) = Tr(Πq(TrB⊗B(|O⟩ ⟨O|))n) =

∫ π

−π

dα

2π
e−iqαZn(α), (24)

where q is the eigenvalue of QA. Thus, we have described a procedure to compute the SROE
without the explicit knowledge of how the spectrum of the operator is resolved into the
different charge sectors.

2.2 SROE from the replica trick in conformal field theory (CFT)

2.2.1 Brief review of the replica trick for the OE in CFT

In field theory, the reason for looking at Rényi entropies —instead of focusing directly on
the von Neumann entropy— is that, for integer n, TrρnA can be expressed in path-integral
formalism as a partition function on an n-sheeted Riemann surface Rn obtained by joining
cyclically the n sheets along the region A [11, 13]. One approach to compute these Rényi
entropies is based on a particular type of twist fields in quantum field theory that are associated
with the branch points of the Riemann surface Rn. We denote them by Tn. Their action, in
operator formalism, is defined by [14,77,78]

Tn(x1) ϕi(x′) = ϕi+1(x
′)Tn(x1), T−n(x2) ϕi(x

′) = ϕi−1(x
′)T−n(x2), (25)

where x1 and x2 are the endpoints of the interval A = [x1, x2] on the real axis, x′ is a point
in A and i = 1, . . . , n indexes the n sheets modulo n. Here ϕi(z′) = 1 ⊗ · · · ⊗ ϕi(z

′) · · · ⊗ 1

denotes any operator acting in a single copy. By definition, the two-point function of the twist
fields is the partition function on Rn which enters the definition of the Rényi entropies [14].
In conformal invariant theories the two-point function is fixed by the scaling dimension of the
fields, which here is

∆Tσ =
c

12

(
n− 1

n

)
. (26)

We can generalise the action of the twist operators to arbitrary permutations σ ∈ Sn of the
permutation group of the n copies of the field theory, namely we can define a twist operator
Tσ as the operator with smallest possible scaling dimension such that [22]

Tσ(x1) ϕi(x′) = ϕσ(i)(x
′)Tσ(x1). (27)
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If σ has cycles of lengths n1 + · · ·+ nc = n, then the scaling dimension of Tσ is

∆Tσ = ∆n1 + · · ·+∆nc , ∆ni =
c

12

(
ni −

1

ni

)
, (28)

where c is the central charge of the theory. The Rényi entropy is given in terms of the
correlator of the twist fields located at the two endpoints of A [14, 22]

Sn(|ψ⟩) =
1

1− n
log(⟨ψ|⊗n Tσ(x1)Tσ−1(x2) |ψ⟩⊗n), (29)

where |ψ⟩⊗n = |ψ⟩ ⊗ |ψ⟩ · · · ⊗ |ψ⟩ ∈ Hn and σ = (1, 2, . . . n). Here σ has a single cycle of
length n, so it has the scaling dimension (28). The OE of an operator O can be computed
in a similar fashion. One has to consider n replicas of O, O⊗n = O ⊗ O · · · ⊗ O. Then the
analogous expression of Eq. (29) reads [22]

Sn(O) =
1

1− n
log

(
Tr
[
(O†)⊗nTσ(x1)Tσ−1(x2)O

⊗nTσ−1(x1)Tσ(x2)
]

Tr((O†)⊗nO⊗n)

)
. (30)

We now generalise this formula to include the charge operators needed for the charged mo-
ments.

2.2.2 Method for computing the charged moments

The replica trick can be adapted as follows to obtain the charged moments Zn(α). The trick
consists in inserting an Aharonov-Bohm flux through the multi-sheeted Riemann surface Rn

such that the total phase accumulated by the field upon going through the entire surface is α,
similarly to what done for the standard entanglement entropy [42]. In terms of twist fields,
this amounts to computing

Zn(α) =
Tr
[
(O†)⊗nTσ(x1)Tσ−1(x2)e

−iαQA,1O⊗neiαQA,1Tσ−1(x1)Tσ(x2)
]

Tr((O†)⊗nO⊗n)
, (31)

where QA,1 = Q1 ⊗ 1⊗ · · · ⊗ 1 is the charge operator acting in the first replica. Let us stress
that the operator eiαQA,1 appears with opposite signs because of the definition of the charge
operator in the doubled Hilbert space (see Eq. (10)).

In this paper, we will apply formula (31) in the context of a spinless Luttinger liquid, which
is equivalent to a c = 1 compactified boson CFT parameterised by a coupling constant K
called ‘Luttinger parameter’ see e.g. Refs. [79,80]. Crucially, in the Luttinger liquid, the U(1)

symmetry is generated by Q =
√
K

2π

∫∞
−∞ dx ∂φ(x), where φ(x) is the boson field. Then when

the charge operator is restricted to the interval A = [x1, x2], the operators eiQAα appearing
in Eq. (31) can be written as

eiQAα = e
iα

√
K

2π

∫ x2
x1

dx∂φ(x)
= ei

α
√

K
2π

(φ(x2)−φ(x1)), (32)

which is a product of two vertex operators Vα(x2)V−α(x1) with Vα(x) = ei
α
√
K

2π
φ(x). The

vertex operator V−α(x1) can be fused with the twist field Tσ−1(x1) into a single ‘charged twist
field’, T −α

σ−1(x1) ≡ Tσ−1(x1)V−α(x1) [42]. In other words, when one turns around the operator
T −α
σ−1(x1) on the Riemann sheet, one goes from replica j to replica σ(j) and one also picks up

a phase α when going through the first replica. The scaling dimension of the composite (or
charged) twist fields reads [42]

∆T α
σ
=

1

12

(
n− 1

n

)
+
K

n

( α
2π

)2
. (33)

In Section 3 we will apply formulas (31)-(32)-(33) to compute the SROE of the thermal density
matrix.
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2.3 Computing the SROE in free fermion chains

It is well established that, for the eigenstates of quadratic Hamiltonians, the entanglement
entropies can be efficiently computed in terms of the eigenvalues of the correlation matrix of
the subsystem [81–83]. As pointed out in Ref. [41], this strategy can be adapted to compute
the charged moments of the OE, see Eq. (23). Let us briefly review the resulting formalism
here. The operator O that we are interested in is the Gaussian density matrix ρ of a free
fermionic chain of length L. The density matrix can be diagonalised and be put in the
form ρ ∝ e−

∑
k λkc

†
kck , where e−λk = nk

1−nk
with nk the occupation number of the orbital k =

1, . . . , L. Here c†k (ck) creates (annihilates) a fermion in the orbital k; the creation/annihilation
operators satisfy {ck, c†k′} = δkk′ .

For our purposes it is convenient to write the density matrix ρ as

ρ =

L⊗
k=1

|0⟩k ⟨0|k + e−λk |1⟩k ⟨1|k
1 + e−λk

=

L⊗
k=1

[(1− nk) |0⟩k ⟨0|k + nk |1⟩k ⟨1|k], (34)

where |0⟩k (resp. |1⟩k) are states where the orbital k is empty (resp. filled), so that by
applying the vectorization trick in Eq. (1) for ρ, we get

|ρ⟩√
Tr[ρ2]

=
L⊗

k=1

[(1− nk) |0⟩k |0⟩k̃ + nk |1⟩k |1⟩k̃]√
n2k + (1− nk)2

=

L⊗
k=1

[1− nk + nkc
†
k c̃

†
k] |0⟩√

n2k + (1− nk)2
, (35)

where the c̃k operators are copies of the ck’s introduced in the vectorization process, and |0⟩ is
the vacuum annihilated by all the ck’s and c̃k’s. From this pure state, we can build the super-
reduced-density-matrix TrB⊗B(|ρ⟩ ⟨ρ|). The correlation matrix of the state |ρ⟩ reads [41,84]

Ckk′ = ⟨ρ|
(
c†k
c̃k

)(
ck′ c̃

†
k′

)
|ρ⟩ = δkk′

n2k + (1− nk)2

(
n2k nk(1− nk)

nk(1− nk) (1− nk)
2

)
. (36)

In the basis of ck, c̃k’s, the supercharge operator takes the form

Q = (
∑
k

c†kck)⊗ 1− 1⊗ (
∑
k

c̃†k c̃k)
T . (37)

At this point, we can compute the 2L× 2L correlation matrix as

C =
L⊕

k=1

Ckk, (38)

and by doing a Fourier transform, we can write C in the spatial basis. To evaluate the charged
moments in Eq. (23), we have to restrict the supercharge operator to QA and do the Fourier
transform of the correlation matrix in Eq. (38) to the subspace corresponding to the subsystem
A, of size LA. Diagonalizing the latter matrix, we get 2LA real eigenvalues ξi between 0 and
1.

Therefore, one can compute the charged moments of the reduced density matrix built from
|ρ⟩ in terms of the eigenvalues ξi as [41,83]

Zn(α) = e−iα(LA)
2LA∏
a=1

(ξna e
iα + (1− ξa)

n). (39)

Using Eq. (24), we can compute exactly the SROE for the reduced density matrix of a free
fermionic chain. We will use similar techniques to compute the SROE of an operator in
Heisenberg picture in Section 4.
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Figure 1: Left panel: The replicated surface that is used to calculate the charged
moments in the setup of [42] on a cylinder of circumference βv. The two twist fields
T −α
σ−1 and T α

σ are located at the endpoints of the interval A. Right panel: For the charged
moments of the OE, there are four twist fields acting at the endpoint of the interval in
HA ⊗ H̄A.

3 SROE of a thermal density matrix

In this section we focus on the thermal density matrix, ρβ = e−βH , where β is the inverse
temperature. The density matrix is vectorised, ρβ → |ρβ⟩ ∈ H ⊗ H̄. For concreteness,
consider for instance the free fermion chain (equivalent to the spin-1/2 XX spin chain via a
Jordan-Wigner transformation)

H = −1

2

∑
i

c†i+1ci + h.c., Q =
∑
i

c†ici, [H,Q] = 0. (40)

Then the charge operator Q can be promoted to a ‘charge super-operator’ Q = Q⊗1−1⊗QT .
Notice that Q |ρβ⟩ = 0. In this section we compute the SROE of ρβ , relying on the fact
that, at low energy, the Hamiltonian (40) corresponds to a free fermionic CFT with c = 1,
or equivalently a Luttinger liquid with Luttinger parameter K = 1. We first evaluate the
charged moments for the c = 1 free fermion CFT (or Luttinger liquid with K = 1), then
extend the results to the case of interacting fermions (i.e. to Luttinger liquid with K ̸= 1),
and use the results to compute the SROE. We then benchmark our analytical results against
numerics.

3.1 Charged moments for free fermion CFT

As reviewed in the previous section, in CFT the charged moments can be computed as

Zn(α) =
Tr(ρ⊗n

β T −α
σ−1(x1)T α

σ (x1)ρ
⊗n
β T α

σ (x2)T −α
σ−1(x2))

[Trρ⊗2
β ]n

, (41)

where we have used the charged twist fields T α
σ (x1) that cyclically permute the replicas of

the subsystem A, leaving B untouched as in Eq. (30), and are simultaneously the end points
of the charge operator QA =

∫ x2

x1
dx∂φ(x) as in Eq. (32). If we view the ratio (41) as a

correlation function of twist operators living on an infinitely long cylinder of circumference
2βv, parametrised by the complex coordinate x+ iy with (x, y) ∈ R× [0, 2βv], then the four
charged twist operators are located at the points 0, LA, iβv and LA + iβv, where LA is the
size of the subsystem A (see Fig. 1).

Therefore, the four-point function we need to calculate reads

Zn(α) = ⟨T −α
σ−1(0)T α

σ (iβv)T α
σ (LA)T −α

σ−1(iβv + LA)⟩ , (42)
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where σ = (1, 2, . . . , n) is a cyclic permutation. The scaling dimension of the composite twist
field is given by Eq. (33) with K = 1. For free fermions, this object corresponds to the
evaluation of the four-point function of charged twist fields on the cylinder of circumference
2βv. The result is given in Ref. [22] for α = 0, and it can be generalised straightforwardly to
α ̸= 0 by replacing the scaling dimension (26) by (33), leading to

logZn(α) = −
[
n2 − 1

3n
+

α2

π2n

]
log

(
2βv

π
tanh

(
πLA

2βv

))
+ log cn,α, (43)

with cn,α a non-universal constant which depends on the microscopic details of the model,
and that we will discuss in more detail below. We implicitly assume that the lattice spacing
is set equal to 1. We use this result to compute the SROE in Section 3.3.

3.2 Generalization to K ̸= 1

The result (43) for the charged moments can be generalised to a Luttinger liquid —or equiv-
alently a compactified boson CFT— with a Luttinger parameter K ̸= 1, corresponding to
interacting fermions. The scaling dimension of the composite twist field in this case changes
according to Eq. (33).

We are interested in computing ⟨T −α
σ−1(u1)T α

σ (v1)T α
σ (u2)T −α

σ−1(v2)⟩, with u1 = 0, v1 =
LA, u2 = iβv, v2 = iβv + LA. The calculation of that four-point function is much more
complicated for K ̸= 1 than for K = 1, as it involves more data from the underlying CFT,
including operator content and OPE coefficients (see e.g. [85–88]). Here we exploit the result
of the calculation for two intervals on the infinite line from Ref. [89], and we use the conformal
transformation w → z = βv/π logw that maps each sheet in the w-plane into an infinitely
long cylinder of circumference 2βv, to obtain the result that we need. It is convenient to
introduce the cross-ratio

x =
sinh

(
π(v1−u1)

2βv

)
sinh

(
π(u2−v2)

2βv

)
sinh

(
π(v2−u1)

2βv

)
sinh

(
π(u2−v1)

2βv

) =

[
tanh

πLA

2βv

]2
. (44)

Then the four-point function of the charged twist fields splits into a product of the four-point
function of the twist fields in the plane, times the four-point function of vertex operators in
the n-sheeted Riemann surface Rn [89],

Zn(α) = ⟨T −α
σ−1(u1)T α

σ (v1)T α
σ (u2)T −α

σ−1(v2)⟩
=
cn,α
cn,0

⟨Tσ−1(u1)Tσ(v1)Tσ(u2)Tσ−1(v2)⟩ ⟨V−α(u1)Vα(v1)Vα(u2)V−α(v2)⟩Rn
.

(45)

Here cn,α denote again ultra-violet non-universal constant. The factor ⟨Tσ−1(u1)Tσ(v1)Tσ(u2)Tσ−1(v2)⟩
is the partition function (41) at α = 0, while the product of vertex operators is readily eval-
uated [89], leading finally to

⟨T −α
σ−1(u1)T α

σ (v1)T α
σ (u2)T −α

σ−1(v2)⟩

= cn,α
Zn(0)

cn,0

4β2v2
π2

sinh

(
π(v1 − u1)

2βv

)
sinh

(
π(v2 − u2)

2βv

) sinh
(
π(u2−u1)

2βv

)
sinh

(
π(v2−v1)

2βv

)
sinh

(
π(v2−u1)

2βv

)
sinh

(
π(u2−v1)

2βv

)
− α2K

2π2n

= cn,α
Zn(0)

cn,0

[
2βv

π
tanh

(
LAπ

2βv

)]−Kα2

π2n

.

(46)
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The partition function Zn(0) defined in Eq. (41) with α = 0 can be computed by combining
the expression for the OE in Ref. [22] with the result for the four-point function of twist fields
in Ref. [86]. The result is

Zn(0) = cn,0

[
2βv

π
tanh

(
LAπ

2βv

)]−n2−1
3n

Fn(x), (47)

where Fn(x) is the conformal block of twist fields [86],

Fn(x) =
Θ(0|Γ(x)/K)Θ(0|Γ(x)K)

[Θ(0|Γ(x))]2
. (48)

Here Θ(u|Ω) is the Riemann-Siegel Theta function defined for an (n− 1)× (n− 1) complex
matrix Ω and an (n− 1)-dimensional vector u:

Θ(u|Ω) ≡
∑

m∈Zn−1

eiπm
t·Ω·m+2πimt·u. (49)

The matrix Γ(x) in Eq. (48) has entries given by [86]

Γrs(x) =
2i

n

n−1∑
l=1

cos

[
2πl(r − s)

n

]
sin

(
πl

n

)
βl/n(x), r, s = 1, . . . , n− 1, (50)

and
βp(x) =

Ip(1− x)

Ip(x)
, (51)

with Ip(x) ≡ 2F1(p, 1− p, 1, 1− x). The conformal block Fn(x) is invariant under x 7→ 1− x
and it is normalised such that Fn(0) = Fn(1) = 1.

Our final result for the charged moment is then

Zn(α) = cn,α

[
2βv

π
tanh

(
LAπ

2βv

)]−n2−1
3n

−Kα2

π2n

Fn(x). (52)

In the two limiting cases LA ≫ βv and LA ≪ βv, where the four-point function factorises
into a product of two two-point functions, we see that the result reduces to the expected one,

LA ≪ βv : ⟨T −α
σ−1(0)T α

σ (iβv)T α
σ (LA)T −α

σ−1(iβv + LA)⟩

≃ ⟨T −α
σ−1(0)T α

σ (LA)⟩ ⟨T −α
σ−1(iβv + LA)T α

σ (iβv)⟩ ∝ 1

L
4∆T α

σ
A

,

LA ≫ βv : ⟨T −α
σ−1(0)T α

σ (iβv)T α
σ (LA)T −α

σ−1(iβv + LA)⟩

≃ ⟨T −α
σ−1(0)T α

σ (iβv)⟩ ⟨T −α
σ−1(iβv + LA)T α

σ (LA)⟩ ∝
1[

2βv
π

]4∆T α
σ

.

(53)

These results for the charged moments have the same dependence on the parameters βv, LA as
the one of the OE found in [22], with the scaling dimension ∆Tσ replaced by ∆T α

σ
. Moreover,

when K = 1, Fn(x) = 1 for all x and the logarithm of Eq. (46) coincides with Eq. (43).

3.3 Symmetry resolution

To go from the charged moment (52) to the SROE, we need to take the Fourier transform
with respect to α. To do this, it is important to know the non universal constant cn,α. We
start from the free fermion chain (40), where cn,α is known analytically, and later turn to the
interacting case.
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Figure 2: Numerical check of formula (57) for free fermions on the lattice with disper-
sion ε(k) = − cos k, for two different values of n. The Fermi velocity is v = 1. We take
a chain of L sites at inverse temperature β and cut an interval of length LA. The black
symbols represent the extrapolated data for fixed LA/β = 0.5.

3.3.1 SROE in the free fermion chain

The constant cn,α is known in the free fermion chain (40) from the charged moments of the
reduced density matrix computed in Ref. [69]. The ratio cn,α/cn,0 behaves quadratically at
small α as [69]

cn,α
cn,0

≃
α→0

eα
2(2γ(n)− log 2

π2n
), (54)

where

γ(n) =
n

4

∫ ∞

−∞
dw[tanh3(πnw)− tanh(πnw)] i log

Γ(12 + iw)

Γ(12 − iw)
. (55)

(This expression is real, as can be checked easily.) For later convenience, we define hn =

4γ(n)− 2 log 2
π2n

so that cn,α/cn,0 ≃ e
α2

2
hn . The constant cn,0 was computed by Korepin and Jin

in Ref. [90]:

cn,0 = e2Υn+
1−n2

3n
log 2

Υn = n

∫ ∞

−∞
dw[tanh(πw)− tanh(πnw)] i log

Γ(12 + iw)

Γ(12 − iw)
.

(56)

This leads to the following result for the charged moments in the free fermion chain:

Zn(α) = cn,0

[
2βv

π
tanh

(
LAπ

2βv

)]−n2−1
3n

− α2

π2n

e
α2

2
hn . (57)

We check the result (57) against numerics in Fig. 2. The symbols represent the numerical data
obtained through exact lattice computations, using the expression for the charged moments
described in Section 2.3. The data present finite size corrections, which become larger as
n and α increase. In the right panel, in order to achieve the correct scaling limit, we have
computed logZn(α) at fixed α, n = 2 and for fixed LA/β = 0.5. The leading corrections
to the scaling behave as L−2(1−α/π)/n

A , L−2(1+α/π)/n
A , L−2/n

A , L−2/n(2−α/π)
A (see also [91] for a

similar analysis). We then perform a fit of the finite LA data (fox fixed α, n = 2), keeping the
first two power-law corrections and extrapolating at LA → ∞. The data obtained following
this procedure are reported as black symbols in the right panel of Fig. 2.
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Plugging the expression (57) of the charged moments in the Fourier transform (24) and
applying the saddle-point approximation for β, LA ≫ 1, we get

S(n)
q (ρβ) = S(n)(ρβ)−

1

2
log

(
4

π
log δn

(
2βv

π
tanh

(
πLA

2βv

)))
+

log n

2(1− n)

− π4n(h1 − nhn)
2

4(1− n)2
(
log
(
2βv
π tanh

(
πLA
2βv

)))2+
+ q2nπ4

h1 − nhn

4(1− n)
(
log
(
2βv
π tanh

(
πLA
2βv

))
κn

)2 + o(log−2

(
β tanh

(
πLA

2βv

))
), (58)

where

log δn = −π
2n(hn − h1)

(1− n)
, log κn = −π2 (h1 + nhn)

2
, (59)

and S(n)(ρβ) is the total OE

S(n)(ρβ) =
n+ 1

3n
log

(
4βv

π
tanh

(
πLA

2βv

))
+

2

1− n
Υn. (60)

This formula is also valid for the symmetry resolved von Neumann OE taking properly the
limits of the various pieces when n → 1. The expression (58) is checked against numerics
in the free fermion chain in Fig. 3. The small deviations between data and analytics are a
consequence of the finite size corrections already present in the charged moments (Fig. 2).

3.3.2 Interacting case

For K ̸= 1, we do not know a microscopic model where the non-universal constant cn,α
is known. Nevertheless, we can generalise the previous results, assuming that cn,α behaves
smoothly as a function of α near α = 0, i.e.

cn,α = cn,0 −
α2

2
cn,0hn + o(α2) = cn,0e

α2

2
hn + o(α2) (61)

for some constants cn,0 and hn that depend on the microscopic model and are, in general, not
equal to the ones in the free fermion chain. By repeating the same steps as before, the SROE
reads

S(n)
q (ρβ) = S(n)(ρβ)−

1

2
log

(
4K

π
log δn

(
2βv

π
tanh

(
πLA

2βv

)))
+

log n

2(1− n)

− π4n(h1 − nhn)
2

4K2(1− n)2
(
log
(
2βv
π tanh

(
πLA
2βv

)))2+
+ q2nπ4

h1 − nhn

4K2(1− n)
(
log
(
2βv
π tanh

(
πLA
2βv

))
κn

)2 + o
(
log−2

(
β tanh

(
πLA

2βv

)))
. (62)

3.3.3 Discussion

To get insight into the meaning of Eqs. (58) and (62), we study the following two asymptotic
regimes, which are valid for any value of K:

LA ≪ βv :S(n)
q (ρβ) =

n+ 1

3n
logLA − 1

2
log(K logLA) +O(1),

LA ≫ βv :S(n)
q (ρβ) =

n+ 1

3n
log

2βv

π
− 1

2
log(K log

2βv

π
) +O(1),

(63)
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Figure 3: Eq.(39) (symbols) vs Eq. (58) (solid lines) for β = 200, 20, n = 1 (upper
panel), n = 2 (lower panel). For n = 2, we also check the result for the total OE (green
line). We observe that as the temperature increases, the finite size corrections become
more important.

We find that the leading order term corresponds to the total OE, which diverges logarithmi-
cally in LA at low temperatures, i.e. when the reduced density matrix ρA is very close to the
one of the ground state, while it is bounded (in LA) at finite temperature β. This is the main
striking difference with respect to the usual entanglement, which at finite temperature has
an extensive behaviour. The practical consequence of this result is that ρβ can be efficiently
represented by an MPO [22]. Then S(n)

q (ρβ) presents a double logarithmic correction in LA at
low temperature, while it remains bounded at finite temperature, with a double logarithmic
correction depending on the inverse temperature β. Finally, the fact that the leading order
term of the SROE coincides with the total OE resembles the entanglement equipartition for
the symmetry resolution of a U(1)−invariant theory [43], and it can be traced back to the
conformal invariance of the system also in this case.

14



4 SROE of local operators in Heisenberg picture in free fermion
chains

The problem of computing the OE of local operators evolving in the Heisenberg picture, ϕ(t) =
eiHtϕe−iHt —also called ‘local operator entanglement’ by Kos, Bertini and Prosen [32]—,
has attracted some attention recently [22, 30–37]. In this section we study the symmetry
resolution of the OE of a local operator in Heisenberg picture in the XX chain with periodic
boundary conditions, which is mapped to the free fermion chain (40) by the Jordan-Wigner
transformation. Following Refs. [20–22], we distinguish initial operators that are local in
terms of the fermions (such as c†x or c†xcx) from operators that are attached to a Jordan-
Wigner string.

4.1 SROE of creation/annihilation operators and other local operators

The goal of this section is to study the SROE of c†x(t), σzx(t). In the former case, we take
advantage of the form in which Eq. (6) can be written, while in the latter we exploit the
connection between the charged moments of the super-density-matrix and the correlation
matrix, similarly to what has been done in Section 2.3.

4.1.1 SROE of creation operator c†x(t)

We start by studying the SROE of a single creation operator c†x(t) (the analysis for cx(t) can
be performed in a similar way). We observe that [Q, c†x(t)] = c†x(t), with Q =

∑
j c

†
jcj , so

qO = 1 in Eq. (6). We choose x = 0 and we can use the Fourier transform, for a ring of L
sites,

c†0(t) =
∑
j

U∗
j0(t)c

†
m, U0j(t) =

1

L

∑
k

eikjeit cos(k). (64)

In the thermodynamic limit, the matrix elements U0m(t) of the unitary evolution operator
can be written in terms of Bessel functions, Jm(t). We can directly recast c†0(t) into the form
of Eq. (6), which reads

c†0(t) =

∑
m≤0

Jm(t)

⊗ 1B + 1A ⊗
(∑

m>0

Jm(t)

)
. (65)

This implies that there are only two possible charge sectors, q = 1, 0 and we can also directly
write down the Schmidt values λm(0) = λm(1) = Jm(t). At large times, the Bessel functions
satisfy ∑

m≤0

J2
m(t) −→

t→∞
1

2
. (66)

Combining Eq. (16) and (66), we get the following result at large time:

p(0) = p(1) = 1/2, S
(n)
0 (c†0(t)) = S

(n)
1 (c†0(t)) = 0 (67)

and ∑
q

p(q)Sq(c
†
0(t)−

∑
q

p(q) log p(q) = 2
log 2

2
= log 2. (68)

This implies that the SROE vanishes in all the charge sectors and the total OE is given only
by the number/fluctuation entanglement (the second term of Eq. (15)) i.e. by the probability
of finding q = 1, 0 as an outcome of QA.
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4.1.2 SROE of local density operator c†x(t)cx(t)

We now consider a less trivial example, which is the symmetry resolution of a pair of creation
and annihilation operators. In the spin language (up to additive constants) this corresponds
to

c†xcx ↔ σzx. (69)

Let us focus on σz0(t). From the state-operator correspondence, we want to study the entan-
glement due to the state c†0(t)c̃

†
0(t) |0⟩. Before reporting the details of the computations, we

report the main result here. We observe that there are 3 non trivial charge sectors, q = 0,±1,
where

p(0) = 2p(±1) =
1

2
S
(n)
q=0(σ

z
0(t)) = log 2, Sn(q ̸= 0) = 0, (70)

and ∑
q

p(q)Sq(σ
z
0(t))−

∑
q

p(q) log p(q) =
log 2

2
+

log 2

2
+ 2

log 4

4
= 2 log 2, (71)

i.e. Eq. (15) is satisfied. Therefore, differently from what we found before for one single
creation operator c†0(t), there exist one charge sector q = 0 where the SROE is different from
0 and both terms in Eq. (15) contribute to the total OE.

Given the simplicity of the result, it might be possible to find it following the logic of the
previous subsection about c†(t). However, as an illustration of the techniques used in Section
2.3, we follow an alternative path. First of all, we need to compute

⟨0| c̃0(t)c0(t)c†ncmc†0(t)c̃†0(t) |0⟩ . (72)

Therefore, plugging Eq. (64) into Eq. (72), we get

⟨0| c̃0(t)c0(t)c†ncmc†0(t)c̃†0(t) |0⟩ = U0n(t)U
∗
m0(t). (73)

By repeating the same computations for c†nc̃†m, c̃ncm, c̃nc̃
†
m, we can write down the 2LA×2LA

correlation matrix for a subsystem (−LA + 1, 0) as

CA(t) =

(
C(t) 0LA

0LA
1LA

− C(t)

)
, (74)

where Cnm(t) = im−nJm(t)Jn(t), while 0LA
and 1LA

denote the LA × LA null and identity
matrix, respectively. In the scaling limit t, LA → ∞, we can compute Tr(2CA(t) − 1)j ,
observing that

Tr(2CA(t)− 1)2j = 2LA − 2, Tr(2CA(t)− 1)0 = 2LA, Tr(2CA(t)− 1)2j−1 = 0. (75)

This can be understood as follows: first of all, because of the construction of CA(t) with the
blocks C(t) and 1 − C(t), Tr(2CA(t) − 1)j vanishes for any odd values of j. For the even
powers, we can start by studying the case j = 2. We restrict to the upper LA×LA block and
we compute the following trace (the trace of the square of the lower block is the same)

Tr(2C(t)− 1)2 =
∑
kj

(2Jk(t)Jj(t)i
k−j − δkj)(2Jk(t)Jj(t)i

j−k − δkj). (76)

Therefore, Eq. (76) and (66) give

4
∑
kj

J2
k (t)J

2
j (t)− 4

∑
j

J2
j (t) +

∑
j

1 = LA − 1. (77)
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Figure 4: Logarithm of the charged moments for the operator σz
0(t) in the tight-

binding model (see Eq. (40)) for a bipartition [−LA, 0]∪ [1, LA], LA = 30, with periodic
boundary conditions. The plots are at fixed α as function of time (left) and at fixed
time as function of α (right). The symbols are the numerical data coming from the
evaluation of the eigenvalues of the correlation matrix in Eq. (74) while the solid line
represents Eq. (80).

The generalisation to higher powers of j follows the same logic, since all the powers involving
terms like

∑
j J

2k
j (t) vanish for k > 1 in the scaling limit.

We can now come back to our main focus of the section, i.e the evaluation of the charged
moments built from σz0(t). The charged moments in Eq. (39) can be rewritten using [92,93]

hn,α(x) = log

[(
1 + x

2

)n

eiα +

(
1− x

2

)n]
=

∞∑
m=0

sn,α(m)xm,

logZn(α) =− iαLA +
∞∑

m=0

sn,α(m)Tr(2CA(t)− 1)m.

(78)

The coefficients sn,α(m) correspond to the function hn,α(x) evaluated in certain simple points:

sn(0) =hn,α(0) = (1− n) log 2 + log cos
α

2
+ i

α

2
,

∞∑
m=1

sn,α(2m) =

(
hn,α(1) + hn,α(−1)

2
− sn,α(0)

)
= (n− 1) log 2− log cos

α

2
.

(79)

It follows that

logZn(α) = −iαLA+sn(0)(2LA)+2(LA−1)

∞∑
m=1

sn,α(2m) = 2(1−n) log 2+2 log cos
α

2
. (80)

In Fig. 4 we compare the prediction (80) for the logarithm of the charged moments logZn(α)
with the exact lattice computations done using the correlation matrix in Eq. (74). The
dependence of Zn(α) in t and α is perfectly reproduced by the exact result.

By doing the Fourier transform in Eq. (24), we can compute

Z(n)
q (σz0(t)) = 22(1−n)

∫ π

−π

dα

2π
e−iqαZn(α) = 22(1−n) sin(πq)

2π(q − q3)
. (81)

We recognise that Z(n)
q=0(σ

z
0(t)) =

22(1−n)

2 , Z(n)
q=±1(σ

z
0(t)) =

22(1−n)

4 , otherwise Z(n)
q (σz0(t)) = 0.

This has been checked in the left panel of Fig. 5. Finally, we deduce that the SROE behaves
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Figure 5: Symmetry resolution of the OE for the operator σz
0(t). Left panel: probability

of finding q as an outcome of the measurement of QA. Right panel: SROE as function
of t at fixed q. From Eq. (70) only the q = 0 charge sector has a non-vanishing entropy
which saturates to the constant value log 2 .

as reported in Eq. (70): The fact that the OE is different from 0 only in one charge sector is a
strong violation of the equipartition that we have found in Section 3. This lack of equipartition
is a direct consequence of the fact that the operator entanglement stays always finite.

4.2 OE of a Jordan-Wigner string

We now turn to the calculation of the SROE of a Jordan-Wigner string in the tight-binding
chain with periodic boundary conditions, i.e.

JWx(t) ≡
∏
y≤x

(1− 2c†y(t)cy(t)). (82)

We place the endpoint of the string at the origin without loss of generality. Therefore, we are
interested in the correlation matrix built from

JW0(t) → |JW0(t)⟩ =
∏
y≤0

(1− c†y(t)c̃
†
y(t)) |0⟩ , (83)

by replacing c(t) with c̃†(t) which anticommutes with all the c’s. It is convenient to extract
the time dependence as

|JW0(t)⟩ = eit(H⊗1−1⊗H) |JW0(0)⟩ , (84)

and to perform a Bogoliubov transformation (exactly as done for the total OE in [22]),(
b†x
dx

)
=

1√
5

(
1 −1
1 1

)(
c†x
c̃†x

)
. (85)

Thus, the initial state becomes

|JW0(t)⟩ =
1

5

∏
y≤0

d†yb
†
y |0d,b⟩ , (86)

where now |0d,b⟩ is the vacuum for the d and b modes. This transformation does not do
anything to the Hamiltonian H ⊗ 1 − 1 ⊗ H̃ and to the charge operator Q ⊗ 1 − 1 ⊗ QT
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Figure 6: Left panel: logarithm of the charged moments for the Jordan-Wigner string
JW0(t) in the tight-binding model for a bipartition [−LA + 1, 0] ∪ [1, LA], LA = 30,
with periodic boundary conditions. The solid line is Eq. (88), which also takes into
account the exact knowledge of the non-universal constants for this system. The SROE
of this operator is studied in the right panel: the comparison between numerics and the
analytical prediction in Eq. (89) is quite good.

in Eq. (37), which already were diagonal. However, due to this simplification on the initial
state, we can compute the correlation matrix as

CA(t) =

(
C(t) 0LA

0LA
1LA

− C(t),

)
(87)

where Cnm(t) =
∑0

y=−LA
im−nJm−y(t)Jn−y(t) [94]. Rewriting the initial state as in Eq. (86)

also allows us to have an analytical insight on the time evolution of the SROE, following
the observations done in [22]. Indeed, Eq. (86) is a product state |DWIS⟩b ⊗ |DWIS⟩d =∏

y≤0 d
†
y |0d⟩⊗

∏
y≤0 b

†
y |0b⟩. The two independent initial states for the b’s and the d’s operators

are domain-wall initial states (DWIS). For a bipartition A∪B = (−LA, 0)∪(0, LA) and in the
scaling limit LA → ∞, the charged moments of the JW string are exactly twice the charged
moments of the domain wall computed in [95], i.e.

logZn(α) = −
[
n2 − 1

3n
+

α2

π2n

]
log 4t+ 2α2γ(n). (88)

Let us remark that the knowledge of the non-universal constants from [69] allows us to
benchmark our analytical prediction against the exact lattice computations without fitting
any parameter, as we have done in the left panel of Fig. 6. By doing a Fourier transform and
applying the saddle point approximation in the limit t→ ∞, we get

S(n)
q (JW0(t)) = S(n)(JW0(t))−

1

2
log

(
4

π
log(2tδn)

)
+

log n

2(1− n)
− π4n(h1 − nhn)

2

4(1− n)2(log(2t))2
+

+ q2nπ4
h1 − nhn

4(1− n) (log(2tκn))
2 + o(log−2 t), (89)

where the constants hn, δn, κn have been defined in Eq. (59) and after Eq. (54), and

S(n)(JW0(t)) =
n+ 1

3n
log(4t) +

2

1− n
Υn. (90)

This is just the double of the entanglement entropy following a quench from a domain wall
state [95]. Such a result is not surprising since it was already observed in [22] that the total
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OE of the JW string is exactly twice the entanglement entropy of a domain wall [96] and
we find that the same is true in each symmetry sector. Hence, the equipartition of OE in
the symmetry sectors is asymptotically restored with an asymptotic correction of the form
q2/ log2(t), with a non-trivial prefactor depending on non-universal quantities.

The results of this and of the former subsection suggest that the breaking of the equipar-
tition is a feature directly related to the finiteness of operator entanglement. The latter takes
place for operators with a finite support (like σz, i.e. c†xcx) while extended operators, like the
Jordan-Wigner strings, have diverging (in t) operator entanglement and restore equipartition
for large times.

5 Conclusions

In the light of the examples studied so far, we can now draw our general conclusions on sym-
metry resolved operator entanglement. We have used the definition of the SROE introduced
in [41], which quantifies the OE of a U(1) symmetric operator in a given charge sector and we
have analysed in detail three operators. The thermal density has been studied with the twist
field formalism and we found that it satisfies the operator area law, i.e. it has a bounded
SROE in every charge sector and it displays equipartition, meaning that at leading order
in the subsystem size it does not depend on the charge. For free fermion Hamiltonians, to
evaluate the SROE of a local operator (in terms of the creation and annihilation operators)
evolving in Heisenberg picture, we have exploited the knowledge of the SROE in terms of the
correlation functions. We found that the local density operator obeys the area law at any time
step and strongly violates the equipartition, while the SROE a Jordan-Wigner string grows
logarithmically in time and obeys the equipartition of the entanglement. This remarkable
difference between the three operators might be traced back to the fact that the SROE of
local operators remains always finite, contrarily to the Jordan-Wigner string (that diverges
for large t) or the thermal density matrix (that diverges for large β). The rationale appears
to be that operators with a local spatial support have an operator entanglement that does
not diverge and cannot satisfy equipartition.

We can now think of possible future directions that one could investigate about the OE and
its eventual symmetry resolution. In a previous work about the same subject [41], the authors
have studied the SROE of a reduced density matrix after a quantum quench [22,62,63], and it
would be interesting to study how the entanglement barrier is affected by a non-unitary time
evolution, due, for example, to the effect of local measurements in the dynamics. Another
possible direction is studying the connection between the OE and the reflected entropy [97,98],
by applying the techniques described in this manuscript to analyse the symmetry resolution
also in this context (see also [40] for the first steps towards this direction). This example
would also gain insights about the holographic dual of the SROE when O =

√
ρ. Similarly

one would like to explore the connection of our results with symmetry resolution of the
computable cross norm negativity [40,99] which is another measure of entanglement in mixed
states. A last interesting point concerns the interplay of OE and symmetries when the latter
are broken; this problem can be studied generalising to the operatorial level the recently
introduced entanglement asymmetry [100–103].
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