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The static and dynamic properties of dendrimers in semidilute solutions of linear chains of comparable size
are investigated using Brownian dynamics simulations. The radius of gyration and diffusivity of a wide
variety of low generation dendrimers and linear chains in solution follow universal scaling laws independent of
their topology. Analysis of the shape functions and internal density of dendrimers shows that they are more
spherical than linear chains and have a dense core. At intermediate times, dendrimers become subdiffusive,
with an exponent higher than that previously reported for nanoparticles in semidilute polymer solutions.
The long-time diffusivity of dendrimers does not follow theoretical predictions for nanoparticles. We propose
a new scaling law for the long-time diffusion coefficients of dendrimers which accounts for the fact that,
unlike nanoparticles, dendrimers shrink with an increase in background solution concentration. Analysis of
the properties of a special case of a higher functionality dendrimer shows a transition from polymer-like to
nanoparticle-like behaviour.

I. INTRODUCTION

The movement of tracer particles through crowded en-
vironments is an area of active research due to its applica-
tions in medicine and nanotechnology1–6. Most research
till date has focused on employing rigid nanoparticles as
the tracer particle7–10. However, recent biotechnologi-
cal advances have enabled the use of dendrimers as drug
delivery agents11,12. Polymers of varying topology and
soft colloids have also been used in biology where they
diffuse in complex environments such as semidilute poly-
mer solutions and networks of polymer chains13,14. The
movement of such tracers through crowded media has not
been studied extensively. In this work, we use dendrimers
as prototypical soft colloids, and examine their struc-
tural and dynamic properties when dissolved in a semidi-
lute unentangled polymer solution shown schematically
in Fig. 1(a). By systematically varying the dendrimer
architecture and the concentration of the background so-
lution, the similarities and differences with previously re-
ported behaviour of rigid nanoparticles in a similar envi-
ronment are studied.

Dendrimers are branched polymeric macromolecules
with a tree-like structure and a central core monomer
with branches emanating from it. The simplest case of a
generation zero dendrimer is a star polymer with a core
and f linear chains attached to it. Subsequent genera-
tions are built by successively adding layers of short linear
chains with multifunctional units to previous generations.
The size of dendrimers can be tuned using four param-
eters: functionality (f), generation number (g), spacer
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length (s), and the order of dendra (m). Fig. 1(b) shows
a first generation (g = 1) symmetric dendrimer with func-
tionality three (f = 3), two spacer beads (s = 2) and
order of dendra two (m = 2). Dendrimers are often re-
ferred to as soft colloids as they act like a bridge between
the floppy linear chains and hard spheres15. The transi-
tion from linear chain-like behaviour to hard spheres is
controlled by f , s, g and m16,17. The molecular mass
dependency of the self-diffusivity and intrinsic viscosity
of low-generation dendrimers of fixed architecture follows
the same power law scaling as for linear chains in dilute
solution18.

The diffusivity of probe particles in simple viscous flu-
ids is given by the Stoke-Einstein (SE) equation, which
relates the diffusion coefficient of the particle to the vis-
cous drag experienced by it. In a complex fluid, like a
polymer solution, the viscoelastic effects of the fluid are
accounted for by the generalized Stokes-Einstein (GSE)
equation19,20. However, the underlying assumption that
the fluid is a continuum breaks down when the size of the
particle is comparable to the characteristic length scales
in the solution like the radius of gyration of the back-
ground chains, or the correlation length of the solution.
As a result, the SE and GSE equations fail to describe the
dynamics of tracer particles21–23. In semidilute polymer
solutions, the radius of gyration of a chain and the corre-
lation length of the solution are concentration-dependent
quantities.

Several theories have been developed over the past few
years to describe the dynamics of nanoparticles in semidi-
lute polymer solutions24. Early theoretical studies of the
diffusion of hard spheres in linear polymer solutions pro-
posed a stretched exponential dependence of the reduced
diffusion coefficient of the probe on the concentration of
solution25–27. This was modified by Phillies et al. 28 to
include the effect of size of the probe and the molecu-
lar weight of the linear polymers to obtain the general-
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(a) (b)

FIG. 1. (Color online) (a) Schematic representation of dendrimers in a solution of linear chains. The correlation length of
the solution (ξ) and the size of dendrimer(2Rd

g) are indicated. (b) A generation one (g = 1) dendrimer with functionality three
(f = 3) and two spacer beads (s = 2). The order of dendra (m = f − 1) is two (m = 2). Beads belonging to each generation
are included in a concentric circle.

ized scaling relation D/D0 = exp (−bRuMxcy), where
D and D0 are the diffusion coefficients of the probe
in the polymer solution and in the pure solvent, R is
the size of the probe, M is the molecular weight of the
polymer, c is the solution concentration, with exponents
u = 0± 0.2, x = 0.8 and y ranging from 0.5 to 1.0. How-
ever, these models do not account for the fluctuations in
the mesh size and the size of the probe relative to the
correlation length of the solution.Based on the works by
de Gennes 29 and Tong et al. 30 and Tong et al. 30 which
highlighted these factors, a scaling relation was proposed
for probe diffusion through semidilute polymer solutions

D/D0 = exp
[
−β (R/ξ)

δ
]
by Cheng, Prud’Homme, and

Thomas 31 . Here β is 2.2, δ is 0.95, and ξ is the cor-
relation length of the polymer solution. Even though
this theory could explain several experimental results, the
regime with the size of the nanoparticle being compara-
ble to that of the radius of gyration of the background
polymers could not be captured.

Holyst and coworkers32,33 introduced an effective size
for the nanoparticle, which is a combination of its radius
and the hydrodynamic radius of the polymers that de-
termines its dynamics in this crossover regime. The scal-
ing law for the long-time diffusivity proposed by them is
given by:

D

D0
= exp

[−γ

RT

(
Reff

ξ

)a]
(1)

where R−2
eff = R−2

H + R−2, with RH being the hydro-
dynamic radius of the polymer and R is the radius of
the nanoparticle. γ (γ > 0) and a (a > 0) are system-
dependent parameters and are reported in terms of an
effective excess diffusion energy, ∆Ea = γ (Reff/ξ)

a
, com-

pared to that in pure solvent. According to this model,

the length-scale of hydrodynamic flow in the solution de-
termines the viscosity experienced by the probe particle
and is equal to Reff. The Holyst model has been validated
by experiments34,35 and simulations36.

Coupling theory, on the other hand, takes into account
the coupling between the probe particle dynamics and the
relaxation of the surrounding polymers37. According to
this theory, probes larger than the correlation length of
the solution get trapped in a polymer cage, thus leading
to its subdiffusion at intermediate time scales. At longer
times, the particle is set free as the polymer relaxes,
with the diffusion coefficient scaling as dNP/ξ

−2, where
dNP is the diameter of the nanoparticle. Recent experi-
ments on nanoparticle diffusion in a partially hydrolyzed
polyacrylamide solution indicate that the long-time dif-
fusivity and short-time dynamics of particles larger and
smaller than the correlation length show agreement with
the predictions of the coupling theory38. However, the
diffusion exponents of particles with a size comparable to
the characteristic length scale of the solution were much
higher than the predictions of the coupling theory. This
discrepancy was resolved in a recent Multi-Particle Col-
lision Dynamics (MPCD) study in which the dynamics
of nanoparticle was found to be coupled to the dynam-
ics of the centre of mass of the polymers, thus giving it
an additional mechanism to move through the polymer
solution39. The diffusion exponents of the nanoparticle
and the polymer centre of mass were found to be corre-
lated even in the absence of many-body hydrodynamic
interactions. Coupling theory has also been supported
by simulations39 and experiments38 on various systems.

The behaviour of dendrimers in a semidilute solution
of linear polymers has not been studied extensively. Ex-
periments have shown that the size of higher generation
dendrimers does not change significantly with concentra-
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tion31 and, therefore, can be considered as a hard sphere.
The dynamics of such dendrimers were shown to follow
the Holyst model in semidilute solutions of linear chain
polymers31,40. However, the question of whether these
theories can be applied to a low generation dendrimer,
whose size is a function of the solution concentration,
has not been addressed so far. In the current study,
we have simulated low generation dendrimers in unen-
tangled semidilute solutions of linear chain polymers in
athermal solvent conditions using Brownian dynamics
simulations. Dendrimer parameters like the generation
number, functionality, and number of spacer beads were
varied to understand their effects on the shape and in-
ternal bead arrangements of dendrimers in dilute solu-
tions. We also studied the effect of the concentration of
linear chains on the size and dynamics of dendrimers in
semidilute solutions. It should be noted that the focus
of this work is semidilute unentangled polymer solutions
in which hydrodynamic interactions (HI) are significant
and the HOOMD-Blue simulation package with the Pos-
itive Split Ewald algorithm has been used to implement
hydrodynamic interactions. To understand its effect on
the dynamics of dendrimers, we have performed simula-
tions with and without HI. The algorithm used in this
work is not appropriate for entangled concentrated sys-
tems since entanglements have not been taken into ac-
count. In the concentrated-entangled regime, hydrody-
namic interactions are screened and there is no need to
incorporate them in the simulation algorithm. Several
studies on nanoparticles in entangled and concentrated
polymer solutions37 and networks41 reported character-
istic features which cannot be derived directly from the
results in this work. However, there is very little liter-
ature on the dynamics of these systems, especially for
dendrimers, where HI plays an important role.

The paper is organized as follows: The governing equa-
tions and the various intra- and intermolecular interac-
tions included in the model, the procedure to choose
various dendrimer and linear chain parameters to sim-
ulate specific architectures and formulas for the proper-
ties studied are discussed in section II. The static and
dynamic properties of dendrimers and linear chains ob-
tained from simulations are discussed in section III, and
concluding remarks are given in section IV.

II. MODEL AND METHOD

A. Governing equations

Polymers in this study were modelled using the coarse-
grained bead-spring chain model, with Nb beads con-
nected by Nb − 1 springs42. The simulated semidilute
solution contains N lc

c linear chain molecules with N lc
b

beads and Nd
c dendrimers with Nd

b beads, immersed in
an incompressible Newtonian fluid. This system is con-
tained in a cubic, periodic simulation box of length L and
volume V , where V = L3. The total monomer concen-

tration in a simulation box is given by c = N/V , where
N is the total number of monomers in the box given
by N = (N lc

c × N lc
b ) + (Nd

c × Nd
b ). The Itô stochastic

differential equation, which is the governing equation in
Brownian dynamics simulations, provides the bead po-
sition vectors rµ(µ = 1, 2, ..., N) as a function of time.
The Euler integration algorithm form of this equation is
given below:

rµ(t+∆t) = rµ(t) +
∆t

4

N∑

ν=1

Dµν · (Fs
ν + FSDK

ν )

+
1√
2

N∑

ν=1

Bµν ·∆Wν

(2)

Here the length and time non-dimensionalization factors
are lH =

√
kBT/H and λH = ζ/4H, respectively, where

kB is the Boltzmann constant, T is temperature, H is
the spring constant, and ζ = 6πηsa is the Stokes fric-
tion coefficient of a spherical bead with radius a and ηs
is the solvent viscosity. In eqn (2), DDDνµ is the diffusion
tensor, defined as DDDνµ = δµνδδδ + ΩΩΩµν , where δµν is the
Kronecker delta, δδδ is the unit tensor, and ΩΩΩµν is the hy-
drodynamic interaction tensor. BBBµν is a non-dimensional
tensor whose evaluation requires the decomposition of the
diffusion tensor and ∆WWW ν is a non-dimensional Wiener
process with mean zero and variance ∆t. If D and B are
block matrices consisting of N × N blocks each having
dimensions of 3×3, with the (µ, ν)-th block of D contain-
ing the components of the diffusion tensor DDDµν , and the
corresponding block of B being BBBµν , the decomposition
rule for obtaining B is then given by B · Bt = D.

The spring force exerted on individual beads is repre-
sented by Fs

ν . We have used finitely extensible nonlinear
elastic (FENE) springs and the spring potential is given
by,

UFENE = −1

2
Q2

0 ln

(
1− r2

Q2
0

)
(3)

where Q0 is the dimensionless maximum stretchable
length of a single spring, and kBT is used to non-
dimensionalize energy.
The force due to the excluded volume interactions be-

tween bead pairs is denoted by FSDK
ν and is obtained

from the Soddemann-Dünweg-Kremer (SDK) potential,
USDK,

43

USDK =





4

[(σ
r

)12
−
(σ
r

)6
+

1

4

]
− ϵ; r ≤ 21/6σ

1

2
ϵ

[
cos (α

( r
σ

)2
+ β)− 1

]
; 21/6σ ≤ r ≤ rc

0; r ≥ rc
(4)

Here, ϵ is the well depth of the potential which controls
the interaction strength between bead pairs and the non-
dimensional distance σ is fixed as 1 in this study. The
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repulsive part of this potential is modelled by a truncated
Lennard-Jones (LJ) potential and the attractive part is
modelled using a cosine function. The constants α and
β are determined from boundary conditions, USDK = 0
at r = rc and USDK = −ϵ at r = 21/6σ which is the
minima of the potential. The cut-off radius rc was taken
to be 1.82σ, following the discussion in recent work by
Santra et al. 44 . The advantage of using the SDK poten-
tial is that by varying a single parameter ϵ, a range of
solvent qualities can be studied and it affects the attrac-
tive part of the potential without altering the repulsive
force. Also, the short-ranged attractive tail of this po-
tential smoothly approaches zero, unlike the LJ poten-
tial. At ϵ = 0, the SDK potential reduces to the purely
attractive Weeks-Chandler-Anderson (WCA) potential,
and solvent quality can be varied by changing the value
of ϵ. Note that in this study, we have fixed ϵ = 0 since we
restrict our simulations to athermal solvent conditions.

We use the regularized Rotne-Prager-Yamakawa
(RPY) tensor to compute hydrodynamic interactions
(HI),

ΩΩΩµν = ΩΩΩ(rµν) (5)

where rµν = rµ − rν and the function ΩΩΩ is

ΩΩΩ(r) = Ω1δδδ +Ω2
rr

r2
(6)

with

Ω1 =





3
√
π

4

h∗

r

(
1 +

2π

3

h∗2

r2

)
for r ≥ 2

√
πh∗

1− 9

32

r

h∗√π
for r ≤ 2

√
πh∗

and

Ω2 =





3
√
π

4

h∗

r

(
1− 2π

3

h∗2

r2

)
for r ≥ 2

√
πh∗

3

32

r

h∗√π
for r ≤ 2

√
πh∗

The hydrodynamic interaction parameter h∗ gives the di-
mensionless bead radius in the bead-spring model and is
defined as h∗ = a/(

√
πkBT/H). The Brownian dynam-

ics (BD) simulation code used in this work is based on
the GPU-accelerated Python package named HOOMD-
Blue, developed in Michigan University45 for the study
of colloidal suspensions. It has been modified recently
to study the dynamics of associative polymer solutions46

along the lines of an earlier in-house BD code based on
the Molecular Modelling ToolKit47–49. The decomposi-
tion of the diffusion tensor, which is computationally de-
manding, has been efficiently implemented recently us-
ing the Positive Split Ewald algorithm (PSE)50. This is
available as a plugin to HOOMD-Blue.

B. Details of the simulation algorithm

To choose the simulation system, we fixed the den-
drimer architecture first and calculated the number of

(a) (b) (c)

(d) (e) (f)

FIG. 2. (Color online) The various dendrimer architectures
simulated in this study. The specific simulation parameters
corresponding to the topologies (a) to (f) are given in Table
I

TABLE I. List of dendrimer parameters and linear chain
lengths used in each system. g is the generation number,
f is the functionality, s is the number of spacer beads, Nd

b

is the number of beads in a dendrimer molecule, Rd
g0 is the

radius of gyration of the dendrimer in the solvent, χ is the
ratio between the radius of gyration of dendrimers and lin-
ear chains in dilute limit, N lc

b is the number of beads in the
background linear chain, Rlc

g0 is the radius of gyration of the
linear chain. Note that dendrimer topologies in (c) and (h)
are identical, but have different χ.

f s g Nd
b Rd

g0 χ N lc
b Rlc

g0

a 3 1 0 7 1.90 0.50 19 3.90

b 3 2 0 10 2.40 0.50 26 4.80

c 3 1 1 19 3.12 0.46 43 6.23

d 3 2 1 28 3.88 0.46 61 7.77

e 3 1 2 43 4.34 0.50 74 8.68

f 4 0 1 17 2.49 1.0 9 2.49

h 3 1 1 19 3.12 1.0 13 3.12

beads (Nd
b ) on each dendrimer molecule. The various

architectures chosen are given in Fig. 2. The radius of
gyration of dendrimers was determined by carrying out
simulations in the dilute limit and the values are reported
in Table I. Depending on the choice of the ratio be-
tween the radius of gyration of the dendrimer and lin-
ear chain, χ, we calculated the radius of gyration of the
linear chain. The number of beads on the linear poly-
mer was then estimated by running simulations in the
dilute limit and reading off the value of N lc

b from the
Rlc

g vs N lc
b plot (see Fig. S1 of the Supplementary Ma-

terial). The simulation box length, L was chosen to be
L ≥ 2Re, where Re is the end-to-end distance of linear
chains in the solution. This ensures that the molecules
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FIG. 3. (Color online) Snapshots from simulation of f =
3, s = 1, g = 1 dendrimer with χ = 0.46 at c/c∗lc = 1. The
blue beads belong to linear chains and other coloured beads
belong to dendrimers.

do not wrap around themselves. Simulations were car-
ried out keeping the dendrimer concentration fixed and
adding linear chains to the simulation box to increase
the concentration of the solution. Hence the resulting
solution is always dilute in dendrimer concentration and
semidilute in linear chains. The list of chain lengths, den-
drimer parameters, and number of chains in each simu-
lation are given in Table I. All the dendrimers simu-
lated in this study were symmetric, m = f − 1. One
special case we studied is a f = 4, g = 1, s = 0 den-
drimer. By increasing the number of arms and reduc-
ing the spacer beads, we expect it to be more closely
packed compared to the rest of the dendrimers, and thus
behave qualitatively more like a nanoparticle. The con-
centration of linear chains was varied from 0.5 to 6c∗.
All simulations were carried out in athermal solvent con-
ditions (ϵ = 0) and the hydrodynamic interaction pa-
rameter, h∗ = 0.2. When hydrodynamic interactions are
not present (the free draining case), h∗ is set equal to
zero, so the RPY tensor is not invoked and the diffu-
sion tensor simplifies to DDDµν = δµνδδδ. The maximum
stretchable length of each spring, Q2

0 = 50.0, for all sim-
ulations. Every independent trajectory had an equilibra-
tion phase of 8 relaxation times followed by a production
phase of 10 relaxation times with non-dimensional time
step, ∆t = 10−3 to 10−4. The dynamic properties were
calculated as a function of time in the production phase
of individual trajectories. Ensemble averages and error
estimates were calculated over 700 to 2000 independent
trajectories. Fig. 3 shows a snapshot of a simulation box
containing generation 1 dendrimers and linear chains at
c/c∗lc = 1.

C. Definition of static and dynamic properties

1. Radius of gyration and correlation length

The radius of gyration of dendrimers and linear chains
in the solution is calculated using the expression

R2
g =

1

Nb
⟨
Nb∑

i=1

(Ri −RCM)
2⟩ ; Nb ∈ {Nd

b , N
lc
b } (7)

where RCM is the centre of mass of the molecule given
by

RCM =
1

Nb

Nb∑

i=1

Ri (8)

We introduce a quantity χ, which is the ratio of the ra-
dius of gyration of dendrimer (Rd

g0) to that of the linear

chain (Rlc
g0) in the background, both in the dilute limit,

given by χ =
(
Rd

g0/R
lc
g0

)
. The overlap concentration, c∗,

of a polymer solution is defined in terms of the radius
of gyration of the polymer in the dilute limit, given by
c∗ =

(
Nb/(4/3)πR

3
g0

)
. In this study, the solution con-

tains polymers of two architectures. Therefore, c∗ can be
estimated separately for each of them (c∗d for dendrimers
and c∗lc for linear chains) given by:

c∗d =
Nd

b

4

3
π(Rd

g0)
3

(9)

c∗lc =
N lc

b

4

3
π(Rlc

g0)
3

(10)

Another important length scale in the solution is the
correlation length (ξ). It is defined in terms of the radius
of gyration in the dilute limit, the overlap concentration
of linear chains, and the total monomer concentration in
the solution51,

ξ = Rlc
g0

(
c

c∗lc

) −ν
(3ν−1)

(11)

where ν is the Flory exponent, assumed here to be equal
to 0.588. Note that the total monomer concentration c,
includes monomers of both species in the system.

2. Relative shape anisotropy and the universal ratio URD

This work aims to compare the dynamics of den-
drimers to nanoparticles, and therefore, it is essential
to understand the influence of dendrimer parameters on
their shape and compactness. Two important measures
that can be used to probe these are the relative shape
anisotropy (κ2) and the dimensionless ratio URD.
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The relative shape anisotropy, one of the shape func-
tions, has been used to understand the asymmetry in the
shape of polymer molecules. It is defined in terms of the
eigenvalues, λ2

1, λ
2
2, λ

2
3, of the gyration tensor G given by

G =
1

2N2
b

Nb∑

µ=1

Nb∑

ν=1

rµνrµν (12)

Here λ2
1, λ

2
2, λ

2
3 are arranged in ascending order. The rel-

ative shape anisotropy κ2 is defined as52–54:

κ2 = 1− 3

[ ⟨I2⟩
⟨I21 ⟩

]
(13)

where I1 = λ2
1 + λ2

2 + λ2
3 and I2 = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

1λ
2
3.

κ2 = 0 for a spherically symmetric molecule while it is
equal to one for a rod-shaped molecule.

URD, which is a measure of the hard sphere-like be-
haviour of molecules, is given by

URD =
Rg

RH
=

4DRg

h∗√π
(14)

where RH is the hydrodynamic radius of the molecule

related to its long time diffusivity, D, by RH =
h∗√π

4D
.

For a polymer chain, URD is approximately 1.455–57 while
for a hard sphere, it is 0.7758.

3. Intra-molecular bead density

The internal bead density, obtained from the arrange-
ment of beads about the centre of mass of the molecule,
leads to an understanding of its internal structure. It is
calculated by counting the number of beads along the ma-
jor axis of the gyration tensor in intervals of fixed length
and binning them. This requires all polymer configura-
tions in the simulation ensemble to be aligned along their
respective major axes. The linear bead number density
obtained is given by:

ρl(r) =
nb(x+∆x)− nb(x)

∆x
(15)

where nb(x) is the number of beads of a molecule within
a distance x along the major axis, and ∆x is the length
of the fixed interval.

4. Mean squared displacement and diffusivity

The mean squared displacement of the centre of mass
of the polymer molecules in solution is calculated using
the following expression

MSD(∆t) = ⟨|RCM(t+∆t)−RCM(t)|2⟩ = 6D tα (16)

where RCM(t) and RCM(t+∆t) are the position vectors
of the centre of mass of the molecule at times t and t+∆t

FIG. 4. (Color online) Schematic representation of the diffu-
sive nature of dendrimers belonging to different size regimes.
τξ and τd, defined by eqn (17) and eqn (18), are the tran-
sition time scales to subdiffusive and diffusive behaviour re-
spectively, for dendrimers with size larger than the solution
correlation length (Regime-2). The exponents of time are in-
dicated in the figure.

respectively, D is the diffusion coefficient and α is the
diffusion exponent. α = 1 for normal diffusion and the
molecule exhibits subdiffusion if α < 1. The long time
diffusivity, D is estimated from the slope of the mean
squared displacement versus time plots at longer times.
Cai, Panyukov, and Rubinstein 37 have identified sev-

eral regimes for nanoparticles in entangled systems based
on their size relative to the solution correlation length
and the tube diameter. However, in the current study of
dendrimers in semidilute polymer solution, there are only
two regimes based on the relative sizes of the dendrimer
and correlation length: Regime-1 in which the dendrimer
is smaller than the solution correlation length (2Rd

g < ξ)
and Regime-2 in which the dendrimer size is larger than
the correlation length (2Rd

g > ξ). It is important to note
that, unlike a nanoparticle that has a constant size at
all polymer concentrations, the size of a dendrimer is a
concentration-dependent quantity.
The dynamics of dendrimers in the two regimes are

different due to the influence of the surrounding linear
chains as shown schematically in Fig 4. Following the ar-
guments proposed by Cai, Panyukov, and Rubinstein 37 ,
the following dynamics are expected in the two regimes:

1. Regime-1: When the size of the dendrimer is less
than the correlation length (2Rd

g < ξ), it can diffuse
freely through the solution, without being affected
by the background linear chains. The diffusivity of
a dendrimer is expected to be that experienced by it
in the dilute limit (D0) and exhibit normal diffusion
at all time scales with the diffusion exponent, α =
1. As a result, the mean squared displacement,
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MSD = 6D0 t.

2. Regime-2: When the dendrimer is larger than cor-
relation length, (2Rd

g > ξ), its dynamics is influ-
enced by the presence of linear chains. The mean
squared displacement shows three scaling regimes
based on the time scale at which it is probed. At
short times, the dendrimer does not experience any
hindrance to its motion and therefore, exhibits nor-
mal diffusion. This continues up to a time of the
order of the relaxation time of the correlation blob,
τξ given by:

τξ ≡ ηsξ
3/kBT (17)

At times higher than τξ, the dendrimer is trapped
in cages formed by the linear polymers, and its mo-
tion is expected to become subdiffusive. Its dynam-
ics are coupled to the motion of the centre of mass
of the polymer and the polymer segmental relax-
ation times. The mean squared displacement of
dendrimers at these intermediate times is given by
MSD = 6Dα tα, where α < 1. The subdiffusive
regime extends until t ∼ τd which is equal to the
relaxation time of a chain segment with a size equal
to the size of the dendrimer given by:

τd ≡ τξ
(
2Rd

g/ξ
)4

(18)

Beyond τd, the dendrimer is set free due to the re-
laxation of linear chains and therefore the mean
squared displacement is given by MSD = 6D t.
The diffusivity, D, in this regime, is referred to as
the long-time diffusivity of the dendrimer.

5. Probability distribution function of displacement

Apart from the long-time diffusivity, the probability
distribution function of displacement gives additional in-
sight into the dynamics of the polymer molecules. The
probability of a molecule displacing by a distance ∆x in
a time ∆t is given by

P(∆x,∆t) = ⟨δ (∆x− |xCM(t+∆t)− xCM(t)|)⟩ (19)

where xCM(t) and xCM(t+∆t) are the x-components of
the centre of mass of the molecule at times t and t+∆t
respectively.

III. RESULTS AND DISCUSSION

A. Radius of gyration

According to the blob theory for polymers, the radius
of gyration of linear chain polymers reduces with an in-
crease in concentration and follows the scaling law59–61:

Rlc
g = Rlc

g0

(
c

c∗lc

) 1−2ν
2(3ν−1)

(20)
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FIG. 5. (Color online) Universal behaviour of radius of gyra-
tion of dendrimers and linear chains. The normalized radius
of gyration of polymers is plotted as a function of the ra-
tio of monomer concentration normalized by the respective
c∗ of each species. The dendrimer architecture is included
in the order (f, s, g, χ) and N lc

b is the number of beads on a
linear chain. The same coloured symbols belong to one simu-
lated system. Data from work on pure linear chain solutions
by Huang et al. 59 (empty triangles) and our simulation data
for pure star polymer solutions (orange x-mark) are included.
The dashed line is the scaling law given by eqn (20). In-
set: Normalised radius of gyration of dendrimers and linear
chains in the solution as a function of the ratio of monomer
concentration normalized by the overlap concentration of lin-
ear chains, c∗lc.

On plotting the ratio Rg/Rg0 of dendrimers and linear
chains as a function of the total monomer concentration,
c, in solution normalized by the overlap concentration of
linear chains, c∗lc, dendrimers seem to shrink at a slower
rate compared to the linear chains (inset to Fig. 5). How-
ever, if the normalizing factor for monomer concentration
is the overlap concentration for each species, the nor-
malised radius of gyration of dendrimers of all architec-
tures and linear chains in the background collapse onto
a universal curve as shown in Fig. 5. Thus, the fac-
tor that determines the size of a polymer molecule is the
number of monomers it interacts with in its neighbour-
hood. In other words, the concentration of monomers
relative to its overlap concentration if all the monomers
in the solution had belonged to its own architecture is
what determines its shape. The fact that the solution
has molecules of different architectures is unimportant.
At lower concentrations, the correlation length of

the solution is large compared to the size of polymers
(Regime-1). With an increase in concentration, the size
of dendrimers, linear chains, and the correlation length
decreases given by eqn (11) and (20). However, the cor-



8

0 10 20 30 40

Nd
b

0.1

0.15

0.2

0.25

0.3

0.35
5

2

(f; s; g)

(3,1,0)

(3,2,0)

(3,1,1)

(3,2,1)

(3,1,2)

(4,0,1)

10 20 30 40 50

Nd
b

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

U
R

D

(f; s; g)

(3,1,0)

(3,2,0)

(3,1,1)

(3,2,1)

(3,1,2)

(4,0,1)

UNP
RD

(a) (b)

FIG. 6. (Color online) Relative shape anisotropy and URD of dendrimers.(a) Effect of different architectures on the relative
shape anisotropy of dendrimers in dilute solution as a function of the number of beads in a dendrimer molecule. The symbols
represent dendrimer topology given by the combination f, s, g. (b) URD of dendrimers in dilute solution as a function of the
number of beads in a dendrimer molecule. The dashed line is the value of URD for a nanoparticle. The symbols represent
dendrimer topology given by the combination f, s, g.

relation length ξ decreases faster than the diameter of
the dendrimer 2Rd

g and after a certain concentration, the
dendrimers in solution become bigger than correlation
length, 2Rd

g > ξ (Regime-2). Thus there is a crossover
from Regime-1 to Regime-2 with increasing concentra-
tion (see Fig. S2 of the Supplementary Material).

B. Relative shape anisotropy and URD

In Fig. 6(a), the relative shape anisotropy of den-
drimers of different architectures in dilute solution, calcu-
lated using eqn (13), is plotted as a function of the num-
ber of beads per molecule. As the generation number (g)
increases at constant f and s, κ2 decreases. The num-
ber of beads inside and on the outer shell of a molecule
is more for a dendrimer with higher g. Due to the ex-
cluded volume interactions, the internal beads spread
out, and the molecule with higher g becomes more spher-
ical compared to its lower-generation counterpart. The
relative shape anisotropy of a functionality 4 dendrimer
with g = 1 and s = 0 (Fig. 2(f)) is much lower than
that of the other architectures. With no spacers, every
internal bead in the molecule is a branching point con-
nected to 4 other beads. This gives it less chance of
conformational fluctuations and hence behaves more like
a compact sphere62. This is clear from the distribution
of radius of gyration of dendrimers in dilute solution (see
Fig. S3 of the Supplementary Material). The number of
spacer beads appears not to have a significant effect on

the shape of dendrimers. Along with the relative shape
anisotropy, asphericity (B) is also a measure of the shape
and compactness of molecules. It shows a similar trend as
that of the κ2 for dendrimers in our simulations support-
ing the argument of a spherical and compact structure
(see Fig. S4(a) of the Supplementary Material). Inter-
estingly, κ2 and B are unaffected by the concentration of
the solution as shown in Fig .S4(b) and (c) of the Sup-
plementary Material.

In Fig. 6 (b), the ratio URD for dendrimers of differ-
ent architectures in the dilute limit is plotted as a func-
tion of the number of beads in the molecule. Similar to
the behaviour of relative shape anisotropy, URD decreases
with increasing g when f and s are fixed. Our simula-
tion results are in line with the previous experiments63

and simulations18 for dendrimers in dilute solution. The
f = 4, g = 1, s = 0 (Fig. 2(f)) dendrimer has a value
of URD very close to that of a hard sphere even though
the number of beads in it is almost the same as that of
a f = 3, g = 1, s = 1 (Fig. 2(c)) dendrimer. Thus, by
increasing g and f , dendrimers can be seen to transition
from ‘fractal-like’ to a ‘nanoparticle-like’ structure.

C. Bead density distribution

Fig. 7(a) shows the linear bead density distribution
along the major axis of the radius of the gyration tensor
of linear chains and dendrimers in a dilute solution. Lin-
ear chains have a dip in the density distribution at the
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FIG. 7. (Color online) Linear bead density distribution of dendrimers (a) Effect of architecture on the internal bead density
distribution of dendrimers along the major axis in dilute solution. Black triangles represent linear chain with 25 beads and
dendrimers are represented using the combination f, s, g. The pink triangle represents a f = 3, s = 1, g = 1 dendrimer in theta
solvent conditions. The dashed line is a Gaussian fit to this data. (b) Effect of concentration on the bead density distribution
of f = 3, s = 1, g = 1 dendrimer in a semidilute solution of linear chains with χ = 0.46. The pink triangles represent dendrimer
in theta solvent conditions and the dashed line is a Gaussian fit to this data.

centre of the molecule54 implying that in an athermal
solution, beads near the centre have a higher effective
excluded volume repulsion. The density distributions of
dendrimer molecules, on the other hand, are peaked at
the centre of mass. The linear number density is the den-
sity of the projected coordinates of the beads along the
major axis. A higher functionality f of a dendrimer leads
to the localisation of beads closer to the core, increasing
the linear core density. The other factor responsible for
higher core linear density is the presence of a larger num-
ber of beads in the molecule (the projected coordinates
of which are likely to be higher near the core). The other
characteristic feature of the linear number density of den-
drimers is the presence of a non-Gaussian shoulder region
midway between the core and periphery. We do not have
a simple geometrical explanation for this behaviour. The
linear bead density distribution of f = 3, s = 1, g = 1 in
theta solvent conditions shows a Gaussian distribution,
with a significantly high core density compared to that
in athermal conditions. This could be due to the fold-
ing back of the dendrimer arms to the core due to the
absence of the excluded volume interactions.

The density distribution is different along the 3 axes
of the gyration tensor, with the internal bead distribu-
tion being more clearly non-Gaussian along the major
axis (see Fig. S5(a) of the Supplementary Material) and
Gaussian-like along the minor axes. The effect of increas-
ing solution concentration on the bead density distribu-
tion along the major axis of generation-1 dendrimer is
plotted in Fig. 7(b). Due to the excluded volume in-

teractions in an athermal solution, dendrimer molecules
tend to swell, resulting in a lower core density. The shoul-
der that is present in the density distribution in the dilute
case decreases as the concentration of the background lin-
ear chains increases. As is well known, at higher concen-
trations, the excluded volume interactions are screened
in the molecule, and the onset of this is revealed in the
figure. Thus, the molecule is shrinking, bringing beads
closer to the centre of mass. After 2c∗, the distribution
approaches Gaussian, which corresponds to the theta sol-
vent conditions. It should be noted that all simulation
results reported in this manuscript for theta solvents have
been obtained with the well depth set to ϵ = 0.45 in the
SDK potential.

The bead density distribution in concentric shells of
equal volume, referred to as volumetric bead density, was
also calculated (see Fig.S5(b) and (c) of the Supplemen-
tary Material). All dendrimer architectures show a high
core density in dilute solutions, which monotonically de-
creases towards the periphery. As the solution concentra-
tion increases, the volumetric bead density approaches
that in theta solvent conditions, similar to linear bead
density.

D. Mean squared displacement

According to the coupling theory37 for the diffusion of
nanoparticles in a polymer solution, the particle dynam-
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FIG. 8. (Color online) Mean squared displacement of dendrimers as a function of time (a) The mean squared displacement
of a dendrimer with f = 3, s = 1, g = 0, χ = 0.5 in a solution of linear chains of concentration 6c∗. The vertical dashed and
dashed-dotted lines are τξ and τd, respectively. (b) Effect of hydrodynamic interaction on the mean squared displacement
of dendrimers. The same symbol shapes represent identical systems. The concentration is fixed at 1c∗ and f = 3 for all
dendrimers. For the star polymer, s = 1, χ = 0.5 and for generation one dendrimer, s = 2, χ = 0.46 .

ics is dependent on its size relative to the solution corre-
lation length. Nanoparticles in Regime-1 pass smoothly
through the polymer mesh, whereas particles larger than
ξ get locally trapped and become subdiffusive at interme-
diate time scales, with the diffusion exponent αNP = 0.5.
However, a recent MPCD study39 has shown that αNP

gradually decreases from unity to 0.5, with an increase in
solution concentration due to its coupling to the polymer
centre of mass motion. To understand the behaviour of
soft dendrimers in polymer solutions, the mean squared
displacement of dendrimers was plotted as a function of
time as shown in Fig. 8(a). The system in the figure
corresponds to Regime-2 (2Rd

g > ξ). The dendrimer

is observed to be diffusive (αd = 1) at times less than
τξ. It then becomes subdiffusive at intermediate times
(τξ < t < τd) with αd < 1, followed by normal diffu-
sion at long times ( t > τd), similar to the behaviour
of a nanoparticle in the polymer solution. With in-
creasing concentration, the mean squared displacement
of dendrimers decreases and the subdiffusive regime in-
creases(Fig. S6(a) of the Supplementary Material). This
is because τξ (eqn (17)) decreases and τd (eqn (18))
increases with increasing concentration (see Tables S1,
S2 and S3 in of the Supplementary Material). There-
fore, dendrimers remain subdiffusive for a longer span at
higher concentrations.

To understand the role of hydrodynamic interactions
(HI) in determining the dynamics of dendrimers, simu-
lations were performed with and without HI. From the
mean squared displacement versus time plots, it is ob-

served that HI promotes the movement of the dendrimers
in the solution, thus leading to a higher MSD (Fig. 8(b)).
This is in line with earlier observations for nanoparticles
in polymer solutions36. The architecture of dendrimers
also affects its mean squared displacement because its
size increases with generation number, keeping f and s
fixed. At a constant concentration, a generation 2 den-
drimer will experience more hindrance to its motion com-
pared to a simple star polymer (g = 0), causing the for-
mer to diffuse slower than the latter (see Fig. S6(b) of
the Supplementary Material). However, we can collapse
MSD for different architectures by following a simple scal-
ing relation as shown in Fig. S6(c) of the Supplementary
Material.

E. Diffusion exponent

As mentioned earlier, dendrimers that are larger than
the solution correlation length become subdiffusive at in-
termediate time scales. We have extracted the diffusion
exponents, αd, for dendrimers of different architectures
at intermediate times (τξ < t < τd) and plotted them as
a function of the ratio of their diameter to the correlation
length (Fig. 9(a)). Dendrimers smaller than correlation
length (Regime-1) exhibit diffusion with αd = 1, whereas
dendrimers larger than correlation length (Regime-2) ex-
perience hindrance to its movement and becomes subd-
iffusive αd < 1. It is remarkable that the diffusion ex-
ponents of all dendrimers collapse onto a universal curve
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FIG. 9. (Color online) The diffusion exponents (a) The diffusion exponent of dendrimers of different architectures is plotted
as a function of the ratio of its size to the correlation length in the two regimes. Data from work by Chen et al. 39 for a
nanoparticle in semidilute polymer solution of linear chains is included. The dashed lines are a guide to the eye and the vertical
line demarcates the two regimes. (b) The diffusion exponent of f = 3, s = 2, g = 1 dendrimers in solutions with and without
hydrodynamic interactions with χ = 0.46. (c) The ratio of the diffusion exponents of dendrimers to that of linear chains in
its background as a function of concentration for dendrimers of different architectures. The dashed line is equal to unity. The
symbols represent dendrimers in the solution with topological parameters f, s, g, χ,. (d) The ratio of the diffusion exponents
of dendrimers to that of linear chains in solutions with and without hydrodynamic interactions. The system considered is the
same as that in (b).

independent of the architecture of dendrimers. The fig-
ure also contains the diffusion exponent of nanoparticles
from MPCD simulations carried out by Chen et al. 39 .
Dendrimers have a higher diffusion exponent compared
to a hard sphere with the same dNP/ξ value in regime-

2, where dNP is the diameter of the nanoparticle. This
may be due to the concentration-dependent size of the
dendrimer, unlike that of a nanoparticle, which is a hard
sphere. A dendrimer trapped in a polymer mesh can
move out of it due to its own fluctuation along with fluc-
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tuations of the mesh-forming strands. It is consequently
more diffusive compared to a nanoparticle of compara-
ble size. Instantaneous diffusion exponents also can be
obtained by taking the time derivatives of mean squared
displacement. It was observed that α thus obtained at
intermediate times is similar to that calculated from the
time exponent of MSD between τξ and τd. It starts in-
creasing beyond τd and tends to unity (see Fig. S8 of the
Supplementary Material).

Fig. 9(b) shows the influence of hydrodynamic in-
teractions on the diffusion exponents of dendrimers in
a solution. The exponent αd = 1 for both cases as
dendrimers exhibit pure diffusion at low concentrations.
As concentration increases, the diffusion exponent of
dendrimers with HI decreases monotonically, while that
without HI levels off. The diffusion exponent of nanopar-
ticles in semidilute solutions has also been studied using
MPCD simulations. While an earlier study36 indicated
behaviour different from that observed here, the obser-
vations of a more recent study by Chen et al. 39 are in
agreement with our results. Paradoxically, HI seems to
slow down the motion of dendrimers in the intermediate
times as shown by the decreasing values of the diffusion
exponent, while, as seen earlier, it enhances the long-time
diffusivity. This is perhaps due to the backflow caused by
HI that prevents the escape of dendrimers from polymer
‘cages’ at intermediate times. However, at long times, HI
enhances its motion through polymer-mediated motion
as shown by the MSD plots (Fig. 8(b)). A better insight
into the effect of HI at different time scales is obtained
from the velocity field due to HI about the dendrimer
molecule (see Fig. S9 of the Supplementary Material).
At a length scale comparable to dendrimer size, which
corresponds to intermediate times, each monomer on a
dendrimer molecule experiences a force of different mag-
nitude and direction at every instant in time due to its
configuration. This causes the molecule to change shape
and move in random directions, thus slowing its diffu-
sion process. Whereas, when viewed from larger length
scales, which corresponds to t > τd, the dendrimer is like
a particle placed at its centre of mass. Its diffusion is
enhanced by the unidirectional flow due to HI.

We also examined the dynamics of linear polymer
chains in the background solution at intermediate time
scales. Similar to dendrimers, linear chains also enter a
subdiffusive regime at intermediate times, and the diffu-
sion exponents of both species are highly correlated as
shown in Fig. 9(c). This is similar to the observation
made by Chen et al. 39 for nanoparticles. The correla-
tion has been attributed to the coupling of nanoparticle
motion to the centre of mass of the linear chains in the so-
lution along with the segmental relaxation time of poly-
mer, which results in the gradual decrease of diffusion
exponent from 1 to 0.5 (Fig. 9(a)), unlike the predictions
of coupling theory37 which predicts a constant value of
0.5 as the diffusion exponent of nanoparticle. It appears
that the correlation is lost for some of the architectures
at higher concentrations, however, the scatter is due to

insufficient statistics. Since the difference across the en-
tire range of concentrations considered is less than 5%,
the correlation exists at all concentrations and across all
architectures.
The coupling of the motion of dendrimers and linear

chains would at first sight be attributable to the pres-
ence of long-range hydrodynamic interactions. However,
the strong correlation between the diffusion exponents of
both species exists even in the absence of HI as shown
in Fig. 9(d). This confirms that the correlation is due
to comparable time scales of relaxation between the den-
drimers and linear chains, and not due to the many-body
HI39.

F. Probability distribution function of displacement

To get a better insight into the characteristic fea-
tures of dendrimer dynamics, we analyzed its probabil-
ity distribution function of displacement at various time
intervals (Fig. 10). The displacements are normalized
by the correlation length as it is the length scale at
which the dendrimer experiences the presence of linear
chains. It is clear from the distribution function that even
though dendrimers become subdiffusive at intermediate
time scales, they demonstrate Gaussian probability dis-
tributions. On the other hand, many systems of nanopar-
ticles in complex environments exhibit non-Gaussian dis-
tributions64,65. There has been an increasing interest in
studying Fickian systems with non-Gaussian probability
distributions over the past few years66–69. In these sys-
tems, the observed deviation from Gaussian behaviour
has been attributed to the temporal70,71 or spatial72,73

heterogeneities in the complex environment leading to a
distribution of diffusivities, due to the shape anisotropy
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FIG. 10. (Color online) Probability distribution function of
displacement for a generation two dendrimer (f = 3, s =
1, χ = 0.5) at concentration c = 6c∗ at different times ( at
t = 0.4τξ , 0.6(τξ + τd) , 2.6τd).
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of the tracer69 or due to activated hopping mechanisms74.
Subdiffusive motion has been explained using two

mathematical models: the continuous-time random
walk model (CTRW)75 and fractional Brownian motion
(FBM)76. While the former has a series of trapping and
discrete jumps leading to subdiffusion and non-Gaussian
probability distribution functions, the latter is a Gaus-
sian process in which successive steps are correlated (non-
Markovian). An analysis of the motion of the centre of
mass of the dendrimer molecule confirms the absence of
long waiting times and hopping (shown in Fig. S7 of the
Supplementary Material). Therefore, it appears from
the MSD plots and the probability distribution of dis-
placements that the subdiffusive yet Gaussian behaviour
of dendrimers mimics fractional Brownian motion rather
than continuous time random walk motion. Similar re-
sults were obtained for polymer-grafted nanoparticles in
a recent molecular dynamics study77.

Fig. 10 shows the probability distribution functions
(PDD) for a f = 3, s = 1, g = 2 (Fig. 2(e)) dendrimer
at different time scales at a fixed concentration. When
t < τξ and t > τd, dendrimers exhibit normal diffusion
and hence the PDD is expected to be Gaussian. How-
ever, in the intermediate time scales when the dendrimer
is subdiffusive, they have a Gaussian PDD. Note that
the correlation length, τξ and τd are concentration and
architecture-dependent quantities. The probability dis-
tributions remain Gaussian at all concentrations irrespec-
tive of the architecture and the time (see Fig. S10 of the
Supplementary Material).

G. Diffusivity as a function of concentration

The diffusivity of linear chains in semidilute polymer
solutions is known to follow a universal scaling law given
by61

Dlc = Dlc
0

(
c

c∗lc

) ν−1
3ν−1

(21)

To understand the long-time dynamics of the simulated
hybrid system, we calculated the long-time diffusivity of
dendrimers and linear chains in the solution. The dif-
fusivity, normalized by the respective dilute diffusivity,
of dendrimers and linear chains decreases with an in-
crease in concentration as shown in Fig. 11. Dendrimers
of functionality f = 3 and linear chains in the solution
follow the universal scaling law for linear chains when the
monomer concentration (c) is normalized with respect to
the overlap concentration of each species. However, the
diffusivity of a f = 4 dendrimer does not follow eqn (21).
Rather, it drops rapidly after c/c∗d = 1.

There is a remarkable collapse of diffusivity of den-
drimers of several architectures in spite of having dif-
ferent anisotropies. Therefore it would appear that
anisotropy does not affect their dynamics. We have also
calculated the distribution of the radius of gyration of
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FIG. 11. (Color online) Universal behaviour of normalised
diffusivity of dendrimers and linear chains as a function of the
ratio of monomer concentration normalized by the respective
c∗ of each species. The dendrimer architecture is included
in the order (f, s, g, χ) and N lc

b is the number of beads on a
linear chain. Symbols in the same colour belong to the same
system, with right triangles representing linear chains. The
dashed line is the scaling law given by eqn (21). Experimental
data for generation 8 dendrimers and dextrans from Cheng,
Prud’Homme, and Thomas 31 is included. Inset: Normalised
diffusivity of dendrimers and linear chains in the solution as
a function of the ratio of monomer concentration normalized
by the overlap concentration of linear chains, c∗lc.

dendrimers in a dilute solution (shown in Fig. S3(a) of
the Supplementary Material) and examined the effect of
concentration (Fig. S3(b) and (c)). This was obtained us-
ing theRd

g from many trajectories at different instances in
time and binning them. The variance of the distribution
of Rd

g gives a measure of the size fluctuations. The f = 4
dendrimer has a significant decrease in variance com-
pared to the f = 3 dendrimers in dilute solution. Note
that the (f, s, g) = (3, 1, 1) dendrimer has a similar num-
ber of beads per molecule to that of the f = 4 dendrimer,
and indeed the (f, s, g) = (3, 1, 2) and (f, s, g) = (3, 2, 1)
dendrimers have a higher number of beads. Yet the f = 4
dendrimer has a smaller variance of the distribution of
Rg. This suggests that a decrease in the fluctuations in
size might be a more important factor in determining the
difference observed in the behaviour of the functionality
four dendrimer, rather than its anisotropy. The variance
in Rd

g seems to decrease rapidly with concentration for
both the architectures that are displayed in Fig. S3(b)
and (c) of the Supplementary Material. Our simulation
results are compared with experimental data for a gen-
eration 8 dendrimer and Dextran molecules reported by
Cheng, Prud’Homme, and Thomas 31 . A generation 8
dendrimer is a dense and compact molecule with fractal
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FIG. 12. (Color online) (a) Normalised diffusivity for dendrimers of all architectures in the solution of linear chains as
a function of the ratio of its size to the correlation length of the solution. Symbols represent dendrimers with topological
parameters in the order f, s, g, χ. The dashed line represents the scaling law derived for dendrimers (eqn (22)) and the solid
line represents the predictions of coupling theory37. (b) Normalized diffusivity for dendrimers of all architectures along with
MPCD39 (red empty triangles) and experimental data78 (cyan filled triangles) from literature for nanoparticles. The lines are
Mittag-Leffler fits (ML fun) to various systems with parameters m,a and p given in Table II.

dimension ≈ 3.1 whereas dextrans are slightly branched
molecules with fractal dimension 2.331. The diffusivities
of f = 3 dendrimers and linear chains in our simulations
behave similarly to Dextran molecules while the f = 4
dendrimer behaves more like the generation 8 dendrimer,
confirming that the former has a more compact structure.

While dendrimers are just one example of soft colloids,
there are other systems like microgels, multiarm stars,
and hairy colloids that may also be considered as soft col-
loids. Our search of the literature seems to suggest that
a systematic study of the dependence of diffusivity on
the concentration of the semidilute solution has not been
reported for this variety of soft colloids, rather the effect
of temperature and pH has been well studied. Therefore,
we are unable to compare our results directly with data
for a range of these systems. On the other hand, there
is data by Poling-Skutvik et al. 79 on polymer-grafted
nanoparticles (PGNP) or hairy colloids on the depen-
dency of its diffusivity on concentration. They have
observed that the normalised diffusivity of a variety of
PGNP-linear chain systems can be collapsed when rep-

resented in terms of (c/c∗lc) (Mw,f/Mw,g)
−1/8

. In our sim-
ulations, since, c∗d can also be represented in terms of c∗lc
(for a detailed derivation see the Supplementary Mate-
rial), the overlap concentration of dendrimers, c∗d, can be

written as c∗d = c∗lc
(
alc/ad

)3 (
Nd

b /N
lc
b

)1−3ν
, where the

constants ad and alc are defined by ad = Rd
g0/(N

d
b )

ν and

alc = Rlc
g0/(N

lc
b )ν . Using this relation, the diffusivity of

all the dendrimer architectures can be collapsed by plot-

ting the data in Fig. 11 in terms of c∗lc
(
Nd

b /N
lc
b

)−0.76
.

Note that the exponent of the normalisation factor is dif-
ferent from that reported by Poling-Skutvik et al. 79 . A
comparison of the results displayed in Fig. 11 for den-
drimers with the data of Poling-Skutvik et al. 79 for one
of their systems, is shown in Fig. S11 of the Supplemen-
tary Material.

H. Scaling law for dendrimer diffusivity

Dendrimers are soft polymers, the size of which
changes with the concentration of the background so-
lution (Fig. 5), unlike nanoparticles that have a fixed
size. The theories that govern nanoparticle dynamics in
homopolymer solutions are consequently not directly ap-
plicable to dendrimers. Combining eqn(20) and (21) for
dendrimer radius of gyration and diffusivity, and eqn(11)
for correlation length, a new scaling law for the dynam-
ics of dendrimers in semidilute polymer solutions can be
derived. The normalized diffusivity of dendrimers as a
function of the ratio of its size to the correlation length
of the solution is given by (for detailed derivation see the
Supplementary Material):

Dd

Dd
0

= γ

(
2Rd

g

ξ

)2(ν−1)

(22)



15

where γ =

(
βµ

2χ(1+3µ)

)2(ν−1)

with β = Nd
b /N

lc
b .

Fig. 12(a) shows our simulation data fitted with the
scaling law for dendrimer diffusivity given by eqn (22).
As expected, the normalized long-time diffusivity is equal
to 1 in the dilute limit and a crossover to the semidilute
regime happens when the size of the dendrimer is compa-
rable to the correlation length (2Rd

g ≈ ξ). Data for func-
tionality 3 dendrimers collapse to a universal curve when
divided by the factor γ, which depends on χ and β. How-
ever, the f = 4 (Fig. 2(f)) dendrimer does not follow this
power law at sufficiently high concentrations. In eqn (22),
the exponent 2 (ν − 1) = −0.82 when ν = 0.588. The −2
power law from coupling theory for nanoparticles is also
displayed for comparison.

In the case of nanoparticles, two competing theo-
ries predict different scaling behaviour for diffusivities:
the hydrodynamic model gives a stretched exponential
dependence of the normalized long-time diffusivity of
nanoparticles on its size relative to the system correla-
tion length, whereas the coupling theory predicts a power
law dependence with an exponent −2. These theories
have been well supported by experiments and simula-
tions 36,38–40,78. Since the diffusivity is normalized by its
dilute value, in both cases, the ratio tends to one at low
concentrations. It is interesting to consider the disparity
in scaling predictions with the help of the Mittag-Leffler
(ML) function, which is unique as it becomes a stretched
exponential at small values of its argument x, while it is
a power law at large values of x80,81. In this study, we are
using a modified version of the ML function (Ea,b (mxp)),
given by:

Ea,b (−mxp) =
∞∑

k=0

(−m)kxpk

Γ (ak + b)
(23)

where m, p, a and b are arbitrary constants. At small x,
eqn (23) is given by

Ea,b (−mxp) = exp

( −mxp

Γ (a+ b)

)
(24)

and at large values of x it becomes a power law, with p
being the magnitude of the power law exponent:

Ea,b (−mxp) =
x−p

mΓ (b− a)
(25)

TABLE II. Values of parameters used in the Mittag-Leffler
fits to various data sets in Fig. 12(b)

System m a p

f = 3 −0.43 0.59 0.82

f = 4 −0.11 0.79 1.40

Nanoparticle 0.45 0.78 2.00

The diffusivity as a function of the ratio of the size to
the correlation length of dendrimers of all architectures
and nanoparticles can be fitted using different values of
m, a and p of the Mittag-Leffler function (details of the
code can be found in the Supplementary Material). Since
D/D0 = 1 in the dilute regime, b = 1, and the expression
is given by:

D/D0 = Ea,1

(
−m

(
2Rd

g

ξ

)p)
(26)

All dendrimers with f = 3 can be fitted using the modi-
fied Mittag-Leffler function (eqn (26)) with a power law
exponent p = 0.82 as shown in Fig. 12(b). The normal-
ized diffusivity of nanoparticles from MPCD simulations
by Chen et al. 39 , which follows the scaling law from cou-
pling theory, is fitted with a power law exponent of p = 2.
Experimental results for nanoparticles that were thought
to have a stretched exponential dependence78 are also
included (cyan triangles) for comparison. Interestingly,
both these data sets can be fitted well with the same
Mittag-Leffler function. The f = 4 dendrimers that do
not follow the scaling law for diffusivity of linear poly-
mers (eqn (21)) cannot be fitted with the same power
law exponent of f = 3 dendrimers. Fitting this data us-
ing eqn (23) gives p = 1.4, which is between the power law
exponents for f = 3 dendrimers and hard spheres. Hence,
there is a transition from the polymer-like behaviour to
a hard-sphere due to the increased functionality, leading
to a compact structure. The values of the various pa-
rameters used for fitting in Fig. 12(b) are given in Table
II.

IV. CONCLUSIONS

Through Brownian Dynamics simulations, we have ex-
amined a hybrid system of soft dendrimers in a semidilute
solution of linear polymers. Our investigation focused on
the effects of solution concentration, dendrimer architec-
ture, and hydrodynamic interactions on the static and
dynamic properties of the dendrimers. We compared our
findings to those of a rigid sphere in a semidilute poly-
mer solution. Dendrimers with a mean Rg comparable
to that of linear chains in the background were chosen
for all simulations.
Our results showed that, unlike hard spheres, the size

of dendrimers decreases as the solution concentration in-
creases and follows the universal scaling law for linear
chains represented by eqn (20). In the dilute state, the
shape functions of dendrimers decreased with increasing
functionality and generation number but remained con-
stant with concentration. Additionally, the internal bead
density of all dendrimers was highest at the core and
rapidly decreased towards the periphery of the molecule
in a dilute solution. The higher functionality dendrimer
showed a higher internal bead density compared to its
counterpart with similar bead numbers. At higher con-
centrations, the bead density distribution approached a
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Gaussian distribution, similar to that of a polymer in
theta solvent conditions. This is due to the screening of
excluded volume interactions, which allows the overlap
of dendrimer branches.

In the study, it was observed that dendrimers exhibit
subdiffusion during intermediate times as they become
trapped in cages formed by linear chains. However, the
diffusion exponent for dendrimers was found to be higher
than that of their hard sphere counterparts at higher con-
centrations. This can be attributed to the additional
fluctuation of dendrimers, which facilitates their motion
out of the polymer cages. It was also observed that den-
drimers and linear chains have similar diffusion exponents
at all concentrations, regardless of the presence or ab-
sence of hydrodynamic interactions (HI). As time pro-
gresses, dendrimers become diffusive as a result of poly-
mer relaxation. The study also found that HI enhances
polymer dynamics at longer times and increases its mean
squared displacement. However, the diffusion exponents
decrease with concentration when HI is present, unlike
the free-draining case where there is no variation.

The long-time diffusivity of dendrimers decreased with
increasing solution concentration, similar to that of the
linear chains in the background, and collapsed onto a
universal curve. However, the diffusivity of dendrimers
does not follow theoretical predictions for nanoparticle
diffusivity as a function of its size relative to the solution
correlation length. From the analysis of the effect of con-
centration on dendrimer size and diffusivity, as well as the
correlation length of the solution, we developed a scaling
law for dendrimer diffusivity based on the ratio of its size
to solution correlation length. We found that dendrimers
with functionality three follow this scaling law, but more
dense dendrimers with higher functionality (f = 4) do
not obey it at higher concentrations. These dendrimers
have a power law exponent that falls between that of
f = 3 dendrimers and hard spheres. This shows with
increasing functionality, dendrimers shift from polymer-
like to hard sphere-like structures. Moreover, using the
Mittag-Leffler function, the crossover from the stretched
exponential character at low concentrations to the power
law behaviour at higher concentrations has been captured
for both our simulation results and data from the litera-
ture for nanoparticles.

SUPPLEMENTARY MATERIAL

Additional details of the simulation parameters, some
properties calculated, comparison with other soft col-
loidal systems and derivation of the scaling law for den-
drimer diffusivity are given in the Supplementary Mate-
rial. Section SI of the supplementary material includes
the scaling law for the radius of gyration of polymers
of different topologies. Section SII contains the regimes
based on the relative sizes of dendrimers, linear chains
and the correlation length. Other static properties like
the distribution of the radius of gyration, asphericity and

bead density distributions of dendrimers of different ar-
chitectures in dilute and semidilute solutions are given
in Sections SIII, SIV and SV respectively. Section SVI
contains the mean squared displacement plots and the
values of time scales τξ and τd for various architectures
used in this study. The calculation of diffusion exponent
as a function of time is given in Section SVII and the ve-
locity field due to hydrodynamic interactions is given in
Section SVIII. The probability distribution functions of
displacement of various architectures and concentrations
are given in Section SIX. Section SX shows the compar-
ison of our simulation results with other soft colloidal
systems from the literature. Section SXI gives a detailed
derivation for the new scaling law proposed for dendrimer
diffusivity as a function of its size relative to the corre-
lation length of the solution. Section. SXII contains the
details of the code used for Mittag-Leffler fits and Sec-
tion. SXIII gives the scaling of diffusivity as a function
of the radius of gyration of dendrimers.
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SI. RADIUS OF GYRATION VERSUS NUMBER OF BEADS FOR VARIOUS
TOPOLOGIES

(a) (b)

(c) (d)

FIG. S1. (Color online) Radius of gyration versus number of beads per molecule (a) Star polymers

with functionality 3. (b) Generation 1 dendrimer with functionality 3. (c) Generation 2 dendrimer

with functionality 3. (d) Linear chains. The dashed lines are the scaling law given by eqns (S1) and

(S2)

.

In order to determine the dendrimer parameters and length of linear chains in the solution,
we used their respective radius of gyration versus number of beads per molecule plots. In Fig
S1 (a),(b) and (c), the functionality (f) and generation number (g) of the dendrimer is fixed
and number of beads is varied by changing the spacer length (s). Linear chains and dendrimers
follow the scaling law given below:

Rlc
g0 = alc

(
N lc

b

)ν
(S1)

Rd
g0 = ad

(
Nd

b

)ν
(S2)

2



Here ν is the Flory exponent, ν = 0.588. This information is used to construct Table 1 in the
main text, for the various systems we have studied.

SII. SIZE REGIMES
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FIG. S2. (Color online) Size regimes based on relative sizes of polymers and correlation length of

the solution. The dendrimer architecture is included in the order (f, s, g, χ). The y-axis is the ratio

between the size of the dendrimer and the radius of gyration of the linear chain in the dilute limit

in each simulation system. The dashed line represents the scaling of ξ with concentration given by

eqn (S3).

The correlation length of the solution is given by1,

ξ = Rlc
g0

(
c

c∗lc

) −ν
(3ν−1)

(S3)

where ν is the Flory exponent, assumed here to be equal to 0.588. At small concentrations,
the size of the dendrimer is smaller than ξ (Regime-1). The correlation length decreases with
concentration and beyond a certain concentration, the dendrimer is larger than ξ (Regime-2).
Fig. S2 shows these regimes based on the relative size of dendrimers and the correlation length
of the solution. The lengthscales are normalized with the radius of gyration of linear chains in
the dilute limit to show the collapse of dendrimers with the same χ value.

SIII. DISTRIBUTION OF RADIUS OF GYRATION

Dendrimers are soft colloids and can have shape and size fluctuations based on the forces
experienced by each of its constituent beads. This is evident from the distribution of its radius
of gyration, ψ(Rd

g). It is calculated by obtaining Rd
g from many trajectories at different instances

in time and binning them. The variance of the distribution of Rd
g gives a measure of the size

fluctuations. It is clear from Fig. S3(a) that increasing functionality reduces the softness of
dendrimers resulting in lesser fluctuations. The f = 4 dendrimer has a significant decrease in

3



0.5 1 1.5 2
10-4

10-3

10-2

10-1

100

101

(3,1,0)
(3,2,0)
(3,1,1)
(3,2,1)
(4,0,1)
(3,1,2)

(a)

1.5 2 2.5 3 3.5 4
10-4

10-3

10-2

10-1

100

101

(b)

1 1.5 2 2.5 3 3.5
10-5

10-4

10-3

10-2

10-1

100

101

(c)

FIG. S3. (Color online) Distribution function of the radius of gyration of dendrimers (a) Dendrimers of

different architectures in dilute solution. The dendrimer architecture is included in the order (f, s, g).

Note that the x-axis is the normalised radius of gyration. (b) Effect of concentration on the size

fluctuation of (f, s, g, χ) = (4, 0, 1, 1) dendrimers. (c) Effect of concentration on the size fluctuation of

(f, s, g, χ) = (3, 1, 0, 0.5) dendrimers.
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FIG. S4. (Color online) Effect of architecture and solution concentration on the shape of dendrimers.

(a) Asphericity of dendrimers of different architectures in dilute solution as a function of the number of

beads in a dendrimer molecule. The symbols represent dendrimer topology given by the combination

f, s, g. (b) Effect of concentration of the solution on asphericity of dendrimers. All f = 3 architectures

considered have one spacer bead (s = 1). The dashed lines are the asphericity in the dilute solution

given in (a). (c) Effect of concentration of the solution on relative shape anisotropy of dendrimers.

The dashed lines are the κ2 in the dilute solution given in Fig.6(a) of the main text.
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variance compared to the f = 3 dendrimers, especially the (f, s, g) = (3, 1, 1) that has a similar
number of beads per molecule to that of the f = 4 dendrimer. The fluctuations decrease at
higher concentrations, but the distribution is similar at all concentrations irrespective of the
architecture (shown in Fig. S3(b)).

SIV. ASPHERICITY

The asphericity B of a molecule is defined as2–4:

B = ⟨λ2
3⟩ −

1

2

[
⟨λ2

1⟩+ ⟨λ2
2⟩
]

(S4)

Molecules with tetrahedral or greater symmetry have B = 0, otherwise B > 0. In Fig. S4(a), the
asphericity of dendrimers of different architectures in dilute solution, calculated using eqn (S4),
is plotted as a function of the number of beads per molecule. In a dilute solution, an increase in
generation number decreases B, implying a more spherically symmetric arrangement of beads
within the molecule. The functionality four dendrimer has the lowest B value. A similar trend
is observed in the case of the relative shape anisotropy. The concentration of the solution seems
to not affect the asphericity and shape anisotropy of dendrimer molecules as seen in Fig. S4(b)
and (c).

SV. BEAD DENSITY DISTRIBUTION

The linear bead density distribution along the 3 axes of the gyration tensor of (f, s, g) =
(3, 1, 1) dendrimer in dilute solution is shown in Fig. S5(a). The characteristic features of the
distribution are observed along the major axis while it is Gaussian-like along the minor axes.
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FIG. S5. (Color online) Bead density distribution (a) Linear bead density distribution along the 3

axes for a f = 3, s = 1, g = 1 dendrimer in athermal solvent condition. (b) Effect of architecture on the

volumetric bead densities of dendrimers in dilute solution. Black triangles represent linear chain with

25 beads and dendrimers are represented using the combination f, s, g. (c) Effect of concentration on

the volumetric bead density distribution of f = 3, s = 1, g = 1 dendrimer in a semidilute solution of

linear chains with χ = 0.46. Pink triangles in both figures represent f = 3, s = 1, g = 1 dendrimer in

theta solvent conditions.

An alternative estimate of the internal density can also be obtained by counting the number
of beads within concentric shells of constant thickness ∆r starting from the centre of mass of

6



the molecule. The volumetric bead density is given by:

ρV(r) =
nb(r +∆r)− nb(r)

∆V
(S5)

where nb(r) is the number of beads of a molecule in a sphere of radius r, ∆V is the volume of

a spherical shell of thickness ∆r given by
4

3
π(r + ∆r)3 − 4

3
πr3. In Fig. S5(b), the volumetric

bead densities in concentric shells starting from the centre of the molecule have been plotted
for dendrimers in dilute solution. The density is maximum at the centre for all dendrimer
architectures, which drops monotonically towards the periphery of the molecule. It is important
to note that the dendrimers with a higher number of beads have lower core volumetric density.
This might be because of the higher effective repulsion the individual beads near the centre feel,
causing them to occupy regions towards the periphery. The f = 3, s = 1, g = 1 molecule in theta
solvent has a significantly higher density at the core due to its collapsed state. In semidilute
solution, the dendrimer volumetric bead density transitions from that in dilute solution to theta
solvent conditions as solution concentration increases (shown in Fig. S5(c)). This is consistent
with the observations of linear bead density along the major axis and can be attributed to the
onset of screening of EV at higher concentrations.
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FIG. S6. (Color online) Mean squared displacement of dendrimers as a function of time (a) Effect

of solution concentration on the mean squared displacement of generation one (g = 1) dendrimers

with functionality f = 3 and one spacer bead (s = 1) in a solution of linear chains with 43 beads

(N lc
b = 43). The size ratio between the dendrimers and linear chains is 0.46 (χ = 0.46). (b) Effect

of generation number of dendrimers on its mean squared displacement. The concentration is 4c∗ and

dendrimer parameters are f = 3, s = 1, χ = 0.5. The vertical dashed and dashed-dotted lines are τξ
and τd for the generation zero dendrimer respectively. (c) Collapse of mean squared displacement of

dendrimers of different architectures considered in (b).

SVI. MEAN SQUARED DISPLACEMENT

The effect of solution concentration on the mean squared displacement of dendrimers is
shown in Fig. S6(a). Subdiffusion is completely absent at low concentrations because the
dendrimer size is much smaller than the solution correlation length. As concentration increases,
due to the interaction between dendrimer molecules and the increased number of linear chains,
a subdiffusive period exists (τξ < t < τd) and the mean squared displacement of dendrimers
decreases. Thus, with increased concentration, the dendrimers become less diffusive due to
hindered motion. The values of τξ and τξ changes with concentration as reported in Tables S1, S2
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and S3. Table S1 contains the values of τξ and Table S2 contains the values of τd for all f = 3
dendrimers at all concentrations. Table S3 contains τξ and τd for the f = 4, g = 1 dendrimer.
When the size of the dendrimer is smaller than the correlation length (ξ) of the solution, it
exhibits normal diffusion at all time scales and the concept of the time scales τξ and τd does
not exist.

TABLE S1. The time scale τξ (given by eqn 17 in the main text) for the various architectures at

different concentrations.

(χ, f, s, g)
c/c∗

0.5 1 2 4 6

(0.5, 3, 1, 0) − − 8.4 1.68 1.1

(0.5, 3, 2, 0) − − 14.6 2.9 1.9

(0.46, 3, 1, 1) − − 33.5 7.02 4.7

(0.46, 3, 2, 1) − − 65.1 13.62 9.1

(0.5, 3, 1, 2) − − 82.5 17.34 6.96

(1.0, 3, 1, 1) − 18.3 3.96 0.96 0.6

TABLE S2. The time scale τd (defined by eqn 18 in the main text) for the various architectures at

different concentrations.

(χ, f, s, g)
c/c∗

0.5 1 2 4 6

(0.5, 3, 1, 0) − − 48.9 72.9 93.1

(0.5, 3, 2, 0) − − 92.1 136.3 175.6

(0.46, 3, 1, 1) − − 168 248.6 302.4

(0.46, 3, 2, 1) − − 304.3 480.3 543.3

(0.5, 3, 1, 2) − − 556.8 864 1017.6

(1.0, 3, 1, 1) − 245.7 369.6 517.4 676.8

TABLE S3. The time scales τξ and τd (defined by eqns 17 and 18 in the main text) for the (χ, f, s, g) =

(1, 4, 0, 1) dendrimer.

c/c∗ τξ τd

0.5 − −
1.0 9.2 124.8

2.0 1.9 181.4

4.0 0.6 247.6

5.0 0.4 273.6

6.0 0.3 305.2

6.5 0.2 313.9
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FIG. S7. (Color online) 3D plot of the movement of the centre of mass of the dendrimer. It is a

(f, s, g, χ) = (3, 1, 1, 1) dendrimer molecule at c/c∗ = 6 in the presence of hydrodynamic interactions.

The size of dendrimers varies with their generation number. Therefore, at a constant con-
centration, f and s, a generation 2 dendrimer will experience more hindrance to its motion
compared to a simple star polymer (g = 0), causing the former to diffuse slower than the
latter as shown in Fig. S6(b). The mean squared displacement of dendrimers is given by
MSD = 6D t, where D is the diffusivity. The Stokes-Einstein relation for a particle of radius
R is D = kBT/6πηR. Therefore, MSD ≈ kBTt/ηR, and MSDR ≈ kBTt/η. Using this simple
scaling argument, we have collapsed MSD data for dendrimers of different generations as shown
in Fig. S6(c).

An examination of the position of the centre of mass of a dendrimer molecule in our simu-
lations as a function of time shows that it does not have long waiting times or hopping motion
(Fig. S7). Rather the molecule moves in space via smooth random movements even at high
concentrations.
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FIG. S8. (Color online) Diffusion exponent of (f, s, g, χ) = (3, 1, 1, 1) dendrimer as a function of time

(a) The concentration considered is c/c∗ = 1. Vertical lines represent τξ (dashed) and τd (dashed-

dotted) for c/c∗ = 1. The horizontal dashed line is the value obtained from mean squared displacement

versus time plots and the solid line is unity. (b) Diffusion exponent for different concentrations.
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SVII. DIFFUSION EXPONENT AS A FUNCTION OF TIME

The subdiffusion exponent can also be obtained by taking instantaneous derivatives in the
mean squared displacement as given below:

α =
d log(MSD(τ))

d log τ
(S6)

Fig. S8(a) shows the diffusion exponents of (f, s, g, χ) = (3, 1, 1, 1) dendrimer as a function
of time at c/c∗ = 1. It is clear that the dendrimer becomes subdiffusive when τξ < τ < τd with
the value of α in the subdiffusive regime similar to that obtained from the time exponent in
the mean squared displacement plots. It transitions to a diffusive regime beyond τd. Similar
behaviour is observed for all concentrations as shown in Fig. S8(b).

SVIII. VELOCITY FIELD DUE TO HYDRODYNAMIC INTERACTIONS

As pointed out in the manuscript, the subdiffusive motion of dendrimers is observed at
intermediate times (τξ < t < τd) which corresponds to the mean squared displacement of the
dendrimer in the range ξ < MSD < 2Rd

g. This suggests that on such time scales, the distance
covered by a dendrimer is of the order of the cage size formed by polymer strands in the
solution. To examine this closely, we have now computed the velocity fields within the solution
due to hydrodynamic interactions as shown in Fig. S9. This velocity perturbation is obtained
by calculating the product of the RPY tensor and the force exerted by each monomer at a
point. Fig. S9 (a), (c) and (e) show the velocity field at lengthscales comparable to dendrimer
size at different instances in time while Fig. S9 (b), (d) and (f) show the fields at large length
scales corresponding to them. This enables us to see the effect of HI which we have observed
in MSD plots. As is clear in the zoomed-in figures, each monomer on the dendrimer feels forces
of different magnitudes and directions due to its location relative to the backflow. The net
effect would be to randomize the direction of motion on small length and time scales, leading
to slower diffusion. At longer times, (t > τd), the mean squared displacement of the dendrimer
is much larger than its size. When observed from such large lengthscales, the entire molecule is
like a single particle placed at its centre of mass with the orientation of individual beads being
unimportant. The flow field set up due to HI seems to be in a particular direction and we
would expect it to enhance diffusion. This explains the effect of HI at intermediate and long
timescales.

SIX. PROBABILITY DISTRIBUTION FUNCTIONS

The distribution of a f = 3, s = 1, g = 1 at different concentrations (Fig. S10(a)) and
dendrimers of different architectures (Fig. S10(c)) in the subdiffusive regime were also found
to be Gaussian. Even the special case of a dendrimer with functionality f = 4, which is a
denser molecule, does not exhibit a non-Gaussian behaviour at any of the concentrations in the
subdiffusive regime (shown in Fig. S10(b)).

SX. COMPARISON WITH DIFFUSIVITY OF OTHER SOFT COLLOIDS

We compared the dynamics of polymer grafted nanoparticles (PGNP), also called hairy
colloids, in a solution of free polymer from work done by Poling-Skutvik et al. 5 with our
simulations. According to them, the normalised diffusivity for various PGNP-free polymer
systems can be collapsed if the normalised concentration (c/c∗) of free polymers is scaled with
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FIG. S9. (Color online) The flow field about a (f, s, g, χ) = (3, 1, 1, 1) dendrimer molecule at c/c∗ = 6

in the presence of hydrodynamic interactions. The rows in the panel represent different instances in

time. The first column (Fig (a), (c) and (e)) shows the velocity field about a dendrimer at a length

scale of the order of the size of the dendrimer. The grid size is equal to the correlation length of the

solution. The second column (Fig (b), (d) and (f)) shows the velocity field at a length scale much

larger than the dendrimer size. The grid size is ≈ 50ξ.
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FIG. S10. (Color online) Probability distribution function of displacement for dendrimers. (a)

Generation one dendrimer (f = 3, s = 1, χ = 1) in a semidilute solution of different concentrations

in the subdiffusive regime τξ > t > τd ( at t = 0.5(τξ + τd)). (b) PDD for f = 4 dendrimer

(s = 0, g = 1, χ = 1) in the subdiffusive regime at different concentrations ( at t = 0.5(τξ + τd)).

(c) Functionality three dendrimers of different generations in a semidilute solution of concentration

6c∗ in the subdiffusive regime. The dashed lines in all figures are Gaussian fits to the data.
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FIG. S11. (Color online) Effect of solution concentration and size of tracer on its diffusivity.

(a)Normalised diffusivity of dendrimers as a function scaled c/c∗lc. For comparison, data for linear

chains is also included with c/c∗lc in the x-axis. (b) Normalised diffusivity for dendrimers and PGNPs

as a function of its size relative to the solution correlation length. The dashed line is the proposed

scaling law for dendrimers and the solid line is the predictions of scaling theory.

the ratio (Mw,f/Mw,g)
−1/8. In our system, the radius of gyration of dendrimers and linear

chains in dilute solution are related by the following equation:

χ =
Rd

g0

Rlc
g0

(S7)
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If β = Nd
b /N

lc
b , then using eqns (S1) and (S2),

χ =
ad

alc
βν (S8)

The overlap concentration of dendrimers is

c∗d =
Nd

b

(4/3) π(Rd
g0)

3
(S9)

Substituting eqns (S7) and (S8) in S9 gives

c∗d = c∗lc

(
Nd

b

N lc
b

)1−3ν (
alc

ad

)3

(S10)

Using eqn (S10), we have shown that dendrimer diffusivity for all architectures can be

collapsed if we use c/c∗lc scaled by
(
N lc

b /N
d
b

)−0.76
instead of c/c∗d (Fig.S11(a)). Fig . S11(b)

shows the normalised diffusivity as a function of the size of the dendrimer or PGNP (Mw,f =
15000kDa, Mw,g = 355 kDa)5 relative to the system correlation length. Clearly, PGNP does
not follow the same scaling behaviour as our simulated dendrimers. Rather they follow the
nanoparticle scaling at intermediate values of 2R/ξ. PGNP can reduce its size with increasing
concentration similar to dendrimers. However, due to the presence of the nanoparticle which
occupies almost 25% of the internal space, there is a limit beyond which it cannot shrink.
Therefore, PGNP becomes nanoparticle-like at higher concentrations. Dendrimers reduce size
with concentration and even start showing screening of excluded volume interactions as seen in
the internal bead distribution plots.

SXI. SCALING LAW FOR DENDRIMER DIFFUSIVITY

Also, the correlation length (ξ) of the solution, radius of gyration of dendrimers (Rd
g) and

linear chains (Rlc
g ) in semidilute solutions depends on concentration as follows:

ξ = Rlc
g0

(
c

c∗lc

)µ

(S11)

where µ = (−ν) /(3ν − 1).

Rd
g = Rd

g0

(
c

c∗d

)δ

(S12)

where δ = (1− 2ν) /(2 (3ν − 1)).

Dd = Dd
0

(
c

c∗d

)ω

(S13)

where ω = (ν − 1) /(3ν − 1). Dividing eqn (S12) by eqn (S11),

2Rd
g

ξ
=

2Rd
g0

Rlc
g0

(
c

c∗d

)δ (
c

c∗lc

)−µ

(S14)
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We also have the overlap concentration of linear chains given by:

c∗lc =
N lc

b

(4/3) π(Rlc
g0)

3
(S15)

Taking the ratio of equations (S9) and (S15) and substituting the values of χ and β give:

c∗lc =
(
χ3/β

)
c∗d (S16)

Therefore,

2Rd
g

ξ
=

2χ(1+3µ)

βµ

(
c

c∗d

)δ−µ

(S17)

c

c∗d
=

[(
2Rd

g

ξ

)(
βµ

2χ(1+3µ)

)]1/(δ−µ)

(S18)

From equation S13,

c

c∗d
=

[
Dd

Dd
0

](1/ω)

(S19)

Equating equation S18 and S19, we get

Dd

Dd
0

= γ

(
2Rd

g

ξ

)ω/(δ−µ)

(S20)

where γ =

(
βµ

2χ(1+3µ)

)ω/(δ−µ)

and
ω

δ − µ
= 2(ν − 1).

SXII. THE MITTAG-LEFFLER FUNCTION

The in-built MATLAB routine for evaluating the Mittag-Leffler function with two parame-
ters was used for the fitting the modified Mittag-leffler function through the simulation data.
The code can be found at: https://www.mathworks.com/matlabcentral/fileexchange/

8738-mittag-leffler-function.

SXIII. DIFFUSIVITY AS A FUNCTION OF RADIUS OF GYRATION

According to the predictions of the scaling theory6, the long-time diffusivity of a nanoparticle
in semidilute polymer solution is given by

Dt ≈
kBT

ηeff(τd)d
(S21)

where ηeff(τd) = ηs(d/ξ)
2 is the effective viscosity experienced by a nanoparticle of size d in a

solution with solvent viscosity ηs and correlation length ξ. On substituting this in eqn (S21), the
result Dt ∝ 1/d3 is obtained as pointed out by the reviewer. The size of a nanoparticle remains
constant at all polymer concentrations. However, this is not true in the case of dendrimers.
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FIG. S12. (Color online) Normalised diffusivity as a function of the normalised radius of gyration for

different dendrimer architectures. The dashed line has a slope equal to 4.7.

The radius of dendrimers decreases with concentration as follows:

Rd
g = Rd

g0

(
c

c∗d

)δ

(S22)

where δ = (1− 2ν)/(2 (3ν − 1)). Therefore,

c

c∗d
=

(
Rd

g

Rd
g0

)(1/δ)

(S23)

The diffusivity of most of the dendrimer architectures follows the scaling law for linear chains
as given below:

Dd = Dd
0

(
c

c∗d

)ω

(S24)

where ω = (ν − 1)/(3ν − 1). Substituting eqn (S23) in eqn (S24), we have

Dd

Dd
0

=

(
Rd

g

Rd
g0

)(ω/δ)

(S25)

Substituting for ν = 0.588 in athermal conditions, ω/δ = 4.7. Fig S12 shows the variation of
normalised diffusivity as a function of normalised dendrimer size. All the dendrimer architec-
tures, except the f = 4 dendrimer collapse to a universal curve. This shows that the diffusivity
scales as (Rd

g)
4.7 instead of the −3 scaling of nanoparticles.
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