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Universal scaling of the diffusivity of dendrimers in a semidilute solution of
linear polymers
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The static and dynamic properties of dendrimers in semidilute solutions of linear chains of comparable size
are investigated using Brownian dynamics simulations. The radius of gyration and diffusivity of a wide
variety of low generation dendrimers and linear chains in solution follow universal scaling laws independent of
their topology. Analysis of the shape functions and internal density of dendrimers shows that they are more
spherical than linear chains and have a dense core. At intermediate times, dendrimers become subdiffusive,
with an exponent higher than that previously reported for nanoparticles in semidilute polymer solutions.
The long-time diffusivity of dendrimers does not follow theoretical predictions for nanoparticles. We propose
a new scaling law for the long-time diffusion coefficients of dendrimers which accounts for the fact that,
unlike nanoparticles, dendrimers shrink with an increase in background solution concentration. Analysis of
the properties of a special case of a higher functionality dendrimer shows a transition from polymer-like to

nanoparticle-like behaviour.

I. INTRODUCTION

The movement of tracer particles through crowded en-
vironments is an area of active research due to its applica-
tions in medicine and nanotechnology' 6. Most research
till date has focused on employing rigid nanoparticles as
the tracer particle” '°. However, recent biotechnologi-
cal advances have enabled the use of dendrimers as drug
delivery agents'!'2. Polymers of varying topology and
soft colloids have also been used in biology where they
diffuse in complex environments such as semidilute poly-
mer solutions and networks of polymer chains'®!4. The
movement of such tracers through crowded media has not
been studied extensively. In this work, we use dendrimers
as prototypical soft colloids, and examine their struc-
tural and dynamic properties when dissolved in a semidi-
lute unentangled polymer solution shown schematically
in Fig. 1(a). By systematically varying the dendrimer
architecture and the concentration of the background so-
lution, the similarities and differences with previously re-
ported behaviour of rigid nanoparticles in a similar envi-
ronment are studied.

Dendrimers are branched polymeric macromolecules
with a tree-like structure and a central core monomer
with branches emanating from it. The simplest case of a
generation zero dendrimer is a star polymer with a core
and f linear chains attached to it. Subsequent genera-
tions are built by successively adding layers of short linear
chains with multifunctional units to previous generations.
The size of dendrimers can be tuned using four param-
eters: functionality (f), generation number (g), spacer
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length (s), and the order of dendra (m). Fig. 1(b) shows
a first generation (¢ = 1) symmetric dendrimer with func-
tionality three (f = 3), two spacer beads (s = 2) and
order of dendra two (m = 2). Dendrimers are often re-
ferred to as soft colloids as they act like a bridge between
the floppy linear chains and hard spheres'®. The transi-
tion from linear chain-like behaviour to hard spheres is
controlled by f, s, g and m!%'7. The molecular mass
dependency of the self-diffusivity and intrinsic viscosity
of low-generation dendrimers of fixed architecture follows
the same power law scaling as for linear chains in dilute

solution!®.

The diffusivity of probe particles in simple viscous flu-
ids is given by the Stoke-Einstein (SE) equation, which
relates the diffusion coefficient of the particle to the vis-
cous drag experienced by it. In a complex fluid, like a
polymer solution, the viscoelastic effects of the fluid are
accounted for by the generalized Stokes-Einstein (GSE)
equation®2?, However, the underlying assumption that
the fluid is a continuum breaks down when the size of the
particle is comparable to the characteristic length scales
in the solution like the radius of gyration of the back-
ground chains, or the correlation length of the solution.
As aresult, the SE and GSE equations fail to describe the
dynamics of tracer particles?' 23, In semidilute polymer
solutions, the radius of gyration of a chain and the corre-
lation length of the solution are concentration-dependent
quantities.

Several theories have been developed over the past few
years to describe the dynamics of nanoparticles in semidi-
lute polymer solutions?*. Early theoretical studies of the
diffusion of hard spheres in linear polymer solutions pro-
posed a stretched exponential dependence of the reduced
diffusion coefficient of the probe on the concentration of
solution®®27. This was modified by Phillies et al.?® to
include the effect of size of the probe and the molecu-
lar weight of the linear polymers to obtain the general-



FIG. 1.

(b)

(Color online) (a) Schematic representation of dendrimers in a solution of linear chains. The correlation length of

the solution (¢) and the size of dendrimer(2Rg) are indicated. (b) A generation one (g = 1) dendrimer with functionality three
(f = 3) and two spacer beads (s = 2). The order of dendra (m = f — 1) is two (m = 2). Beads belonging to each generation

are included in a concentric circle.

ized scaling relation D/Dy = exp (—bR“M?*c¥), where
D and Dy are the diffusion coefficients of the probe
in the polymer solution and in the pure solvent, R is
the size of the probe, M is the molecular weight of the
polymer, ¢ is the solution concentration, with exponents
uw=0%£0.2,z = 0.8 and y ranging from 0.5 to 1.0. How-
ever, these models do not account for the fluctuations in
the mesh size and the size of the probe relative to the
correlation length of the solution.Based on the works by
de Gennes?® and Tong et al.3° and Tong et al.3® which
highlighted these factors, a scaling relation was proposed
for probe diffusion through semidilute polymer solutions

D/Dy = exp {—ﬂ (R/é)é} by Cheng, Prud’Homme, and

Thomas?3!. Here 3 is 2.2, 6 is 0.95, and & is the cor-
relation length of the polymer solution. Even though
this theory could explain several experimental results, the
regime with the size of the nanoparticle being compara-
ble to that of the radius of gyration of the background
polymers could not be captured.

Holyst and coworkers3?:33 introduced an effective size
for the nanoparticle, which is a combination of its radius
and the hydrodynamic radius of the polymers that de-
termines its dynamics in this crossover regime. The scal-
ing law for the long-time diffusivity proposed by them is

given by:
D _ - Reff “
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where Re}f = REQ + R2, with Ry being the hydro-
dynamic radius of the polymer and R is the radius of
the nanoparticle. «(y > 0) and a(a > 0) are system-
dependent parameters and are reported in terms of an
effective excess diffusion energy, AFE, = v (Reg/£)”, com-
pared to that in pure solvent. According to this model,

the length-scale of hydrodynamic flow in the solution de-
termines the viscosity experienced by the probe particle
and is equal to Reg. The Holyst model has been validated

by experiments343% and simulations®®.

Coupling theory, on the other hand, takes into account
the coupling between the probe particle dynamics and the
relaxation of the surrounding polymers®”. According to
this theory, probes larger than the correlation length of
the solution get trapped in a polymer cage, thus leading
to its subdiffusion at intermediate time scales. At longer
times, the particle is set free as the polymer relaxes,
with the diffusion coefficient scaling as dyp/&~2, where
dnp is the diameter of the nanoparticle. Recent experi-
ments on nanoparticle diffusion in a partially hydrolyzed
polyacrylamide solution indicate that the long-time dif-
fusivity and short-time dynamics of particles larger and
smaller than the correlation length show agreement with
the predictions of the coupling theory>®. However, the
diffusion exponents of particles with a size comparable to
the characteristic length scale of the solution were much
higher than the predictions of the coupling theory. This
discrepancy was resolved in a recent Multi-Particle Col-
lision Dynamics (MPCD) study in which the dynamics
of nanoparticle was found to be coupled to the dynam-
ics of the centre of mass of the polymers, thus giving it
an additional mechanism to move through the polymer
solution®”. The diffusion exponents of the nanoparticle
and the polymer centre of mass were found to be corre-
lated even in the absence of many-body hydrodynamic
interactions. Coupling theory has also been supported

by simulations®® and experiments® on various systems.

The behaviour of dendrimers in a semidilute solution
of linear polymers has not been studied extensively. Ex-
periments have shown that the size of higher generation
dendrimers does not change significantly with concentra-



tion3! and, therefore, can be considered as a hard sphere.
The dynamics of such dendrimers were shown to follow
the Holyst model in semidilute solutions of linear chain
polymers3140. However, the question of whether these
theories can be applied to a low generation dendrimer,
whose size is a function of the solution concentration,
has not been addressed so far. In the current study,
we have simulated low generation dendrimers in unen-
tangled semidilute solutions of linear chain polymers in
athermal solvent conditions using Brownian dynamics
simulations. Dendrimer parameters like the generation
number, functionality, and number of spacer beads were
varied to understand their effects on the shape and in-
ternal bead arrangements of dendrimers in dilute solu-
tions. We also studied the effect of the concentration of
linear chains on the size and dynamics of dendrimers in
semidilute solutions. It should be noted that the focus
of this work is semidilute unentangled polymer solutions
in which hydrodynamic interactions (HI) are significant
and the HOOMD-BIlue simulation package with the Pos-
itive Split Ewald algorithm has been used to implement
hydrodynamic interactions. To understand its effect on
the dynamics of dendrimers, we have performed simula-
tions with and without HI. The algorithm used in this
work is not appropriate for entangled concentrated sys-
tems since entanglements have not been taken into ac-
count. In the concentrated-entangled regime, hydrody-
namic interactions are screened and there is no need to
incorporate them in the simulation algorithm. Several
studies on nanoparticles in entangled and concentrated
polymer solutions®” and networks*! reported character-
istic features which cannot be derived directly from the
results in this work. However, there is very little liter-
ature on the dynamics of these systems, especially for
dendrimers, where HI plays an important role.

The paper is organized as follows: The governing equa-
tions and the various intra- and intermolecular interac-
tions included in the model, the procedure to choose
various dendrimer and linear chain parameters to sim-
ulate specific architectures and formulas for the proper-
ties studied are discussed in section II. The static and
dynamic properties of dendrimers and linear chains ob-
tained from simulations are discussed in section III, and
concluding remarks are given in section I'V.

Il. MODEL AND METHOD
A. Governing equations

Polymers in this study were modelled using the coarse-
grained bead-spring chain model, with N, beads con-
nected by N, — 1 springs*?. The simulated semidilute
solution contains N!° linear chain molecules with N}
beads and NZ dendrimers with N beads, immersed in
an incompressible Newtonian fluid. This system is con-
tained in a cubic, periodic simulation box of length L and
volume V', where V = L3. The total monomer concen-

tration in a simulation box is given by ¢ = N/V| where
N is the total number of monomers in the box given
by N = (N x NI¢) + (N x N). The Ito stochastic
differential equation, which is the governing equation in
Brownian dynamics simulations, provides the bead po-
sition vectors r, (1 = 1,2,...,N) as a function of time.
The Euler integration algorithm form of this equation is
given below:

At &
I‘N(t + At) :I'M(t) + I Z Duu ' (Fz + FIS/DK)
v=1
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Here the length and time non-dimensionalization factors
are ly = \/kpT/H and Ay = (/4H, respectively, where
kp is the Boltzmann constant, T is temperature, H is
the spring constant, and { = 67nsa is the Stokes fric-
tion coefficient of a spherical bead with radius a and 7,
is the solvent viscosity. In eqn (2), D,,, is the diffusion
tensor, defined as D,,, = 0,0 + Q,,, where 6, is the
Kronecker delta, é is the unit tensor, and ,,, is the hy-
drodynamic interaction tensor. B, is a non-dimensional
tensor whose evaluation requires the decomposition of the
diffusion tensor and AW, is a non-dimensional Wiener
process with mean zero and variance At. If D and B are
block matrices consisting of N x N blocks each having
dimensions of 3 x 3, with the (u, v)-th block of D contain-
ing the components of the diffusion tensor D,,,, and the
corresponding block of B being B,,,,, the decomposition
rule for obtaining B is then given by B - B™ = D.

The spring force exerted on individual beads is repre-
sented by F$,. We have used finitely extensible nonlinear
elastic (FENE) springs and the spring potential is given
by,

U Loz @ 72) (3)
FENE = —5;&pn | 1 — =5
270 Q3
where )y is the dimensionless maximum stretchable
length of a single spring, and kg7 is used to non-
dimensionalize energy.
The force due to the excluded volume interactions be-
tween bead pairs is denoted by FSPK and is obtained
from the Soddemann-Diinweg-Kremer (SDK) potential,

Uspk, **
12 6
4{(0) - (E) +1] —e r<2Y0g
T r 4
= 1 2
Usok —€ [cos (a (1) +B) — 1] ; 2Y0e < <7,
2 o
0; T2>Te

(4)
Here, € is the well depth of the potential which controls

the interaction strength between bead pairs and the non-
dimensional distance o is fixed as 1 in this study. The



repulsive part of this potential is modelled by a truncated
Lennard-Jones (LJ) potential and the attractive part is
modelled using a cosine function. The constants o and
B are determined from boundary conditions, Uspx = 0
at r = r. and Uspk = —€ at r = 21/65 which is the
minima of the potential. The cut-off radius r. was taken
to be 1.82¢, following the discussion in recent work by
Santra et al.**. The advantage of using the SDK poten-
tial is that by varying a single parameter €, a range of
solvent qualities can be studied and it affects the attrac-
tive part of the potential without altering the repulsive
force. Also, the short-ranged attractive tail of this po-
tential smoothly approaches zero, unlike the LJ poten-
tial. At € = 0, the SDK potential reduces to the purely
attractive Weeks-Chandler-Anderson (WCA) potential,
and solvent quality can be varied by changing the value
of e. Note that in this study, we have fixed € = 0 since we
restrict our simulations to athermal solvent conditions.

We wuse the regularized Rotne-Prager-Yamakawa
(RPY) tensor to compute hydrodynamic interactions
(1),

Quy =Qrp) (5)
where r,, =, —r, and the function Q is
rr
with
h* 2 h*?
Tk (), 2 2) for 7> 2y7h*
0, = 4 9r S 3 r
1—— for r<2/mh*
32 h*\/m -
and
3y h* ( o h*2>
< 1-= for r>2\/7h*
Q, = 34 73" 3 r2
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The hydrodynamic interaction parameter h* gives the di-
mensionless bead radius in the bead-spring model and is
defined as h* = a/(y/7kpT/H). The Brownian dynam-
ics (BD) simulation code used in this work is based on
the GPU-accelerated Python package named HOOMD-
Blue, developed in Michigan University®® for the study
of colloidal suspensions. It has been modified recently
to study the dynamics of associative polymer solutions*®
along the lines of an earlier in-house BD code based on
the Molecular Modelling ToolKit*"4°. The decomposi-
tion of the diffusion tensor, which is computationally de-
manding, has been efficiently implemented recently us-
ing the Positive Split Ewald algorithm (PSE)®C. This is
available as a plugin to HOOMD-Blue.

B. Details of the simulation algorithm

To choose the simulation system, we fixed the den-
drimer architecture first and calculated the number of

FIG. 2. (Color online) The various dendrimer architectures
simulated in this study. The specific simulation parameters
corresponding to the topologies (a) to (f) are given in Table
I

TABLE I. List of dendrimer parameters and linear chain
lengths used in each system. g is the generation number,
f is the functionality, s is the number of spacer beads, Ng
is the number of beads in a dendrimer molecule, Rgo is the
radius of gyration of the dendrimer in the solvent, x is the
ratio between the radius of gyration of dendrimers and lin-
ear chains in dilute limit, Ni° is the number of beads in the
background linear chain, ngco is the radius of gyration of the
linear chain. Note that dendrimer topologies in (c) and (h)
are identical, but have different x.

el | x| MR

a 3 1 0 7 1.90 0.50 19 3.90
b 3 2 0 10 2.40 0.50 26 4.80
c 3 1 1 19 3.12 0.46 43 6.23
d 3 2 1 28 3.88 0.46 61 7.7
e 3 1 2 43 4.34 0.50 74 8.68
f 4 0 1 17 2.49 1.0 9 2.49
h 3 1 1 19 3.12 1.0 13 3.12

beads (NZ) on each dendrimer molecule. The various
architectures chosen are given in Fig. 2. The radius of
gyration of dendrimers was determined by carrying out
simulations in the dilute limit and the values are reported
in Table I. Depending on the choice of the ratio be-
tween the radius of gyration of the dendrimer and lin-
ear chain, y, we calculated the radius of gyration of the
linear chain. The number of beads on the linear poly-
mer was then estimated by running simulations in the
dilute limit and reading off the value of NJ° from the
ngc Vs Nllf plot (see Fig. S1 of the Supplementary Ma-
terial). The simulation box length, L was chosen to be
L > 2R., where R, is the end-to-end distance of linear
chains in the solution. This ensures that the molecules



FIG. 3. (Color online) Snapshots from simulation of f =
3,s = 1,9 = 1 dendrimer with x = 0.46 at ¢/cj, = 1. The
blue beads belong to linear chains and other coloured beads
belong to dendrimers.

do not wrap around themselves. Simulations were car-
ried out keeping the dendrimer concentration fixed and
adding linear chains to the simulation box to increase
the concentration of the solution. Hence the resulting
solution is always dilute in dendrimer concentration and
semidilute in linear chains. The list of chain lengths, den-
drimer parameters, and number of chains in each simu-
lation are given in Table I. All the dendrimers simu-
lated in this study were symmetric, m = f — 1. One
special case we studied is a f = 4,9 = 1,s = 0 den-
drimer. By increasing the number of arms and reduc-
ing the spacer beads, we expect it to be more closely
packed compared to the rest of the dendrimers, and thus
behave qualitatively more like a nanoparticle. The con-
centration of linear chains was varied from 0.5 to 6¢*.
All simulations were carried out in athermal solvent con-
ditions (¢ = 0) and the hydrodynamic interaction pa-
rameter, h* = 0.2. When hydrodynamic interactions are
not present (the free draining case), h* is set equal to
zero, so the RPY tensor is not invoked and the diffu-
sion tensor simplifies to D,, = 6,,0. The maximum
stretchable length of each spring, Q3 = 50.0, for all sim-
ulations. Every independent trajectory had an equilibra-
tion phase of 8 relaxation times followed by a production
phase of 10 relaxation times with non-dimensional time
step, At = 1072 to 10~%. The dynamic properties were
calculated as a function of time in the production phase
of individual trajectories. Ensemble averages and error
estimates were calculated over 700 to 2000 independent
trajectories. Fig. 3 shows a snapshot of a simulation box
containing generation 1 dendrimers and linear chains at
e/, =1.

C. Definition of static and dynamic properties
1. Radius of gyration and correlation length

The radius of gyration of dendrimers and linear chains
in the solution is calculated using the expression

Ny,
1 c
R; = Fb<z,1 (Ri = Rom)?) 5 Ny € {Ng, N} (7)

where Rcy is the centre of mass of the molecule given
by

1
Revm = Fb Z R; (8)

We introduce a quantity x, which is the ratio of the ra-
dius of gyration of dendrimer (Rgo) to that of the linear
chain (ng¢0> in the background, both in the dilute limit,
given by x = (Rgo / ngco). The overlap concentration, c*,
of a polymer solution is defined in terms of the radius
of gyration of the polymer in the dilute limit, given by
¢ = (Nu/(4/3)mR3;). In this study, the solution con-
tains polymers of two architectures. Therefore, ¢* can be
estimated separately for each of them (¢ for dendrimers
and ¢}, for linear chains) given by:

ca = ﬁ (9)
S
Nlc
o= —— (10)
gW(RLCo)g

Another important length scale in the solution is the
correlation length (). It is defined in terms of the radius
of gyration in the dilute limit, the overlap concentration
of linear chains, and the total monomer concentration in
the solution®!,

e\
=5 () (1)

Ic

where v is the Flory exponent, assumed here to be equal
to 0.588. Note that the total monomer concentration c,
includes monomers of both species in the system.

2. Relative shape anisotropy and the universal ratio Ugp

This work aims to compare the dynamics of den-
drimers to nanoparticles, and therefore, it is essential
to understand the influence of dendrimer parameters on
their shape and compactness. Two important measures
that can be used to probe these are the relative shape
anisotropy (x2) and the dimensionless ratio Urp.



The relative shape anisotropy, one of the shape func-
tions, has been used to understand the asymmetry in the
shape of polymer molecules. It is defined in terms of the
eigenvalues, A7, A3, A3, of the gyration tensor G given by

Np Ny

1
G= W Z Z rpl/ruu (12)

p=1v=1

Here A%, A2, A2 are arranged in ascending order. The rel-

ative shape anisotropy x? is defined as®?%:
2 <I§>

where I1 = A2 + A2 + A2 and Ip = A2)A3 + \2A3 + M\INZ
k? = 0 for a spherically symmetric molecule while it is
equal to one for a rod-shaped molecule.

Urp, which is a measure of the hard sphere-like be-
haviour of molecules, is given by

_ Ry ADR,
Ry h*7
where Ry is the hydrodynamic radius of the molecule

h* /T

For a polymer chain, Urp is approximately 1.4°° 57 while
for a hard sphere, it is 0.77°8.

Urp (14)

related to its long time diffusivity, D, by Ry =

3. Intra-molecular bead density

The internal bead density, obtained from the arrange-
ment of beads about the centre of mass of the molecule,
leads to an understanding of its internal structure. It is
calculated by counting the number of beads along the ma-
jor axis of the gyration tensor in intervals of fixed length
and binning them. This requires all polymer configura-
tions in the simulation ensemble to be aligned along their
respective major axes. The linear bead number density
obtained is given by:

() = nb(x+AAx; — np () (15)

where ny, () is the number of beads of a molecule within
a distance x along the major axis, and Ax is the length
of the fixed interval.

4. Mean squared displacement and diffusivity

The mean squared displacement of the centre of mass
of the polymer molecules in solution is calculated using
the following expression

MSD(A#) = ([Rea(t + At) — Rea (D)%) = 6 D> (16)

where Rom(t) and Rey (t+ At) are the position vectors
of the centre of mass of the molecule at times t and ¢+ At

A Regime 1
MSD

Regime 2
/

—>

Time

FIG. 4. (Color online) Schematic representation of the diffu-
sive nature of dendrimers belonging to different size regimes.
T¢ and 74, defined by eqn (17) and eqn (18), are the tran-
sition time scales to subdiffusive and diffusive behaviour re-
spectively, for dendrimers with size larger than the solution
correlation length (Regime-2). The exponents of time are in-
dicated in the figure.

respectively, D is the diffusion coefficient and « is the
diffusion exponent. o = 1 for normal diffusion and the
molecule exhibits subdiffusion if & < 1. The long time
diffusivity, D is estimated from the slope of the mean
squared displacement versus time plots at longer times.

Cai, Panyukov, and Rubinstein3” have identified sev-
eral regimes for nanoparticles in entangled systems based
on their size relative to the solution correlation length
and the tube diameter. However, in the current study of
dendrimers in semidilute polymer solution, there are only
two regimes based on the relative sizes of the dendrimer
and correlation length: Regime-1 in which the dendrimer
is smaller than the solution correlation length (2R$ < €)
and Regime-2 in which the dendrimer size is larger than
the correlation length (2Rg > ¢). It is important to note
that, unlike a nanoparticle that has a constant size at
all polymer concentrations, the size of a dendrimer is a
concentration-dependent quantity.

The dynamics of dendrimers in the two regimes are
different due to the influence of the surrounding linear
chains as shown schematically in Fig 4. Following the ar-
guments proposed by Cai, Panyukov, and Rubinstein 37,
the following dynamics are expected in the two regimes:

1. Regime-1: When the size of the dendrimer is less
than the correlation length (2Rg <€), it can diffuse
freely through the solution, without being affected
by the background linear chains. The diffusivity of
a dendrimer is expected to be that experienced by it
in the dilute limit (Dg) and exhibit normal diffusion
at all time scales with the diffusion exponent, o =
1. As a result, the mean squared displacement,



MSD = 6 Dy t.

2. Regime-2: When the dendrimer is larger than cor-
relation length, (2RY > ¢), its dynamics is influ-
enced by the presence of linear chains. The mean
squared displacement shows three scaling regimes
based on the time scale at which it is probed. At
short times, the dendrimer does not experience any
hindrance to its motion and therefore, exhibits nor-
mal diffusion. This continues up to a time of the
order of the relaxation time of the correlation blob,
Te given by:

Tg = nsfg/k‘BT (17)

At times higher than 7¢, the dendrimer is trapped
in cages formed by the linear polymers, and its mo-
tion is expected to become subdiffusive. Its dynam-
ics are coupled to the motion of the centre of mass
of the polymer and the polymer segmental relax-
ation times. The mean squared displacement of
dendrimers at these intermediate times is given by
MSD = 6 D, t%, where a < 1. The subdiffusive
regime extends until ¢ ~ 74 which is equal to the
relaxation time of a chain segment with a size equal
to the size of the dendrimer given by:

Ta=7¢ (2R3/)" (18)

Beyond 74, the dendrimer is set free due to the re-
laxation of linear chains and therefore the mean
squared displacement is given by MSD = 6 Dt.
The diffusivity, D, in this regime, is referred to as
the long-time diffusivity of the dendrimer.

5. Probability distribution function of displacement

Apart from the long-time diffusivity, the probability
distribution function of displacement gives additional in-
sight into the dynamics of the polymer molecules. The
probability of a molecule displacing by a distance Ax in
a time At is given by

P(Az, At) = (6 (Az — |zom(t + At) — zem(®)])) (19)

where zcm(t) and zom(t + At) are the x-components of
the centre of mass of the molecule at times ¢ and ¢ + At
respectively.

I1l. RESULTS AND DISCUSSION
A. Radius of gyration

According to the blob theory for polymers, the radius
of gyration of linear chain polymers reduces with an in-
crease in concentration and follows the scaling law?? 61

1—2v
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FIG. 5. (Color online) Universal behaviour of radius of gyra-
tion of dendrimers and linear chains. The normalized radius
of gyration of polymers is plotted as a function of the ra-
tio of monomer concentration normalized by the respective
c¢* of each species. The dendrimer architecture is included
in the order (f,s,g,%) and Ni° is the number of beads on a
linear chain. The same coloured symbols belong to one simu-
lated system. Data from work on pure linear chain solutions
by Huang et al.®° (empty triangles) and our simulation data
for pure star polymer solutions (orange x-mark) are included.
The dashed line is the scaling law given by eqn (20). In-
set: Normalised radius of gyration of dendrimers and linear
chains in the solution as a function of the ratio of monomer
concentration normalized by the overlap concentration of lin-
ear chains, cf,.

On plotting the ratio Ry/Ryo of dendrimers and linear
chains as a function of the total monomer concentration,
¢, in solution normalized by the overlap concentration of
linear chains, ¢f,, dendrimers seem to shrink at a slower
rate compared to the linear chains (inset to Fig. 5). How-
ever, if the normalizing factor for monomer concentration
is the overlap concentration for each species, the nor-
malised radius of gyration of dendrimers of all architec-
tures and linear chains in the background collapse onto
a universal curve as shown in Fig. 5. Thus, the fac-
tor that determines the size of a polymer molecule is the
number of monomers it interacts with in its neighbour-
hood. In other words, the concentration of monomers
relative to its overlap concentration if all the monomers
in the solution had belonged to its own architecture is
what determines its shape. The fact that the solution
has molecules of different architectures is unimportant.
At lower concentrations, the correlation length of
the solution is large compared to the size of polymers
(Regime-1). With an increase in concentration, the size
of dendrimers, linear chains, and the correlation length
decreases given by eqn (11) and (20). However, the cor-
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(Color online) Relative shape anisotropy and Urp of dendrimers.(a) Effect of different architectures on the relative

shape anisotropy of dendrimers in dilute solution as a function of the number of beads in a dendrimer molecule. The symbols
represent dendrimer topology given by the combination f,s,g. (b) Urp of dendrimers in dilute solution as a function of the
number of beads in a dendrimer molecule. The dashed line is the value of Urp for a nanoparticle. The symbols represent

dendrimer topology given by the combination f, s, g.

relation length ¢ decreases faster than the diameter of
the dendrimer 2R(g1 and after a certain concentration, the
dendrimers in solution become bigger than correlation
length, QRg > ¢ (Regime-2). Thus there is a crossover
from Regime-1 to Regime-2 with increasing concentra-
tion (see Fig. S2 of the Supplementary Material).

B. Relative shape anisotropy and Urp

In Fig. 6(a), the relative shape anisotropy of den-
drimers of different architectures in dilute solution, calcu-
lated using eqn (13), is plotted as a function of the num-
ber of beads per molecule. As the generation number (g)
increases at constant f and s, x? decreases. The num-
ber of beads inside and on the outer shell of a molecule
is more for a dendrimer with higher g. Due to the ex-
cluded volume interactions, the internal beads spread
out, and the molecule with higher g becomes more spher-
ical compared to its lower-generation counterpart. The
relative shape anisotropy of a functionality 4 dendrimer
with ¢ = 1 and s = 0 (Fig. 2(f)) is much lower than
that of the other architectures. With no spacers, every
internal bead in the molecule is a branching point con-
nected to 4 other beads. This gives it less chance of
conformational fluctuations and hence behaves more like
a compact sphere®?. This is clear from the distribution
of radius of gyration of dendrimers in dilute solution (see
Fig. S3 of the Supplementary Material). The number of
spacer beads a