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ABSTRACT

A fundamental question in theoretical machine learning is
generalization. Over the past decades, the PAC-Bayesian
approach has been established as a flexible framework to
address the generalization capabilities of machine learning
algorithms, and design new ones. Recently, it has garnered
increased interest due to its potential applicability for a va-
riety of learning algorithms, including deep neural networks.
In parallel, an information-theoretic view of generalization
has developed, wherein the relation between generalization
and various information measures has been established. This
framework is intimately connected to the PAC-Bayesian ap-
proach, and a number of results have been independently
discovered in both strands.

In this monograph, we highlight this strong connection
and present a unified treatment of PAC-Bayesian and
information-theoretic generalization bounds. We present
techniques and results that the two perspectives have in
common, and discuss the approaches and interpretations
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that differ. In particular, we demonstrate how many proofs
in the area share a modular structure, through which the
underlying ideas can be intuited. We pay special attention
to the conditional mutual information (CMI) framework;
analytical studies of the information complexity of learning
algorithms; and the application of the proposed methods
to deep learning. This monograph is intended to provide a
comprehensive introduction to information-theoretic gener-
alization bounds and their connection to PAC-Bayes, serving
as a foundation from which the most recent developments are
accessible. It is aimed broadly towards researchers with an
interest in generalization and theoretical machine learning.



1
Introduction: On Generalization and Learning

Artificial intelligence and machine learning have emerged as driving
forces behind transformative advancements in various fields, becoming
increasingly pervasive throughout many industries and in our daily lives.
As these technologies continue to gain momentum, the need to develop
a deeper understanding of their underlying principles, capabilities, and
limitations grows larger. In this monograph, we delve into the theory of
machine learning, and more specifically statistical learning theory, where
a key topic is the generalization capabilities of learning algorithms.

A learning algorithm is a (potentially stochastic) rule for selecting a
hypothesis, given a training data set. Generalization bounds for learning
algorithms provide guarantees that the performance, as measured by
a loss function, is “good enough,” given that the training loss is small,
when the hypothesis is subjected to new samples that were not neces-
sarily in the training data. Such bounds are useful for several reasons.
When applied in a specific use case, a generalization bound provides
a certificate that the hypothesis performs well on new data, provided
that the assumptions under which the bound was derived are valid.
Furthermore, such bounds can serve as inspiration for the design of
new learning algorithms, potentially leading to practical improvements.

3



4 Introduction: On Generalization and Learning

Finally, on a deeper level, generalization bounds can enable a more
complete understanding of learning algorithms.

While the literature on generalization bounds is vast, making an
in-depth review of the full field beyond our scope, we will discuss several
key references. Valiant (1984) formalized a model of learnability, called
Probably Approximately Correct (PAC) learning. Roughly speaking,
a problem is PAC learnable if there exists a learning algorithm such
that, for any data distribution, the selected hypothesis has satisfactory
performance with high probability. In the preceding decade, Vapnik
and Chervonenkis (1971) studied the uniform convergence of certain
events. They characterized this convergence in terms of a property of
the underlying set that would later be termed the Vapnik-Chervonenkis
(VC) dimension, which can be thought of as a measure of complexity.
Blumer et al. (1989) connected these two topics, and demonstrated
that the VC dimension of a hypothesis class characterizes its PAC
learnability. We discuss these topics and additional results in more
detail in Section 1.3.

The two particular strands in the literature on generalization bounds
that will be our main focus throughout this monograph are the PAC-
Bayesian and information-theoretic lines of research. Despite the great
commonality in techniques and concepts, these two fields have evolved
in almost parallel tracks until recently. One objective of the present
monograph is to give a unified treatment of the two approaches and high-
light their similarities, despite the differing origins. The PAC-Bayesian
approach—initiated by McAllester (1998, 1999) and Shawe-Taylor and
Williamson (1997), with significant later contributions from, e.g., Catoni
(2007)—started as a quest to obtain Bayesian-flavored versions of PAC
generalization bounds, as the name implies. PAC bounds are indepen-
dent of the specific learning algorithm used, as they hold uniformly
over the class of possible hypotheses. In contrast, PAC-Bayesian bounds
take into account the learning algorithm by explicitly incorporating a
distribution over hypotheses—hence the Bayesian suffix.

The effort of relating generalization and information, with a broad
interpretation of these terms, has a long history. Conventional wisdom,
by way of Occam’s razor (Blumer et al., 1987), holds that solutions that
are “simpler” in some sense tend to generalize better than their more
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“complex” counterparts. Many different ways of formalizing complexity
measures to capture “information” of some kind have been studied, with
some of the earliest examples being the Fisher information of Edgeworth
(1908) and Fisher and Russell (1922), the information theory of Shannon
(1948), and the Kolmogorov complexity of Kolmogorov (1963) and
Solomonoff (1964). In seminal works, Yang and Barron (1999) and Leung
and Barron (2006) connected such complexity measures to performance
guarantees for density estimation. Other notable information notions
in the context of learning include the Akaike information criterion of
Akaike (1974), the Bayesian information criterion of Schwarz (1978),
and the minimum description length principle, studied by, e.g., Rissanen
(1978, 1983) and Barron and Cover (1991), Barron et al. (1998) (see
the book of Grünwald, 2007 for an in-depth treatment). The particular
flavor of information-theoretic approach to generalization that we will
focus on can be traced back to the work of Zhang (2006), and more
recently, to the seminal works of Russo and Zou (2016) and Xu and
Raginsky (2017). In this line of work, the learning algorithm is viewed
as a communication channel from the training data to the hypothesis.
With this interpretation of the statistical learning process, it is clear
that quantities that are common in communication applications, such
as the mutual information, have an important role to play.

Despite the historical separation between these lines of work—even
within the specific strands, at times—the tools and results that appear in
these fields have more similarities than differences, and any discrepancy
between them is mainly in the motivation and framing of the work. This
may be due to the interdisciplinary nature of the field: it can naturally
be covered as statistics, computer science, electrical engineering, and
physics.1 Thus, the reader will not be surprised that many of these
results were re-discovered and re-interpreted in many separate contexts,
evolving independently. Still, the connection between PAC-Bayesian
and information-theoretic generalization bounds has been noted and
explored by, e.g., Russo and Zou (2016), Banerjee and Montufar (2021),
Grünwald et al. (2021), and Alquier (2024). One of the aims of the

1Noting this deep connection, Catoni (2007) referred to the PAC-Bayesian
approach as the “thermodynamics of statistical learning.”
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present monograph is to solidify the bridge between these strands of the
literature, demonstrating the commonalities in the different approaches.

1.1 Notation and Terminology

To set the stage, we introduce the notation that is used throughout this
monograph. Unless otherwise stated, capital letters indicate random
variables, with lower-case letters indicating their instances. For random
vectors, the same applies, but the letters are in bold. We consider
the training examples to lie in a set Z, referred to as the instance
space. In the context of supervised learning, the instance space is a
product between a feature space X and a label space Y, so that Z =
X × Y. At its disposal, the learning algorithm has a training set Z =
(Z1, . . . , Zn) ∈ Zn, consisting of n training examples.2 Usually, we
assume that the training examples are independent and identically
distributed (i.i.d.),3 with each training example being drawn from a
data distribution PZ on Z. We denote the distribution of Z, as well
as other product distributions, as PZ = PnZ . Throughout, we will use
the shorthand [n] = {1, . . . , n} to refer to the indices of the training
samples.

Confronted with the training data, the learner selects a hypothe-
sis W from a set W, called the hypothesis space. Again, in supervised
learning, W is typically a subset of all functions from X to Y, or the
parameters of such functions, but the general framework can accom-
modate other notions of hypothesis. The method by which the learner
chooses the hypothesis is described by a (probabilistic) mapping from
the training set Z to the hypothesis W , denoted by PW |Z and referred
to as a learning algorithm. Mathematically, it can be seen as a stochas-
tic kernel, which gives rise to a probability distribution on W for each
instance of Z. Note that PW |Z is defined for a specific size n of the
training set. We usually assume that the learning algorithm can be
adapted to training sets of different sizes, i.e., we assume that PW |Z

2Despite conventionally being called a “set,” Z is a vector: its elements are
ordered, and elements are allowed to be repeated.

3This assumption is classical in statistical learning theory. Nevertheless, we will
cover recent results that allow one to relax and even remove it (see Chapters 5 and 9).
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is defined for every n. While there is often a natural relation between
these conditional distributions for various n, we do not require that
they are related in general.

The quality of a specific hypothesis w ∈ W with respect to a
sample z ∈ Z is measured by a loss function, ℓ : W × Z → R+. To give
some classical examples of loss functions, consider supervised learning,
where the sample is decomposed into features and labels (or inputs
and outputs) as z = (x, y) ∈ X × Y and the hypotheses w ∈ W are
functions w : X → Y. For classification, where the label space Y is
discrete, a typical loss function is the classification error ℓ(w, z) =
1{w(x) ̸= y}. Here, 1{·} denotes the indicator function. For regression,
where the label space is continuous, a common choice is the squared
loss ℓ(w, z) = (w(x) − y)2.

The true goal of the learner is to select a hypothesis that performs
well on fresh data from the distribution PZ , as measured by the loss
function. This is formalized by the population loss

LPZ
(w) = EPZ

[ℓ(w,Z)] ,

sometimes referred to as the (true) risk of a hypothesis. A key feature of
the learning problem is that the true data distribution is assumed to be
unknown, which implies that the population loss cannot be computed
by the learner. However, by averaging the loss function over training
data, the learner obtains the training loss

LZ(w) = 1
n

n∑
i=1

ℓ(w,Zi),

which serves as an estimate of the population loss. The training loss is
also known as the empirical risk. A natural procedure for selecting a
hypothesis is to minimize the training loss. This is referred to as empir-
ical risk minimization (ERM), and is successful in finding a hypothesis
with low population loss if the difference between population loss and
training loss is small. This is measured by the generalization error

gen(w,Z) = LPZ
(w) − LZ(w),

which is also called the generalization gap.
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1.2 Flavors of Generalization

Since the randomized learning algorithm is described by a condi-
tional probability distribution PW |Z , bounds on the generalization
error gen(W,Z) come in a variety of forms. We now introduce three
canonical forms that have been studied in the information-theoretic and
PAC-Bayesian literature.

Firstly, one possibility that has been widely considered in the
information-theoretic strand of the literature is to bound the average
generalization error EPWZ

[gen(W,Z)]. Performing an average analysis
can often simplify mathematical derivations, and lead to some insights
about the studied algorithms. The works of Russo and Zou (2016)
and Xu and Raginsky (2017) both focus on this setting, and the mutual
information between training data and hypothesis naturally arises as a
fundamental quantity in upper bounds for the average generalization
error. In Section 2.3, we introduce a first such average generalization
bound, as a warm-up to the more general theory presented later in this
monograph. The particular features that are relevant specifically for
this scenario are discussed in more detail in Chapter 4.

Secondly, in practical situations, we may be given only one instance
of a training set, so an arguably more pertinent question is if we can
bound the generalization error with high probability over the draw
of the data. In the PAC-Bayesian literature, initiated in the works
of Shawe-Taylor and Williamson (1997) and McAllester (1998), most
bounds are on the generalization error when averaged over the learning
algorithm, EPW |Z [gen(W,Z)], and hold with probability at least 1 − δ

under PZ for some confidence parameter δ ∈ (0, 1). The change in
perspective in the PAC-Bayesian approach, as compared to the classical
statistical learning literature, is significant. We no longer ask whether
there are specific hypotheses w that perform well: instead, we ask if
there are distributions PW |Z over hypotheses that do. To highlight the
conceptual connection to Bayesian statistics, the distribution PW |Z is
usually termed posterior. This distribution is compared, via information-
theoretic metrics, to a reference measure QW called the prior. Another
significant feature that is shared among many PAC-Bayesian bounds is
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that they hold uniformly for all choices of posterior. This, and other im-
portant properties of PAC-Bayesian bounds, are detailed in Section 5.2.

Finally, we may be interested in the generalization error when we
have a single training set and we use our learning algorithm to select
a single hypothesis. Thus, we seek bounds on gen(W,Z) that hold
with probability at least 1 − δ under PWZ . In this monograph, we will
call this the single-draw setting, following Catoni (2007), since we are
concerned with a single draw of both data and hypothesis. This type of
bound has appeared sporadically in both the information-theoretic and
PAC-Bayesian literature. While this type of bound can arguably be the
most relevant in practice—for instance, in deep learning (discussed in
Chapter 8), one typically uses a deterministic neural network obtained
via one instantiation of a randomized learning algorithm—it comes
with some drawbacks. For instance, since the probability is computed
with respect to the joint distribution PWZ , any single-draw bound is by
definition a statement pertaining to a particular posterior PW |Z . Thus,
we lose uniformity over posteriors. Furthermore, for the information-
theoretic bounds that we discuss here, we need a stronger technical
requirement on the absolute continuity of the distributions involved—at
least for data-dependent bounds. We will discuss this type of bounds in
Section 5.3.

It should be stressed that the terminology used here is not universally
accepted, and different names are used by different authors. Furthermore,
bounds of all types have been studied in both the PAC-Bayesian and
information-theoretic strands of the literature. For instance, average
bounds have been referred to as “PAC-Bayesian type” bounds (Dalalyan
and Salmon, 2012; Salmon and Dalalyan, 2011) or mean approximately
correct (MAC)-Bayesian bounds (Grünwald et al., 2021). Single-draw
bounds have been referred to as pointwise or de-randomized PAC-
Bayesian bounds (Alquier and Biau, 2013; Catoni, 2007; Guedj and
Alquier, 2013). The term de-randomized PAC-Bayesian bound has also
been used for bounds that specifically apply to the average hypothesis,
that is, bounds on gen(EPW |Z [W ] ,Z) that hold with probability 1 − δ

under PZ (Banerjee and Montufar, 2021) (such variants will be discussed
in Section 5.4). However, throughout this monograph, we will use the
terms defined above.
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The framework of PAC learnability and the associated uniform-
convergence bounds that we mentioned earlier do not fit exactly into
any of the flavors that we have mentioned so far (although the single-
draw bounds are most closely related). In the following section, we give
a formal definition of PAC learnability, and provide an overview of some
generalization bounds based on uniform convergence.

1.3 Uniform Convergence-Flavored Generalization Bounds

As previously indicated, demonstrating PAC learnability for a hypothe-
sis class boils down to a very strong type of uniform convergence result.
Roughly speaking, PAC learnability requires that for any data distri-
bution PZ , there is a learning algorithm that, with sufficient training
data, is arbitrarily close to the optimal population loss. As it turns
out, PAC learnability is equivalent to uniform convergence, defined
below (Shalev-Shwartz and Ben-David, 2014, Chapter 4).

Definition 1.1 (Uniform convergence). The hypothesis class W has the
uniform convergence property if there exists a function m : (0, 1)2 → N
such that, for every ϵ, δ ∈ (0, 1) and every data distribution PZ , the
following holds: if Z contains n ≥ m(ϵ, δ) i.i.d. samples from PZ , we
have with probability at least 1 − δ that

|LZ(w) − LPZ
(w)| ≤ ϵ for all w ∈ W. (1.1)

The function m is called the sample complexity.

Thus, if a hypothesis class satisfies the uniform convergence property,
we can obtain generalization bounds that are uniform over both data
distributions and hypotheses. The attractiveness of these bounds is
clear: no matter what data you are dealing with, independent of the
learning algorithm you use, you can trust that the training loss gives a
good indication of your population loss. At the moment, it unfortunately
seems as if such requirements are too strict for many modern machine
learning settings, such as deep neural networks.4 For this model class,

4This is not meant to imply that the bounds discussed in this section have no hope
of describing modern models, such as deep neural networks. Indeed, promising steps
toward this have been taken in the literature (e.g., Negrea et al., 2020; Neyshabur
et al., 2019).
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some data distributions or some hypotheses lead to poor generalization,
while naturally occurring data and commonly used learning algorithms
perform well. This motivates the information-theoretic approach of
making statements that are specific to the data distribution and learning
algorithm in question. Still, the framework of uniform generalization has
proven immensely powerful for many domains, and has led to a definitive
characterization of when learning is possible in this strict sense for binary
classification: the VC dimension. Intuitively, the VC dimension is related
to the complexity of a hypothesis class, and measures the size of the
biggest data set for which the hypothesis class can induce arbitrary
labellings of the features. We give an overview of the VC dimension in
Section 1.3.1.

A step towards incorporating data-dependence in the bounds was
taken by Bartlett and Mendelson (2001, 2002), Gine and Zinn (1984),
Koltchinskii (2001), and Koltchinskii and Panchenko (2000) with the
introduction of the Rademacher complexity of a hypothesis class. The
Rademacher complexity similarly measures the ability of a hypothesis
class to instantiate arbitrary labels, but can be computed empirically
on the basis of a training set. Still, it has a uniform flavor in terms
of the hypothesis class. We discuss the Rademacher complexity in
Section 1.3.2.

Note that we only provide an exceedingly brief overview of uniform
convergence-flavored generalization bounds and their history, in order
to provide context for the upcoming sections. Since properly covering
this vast subject is far beyond the scope of the present monograph, the
reader is referred to, for instance, the excellent books by Mohri et al.
(2018) and Shalev-Shwartz and Ben-David (2014) for further details.

1.3.1 VC Dimension

We will now focus on binary classification, where the sample space
decomposes as Z = X ×Y . Here, X is the feature space, while Y = {0, 1}
is the label space. Each hypothesis w ∈ W is a map w : X → {0, 1}
that predicts a label for each feature. We will focus on the 0 − 1
loss function, given by ℓ(w, z) = 1{w(x) ̸= y}. Thus, the hypothesis
incurs a loss if and only if it predicts the wrong label. For this setting,
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the VC dimension of W, denoted as dVC, provides a fundamental
characterization of uniform convergence (defined in Definition 1.1), and
hence of PAC learnability: W satisfies the uniform convergence property
if and only if dVC is finite. In order to define the VC dimension, we need
to introduce the growth function of a hypothesis class (Shalev-Shwartz
and Ben-David, 2014, Def. 6.5).

Definition 1.2 (Growth function and VC dimension). The growth func-
tion gW(m) is defined as the maximum number of different ways in
which a feature set of size m can be classified using functions from W,
that is,

max
(x1,...,xm)∈X m

|{(w(x1), . . . , w(xm)) : w ∈ W}| . (1.2)

Note that gF(m) ≤ 2m. The VC dimension of W, denoted dVC, is
the largest integer such that this upper bound holds with equality.
Specifically,

dVC = max{m ∈ N : gF (m) = 2m}. (1.3)

If no such integer exists, we say that dVC = ∞. If the VC dimension of
a hypothesis class is finite, we will refer to it as a VC class.

Intuitively, VC dimension characterizes uniform convergence for the
following reason: if the VC dimension is infinite, we can change the
labels of a training set Z arbitrarily and still find a hypothesis that
outputs these exact predictions, no matter the size n of the training set.
Hence, we can find a hypothesis with a minimal or maximal training
loss, independent of the underlying population loss. However, if the VC
dimension is finite and n ≫ dVC, we cannot adapt arbitrarily to every
sample in the training set, but only to dVC of them. Therefore, in some
sense, the remaining n− dVC samples provide a reasonable estimate of
the population loss.

Re-producing the full proof is beyond our present scope, but essen-
tially, one proceeds by bounding the generalization gap in terms of the
growth function by formalizing the intuition above (see, e.g., Shalev-
Shwartz and Ben-David, 2014, Chapter 28). Then, the growth function
is controlled using the Sauer-Shelah lemma (Shalev-Shwartz and Ben-
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David, 2014, Lemma 6.10), which provides a bound on the growth
function in terms of the VC dimension.5

Lemma 1.3 (Sauer-Shelah lemma). Let gW(·) denote the growth func-
tion of the function class W . For any function class W with VC dimen-
sion dVC,

gW(m) ≤
dVC∑
i=0

(
m

i

)
≤


2dVC+1, m < dVC + 1,(
em

dVC

)dVC
, m ≥ dVC + 1.

(1.4)

With this, we can obtain the following (Shalev-Shwartz and Ben-
David, 2014, Thm. 6.8).

Theorem 1.4 (Generalization from VC dimension). Consider a hypothesis
class W with VC dimension dVC. Then, W has the uniform convergence
property (see Definition 1.1) with sample complexity m, which is upper
and lower bounded as

C ′dVC + log 1
δ

ϵ2
≤ m(ϵ, δ) ≤ C

dVC + log 1
δ

ϵ2
= m+(ϵ, δ), (1.5)

for some constants C, C ′. In particular, this implies that for all w ∈ W ,

|LZ(w) − LPZ
(w)| ≤

√
C
dVC + log 1

δ

n
. (1.6)

This implies that W is PAC learnable in the following sense: for every
distribution PZ , there exists a deterministic learning algorithm PW |Z
such that, for every ϵ, δ ∈ (0, 1), we have that with probability at
least 1 − δ over PZ ,

LPZ
(W ) ≤ inf

w∈W
LPZ

(w) + ϵ (1.7)

provided that n ≥ m+(ϵ, δ).

Remarkably, the upper and lower bounds on the sample complex-
ity m(ε, δ) differ only by a multiplicative constant, and specifically,
the dependence on dVC is identical. Thus, the PAC learnability of a

5As we will see in Section 7.3, this is also a key tool for analyzing information-
theoretic generalization bounds for the special case of VC classes.
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hypothesis class W is fully determined by its VC dimension dVC in the
sense that W admits a finite sample complexity if and only if dVC is
finite. As remarked before, PAC learnability is a very strong require-
ment, as it is equivalent to uniform convergence both with respect to
the hypothesis class and the data distribution. Hence, less stringent
notions of generalization are of interest, especially distribution- and
algorithm-dependent ones.

Under the assumption of realizability, where infw∈W LPZ
(w) = 0, it

is possible to derive a bound similar to (1.6), but with a decay of 1/n.
This is referred to as a fast rate, in contrast to the slow rate of 1/

√
n.

For more details on fast rates, the reader is referred to the seminal
works of Vapnik and Chervonenkis (1974), Lee et al. (1998), Li (1999),
and the more recent works of Van Erven et al. (2015) and Grünwald
and Mehta (2020).

1.3.2 Rademacher Complexity

Another important metric in the theoretical study of generalization
is the Rademacher complexity (Bartlett and Mendelson, 2001, 2002;
Gine and Zinn, 1984; Koltchinskii, 2001; Koltchinskii and Panchenko,
2000). Notably, the Rademacher complexity of a hypothesis class W is
defined with respect to a given data set (although an average version,
where an expectation is taken over the data set, is commonly used). We
now give the definition of Rademacher complexity (Shalev-Shwartz and
Ben-David, 2014, Chap. 26).

Definition 1.5 (Rademacher complexity). Let Z ∈ Zn be a vector of
data samples and let ℓ : W × Z → R+ be a loss function. Let σi for
i ∈ [n] be independent Rademacher random variables, so that Pσi [σi =
−1] = Pσi [σi = +1] = 1/2. Then, the Rademacher complexity of the
function class W with respect to Z and ℓ(·, ·) is given by

RadZ(W) = 1
n
EPσ1...σn

[
sup
w∈W

n∑
i=1

σiℓ(w,Zi)
]
. (1.8)

To get some intuition for the Rademacher complexity, one can
imagine splitting the data set Z into a training set and a test set
uniformly at random. What the Rademacher complexity measures, in a
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worst-case sense over the hypothesis class, is how big the discrepancy
between the loss on the training set and the loss on the test set will be on
average. With this interpretation, it is easy to see how the Rademacher
complexity is tied to generalization: it is almost a generalization measure
by definition. In the following theorem, the connection is made more
specific (Shalev-Shwartz and Ben-David, 2014, Thm. 26.5).

Theorem 1.6 (Generalization guarantee from Rademacher complexity).
Assume that, for all z ∈ Z and all w ∈ W , we have that ℓ(w, z) ∈ [0, 1].
With probability at least 1 − δ over PZ , for all w ∈ W,

LPZ
(w) − LZ(w) ≤ 2RadZ(W) +

√
2 log(2/δ)

n
. (1.9)

A similar bound holds when the sample-dependent Rademacher
complexity is replaced by its expectation under PZ .

As discussed by Shalev-Shwartz and Ben-David (2014, Part IV), the
Rademacher complexity can be used to derive generalization bounds
for relevant hypothesis classes, such as support vector machines, and
can also be used to provide tighter bounds for classes with finite VC
dimension. One issue with the Rademacher complexity is that, while
being data-dependent, it is still a worst-case measure over the hypothesis
class. This may typically lead to generalization estimates for modern
machine learning algorithms that are overly pessimistic.

1.4 Generalization Bounds from Algorithmic Stability

We conclude our overview of generalization bounds by discussing an
example that takes the learning algorithm into account, namely bounds
based on algorithmic stability (Devroye and Wagner, 1979; Rogers and
Wagner, 1978). As for the section on uniform convergence, we will
only provide a very short presentation to provide context for upcoming
chapters, as an exhaustive discussion is beyond our scope.

The intuition behind generalization bounds based on algorithmic
stability is roughly as follows: if the selected output hypothesis does
not depend too strongly on the specific training data it is based on, it
should generalize well to unseen samples. Making this intuition precise,
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and specifically formalizing the notion of “strong dependence,” leads to
several different notions of stability that can be related to generalization
performance. In this section, we will focus only on uniform stability, as
studied by, e.g., Bousquet and Elisseeff (2002, Def. 6). There is, however,
a whole host of alternatives that have been studied in the literature
(see, e.g., the works of Kutin and Niyogi, 2002 and Rakhlin et al., 2005).
As shown by Shalev-Shwartz et al. (2010), there is also a fundamental
relation between stability and uniform convergence in settings beyond
standard supervised classification and regression.

We now present a generalization bound for deterministic learning
algorithms that satisfy uniform stability (Bousquet and Elisseeff, 2002,
Def. 6).

Theorem 1.7 (Uniform stability and generalization). We denote Z\i =
(Z1, . . . , Zi−1, Zi+1, . . . , Zn), and let W (Z) ∈ W denote the output of a
deterministic learning algorithm given a training set Z. Assume that
the learning algorithm has uniform stability β in the sense that, for
all Z ∈ Zn and all i ∈ [n],

max
z′∈Z

{∣∣∣ℓ(W (Z), z′) − ℓ(W (Z\i), z′)
∣∣∣} ≤ β. (1.10)

Then, with probability at least 1 − δ under PZ ,

LPZ
(W (Z)) − LZ(W (Z)) ≤ 2β + (4nβ + 1)

√
log 1

δ

2n . (1.11)

For many stable algorithms, such as linear regression and classifi-
cation with support vector machines, the stability parameter β decays
with n, implying that the bound in Theorem 1.7 approaches zero as
the number of training samples increases. For further details, including
the relation to regularization, see, for instance, Shalev-Shwartz and
Ben-David (2014, Chapter 13).

While we will not discuss them in detail, other approaches to gen-
eralization have been taken in the literature, for instance, based on
margins (Shawe-Taylor and Cristianini, 1999) and norms (Neyshabur
et al., 2015).
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1.5 Outline

This monograph is structured as follows. In Part I, comprising Chap-
ters 2 to 6, we cover the foundations of information-theoretic and
PAC-Bayesian generalization bounds for standard supervised learning.
Specifically, in Chapter 2, we give an intuitive motivation for why
information-theoretic tools are suited for the study of generalization, be-
fore presenting and proving a first information-theoretic generalization
bound as a gentle introduction to the subsequent chapters. In Chap-
ter 3, we overview the core tools that are used in deriving generalization
bounds in the upcoming chapters, in the form of information measures,
change of measure techniques, and concentration inequalities. We use
these tools to derive generalization bounds in expectation in Chap-
ter 4 and generalization bounds in probability in Chapter 5, including
PAC-Bayesian generalization bounds. We conclude Part I by presenting
the conditional mutual information (CMI) framework, as well as the
generalization bounds that can be derived through it.

In Part II, comprising Chapters 7 to 10, we turn to applications of
the generalization bounds from Part I, as well as extensions to settings
beyond standard supervised learning. In Chapter 7, we examine the
information complexity of several learning algorithms, that is, the value
of information measures that the learning algorithms induce. In Chap-
ter 8, we focus specifically on iterative methods, wherein the hypothesis
is sequentially updated as training progresses. This includes neural net-
works trained through standard methods, such as variants of gradient
descent. In Chapter 9, we derive bounds for alternative learning mod-
els, namely meta learning, out-of-distribution generalization, federated
learning, and reinforcement learning. Finally, in Chapter 10, we provide
concluding remarks and a broader discussion of information-theoretic
and PAC-Bayesian generalization bounds as a whole.



Part I

Foundations



2
Information-Theoretic Approach to Generalization

In the previous chapter, we introduced the generalization problem and
hinted at an information-theoretic approach to addressing it. In this
chapter, we expand upon this connection. We begin by providing a
short introduction to information theory, and the flavor of results it
provides. While this is only a brief overview of a vast area of study, our
goal is to provide a glimpse of the field, which can serve to motivate and
contextualize the coming results. After this, we clarify why information
theory is a suitable starting point for studying generalization, before
finishing the chapter by presenting and proving our first information-
theoretic generalization bound. This serves as a warmup for the following
chapters, since it allows us to introduce the general tools and concepts
with a concrete, simple example.

2.1 An Exceedingly Brief Introduction to Information Theory

Information theory, as originally developed by Claude E. Shannon (Shan-
non, 1948) in the late 1940s and early 1950s, provides a rigorous math-
ematical framework for representing, processing, storing, and transfer-
ring information. Many information-theoretic quantities turn out to
characterize fundamental limits for this: the entropy characterizes the

19
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minimum compressed size at which information can be stored under a
perfect-reconstruction requirement; the relative entropy measures the
same under a distribution mismatch; and the mutual information char-
acterizes the limit at which information can be reliably transferred over
an unreliable medium. The definitions of these quantities are provided
in Section 3.1.

In the last decades, the information-theoretic approach of seeking
fundamental limits without imposing complexity constraints has found
applications in many fields beyond data transmission and storage, includ-
ing statistical estimation, sparse recovery, and adaptive data analysis. In
this monograph, we will see how information-theoretic quantities arise
naturally when seeking analytic characterizations of the generalization
error of randomized algorithms in the supervised learning setting.

2.2 Why Information-Theoretic Generalization Bounds?

But why is generalization in machine learning related to information
theory? Intuitively, generalization should occur when the learning algo-
rithm captures the relevant aspects of the training data, but disregards
irrelevant factors. In a sense, this can be seen as a variant of Occam’s
razor, which says that among learners that perform well on the training
set, the one that provides the simplest explanation is to be preferred.
One way of interpreting what simplicity means is to say that the learner
that extracts the least amount of information from the training data
is the simplest one. Information-theoretic generalization bounds make
this intuition precise by characterizing the generalization error of (ran-
domized) learning algorithms in terms of information-theoretic metrics.
Crucially, unlike the bounds based on uniform convergence in Section 1.3,
these information-theoretic bounds do not solely aim to measure the
complexity of the hypothesis class under consideration. Instead, they
also incorporate dependence on the specific learning algorithm and
data distribution. In Chapters 4 to 6, we provide several such results,
and discuss their features in terms of assumptions, tightness in various
situations, derivations, and relations between them.

Beyond this intuitive appeal, the framework of information-theoretic
generalization bounds has several other attractive features. First, it can
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be used to recover bounds which were originally derived using a wide
range of other approaches. In this sense, information-theoretic bounds
offer a certain unifying (albeit not all-encompassing) perspective. This
is covered in more detail in Chapter 7. Moreover, information-theoretic
and PAC-Bayesian bounds have been used to obtain some of the tightest
numerical performance guarantees for neural networks to date, indicat-
ing a promising avenue for furthering our understanding of these models.
New learning algorithms can also be devised on the basis of minimizing
the generalization bounds, paving the way for self-certified learning—i.e.,
learning algorithms that use the training data to both learn a hypothesis
and provide performance guarantees. We expand on these points in
Chapter 8. Finally, as we cover in Chapter 9, the information-theoretic
framework is flexible enough to accommodate many settings of interest,
beyond the standard learning setting introduced in Chapter 1.

As an introduction, we begin by proving a simple information-
theoretic bound in Section 2.3. This enables us to provide concrete
instantiations of the tools and concepts that are relevant for deriving
and interpreting information-theoretic bounds, before exploring these
tools in greater generality in Chapter 3. While the results that are
available in the literature vary widely in their details, the general recipe
for obtaining them typically includes two crucial steps. The first step is
a change of measure, which we cover in Section 3.2. The second step is
a concentration inequality, which we discuss in Section 3.3. Variations
of these two steps yield the generalization bounds we will discuss in
Chapter 4 and Chapter 5.

When studying generalization, the main object of interest is the
error event, which occurs when the hypothesis incurs a large loss on
new data samples—i.e., the hypothesis does not generalize well. The
probability distribution that governs this event is typically not amenable
to direct analysis, because the hypothesis and training sample are jointly
distributed. For this reason, it is convenient to change measure to an
auxiliary distribution that is easier to analyze. The cost of replacing
the original distribution with the auxiliary distribution is quantified by
an information measure, which can be seen as gauging the discrepancy
between the two probability distributions.

The auxiliary probability distribution is chosen so that, under this
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distribution, we can control the error event. This is done by utilizing
concentration of measure inequalities, which, roughly speaking, charac-
terize the degree to which a random variable tends to deviate from its
mean. Thus, by changing measure to a more easy-to-handle auxiliary
distribution and applying concentration of measure results, we can
obtain generalization bounds expressed through information measures.

2.3 A First Information-Theoretic Generalization Bound

To start us off gently within the broad topic of information-theoretic
generalization bounds, we begin by giving a specific instantiation of an
average bound. Specifically, in this section, we will present a generaliza-
tion bound based on the sub-Gaussianity of bounded random variables
and the Donsker-Varadhan variational representation of the relative
entropy (Csiszar, 1975; Donsker and Varadhan, 1975). Throughout, we
will highlight the role played by the different proof ingredients, focusing
on intuition and providing indications of how these ingredients can later
be generalized.

2.3.1 The Bound

Recall that the notation used here, and throughout this monograph, is
detailed in Section 1.1. Before stating our first information-theoretic
bound, we need to define the relative entropy between two probability
distributions, also known as the Kullback-Leibler (KL) divergence. We
also need the definition of the mutual information, which is the relative
entropy between the joint distribution of two random variables and the
product of their marginals.

Definition 2.1 (Relative entropy and mutual information). Consider two
probability distributions P and Q defined on a common measurable
space such that P is absolutely continuous with respect to Q, denoted
by P ≪ Q. The relative entropy between P and Q is given by

D(P ||Q) = EP
[
log dP

dQ

]
. (2.1)

Here, dP
dQ denotes the Radon-Nikodym derivative of P with respect to Q.

If P is not absolutely continuous with respect to Q, the Radon-Nikodym
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derivative is undefined and we let D(P ||Q) = ∞. We will give a precise
definition of the Radon-Nikodym derivative in Theorem 3.16, but for
now, it is sufficient to think of it as a likelihood ratio. The relative
entropy is non-negative, so that D(P ||Q) ≥ 0, with equality if and only
if P = Q. While it is tempting to interpret the relative entropy as a
distance between P and Q, it is not a metric: it is not symmetric and
it does not satisfy the triangle inequality.

For two random variables X and Y with joint distribution PXY and
product of marginals PXPY , the mutual information between X and Y
is

I(X;Y ) = D(PXY ||PXPY ). (2.2)

Note that, if X and Y are independent, PXY = PXPY , and I(X;Y ) = 0.
Also note that, if X is a continuous random variable and Y = f(X) is
a deterministic function of X, we have I(X;Y ) = ∞.

We are now ready to state our first information-theoretic general-
ization bound.

Theorem 2.2. Consider a learning setting where the loss function is
bounded, and satisfies ℓ(w, z) ∈ [0, 1] for all (w, z) ∈ W × Z. Then,

|EPWZ
[gen(W,Z)]| = |EPWZ

[LPZ
(W ) − LZ(W )]| ≤

√
I(W ; Z)

2n . (2.3)

Before proceeding to the proof of this theorem, let us examine the
components of (2.3). After removing the absolute value, the average
population loss can be upper bounded by two terms: the training loss
and a so-called complexity term. Thus, to have any hope of obtaining
a small bound on the population loss, we need to achieve a small
training loss. Now, consider the complexity term, i.e., the right-hand
side of (2.3), whose key component is the mutual information I(W ; Z)
between the hypothesis and the training data. On one hand, if the
learning algorithm is oblivious to the training data, so that PW |Z = PW ,
the mutual information will vanish, and the population loss is guaranteed
to equal the training loss (on average). This is not surprising, since the
training loss in this case is an unbiased estimator of the population loss.
On the other hand, if the hypothesis is a deterministic function of the
training data and both W and Z are continuous random variables, the
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mutual information is unbounded, and Theorem 2.2 provides a vacuous
guarantee, meaning that the upper bound is trivial.

Typically, the value of the mutual information depends on the size n
of the training set Z. For Theorem 2.2 to give bounds that improve
with n, the rate of increase of the mutual information with n has to be
sublinear. If this is the case, the complexity term in Theorem 2.2 goes
to 0 as n approaches infinity, and we guarantee that the population loss
of the hypothesis we learn is arbitrarily close to its training loss, given
sufficient samples.

It is tempting to compare this result to the channel coding problem,
mentioned in Section 2.1. There, a transmitter encodes a message as a
codeword X, which after transmission over a noisy channel PY |X gives
rise to the output Y , which is observed by the receiver whose aim is
to decode the original message. From a mathematical standpoint, we
can identify the training data Z with the codewords X, the learning
algorithm PW |Z with the channel law PY |X , and the hypothesis W with
the output Y . For channel coding, the communication capacity of a
noisy channel is given by the mutual information between the input
and output, maximized over the input distribution PX . By maximizing
over the analogue of PX in (2.3), i.e., the distribution of the training
data PZ , we obtain a worst-case upper bound for the generalization
error.1

However, despite these superficial similarities between the two set-
tings, there are fundamental differences between them. For channel
communication, the conditional distribution from input to output is
considered fixed, and the aim is to find an input that maximizes the
mutual information. For machine learning, the input distribution is
considered fixed, and the goal is to select a conditional distribution
from input to output that minimizes the population loss. More impor-
tantly, while the mutual information has a very specific operational
meaning in channel coding—it characterizes the maximal rate of reliable
communication—its role in Theorem 2.2 is much more spurious. Indeed,
it appears as an upper bound simply as a consequence of the particular

1In order to match the setting of learning with independent and identically
distributed data, we must restrict ourselves to product distributions in this maxi-
mization.
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change of measure that we use. As we will see in the coming chapters,
other changes of measure give rise to upper bounds in terms of other
information measures.

2.3.2 Proof of the Bound

We now proceed with proving the information-theoretic generaliza-
tion bound in Theorem 2.2. For this, we will need two results: the
Donsker-Varadhan variational formula for the relative entropy and a
concentration result for bounded random variables.2 As previously men-
tioned, these are the two main ingredients needed for deriving most
information-theoretic generalization bounds. We state the results here
without proof and not in the fullest generality possible, and defer further
details to Section 3.2 and Section 3.3 respectively.

Theorem 2.3 (Donsker-Varadhan variational formula). Let P and Q be
two probability distributions on a common measurable space X such
that P ≪ Q. Then, for every f : X → R such that EQ

[
ef(X)

]
< ∞,

D(P ||Q) ≥ EP [f(X)] − logEQ
[
ef(X)

]
. (2.4)

Theorem 2.4 (Concentration of bounded random variables). Let Xi, for
i ∈ [n], be independent random variables distributed according to PX
with range [0, 1] and E[Xi] = µ. Let X =

∑n
i=1Xi/n denote the average

of the Xi. Then, for every λ ∈ R,

logE
[
eλ(µ−X)

]
≤ λ2

8n. (2.5)

To get an idea of how these results can be used, consider a situation
where we want to know how a random variable X behaves under the
distribution P , but where it is hard to perform an analysis dealing
with P directly. Then, if we have an auxiliary distribution Q that allows
easier analysis—for instance, if Theorem 2.4 holds under Q—we can first
use Theorem 2.3 with f(X) = λ(µ−X) to change distribution from P

to Q, at the price of a relative entropy, and then apply Theorem 2.4
2Note that we use the term “concentration result” quite liberally to include

bounds on the moment-generating function, as such bounds imply concentration
inequalities in the more strict sense.
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to bound the term logEQ
[
eλ(µ−X)

]
. This is exactly what we will do to

prove Theorem 2.2.

Proof of Theorem 2.2. We first apply Theorem 2.3 with X = (W,Z),
f(W,Z) = λgen(W,Z) for λ ∈ R, P = PWZ , and Q = PWPZ . This
implies that

EPWZ
[λgen(W,Z)] ≤ logEPWPZ

[
eλgen(W,Z)

]
+D(PWZ ||PWPZ). (2.6)

Since D(PWZ ||PWPZ) = I(W ;Z), we now see how the mutual infor-
mation arises from this change of measure. Next, note that, for any
fixed w ∈ W,

gen(w,Z) = LPZ
(w) − 1

n

n∑
i=1

ℓ(w,Zi). (2.7)

Since the training losses ℓ(w,Zi) are bounded to [0, 1] and identically
distributed with mean LPZ

(w), we can invoke Theorem 2.4 to conclude
that, for every w ∈ W and λ ∈ R,

EPZ

[
eλgen(w,Z)

]
≤ exp

(
λ2

8n

)
. (2.8)

By averaging (2.8) over PW , we obtain

logEPWPZ

[
eλgen(W,Z)

]
≤ λ2

8n. (2.9)

We now see that, through the concentration inequality in Theorem 2.4,
we are able to control the generalization gap under the distribu-
tion PWPZ . By inserting (2.9) into (2.6), we obtain, for λ > 0,

EPWZ
[gen(W,Z)] ≤ λ

8n + I(W ; Z)
λ

. (2.10)

All that remains is to select the hitherto unspecified parameter λ, which
we do by minimizing the right-hand side of (2.10). To obtain the absolute
value, we perform the same procedure for λ < 0. After this, the result
in (2.3) follows.

The proof of Theorem 2.2 illustrates the key tools needed to establish
information-theoretic generalization bounds. In this example, the change
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of measure was performed via the Donsker-Varadhan variational formula,
the resulting information metric is the mutual information I(W ; Z),
and the concentration of measure relied on the boundedness of the
involved random variables. In the remainder of this monograph, we will
present a more general framework for obtaining information-theoretic
generalization bounds, through which alternative techniques can be
used to obtain tighter bounds or bounds that hold under different
assumptions than the ones in this section.

2.4 Bibliographic Remarks and Additional Perspectives

The specific bound that we present in Theorem 2.2, along with its proof,
are based on the work of Xu and Raginsky (2017), which itself extended
the results of Russo and Zou (2016) to a more general setting. Arguably,
the core of the approach dates back to the work of Shawe-Taylor and
Williamson (1997), who derived PAC bounds for Bayesian predictors
in terms of a “luckiness” function (which is similar to a prior). This
was extended to more general settings by McAllester (1998), leading
to a bound that is very similar in form to the bounds discussed in this
monograph. The proof technique, however, is quite different: it relies on
the “quantifier reversal lemma” which, in some sense, plays the role of
a change of measure. This PAC-Bayesian strand of the literature then
flourished, with generalizations and tighter bounds by, to only give some
examples, Langford and Seeger (2001), McAllester (2003a), Audibert
(2004), and Catoni (2007), with proofs of a similar form as we discuss
here. A more extensive overview of the PAC-Bayesian literature is given
in Chapter 5, specifically in Sections 5.2 and 5.5. The bounds in the
PAC-Bayesian literature focused primarily on bounded losses, and in
particular, the 0−1 loss. Around the same time, Zhang (2006) developed
generalization bounds for generic loss functions based on a result termed
the “information exponential inequality.”

We now come to the work of Russo and Zou (2016), who fo-
cused on adaptive data analysis, rather than generalization bounds.
Specifically, given the data, an analyst computes m different measure-
ments ϕ = {ϕi}i∈[m]. Then, based on the values of these measurements,
they report ϕT for some T ∈ [m]. Since the choice of the measurement
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to report depends on the measurements themselves, this can introduce
a significant bias. The main result of Russo and Zou (2016) is a bound
on this bias in terms of the mutual information I(T ;ϕ), under the
assumption that the measurements are sub-Gaussian. This setting can
be seen to be equivalent to a statistical learning setting, where the
measurements correspond to losses and the index T corresponds to a hy-
pothesis from a finite set. While these developments appear to be largely
independent from the PAC-Bayesian literature, Russo and Zou (2016)
noted the resemblance to PAC-Bayesian bounds, stating that it would be
interesting to explore the connections between PAC-Bayes and adaptive
data analysis. Xu and Raginsky (2017) made the connection between
statistical learning and the results of Russo and Zou (2016) precise, and
in particular, extended the argument to uncountable hypothesis classes.
Prior to this, Raginsky et al. (2016) derived generalization bounds in
terms of information-theoretic versions of algorithmic stability, where
the bounds were given in terms of the mutual information between the
hypothesis and a single training datum, given the rest of the samples,
where the sub-Gaussianity assumption was slightly different.

Since we have so far only provided an initial introduction to
information-theoretic generalization bounds, we will defer a more de-
tailed discussion and comparison of these results to Chapters 4 and 5.

Another tool from information theory that has received significant
attention in machine learning is the information bottleneck (Tishby
et al., 1999). While we will not discuss it much in the remainder of
this monograph, we will conclude this chapter with a discussion of
the application of the information bottleneck in statistical learning.
Specifically, consider two random variablesX and Y , whereX is an input
and Y is an output. Assume that we want to find a representation T ,
which is a compressed version of X, but which should be useful in
predicting Y . The idea of the information bottleneck method is that we
want to set the conditional distribution P ∗

T |X of T given X so that, for
some parameter β > 0,

P ∗
T |X = sup

PT |X

{βI(T ;Y ) − I(X;T )} . (2.11)

Here, I(T ;Y ) captures the sufficiency of T , in the sense that it is in-
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formative of Y , while I(X;T ) measures the minimality of T , in the
sense that it only captures aspects of X that are necessary for pre-
dicting Y . The parameter β controls the trade-off between these two
objectives. While originally motivated by compression in information
theory, Shwartz-Ziv and Tishby (2017) argued that the information
bottleneck can also be used to explain phenomena in statistical learning,
and in particular neural networks. Specifically, let T denote the activa-
tions of an intermediate layer in a neural network. Through empirical
studies, Shwartz-Ziv and Tishby (2017) argued that neural network
training consisted of a fitting phase, where both I(T ;Y ) and I(X;T )
increase and the network achieves good predictive performance, followed
by a compression phase, where I(T ;Y ) remains constant but I(X;T )
decreases, so that the network learns a compressed, well-generalizing
representation. Achille and Soatto (2018) developed this further to
derive a regularized training objective that aims to promote learning
minimal representations, and connected this with PAC-Bayesian theory.
The existence of the fitting and compression phases was questioned
by Saxe et al. (2019), who argued that these empirical phenomena do
not occur in general, and depend heavily on implementation details.
More discussion on the information bottleneck and its connection to
learning can be found in the works of Goldfeld and Polyanskiy (2020)
and Geiger (2021), as well as Kawaguchi et al. (2023), who establish
generalization bounds.



3
Tools

The proofs of the large majority of information-theoretic generalization
bounds in the literature have two key steps in common: a change of
measure and a concentration of measure. In the previous chapter, this
was illustrated with a concrete example, leading to our first information-
theoretic generalization bound. As we will see in Section 5.2, these same
tools are also at the heart of the PAC-Bayesian approach, and these
two strands can be unified through this lens.

In this chapter, we will introduce the tools that will be used to derive
PAC-Bayesian and information-theoretic generalization bounds in the
remainder of the monograph in more detail and generality. Specifically,
we will define some common information measures in Section 3.1, discuss
change of measure techniques in Section 3.2, and present concentration
of measure in Section 3.3.

3.1 Information Measures

In Theorem 2.2, we found that the generalization error of a randomized
learning algorithm can be controlled by the mutual information between
the training data and the hypothesis. The mutual information is just
one example of an information measure. Formally, given a measurable

30
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space X and the associated family M(X ) of probability measures
on X , an (average) information measure is a mapping IM : M(X ) ×
M(X ) → R. Typically, for all P ∈ M(X ), we have IM(P, P ) = 0.
Thus, an information measure is some way to quantify the discrepancy
between two probability measures. Often, these information measures
are not metrics in the formal sense, as they may not satisfy symmetry
or the triangle inequality. An example of this is the relative entropy
from Definition 2.1, which maps the two distributions P,Q ∈ M(X )
to D(P ||Q) = EP

[
log dP

dQ

]
. Note that, in general, D(P ||Q) ̸= D(Q ||P ).

In addition to such average information metrics, which only depend on
the distributions, we will also consider pointwise versions, which are
mappings from M(X )2 × X 2 to R.

Throughout information theory and machine learning, such infor-
mation measures are exceedingly useful and abundant. In the context
of information-theoretic and PAC-Bayesian generalization bounds, they
naturally appear in upper bounds on the population loss of learning
algorithms, as exemplified by Theorem 2.2. In this section, we will
introduce some information measures along with their properties, which
will be useful in later chapters. For a more detailed review, the reader is
referred to, for example, Cover and Thomas (2006) and Polyanskiy and
Wu (2022), upon which much of the material in this section is based.

A basic building block of many information measures is some kind
of likelihood ratio. For two probability mass functions P and Q on a
common space X , their likelihood ratio at a point x ∈ X is defined
as P (x)/Q(x). Similarly, if p and q are probability densities, the likeli-
hood ratio is p(x)/q(x). For generic measures P and Q, this concept is
captured by the Radon-Nikodym derivative, denoted by dP/ dQ. For
the cases of discrete or continuous random variables, it reduces to the
aforementioned likelihood ratios. The precise meaning of this object is
captured by the Radon-Nikodym theorem, a change of measure that
relates probabilities of events under P with their probabilities under Q.
We will present this result in Theorem 3.16. The Radon-Nikodym deriva-
tive exists whenever P is absolutely continuous with respect to Q, as
described in the following definition.

Definition 3.1 (Absolute continuity). A measure P is absolutely con-
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tinuous with respect to a measure Q, denoted as P ≪ Q, if, for every
measurable set E such that Q(E) = 0, we also have P (E) = 0.

For the special case where P = PXY and Q = PXPY are the
joint distribution and product of marginal distributions of two random
variables X and Y , we will refer to the logarithm of the Radon-Nikodym
derivative as the information density.

Definition 3.2 (Information density). The information density between
two random variables X and Y with joint distribution PXY and marginal
distributions PX and PY is given by

ı(X,Y ) = log dPXY
dPXPY

, (3.1)

provided that PXY ≪ PXPY . The conditional information density
between X and Y given Z is

ı(X,Y |Z) = log dPXYZ
dPX|ZPY |ZPZ

, (3.2)

provided that PXY Z ≪ PX|ZPY |ZPZ .

A fundamental information-theoretic quantity is the entropy.

Definition 3.3 (Entropy). Let X be a discrete random variable on X
with probability mass function PX . The entropy of X is given by

H(X) =
∑
x∈X

PX(x) log 1
PX(x) . (3.3)

Furthermore, let Y be a discrete random variable on Y with probability
mass function PY , such that the joint distribution of X and Y is PXY .
Then, the conditional entropy of X given Y is

H(X|Y ) =
∑

x,y∈X ×Y
PXY (x, y) log PY (y)

PXY (x, y) . (3.4)

The entropy satisfies the following key properties:

1. Non-negativity: H(X) ≥ 0, and equality holds if and only
if PX(x) = 1 for some x ∈ X .
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2. Maximum: H(X) ≤ log(|X |), and equality holds if and only if PX
is the uniform distribution on X .

3. Chain rule: H(X,Y ) = H(Y ) +H(X|Y ) = H(X) +H(Y |X).

4. Conditioning reduces entropy: H(X|Y ) ≤ H(X), and equality
holds if and only if X and Y are independent.

There exists an extension to continuous random variables in the
form of the differential entropy.

Definition 3.4 (Differential entropy). Let X be a continuous random
variable on X with probability density function pX . The differential
entropy of X is given by

h(X) =
∫

X
pX(x) log 1

pX(x) dx. (3.5)

Furthermore, let Y be a continuous random variable on Y with prob-
ability density function pY , such that the joint density of X and Y

is pXY . Then, the conditional differential entropy of X given Y is

h(X|Y ) =
∫

X ×Y
pXY (x, y) log pY (y)

pXY (x, y) dx dy. (3.6)

The differential entropy is shift invariant, so that for any a ∈
R, h(X) = h(X + a). However, the differential entropy does not satisfy
many key properties of its discrete counterpart, such as non-negativity,
and it is not scale-invariant, meaning that h(aX) ̸= h(X) in general.

Several key features of both the discrete and differential entropy can
be described using the relative entropy, sometimes called the Kullback-
Leibler (KL) divergence. This is a very commonly used information
measure, which we already introduced in Section 2.3. We repeat its
definition below.

Definition 3.5 (The relative entropy). Consider two probability distribu-
tions P and Q defined on a common measurable space such that P ≪ Q.
The relative entropy between P and Q is given by

D(P ||Q) = EP
[
log dP

dQ

]
. (3.7)
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If P is not absolutely continuous with respect to Q, the Radon-Nikodym
derivative is undefined and we set D(P ||Q) = ∞.

Given a distribution PX on X and two conditional distributions PY |X
and QY |X on Y given X, the conditional relative entropy between PY |X
and QY |X given PX is defined as

D(PY |X ||QY |X |PX) = EPX

[
D(PY |X ||QY |X)

]
. (3.8)

The relative entropy satisfies a useful property called the chain rule.

Theorem 3.6 (The chain rule of relative entropy). Given the distribu-
tions PXY = PXPY |X and QXY = QXQY |X , we have

D(PXY ||QXY ) = D(PY |X ||QY |X |PX) +D(PX ||QX). (3.9)

When P and Q are a joint distribution and product of marginals of
two random variables, the relative entropy between P and Q is referred
to as the mutual information between the random variables.

Definition 3.7 (Mutual information). The mutual information between
two random variables X and Y with joint distribution PXY and marginal
distributions PX and PY is given by

I(X;Y ) = D(PXY ||PXPY ) = EPXY
[ı(X,Y )] . (3.10)

The conditional mutual information between two random variables X
and Y given Z is given by

I(X;Y |Z) = D(PXY |Z ||PX|ZPY |Z |PZ) = EPXYZ
[ı(X,Y |Z)] . (3.11)

We now see the motivation behind the name information density—
its average is the mutual information (with an analogous correspondence
for the conditional information density). The mutual information is one
of the most fundamental quantities in information theory, and famously
characterizes the capacity of a noisy communication channel. Recently,
as discussed in Section 2.3, the mutual information has garnered interest
in the statistical learning community as a measure of generalization.

Since it is a relative entropy, the mutual information inherits a
version of the chain rule for relative entropy, which follows directly from
Theorem 3.6.
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Theorem 3.8 (The chain rule of mutual information). Consider three
random variables X, Y , and Z. Then,

I(X,Y ;Z) = I(X;Z) + I(Y ;Z|X) = I(Y ;Z) + I(X;Z|Y ). (3.12)

For discrete random variables, the mutual information can be
expressed in terms of entropy as I(X;Y ) = H(X) − H(X|Y ) =
H(Y ) −H(Y |X). For continuous random variables, it can be expressed
in terms of the differential entropy as I(X;Y ) = h(X) − h(X|Y ) =
h(Y ) − h(Y |X).

The relative entropy is a special case of a wider class of information
measures called f -divergences.

Definition 3.9 (f -divergence). Let P and Q be two probability dis-
tributions on a common measurable space X such that P ≪ Q.
Let f : (0,∞) → R be a convex function with f(1) = 0, extended
so that f(0) = limx→0+ f(x). Then, the f -divergence between P and Q
is defined as

Df (P ||Q) = EQ
[
f

(dP
dQ

)]
. (3.13)

By setting f(x) = x log x, we recover the relative entropy.
Other notable examples include the total variation TV(P,Q) =
EQ
[∣∣∣dPdQ − 1

∣∣∣] /2, obtained by setting f(x) = |x− 1| /2, and the χ2-

divergence χ2(P ||Q) = EQ
[
(dP

dQ − 1)2
]
, obtained by setting f(x) =

(x− 1)2.
For many pairs of f -divergences, one can establish comparison

inequalities (Polyanskiy and Wu, 2022, Sec. 7.5). For our purposes,
comparison inequalities involving the relative entropy and total varia-
tion will be of particular importance. We state two such inequalities
below (which are discussed more by, e.g., Canonne, 2022).

Theorem 3.10 (Pinsker’s inequality and the Bretagnolle-Huber (BH)
inequality). Let P and Q be two probability distributions such that P ≪
Q. Then, Pinsker’s inequality states that (see, e.g., Polyanskiy and Wu,
2022, Thm. 7.9)

TV(P,Q) ≤

√
D(P ||Q)

2 . (3.14)
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Furthermore, the BH inequality states that (Bretagnolle and Huber,
1978)

TV(P,Q) ≤
√

1 − exp(−D(P ||Q)). (3.15)

We now review some useful properties of f -divergences. For proofs,
see Polyanskiy and Wu (2022, Thm. 7.4 and 7.5).

Theorem 3.11 (Properties of f -divergences.). For every f -divergence,
the following properties hold:

1. Non-negativity: Df (P ||Q) ≥ 0, and equality holds if and only
if P = Q.

2. Data-processing: Let PX and QX be two distributions on X ,
and let PY and QY be the corresponding distributions on Y
induced by a kernel PY |X , that is, PY (E) =

∫
X dPX(x)PY |X(E|x)

and QY (E) =
∫

X dQX(x)PY |X(E|x) for every measurable set E ⊂
Y. Then,

Df (PX ||QX) ≥ Df (PY ||QY ). (3.16)

3. Conditioning increases divergence: Let PX be a distribution
on X , and let PY and QY be the distributions induced on Y
by two kernels PY |X and QY |X respectively, i.e. PY (E) =∫

X dPX(x)PY |X(E|x) and QY (E) =
∫

X dPX(x)QY |X(E|x) for ev-
ery measurable set E ⊂ Y . The conditional f -divergence is defined
as

Df (PY |X ||QY |X |PX) = EPX

[
Df (PY |X ||QY |X)

]
(3.17)

and it satisfies the inequality

Df (PY ||QY ) ≤ Df (PY |X ||QY |X |PX). (3.18)

Notably, unlike the relative entropy, general f -divergences do not
satisfy the chain rule (cf. Theorem 3.6).

Another special instance of f -divergences is the Rényi divergence,
also known as the α-divergence (Van Erven and Harremoës, 2014).
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Definition 3.12 (Rényi divergence). Let α ∈ (0, 1) ∪ (1,∞). The Rényi
divergence of order α between P and Q is defined as

Dα(P ||Q) = 1
α− 1 logEQ

[(dP
dQ

)α]
. (3.19)

For α = 1, motivated by continuity, the Rényi divergence of order 1
coincides with the relative entropy:

D1(P ||Q) = D(P ||Q). (3.20)

The conditional Rényi divergence of order α between PY |X and QY |X
given PX is

Dα(PY |X ||QY |X |PX) = Dα(PY |XPX ||QY |XPX). (3.21)

When P = PXY and Q = PXPY are the joint distribution of
two random variables and the product of their marginals respectively
and α → ∞, the Rényi divergence reduces to the maximal leakage,
defined below (Issa et al., 2020).

Definition 3.13 (Maximal leakage). The maximal leakage from X to Y
is defined as

L(X → Y ) = logEPY

[
ess sup
PX

dPXY
dPXPY

]
. (3.22)

Here, the essential supremum of a measurable function f(·) of a random
variable X distributed as PX is defined as

ess sup
PX

f(X) = inf
a∈R

[
PX
(
{X : f(X) > a}

)
= 0

]
. (3.23)

The conditional maximal leakage from X to Y given Z is defined as

L(X → Y |Z) = log ess sup
PZ

EPX|Z

[
ess sup
PY |Z

dPXYZ
dPX|ZPY |ZPZ

]
. (3.24)

While the maximal leakage is obtained as the infinite limit of the
Rényi divergence, the same does not hold for the conditional maximal
leakage. Instead, the conditional maximal leakage is the infinite limit
of the conditional α-mutual information, defined below (Verdú, 2015).
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Definition 3.14 (α-mutual information). For α ∈ (0, 1) ∪ (1,∞), the α-
mutual information between X and Y is given by

Iα(X;Y ) = 1
α− 1 logEαPX

[
E1/α
PY

[
exp

( dPXY
dPXPY

)α]]
. (3.25)

The conditional α-mutual information between X and Y given Z is

Iα(X;Y |Z)= 1
α−1 logEPZ

[
EαPX|Z

[
E1/α
PY |Z

[(
dPXYZ

dPX|ZPY |ZPZ

)α]]]
.

(3.26)

It should be noted that the definition of the conditional α-mutual
information given here is not the only possible one, and other definitions
have been proposed (Esposito et al., 2021b; Tomamichel and Hayashi,
2018). Our main reason for focusing on this particular definition is
its role in generalization bounds and its connection to the conditional
maximal leakage.

When α > 1, the function xα is convex. Jensen’s inequality then
implies that, for α > 1, the (conditional) α-mutual information is a
lower bound to the corresponding (conditional) Rényi divergence. Thus,
we have

Iα(X;Y ) ≤ Dα(PY |X ||PY |PX) (3.27)
Iα(X;Y |Z) ≤ Dα(PXY ||PXPY ). (3.28)

For α < 1, the inequalities are reversed, and the two information
measures coincide with the (conditional) mutual information for α → 1.

All of the aforementioned information measures rely on the Radon-
Nikodym derivative in one way or another. The Wasserstein distance
(sometimes called the Kantorovich metric), introduced in the context of
optimal transport, is an example of an information measure that does
not (Villani, 2008). One appealing consequence of this is that, while
most information measures require absolute continuity, the Wasserstein
distance does not.

Definition 3.15 (Wasserstein distance). Let X be a set and ρ be a
metric such that (X , ρ) is a Polish metric space. Let P and Q be
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two probability distributions on X . Then, for every p ∈ [1,∞], the p-
Wasserstein distance is

Wp(P,Q) =
(

inf
R∈Π(P,Q)

E(x,x′)∼R
[
ρ(x, x′)p

])1/p

(3.29)

where Π(P,Q) denotes the set of joint probability distributions on X 2

with marginal distributions P and Q. We refer to the 1-Wasserstein
distance simply as the Wasserstein distance for brevity.

The Wasserstein distance can be understood intuitively as follows.
Imagine that the two distributions P and Q describe two different ways
of distributing a unit of dirt over X . Then, each coupling between P

and Q can be seen as a scheme of moving the dirt to turn one distribution
into the other. The Wasserstein distance measures the lowest possible
cost (in terms of ρ) at which one distribution of dirt can be turned into
the other. This interpretation motivates the alternative name of “Earth
Mover’s Distance” (Rubner et al., 1998). Note that, due to Jensen’s
inequality, Wp(P,Q) is non-decreasing with p.

3.2 Change of Measure

When studying the generalization gap, as aforementioned, the quantity
of interest is the error event under the joint distribution of the hypothesis
and the data. However, this can be difficult to control directly. Instead,
there may be other, auxiliary distributions that allow for direct control
of the error event. For instance, when one considers the hypothesis and
the data to be drawn independently from each other, there are many
situations where the concentration inequalities that we will introduce in
Section 3.3 readily apply. The technique of relating the probability of an
event under one distribution to its corresponding value under another
auxiliary distribution is referred to as change of measure. The penalty
incurred by replacing the original distribution with the auxiliary one can
be expressed through information measures, such as those introduced
in the previous section.

In this section, we introduce several change-of-measure results. We
begin by introducing the Radon-Nikodym theorem, which is the back-
bone of many change of measure techniques. After this, we present
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methods based on variational representations of divergences, starting
with the celebrated Donsker-Varadhan variational representation of
the relative entropy. This variational representation can be used to
relate averages under different distributions, with a penalty given by
the relative entropy between the distributions. We then show how the
notion of Fenchel conjugates can be used to extend the core idea of
the Donsker-Varadhan variational representation to the broad family
of f -divergences. Finally, we explain how the framework of optimal
transport gives rise to a change of measure, in which the Wasserstein
distance appears as the information measure.

3.2.1 The Radon-Nikodym Theorem

For any change of measure technique to be sensible, we need some condi-
tions on the measures (or functions) involved. As an example, consider
a random variable X that follows a standard Gaussian distribution, and
assume that we are interested in the expectation of a function f(X).
Now, assume we want to compute this expectation by drawing samples
from a Bernoulli distribution. Of course, this is doomed to fail from the
beginning for almost any f . While the true distribution is supported
on the real line, our auxiliary Bernoulli distribution is limited to {0, 1}.
Since we have no chance of drawing samples on parts of the space where
the Gaussian distribution has a non-zero density, we can only get a
good indication from our samples if f is trivial everywhere except {0, 1}.
If we instead were to use another distribution supported on all real
numbers as our auxiliary distribution—say, another Gaussian or the
t-distribution—we could draw samples from our auxiliary distribution
and compute the expectation of f on this basis. For this procedure
to give an accurate result, we would need to scale the samples by the
probability ratio between the true distribution and our auxiliary one.
This is related to importance sampling in statistics, and gives some
intuition about the information measures that appear in the results of
this section. The intuition described here is formally captured by the
concept of absolute continuity, given in Definition 3.1.

Throughout this section, this property will be crucial for virtually
every result. The importance of the absolute continuity property is
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that it guarantees the existence of the Radon-Nikodym derivative that
appears in the Radon-Nikodym theorem, sometimes simply referred to as
“change of measure.” Provided that an absolute continuity requirement
holds, the change of measure exactly relates the measure of an event
under two distributions (Rudin, 1987, Thm. 6.10(b)).

Theorem 3.16 (Radon-Nikodym theorem). Let P and Q be probability
distributions on a common space such that P ≪ Q. Then, there exists
a function f such that, for any measurable event E ,

P (E) =
∫

E
f dQ. (3.30)

The function f is referred to as the Radon-Nikodym derivative of P
with respect to Q, and is denoted by dP/ dQ.

For discrete random variables, dP/ dQ is simply the ratio between
the probability mass functions of the two distributions. For continu-
ous random variables, it is the ratio between the probability density
functions.

Recall that when the distributions P and Q are chosen as the joint
distribution PXY and the product of marginals PXPY , the logarithm of
the Radon-Nikodym derivative is the information density:

ı(X,Y ) = log dPXY
dPXPY

. (3.31)

This can be used for the following change of measure: assume that
we have f(x, y) = 0 whenever ı(x, y) = −∞. Note that, if we assume
that PXPY ≪ PXY , we always have ı(x, y) > −∞ so that the condi-
tion is satisfied for any function f . Then, by Theorem 3.16, we have
(Polyanskiy and Wu, 2022, Prop. 18.3)

EPXPY
[f(X,Y )] = EPXY

[( dPXY
dPXPY

)−1
f(X,Y )

]
(3.32)

= EPXY

[
e−ı(X,Y )f(X,Y )

]
. (3.33)

Of course, the same type of result holds if we replace the product of
marginals PXPY with an auxiliary distribution QXY , provided that a
suitable absolute continuity assumption holds, and that the information
density is replaced with the corresponding logarithm of the Radon-
Nikodym derivative.
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3.2.2 The Donsker-Varadhan Variational Representation of the
Relative Entropy

The celebrated Donsker-Varadhan variational representation of the
relative entropy has its origins in the work of Donsker and Varadhan
(1975). It has a rich history and is a core tool in both information
theory and machine learning. Some alternative names include the shift
of measure lemma (McAllester, 2003a) and the compression lemma
(Banerjee, 2006). We state this important result below, the proof of
which is adapted from Alquier (2024, Lemma 2.2).

Theorem 3.17 (Donsker-Varadhan variational representation). Let Q be a
probability distribution on a measurable space X , and let Π denote the
set of probability measures such that, for all P ∈ Π, we have P ≪ Q.
For every measurable function f : X → R such that EQ

[
ef(X)

]
< ∞,

we have

logEQ
[
ef(X)

]
= sup

P∈Π
{EP [f(X)] −D(P ||Q)} . (3.34)

The supremum is attained by the Gibbs distribution G, defined as

dG
dQ(X) = ef(X)

EQ
[
ef(X)] . (3.35)

Proof. By straight-forward calculation, we find that for every P ∈ Π,

D(P ||G) = EP
[
log dP

dQ

]
+ EP

[
log dQ

dG

]
(3.36)

= D(P ||Q) + logEQ
[
ef(X)

]
− EP [f(X)] . (3.37)

By Theorem 3.11, we have that D(P ||G) ≥ 0, with equality if and only
if P = G. Thus, the result follows.

In the above, we view the function f as fixed, and optimize over the
distribution P . Since the final result holds for the supremum over P ,
this change of measure will later lead to bounds that hold uniformly
over learning algorithms—a celebrated key feature of the PAC-Bayesian
approach. However, we can also consider an alternative view, where the
distribution P is fixed and we allow f to be any function in F = {f :
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EQ
[
ef(X)

]
< ∞}. To see this, note that if we let f = log dP/ dQ, we

automatically get G = P . Thus, by rearranging (3.37), we find that

D(P ||Q) = sup
f∈F

{
EP [f(X)] − logEQ

[
ef(X)

]}
. (3.38)

This provides a dual perspective on Donsker-Varadhan’s variational
formula. The version in (3.34), with the supremum taken over P , is
sometimes referred to as “inverse” Donsker-Varadhan (Polyanskiy and
Wu, 2022, Exercise III.6).

Theorem 3.17 relates the expectation of f(X) under P to the
moment-generating function of f(X) under Q, via the relative entropy
between the two distributions. To see how we can use the theorem
in practice for changing measure, consider its weaker form, given in
Theorem 2.3, where we consider fixed f and P without performing
supremization. As illustrated in the derivation of our first information-
theoretic bound in Theorem 2.2, we can use Theorem 3.17 to transition
from the joint distribution of W and Z to an auxiliary distribution
where they are independent, at the cost of a relative entropy term.
This allowed us to obtain an explicit generalization bound by direct
application of a concentration inequality.

3.2.3 Variational Representation of f -divergences

As it turns out, the Donsker-Varadhan variational formula can be seen
as a special case of a more general family of variational representations,
where the relative entropy is replaced by f -divergences (Definition 3.9).
This characterization relies on the concept of convex conjugates, some-
times referred to as Fenchel conjugate or Legendre–Fenchel transform
(Fenchel, 1949). The convex conjugate is defined as follows.

Definition 3.18 (Convex conjugate). The convex conjugate f∗ of a
convex function f is defined as

f∗(y) = sup
x∈R

{xy − f(x)} . (3.39)

A useful property of the convex conjugate is biconjugation. This
means that, if f is convex and lower semi-continuous, (f∗)∗ = f . For
more on convex duality, see, for example, Rockafellar (1970, Part III).
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Recall that the f -divergence between two distributions P and Q is
given by Df (P ||Q) = EQ

[
f
(

dP
dQ

)]
, and that the family of f -divergences

includes a number of familiar quantities. We are now ready to state the
variational representation of f -divergences (Nguyen et al., 2010).

Theorem 3.19 (Variational representation of f -divergences). Let P and Q
be two probability distributions on a common measurable space X such
that P ≪ Q. Let f : [0,∞) → R be a convex and lower semi-continuous
function with f(1) = 0. Then,

Df (P ||Q) = sup
ϕ∈Φ

{EP [ϕ] − EQ[f∗(ϕ)]} . (3.40)

Here Φ denotes the set of all functions X → R such that the expectations
in (3.40) are defined.

While setting f(x) = x log x allows us to recover the relative entropy
as a special case of the f -divergence, the variational representation
given in Theorem 3.19 does not exactly recover the functional form of
the Donsker-Varadhan variational representation of the relative entropy
in (3.38). Instead, we get

D(P ||Q) = sup
ϕ∈Φ

{
EP [ϕ] − 1

e
EQ
[
eϕ
]}
. (3.41)

If we consider a fixed ϕ and use the resulting inequality to bound EP [ϕ],
we obtain a bound that is strictly weaker than what we get from Theo-
rem 3.17. It is possible to derive stronger variational representations
of f -divergences which do reduce to the Donsker-Varadhan variational
representation of the relative entropy, as is done by Ruderman et al.
(2012) and Polyanskiy and Wu (2022, Thm. 7.25). However, the re-
sulting identities are more involved, and not amenable to analysis
for general f -divergences. For instance, when applied to general α-
divergences, Polyanskiy and Wu (2022, Thm. 7.25) does not yield a
closed-form solution. However, for some cases, the stronger, constrained
variational representation due to Ruderman et al. (2012) can be used,
as we shall see in Section 5.2.2. We state this result below.
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Theorem 3.20 (Constrained variational representation of f -divergences).
Let P , Q and f be defined as in Definition 3.9. Then,

Df (P ||Q) ≥ sup
ϕ∈Φ

{
EP [ϕ] − sup

p∈∆(Q)

{
EQ[ϕp] + EQ[f(p)]

}}
. (3.42)

Here Φ denotes the set of all functions X → R such that the expectations
in (3.42) are defined, while ∆(Q) denotes the set of probability densities
with respect to Q.

3.2.4 Optimal Transport

Recall the Wasserstein distance from Definition 3.15. The Wasserstein
distance can be used to change measure by using the following result
(Villani, 2008, Remark 6.5).

Theorem 3.21 (Kantorovich-Rubinstein duality). Assume that the first
moments of P and Q are finite. Then,

W1(P,Q) = sup
f∈1–Lip(ρ)

EP [f ] − EQ[f ] , (3.43)

where 1–Lip(ρ) denotes the set of functions f : X → R that are 1-
Lipschitz under the metric ρ used to define the Wasserstein distance,
that is, |f(x) − f(y)| ≤ ρ(x, y) for all x, y ∈ X .

The usefulness of Theorem 3.21 for changing measure is apparent:
if we fix any f ∈ 1–Lip(ρ), (3.43) implies that

EP [f ] ≤ EQ[f ] + W1(P,Q). (3.44)

Thus, knowing the expectation of f under Q immediately yields a
bound on its expectation under P , provided that we can characterize
the Wasserstein distance W1(P,Q). Theorem 3.21 allows us to replace
the assumption of absolute continuity with a Lipschitz assumption on
the function f .

Note that, by Jensen’s inequality, the p-Wasserstein distance is
an increasing function in p. Thus, the upper bound above still holds
if we use W1(P,Q) ≤ Wp(P,Q) for any p ≥ 1. However, as the 1-
Wasserstein distance leads to the tightest bound, this would only be
useful if Wp(P,Q) is easier to control than W1(P,Q) when p > 1.
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3.2.5 Hölder’s Inequality

Finally, we present Hölder’s inequality, which relates the expectation of
a product to the product of the separate moments.

Theorem 3.22 (Hölder’s inequality). Let p, q ∈ [1,∞) be constants such
that 1/p+ 1/q = 1. For two random variables X and Y , we have

E[|XY |] ≤ E1/p[|X|p]E1/q[|Y |q] . (3.45)

Here, we use the shorthand Ea[X] = (E[X])a.

The utility of Hölder’s inequality for the purpose of changing measure
is that it relates an expectation under a joint distribution to the product
of expectations under the corresponding marginal distributions.

3.3 Concentration of Measure

We now turn to concentration of measure techniques, which allow us to
control the deviation of a random variable from its mean. Specifically,
let X be a random variable with mean µ, and let S = 1

n

∑n
i=1Xi

denote the average of n independent samples distributed as X.1 Then, a
concentration bound controls the probability that S deviates from µ by
a certain amount. We will use the term “concentration result” liberally
to include bounds on the moment-generating function of X, since they
imply a concentration bound in the sense mentioned above (as we will
discuss in Theorem 3.25). While the change of measure techniques
discussed in Section 3.2 are useful for replacing expectations under
a hard-to-handle probability distribution with the corresponding one
under an easier auxiliary distribution, concentration of measure results
are needed to control the expectation under the auxiliary distribution.

For a more detailed review of this vast topic, we refer the reader
to, for example, the works of Boucheron et al. (2013), Massart (2007),

1While concentration inequalities can be derived for dependent random variables
(see, for instance, the work of Marton, 1996, Samson, 2000, Kontorovich and Ramanan,
2008, and Kontorovich and Raginsky, 2017 as well as recent results using information
measures from Esposito and Mondelli, 2023), we focus here on independent random
variables. In Section 3.3.4, we consider dependent random variables in the form of
martingales.
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Raginsky and Sason (2013), and Wainwright (2019), where the proofs
of the results presented here can be found.

3.3.1 Sub-Gaussian Random Variables

A commonly studied category of random variables is the one of sub-
Gaussian random variables. A random variable is said to be sub-Gaussian
with parameter σ, or σ-sub-Gaussian, if its moment-generating function
is dominated by that of a Gaussian random variable with variance σ2.
This ensures that the random variable inherits many of the desirable
properties of Gaussian random variables, and in particular, concentra-
tion results. Below, we state the definition of a sub-Gaussian random
variable (Wainwright, 2019, Def. 2.2).

Definition 3.23 (Sub-Gaussian random variable). A random variable X
is called σ-sub-Gaussian if, for all λ ∈ R,

E
[
eλ(X−E[X])

]
≤ e

λ2σ2
2 . (3.46)

A useful property of sub-Gaussian random variables is that the
sub-Gaussianity parameter σ behaves like a standard deviation under
averaging: if we let S denote the average of n independent σ-sub-
Gaussian random variables, then S is σ/

√
n-sub-Gaussian. We formalize

this property below.

Proposition 3.24 (Averaging sub-Gaussian random variables). Let X be
a σ-sub-Gaussian random variable and let S = 1

n

∑n
i=1Xi be the average

of n independent instances of X. Then, S is σ/
√
n-sub-Gaussian.

As indicated earlier in this chapter, a bound on the moment-
generating function implies a concentration inequality. This can be
shown through the Chernoff method (Wainwright, 2019, Example 2.1).
Specifically, for the average of sub-Gaussian random variables, we obtain
the following (Wainwright, 2019, Prop. 2.5).

Theorem 3.25 (Sub-Gaussian concentration). Let X be a σ-sub-Gaussian
random variable and let S = 1

n

∑n
i=1Xi be the average of n independent

instances of X. Then

P (S − E[X] > t) ≤ e− nt2
2σ2 . (3.47)
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Thus, the average of independent samples of a sub-Gaussian random
variable concentrates around its mean exponentially fast. In later chap-
ters, when deriving generalization bounds, we will typically set S to be
the training loss LZ(W ) and µ to be the population loss LPZ

(W ) (see
Section 1.1 for definitions), so that LPZ

(W ) can be controlled in terms
of LZ(W ) and the information measure that arises from the change
of measure. As we will see in Chapters 4 and 5, it is often sufficient
in the derivations of generalization bounds to have a bound on the
moment-generating function, and we do not need to convert it into
a concentration inequality as the one above. Hence, we will focus on
bounds on the moment-generating function.

Sub-Gaussian random variables can also be characterized in terms
of a bound on the moment-generating function of their square, as we
formalized below (Wainwright, 2019, Thm. 2.6).

Proposition 3.26 (Squared sub-Gaussian random variables). Let X be
a σ-sub-Gaussian random variable and let S = 1

n

∑n
i=1Xi be the average

of n independent instances of X. Then, for all λ ∈ [0, 1),

E
[
e

nλ(S−E[X])2

2σ2

]
≤ 1√

1 − λ
. (3.48)

While we will not cover it explicitly, we note that sub-Gaussianity
can be relaxed to sub-exponentiality and the related Bernstein condi-
tion (Wainwright, 2019, Sec. 2.1.3).

3.3.2 Bounded Random Variables

We now turn to the special case of bounded random variables. Through-
out this section, we will, without loss of generality, assume that the range
of the random variable is [0, 1]—results for generic bounded intervals
can be obtained by shifting and scaling as appropriate.

As stated in the following proposition, bounded random variables
are sub-Gaussian.

Proposition 3.27 (Bounded random variables are sub-Gaussian). Let X
be a random variable whose range is restricted to [0, 1]. Then, X is 1/2-
sub-Gaussian.
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By directly exploiting the boundedness of a random variable, tighter
characterizations of its concentration can be obtained. In the following,
we will use the relative entropy between two Bernoulli random variables
to obtain a concentration inequality that leads to significantly tighter
bounds on the average of X when the observed sample mean is small.

Definition 3.28 (Binary relative entropy). Let p, q ∈ [0, 1]. Then d(q || p)
denotes the relative entropy between two Bernoulli random variables
with parameters q and p respectively, i.e.,

d(q || p) = D(Bern(q) || Bern(p)) (3.49)

= q log q
p

+ (1 − q) log 1 − q

1 − p
. (3.50)

Let γ ∈ R. A “relaxed” parametric version of the binary relative
entropy can be expressed as

dγ(q || p) = γq − log(1 − p+ peγ). (3.51)

Specifically, one can show that d(q || p) = supγ dγ(q || p).
The binary relative entropy between a sample mean and its expec-

tation can be shown to display a useful concentration behavior. The
following result is due to Maurer (2004).

Theorem 3.29 (Concentration for binary relative entropy). Let X be a
random variable with range [0, 1] and mean µ. Let S = 1

n

∑n
i=1Xi be

the average of n independent instances of X. Then,

E
[
end(S ||µ)

]
≤ 2

√
n. (3.52)

By using this result, we can obtain upper bounds on the binary rela-
tive entropy between the sample average S and the mean µ. Specifically,
since S is known, (3.52) leads to a bound on µ, which can be obtained
by numerically evaluating the function

d−1(S, c) = sup{µ ∈ [0, 1] : d(S ||µ) ≤ c}. (3.53)

While (3.53) does not admit an analytical solution, it can be relaxed
to obtain the following, more easily interpretable, expression (McAllester,
2003b; Tolstikhin and Seldin, 2013).
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Proposition 3.30 (Relaxed inverse of the binary relative entropy). For all
S, c ∈ [0, 1], we have

d−1(S, c) ≤ S +
√

2Sc+ 2c. (3.54)

In Chapter 4, we will see that this result is useful to derive accurate
generalization bounds for small training losses.

An alternative concentration result can be derived by considering
the relaxed binary relative entropy in (3.51). This turns out to be
particularly useful in the derivation of average generalization bounds in
Chapter 4. The following result is due to McAllester (2013).

Theorem 3.31 (Concentration for parametric binary relative entropy).
Let X be a random variable with range [0, 1] and mean µ. Let S =
1
n

∑n
i=1Xi be the average of n independent instances of X. Then, for

every γ ∈ R,
E
[
endγ(S ||µ)

]
≤ 1. (3.55)

While the upper bound in Theorem 3.29 scales as
√
n, this is constant

in Theorem 3.31. This concentration result can be applied for a set of
values for γ, for free in the case of bounds in expectation and at the
cost of a union bound for bounds in probability. We will discuss this
further in Chapter 4 and Chapter 5.

3.3.3 Binary Random Variables

While we previously considered bounded random variables within [0, 1],
we now restrict our attention to binary random variables within this
range. For such random variables, a concentration result on the weighted
difference between the random variable and its complement can be
derived, which will turn out useful in Chapter 6. The following is due
to Steinke and Zakynthinou (2020).

Theorem 3.32 (Concentration of complementary random variables).
Let X be a random variable satisfying P (X = a) = P (X = b) =
1/2 where a, b ∈ [0, 1]. Let X̄ = a + b − X denote its comple-
ment in the set {a, b}. Finally, let λ, γ > 0 be constants satisfying
λ(1 − γ) + (eλ − 1 − λ)(1 + γ2) ≤ 0. Then,

E
[
eλ(X−γX̄)] ≤ 1. (3.56)
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3.3.4 Martingales

For all of the concentration results we have discussed so far, we have
focused exclusively on independent samples. While this assumption
often greatly simplifies calculations, it is often not satisfied in practice.
One way to allow dependence between the samples, which still enables
us to recover essentially the same type of concentration as with sub-
Gaussianity, is the martingale property.

Definition 3.33 (Martingale sequences). A sequence of random vari-
ables Xi, with i = 1, . . . , n, is a submartingale if

E[Xn+1 | X1, . . . , Xn] ≥ Xn. (3.57)

The sequence is a supermartingale if

E[Xn+1 | X1, . . . , Xn] ≤ Xn. (3.58)

A sequence that is both a submartingale and a supermartingale is called
a martingale.

A prototypical example of a martingale is a simple one-dimensional
random walk, where Xi = Xi−1 +Bi−1, where Bi−1 is independent and
uniformly distributed on {−1,+1}. By introducing a bias to the walk,
it becomes a sub- or super-martingale.

The martingale property allows us to extend essentially sub-Gaussian
concentration results to a much broader class of random variables, as
shown in the following (Wainwright, 2019, Cor. 2.20).

Theorem 3.34 (Azuma-Hoeffding inequality). Let {Xt}nt=1 be a sequence
of random variables such that |Xt −Xt−1| ≤ ct almost surely for all t ∈
[n] and some constants {ct}nt=1. Consider the following bound on the
moment-generating function for λ ∈ R:

E
[
eλ(Xn−X0)

]
≤ exp

(
−λ2∑n

t=1 c
2
t

2

)
. (3.59)

If {Xt}nt=1 is a supermartingale, (3.59) holds for every λ ≥ 0. If {Xt}nt=1
is a submartingale, (3.59) holds for every λ ≤ 0. Finally, if {Xt}nt=1 is
a martingale, (3.59) holds for every λ ∈ R.
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Thus, the sum of a bounded martingale sequence satisfies the same
kind of sub-Gaussian bound on the moment-generating function (and
hence, concentration inequality) as if the sequence were independent.
Notably, Theorem 3.29 can similarly be extended to bounded martingale
sequences, as shown by Seldin et al. (2012b, Lemma 2).2

3.3.5 Heavy-Tailed Random Variables

The concentration inequalities that we have discussed so far in this
section have all relied on bounds on the moment-generating function.
While this does cover many classes of random variables—and in par-
ticular encompasses the bounded random variables that appear in
classification—there are many scenarios where such bounds are unrealis-
tic. Moreover, even in settings where the moment-generating function is
bounded by some parametric function, actually confirming this can be
untenable, especially if we want to specify the parameters of the bound
(such as σ for the sub-Gaussian random variables in Definition 3.23).
Hence, it is of interest to obtain similar results for heavy-tailed random
variables. While there is no definite consensus regarding the exact def-
inition of this term, it typically refers to random variables for which
the moment-generating function does not exist (away from 0). While
this precludes the use of the techniques that we have covered so far in
this section, it can still be possible to obtain generalization bounds in
terms of, for instance, the variance of the involved random variables.
We will see this in more detail in, for instance, Section 5.2.2. Finally, an
approach to generalization bounds that avoid concentration arguments
was taken by Mendelson (2014) and subsequent works by Lecué and
Mendelson (2017, 2018) and Mendelson (2018).

2While the bound that is explicitly stated in Seldin et al. (2012b, Lemma 2) is
weaker than Theorem 3.29, this is only for simplicity, as discussed in Seldin et al.
(2012b, Lemma 13).



4
Generalization Bounds in Expectation

Equipped with the change of measure techniques from Section 3.2 and
the concentration inequalities from Section 3.3, we are now ready to
derive bounds on the generalization error of learning algorithms. In
Section 1.2, we reviewed bounds of different flavors for randomized
learning algorithms. Specifically, this included average, PAC-Bayesian,
and single-draw bounds. As it turns out, there exists a unified approach
to derive bounds of all these flavors simultaneously, sometimes referred
to as the exponential stochastic inequality (ESI, see Grünwald and
Mehta, 2020, Mhammedi et al., 2019 and Grünwald et al., 2023), or
simply as the exponential inequality approach. We will briefly discuss
this framework in Section 5.1. However, the details of the derivations
that allow us to obtain the tightest possible bounds with the least
restrictive assumptions differ somewhat depending on the type of bound
under consideration. Hence, we will provide separate treatments for
each type of bound. In this chapter, we focus on average generalization
bounds—that is, generalization bounds in expectation. In Chapter 5,
we discuss generalization bounds in probability—that is, PAC-Bayesian
and single-draw bounds.

In order to keep the notation compact, we will use the following short-

53
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hands: we denote the average population loss as L = EPWZ
[LPZ

(W )], the
average training loss as L̂ = EPWZ

[LZ(W )], and their difference—that
is, the average generalization error—as gen = L− L̂.

4.1 Bounds via Variational Representations of Divergences

As previously mentioned, most information-theoretic generalization
bounds are based on a change of measure and a concentration of mea-
sure step. In this section, we will first present a generic result where
the change of measure is performed using the Donsker-Varadhan varia-
tional representation of the relative entropy, stated in Theorem 3.17.
Under different assumptions on the loss function, this can then be
instantiated to obtain particular generalization bounds by applying a
suitable concentration of measure step. This will allow us to recover the
first information-theoretic generalization bound that we derived in Sec-
tion 2.3, and generalize and improve it in several ways. Proposition 4.1
below is simply a restatement of the Donsker-Varadhan variational
representation for the setup of interest in this chapter. A similar result,
for convex functions with bounded inputs, was provided by Goyal et al.
(2017).

Proposition 4.1. Assume that PWZ ≪ QWPZ . Let f : W × Zn → R be
a function satisfying EPWZ

[f(W,Z)] < ∞. Then, the Donsker-Varadhan
variational formula for the relative entropy (Theorem 3.17) implies that

EPWZ
[f(W,Z)] ≤ logEQWPZ

[
ef(W,Z)

]
+D(PWZ ||QWPZ). (4.1)

In particular, when QWPZ = PWPZ , we get

EPWZ
[f(W,Z)] ≤ logEPWPZ

[
ef(W,Z)

]
+ I(W ; Z). (4.2)

The second term in the right-hand side of (4.1) is minimized by the
choice QWPZ = PWPZ , as a consequence of the golden formula (Csiszar
and Körner, 2011, Eq. (8.7)). However, the resulting relative entropy may
not always be possible to compute, while alternative choices of QWPZ

enable this. We will discuss this in more detail when turning to PAC-
Bayesian bounds, where this is an important aspect. Throughout this
chapter, we will assume that QWPZ = PWPZ , as this allows us to
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express the information measures as simpler, familiar quantities, but
we note that most results hold for arbitrary QW .

By suitably choosing the function f , the generic result in (4.2) can
be instantiated to obtain different generalization bounds. First, we
present the average bound from Xu and Raginsky (2017).

Corollary 4.2. Assume that the loss function ℓ(W,Z) is σ-sub-Gaussian
under PWPZ and that PWZ ≪ PWPZ . Then,

gen ≤

√
2σ2I(W ; Z)

n
. (4.3)

Proof. We begin by applying (4.2) with

f(W,Z) = λ (LZ(W ) − EPW
[LPZ

(W )]) . (4.4)

Then, by the sub-Gaussianity assumption (3.46), we have

logEPWPZ

[
eλ(LZ(W )−EPW [LPZ

(W )])] ≤ λ2σ2

2n . (4.5)

Finally, we observe that

inf
λ>0

(
λσ2

2n + I(W ; Z)
λ

)
=

√
2σ2I(W ; Z)

n
, (4.6)

from which the result follows.

This result subsumes Theorem 2.2, which is a special case for
bounded random variables. Also, we note that the same result also
holds under a slightly different assumption. Instead of the stated sub-
Gaussianity and absolute continuity assumptions, one can instead
assume that for all w ∈ W, ℓ(w,Z) is σ-sub-Gaussian under PZ
and PZ|W=w ≪ PZ . Then, instead of the approach used in Propo-
sition 4.1, we consider a random W and use Donsker-Varadhan’s vari-
ational representation to change measure between PZ|W and PZ . The
rest of the proof is essentially identical, and we average over PW in the
end. In Section 4.3, we will discuss how one can also derive a slightly
tighter bound under this different sub-Gaussianity assumption.

At first glance, Corollary 4.2 seems to suggest that the generalization
error decays as 1/

√
n. However, when discussing the dependence on n
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of the right-hand side of (4.3), one needs to remember that I(W ; Z) is
also an implicit function of n via PWZ . In order for this result to be
valuable when discussing generalization, we want the upper bound to
approach zero as the number of training points goes to infinity, which
implies that I(W ; Z) = o(n). Therefore, for most settings of interest,
we require that I(W ; Z) is sublinear in n.

For bounded losses, an alternative generalization bound can be
derived using the concentration result for the binary relative entropy.
We present this below.

Corollary 4.3. Assume that the range of the loss function ℓ(·, ·) is [0, 1]
and that PWZ ≪ PWPZ . Then,

d
(
L̂ ||L

)
≤ I(W ; Z)

n
. (4.7)

Proof. We begin by noting that, due to Jensen’s inequality and the
convexity of dγ(· || ·),

d
(
L̂ ||L

)
= sup

γ
dγ
(
L̂ ||L

)
≤ sup

γ
EPWZ

[dγ(LZ(W ) ||LPZ
(W ))] . (4.8)

We proceed by applying (4.2) with f(W,Z) = ndγ(LZ(W ) ||LPZ
(W )).

Since ℓ(·, ·) ∈ [0, 1], we can apply Theorem 3.31 and obtain

logEPWPZ

[
endγ(LZ(W ) ||LPZ

(W ))] ≤ 0. (4.9)

From this, the result immediately follows.

We pause here to discuss the fact that we used the dγ(· || ·) function
as the starting point of our proof, while the end result is expressed
in terms of the regular binary relative entropy d(· || ·). The reason for
this is that this approach allowed us to use Theorem 3.31 for the
concentration of measure step, instead of Theorem 3.29. Had we not
done this, we would end up with an additional log(2

√
n)/n term in our

final result. Crucially, this was possible due to the fact that we derived
a generalization bound in expectation, instead of a bound in probability.
Had we concerned ourselves with tail bounds, the supremization over γ
would have been problematic, and would have necessitated using a
union bound (or something to that effect).
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The tightest explicit bounds on the population loss that can be
obtained based on Corollary 4.3 rely on a numerical inversion of the
binary relative entropy. However, by using the upper bound on d−1(·, ·)
provided in Proposition 3.30, we can obtain a closed-form relaxation that
gives some insight into the n-dependence of the bound. In particular,
for the case of zero training loss, this relaxation reduces to

L ≤ 2I(W ; Z)
n

. (4.10)

Thus, for the case where I(W ; Z) is sublinear in n, (4.10) gives a faster
decay rate with respect to n than the sub-Gaussian bound (4.3), at the
cost of a multiplicative constant (the factor 2 in (4.10)).

The bounds that we have discussed so far in this section are all
based on the Donsker-Varadhan variational representation of the relative
entropy. As previously indicated, alternative changes of measure can be
used—for instance, those based on f -divergences in Theorem 3.19. We
will now present a generalization bound derived using Theorem 3.19,
following Jiao et al. (2017).1

Theorem 4.4. Let ∥ℓ(w, ·)∥β = E1/β
PZ

[
|ℓ(w,Z) − LPZ

(w)|β
]

and assume
that ∥ℓ(w, ·)∥β ≤ σβ for some β > 1. Also, let fα(x) = |x− 1|α for
some α ≥ 1 satisfying 1

α + 1
β = 1. Then,

gen ≤ σβDfα(PWZ ||PWPZ)1/α. (4.11)

In particular, if α = 1 (so that β → ∞),

gen ≤ σ∞TV(PWZ , PWPZ). (4.12)

Proof. We apply Theorem 3.19 with P = PWZ , Q = PWPZ , and ϕ =
λgen(w, z), for some λ > 0, and obtain

Dfα(PWZ ||PWPZ) ≥ EPWZ
[gen(W,Z)] − EPWPZ

[f∗
α(gen(w, z))] .

(4.13)
Explicitly computing the convex conjugate f∗

α and optimizing over λ,
we obtain the desired result.

1Jiao et al. (2017) state their result in terms of adaptive data analysis, in the
same vein as Russo and Zou (2016). In Theorem 4.4, we provide a simple adaptation
that yields a generalization bound.
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As noted by Jiao et al. (2017, Sec. 4), an alternative way to derive
this bound is through Hölder’s inequality. The benefit of this bound
is clear: we only needed a bound on the central β-moment of the
loss function, which allows for a broader range of loss functions than
(e.g.) sub-Gaussian ones. Furthermore, the f -divergences that appear in
Theorem 4.4 can be bounded even when PWZ ≪ PWPZ does not hold.
Therefore, Theorem 4.4 enables us to consider more general distributions
and learning algorithms than Corollary 4.2. One drawback, however, is
that the dependence of the bound on the number of samples n is less
explicit.

4.2 The Randomized-Subset and Individual-Sample Technique

One issue with the bounds from the previous section is that the mutual
information that appears in them is infinite if the required absolute
continuity criterion does not hold. For instance, consider the bound in
Corollary 4.2. If W and Z are separately continuous random variables
and W is a deterministic function of Z, the absolute continuity crite-
rion PWZ ≪ PWPZ fails to hold. Hence, the mutual information I(W ; Z)
is unbounded. A similar issue arises for many other information mea-
sures that appear in information-theoretic and PAC-Bayesian bounds.
A separate problem, but which can be solved in the same way, is the
lack of an explicit decay with n in Theorem 4.4.

A possible remedy for this is to use the randomized-subset technique,
wherein the linearity of the expectation operator is used to obtain an
average bound for the loss on randomly chosen subsets of the training
set, rather than the loss averaged over the full training set. A special case
of this is the individual-sample technique, where the random subsets
are single samples chosen uniformly at random. In the case where W is
a deterministic function of Z but not of any individual sample Zi, this
avoids the unboundedness issue. This technique was introduced by Bu
et al. (2020).

Proposition 4.5 (The randomized-subset technique). Consider a popula-
tion loss bound ubn such that L ≤ ubn(EPWZ

[LZ(W )] , PWZ) for any n ∈
N+. For any subset M ⊆ [n], let LZM(W ) =

∑
i∈M ℓ(W,Zi)/ |M| de-
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note the training loss on the samples ZM = {Zi}i∈M, Let PM be
an arbitrary probability mass function on subsets of [n], and assume
that M ∼ PM. Then,

L ≤ EPM

[
ub|M|(EPWZM

[LZM(W )] , PWZM)
]
. (4.14)

In particular, if PM is the uniform distribution on [n],

L ≤ 1
n

n∑
i=1

[
ub1(EPWZi

[ℓ(W,Zi)] , PWZi)
]
. (4.15)

Proof. For any fixed subset M, the fact that the samples are i.i.d.
implies that

EPWZ
[LZM(W )] = EPWZM

[LZM(W )] = EPWZ[|M|]

[
LZ[|M|](W )

]
, (4.16)

where [|M|] = {1, . . . , |M|}. The result now follows by applying the
generalization bound ub|m| and averaging over M .

Below, we illustrate the technique by deriving the individual-sample
mutual information bound of Bu et al. (2020), who introduced the
technique.

Corollary 4.6. Assume that the loss function ℓ(W,Zi) is σ-sub-Gaussian
under PWPZi and that PWZi ≪ PWPZi . Then,

gen ≤ 1
n

n∑
i=1

√
2σ2I(W ;Zi). (4.17)

Proof. While the result follows immediately by combining Corollary 4.2
and Proposition 4.5, we give a self-contained proof below. By exploiting
the linearity of the expectation operator and marginalizing out the data
points that do not appear in a given term, we see that

gen = 1
n

n∑
i=1

EPWZ
[LPZ

(W ) − ℓ(W,Zi)] (4.18)

= 1
n

n∑
i=1

EPWZi
[gen(W,Zi)] . (4.19)

The result now follows by applying Corollary 4.2 to each term in the
sum.
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The individual-sample mutual-information bound in Corollary 4.6
is tighter than its full-sample counterpart in Corollary 4.2. Specifically,
with Z<i = (Z1, . . . , Zi−1) (where Z<1 = ∅),

1
n

n∑
i=1

√
2σ2I(W ;Zi) ≤

√√√√2σ2

n

n∑
i=1

I(W ;Zi) (4.20)

≤

√√√√2σ2

n

n∑
i=1

I(W ;Zi|Z<i) (4.21)

=

√
2σ2

n
I(W ; Z). (4.22)

Here, the first step follows from Jensen’s inequality, the second step
uses the fact that conditioning on independent random variables does
not decrease mutual information (here, Zi and Z<i are independent),
and the third follows from the chain rule of mutual information. In
fact, as demonstrated by Harutyunyan et al. (2021), a wide family of
randomized-subset generalization bounds are non-decreasing functions
of the subset size.

The benefit of the individual-sample technique is two-fold. First,
as mentioned above, it leads to bounds that depend on the sum of
functions of the mutual information between the hypothesis and the
individual samples, which can sometimes be shown to be tighter than
bounds that depend on the mutual information between W and the
full training set Z. Second, we can obtain an explicit decay with n

even from bounds that are constant with respect to n (ignoring the
implicit dependence on n of the information measure). For instance,
consider the f -divergence bound in Theorem 4.4. By applying the
individual-sample technique, we instead obtain

gen ≤ σβ
n

n∑
i=1

Dfα(PWZi ||PWPZi)1/α. (4.23)

While the chain rule of the relative entropy allowed us to recover the
full-sample counterparts of generalization bounds from the individual-
sample versions, the same does not hold for the f -divergence bound
in (4.23), as the f -divergences do not satisfy the chain rule in general.
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Hence, it is less clear to what extent the individual-sample technique
actually does yield an improvement, and a more careful characterization
of the information measures is needed for each case.

The technique just described may similarly be applied to obtain
a samplewise version of Corollary 4.3. Now, assume that the learning
algorithm is designed so that the loss is zero for all training samples,
and assume also that the loss is bounded to [0, 1]. Recall that for the
sub-Gaussianity-based bound in Corollary 4.2, this implies that σ = 1/2.
Now, while we used the same generalization bound for each subset in
Proposition 4.5, it is clear that, instead, we could apply a different
generalization bound for each subset. For instance, when using an
individual-sample decomposition, we can apply the minimum of the
bounds from Corollaries 4.2 and 4.3 to each term to obtain

L ≤ 1
n

n∑
i=1

min
{√

I(W ;Zi)/2, 2I(W ;Zi)
}
. (4.24)

Notice that there is not a general ordering between these two bounds:
their ordering depends on the specific value of the mutual information.
Specifically, if the mutual information is lower than 1/8, the minimum
is achieved by the second term. Otherwise, the first term achieves the
minimum.

While samplewise bounds are powerful tools to obtain average
generalization bounds, it can be shown that there are certain formal
limitations to how they can be used to obtain bounds on the averaged
squared generalization error, as well as bounds in probability, as shown
by Harutyunyan et al. (2022). We will discuss this further in Chapter 5.

An alternative approach to obtain samplewise bounds, based on the
convexity of probability measures, was taken by Aminian et al. (2022b).
Their approach is based on the following observation: by the linearity
of expectation, we can rewrite the average generalization error as

gen = 1
n

n∑
i=1

EPWPZi
[ℓ(W,Zi)] − 1

n

n∑
i=1

EPWZi
[ℓ(W,Zi)] (4.25)

= EPWPZ̄
[ℓ(W,Z)] − EPWZ̄

[ℓ(W,Z)] (4.26)

= EPZ̄

[
EPW

[ℓ(W,Z)] − EPW |Z̄
[ℓ(W,Z)]

]
. (4.27)
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Here, PZ̄ = 1
n

∑n
i=1 PZi , PWZ̄ = 1

n

∑n
i=1 PWZi , and PW |Z̄ =

1
n

∑n
i=1 PW |Zi

. Using this characterization, generalization bounds
can be derived by similar techniques as already discussed by changing
measure from PWZ̄ to PWPZ̄ . We will give an explicit example of such
bounds in Theorem 4.15 in Section 4.5.

4.3 Disintegration

If the generalization bound is a concave function—as is the case for the
square-root bound in (4.3)—moving expectations outside of the general-
ization bound leads to a tighter characterization, by Jensen’s inequality.
We used this when showing that the individual-sample technique led to
a tighter bound than its full-sample counterpart in (4.20). This insight,
referred to as disintegration (Negrea et al., 2019), can be exploited fur-
ther to derive bounds where additional expectations are moved outside
a concave bound. Consider the derivation of Corollary 4.6: essentially,
a sample index i is fixed, the bound is derived, and only then do we
average over i. In fact, the same can be done for W , under the slightly
altered sub-Gaussianity assumption discussed after Corollary 4.2.

Corollary 4.7. Assume that, for all w ∈ W, the loss function ℓ(w,Z)
is σ-sub-Gaussian under PZ and PZ|W=w ≪ PZ . Then,

gen ≤ EPW

√2σ2D(PZ|W ||PZ)
n

 . (4.28)

Proof. By the Donsker-Varadhan variational representation of the rela-
tive entropy (Theorem 3.17), we have for all w ∈ W that

EPZ|W =w
[λgen(W,Z)] ≤ logEPZ

[
eλgen(W,Z)

]
+D(PZ|W=w ||PZ).

(4.29)

By applying our sub-Gaussianity assumption and optimizing over λ, we
get

EPZ|W =w
[gen(W,Z)] ≤

√
2σ2D(PZ|W=w ||PZ)

n
. (4.30)

The result follows after averaging over PW .
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Naturally, the disintegration approach can be combined with the
randomized-subset technique. We highlight that Corollary 4.7 relies
on the alternative sub-Gaussianity assumption, and (4.28) does not
hold under the sub-Gaussianity assumption used in Corollary 4.2. For
some cases, such as the important special case of bounded losses, both
assumptions hold.

4.4 Chaining

As previously discussed, one of the main draws of the information-
theoretic approach to studying generalization is that it allows us to
capture the dependence between the training data and the hypothesis
that is induced by the learning algorithm. However, as pointed out by
Asadi et al. (2018), one relevant aspect that is missing from the bounds
that we have seen so far in this chapter is the dependence between
hypotheses. If one learning algorithm, for different Z, selects hypotheses
that are distinct but similar to each other in some sense—for instance,
as measured by a metric on the hypothesis space—we may expect
it to behave very differently from a learning algorithm that selects
distinct, highly dissimilar hypotheses. This, however, can go unnoticed
by quantities such as the mutual information, since it depends only
on the probability measures that are involved, but not the underlying
hypothesis space. Hence, if there is a bijection between the output sets
for the aforementioned learning algorithms that preserves probabilities,
they would be equivalent in terms of mutual information.

One approach to incorporate dependencies between hypotheses is to
use the chaining technique. Intuitively, this approach consists of looking
at the hypothesis space at a coarse level, and approximating the mutual
information with increasingly fine granularity. To introduce chaining
formally, we need the following definition.

Definition 4.8 (ε-partitions and increasing sequences). Let W be a set
endowed with the metric d. A partition P = {A1, . . . , Am}, comprising
disjoint sets A1, . . . , Am such that W = ∪i=1mAi, is an ε-partition of W
if for each Ai with i ∈ [m], there exists a wi ∈ W such that Ai ⊆
Bd(wi, ε), where Bd(wi, ε) = {w ∈ W : d(w,wi) ≤ ε} is the ball of
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radius ε centered around wi. A sequence of partitions {Pk}∞
k=k′ is called

increasing if, for all k ≥ k′ and each A ∈ Pk+1, there exists B ∈ Pk
such that A ⊆ B.

In order to state the generalization bound, we also need to define
sub-Gaussian processes. The sub-Gaussianity here is essentially the
same as we have seen before, with the metric d(·, ·) from Definition 4.8
incorporated into the sub-Gaussianity parameter.

Definition 4.9 (Sub-Gaussian process). The random process {Xw}w∈W
is sub-Gaussian for the metric space (W, d) if E[Xw] = 0 for all w ∈ W
and, for all w,w′ ∈ W and λ ∈ R,

logE
[
eλ(Xw−Xw′ )

]
≤ λ2d2(w,w′)

2 . (4.31)

For the result, we also need to assume that the process is separa-
ble (Asadi et al., 2018, Definition 2), which is a technical assumption
that we refrain from stating explicitly for brevity. We are now ready to
state a generalization bound in terms of the chained mutual information
for a bounded hypothesis space, due to Asadi et al. (2018).

Theorem 4.10. Assume that {gen(w,Z)}w∈W is a separable sub-
Gaussian process on W with metric d(·, ·). Furthermore, assume that
the diameter of W, defined as diam(W)=maxw,w′∈W d(w,w′), is finite.
Let {Pk}∞

k=k1
be an increasing sequence of partitions such that, for

each k ≥ k1, Pk is a 2−k-partition of W. For each w ∈ W and k ≥ k1,
let [w]k denote the unique A ∈ Pk such that w ∈ A. Then,

gen ≤ 3
√

2
∞∑

k=k1

2−k
√
I([W ]k; Z). (4.32)

As k increases, the mutual information I([W ]k; Z) is evaluated on
a finer partition of W, which yields an increasingly accurate estimate
of the mutual information I(W ; Z). In fact, the sequence is increasing,
and I([W ]k; Z) → I(W ; Z) as k → ∞ (Cover and Thomas, 2006,
Eq. (8.54)). Thus, as k increases, so does our estimate of the mutual
information, but the higher-k contributions are exponentially discounted
with 2−k. Relatively speaking, the lower-k contributions are therefore
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more influential, and due to the coarse partitions, these incorporate
dependence between hypotheses, leading to lower mutual information.
Indeed, for two distinct w,w′ ∈ W, we have [w]k = [w′]k if they are
sufficiently close as measured by d.

As pointed out by Zhou et al. (2022), the bound above has some
limitations. Firstly, the hypothesis space is required to be bounded,
which precludes many simple settings. The deterministic and hierarchical
partitions also impose certain geometric constraints, and can render
the bound challenging to compute. This can be addressed by using
a stochastic chaining procedure. Drawing inspiration from multilevel
quantization in data compression, Zhou et al. (2022) derive a similar
result as Theorem 4.10 in terms of a stochastic partition, as formalized
in the following.

Theorem 4.11. Assume that {gen(w,Z)}w∈W is a separable sub-
Gaussian process on W with metric d(·, ·). Let {Wk}∞

k=k0
be a sequence

of random variables on W such that:

1. limk→∞ EPWkZ
[gen(Wk,Z)] = EPWZ

[gen(W,Z)],

2. EPWk0 Z
[gen(Wk0 ,Z)] = 0, and

3. {gen(w,Z)}w∈W −W−Wk−Wk−1 is a Markov chain for every k >
k0.

Then,

gen ≤
∞∑

k=k0+1

√
E[d2(Wk,Wk−1)]

√
2I([W ]k; Z). (4.33)

From the result in Theorem 4.11, we can recover the one in Theo-
rem 4.10 by setting {Wk}∞

k=k0
as the deterministic sequence that appears

therein. Naturally, this bound can be combined with the disintegration
and samplewise techniques, as detailed by Zhou et al. (2022).

4.5 Bounds via the Kantorovich-Rubinstein Duality

An alternative approach to obtain bounds that incorporate the depen-
dence between hypotheses and the geometry of the hypothesis class is
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to use tools from optimal transport. Recall the Wasserstein distance,
introduced in Definition 3.15. This information measure is defined in
terms of a metric, and suitable choices for this metric enable the possi-
bility of incorporating dependencies between hypotheses. This approach
obviates the need for absolute continuity, since the Wasserstein distance
is still defined and finite in its absence.

The key tool in deriving these bounds is the Kantorovich-Rubinstein
(KR) duality, stated in Theorem 3.21, which relates the difference in
expectation under two different distributions to the Wasserstein distance
between them. Below, we state a first result based on Theorem 3.21,
given by Wang et al. (2019a).

Theorem 4.12. Recall that PZ̄ = 1
n

∑n
i=1 PZi , PWZ̄ = 1

n

∑n
i=1 PWZi ,

and PW |Z̄ = 1
n

∑n
i=1 PW |Zi

. Assume that the loss function ℓ(·, z) is L-
Lipschitz on W for all z ∈ Z. Then,

|gen| ≤ LEPZ

[
W1(PW |Z , PW )

]
. (4.34)

Proof. Since the loss is L-Lipschitz, the loss normalized by L is 1-
Lipschitz. The result follows immediately by applying Theorem 3.21
with f = LZ(W ), P = PWZ , and Q = PWPZ .

For this bound to decay to zero as n approaches infinity, the av-
erage Wasserstein distance EPZ

[
W1(PW |Z , PW )

]
would need to be a

decreasing function of n. We would prefer that the bound explicitly
decays with n (when ignoring the Wasserstein distance). This can, for
instance, be achieved by observing that if ℓ(w, z) is L-Lipschitz under
the p-norm, Lz(w) is L/n1/p-Lipschitz under the p-norm. Under this
assumption, the following bound can be derived (Lopez and Jog, 2018,
Thm. 1).

Theorem 4.13. Assume that, for some p ≥ 1, the loss function ℓ(w, ·)
is L-Lipschitz on Z under the p-norm for all w ∈ W. Then,

|gen| ≤ L

n1/p E
1/p
PZ

[
(Wp(PZ|W , PZ))p

]
. (4.35)

Note that this bound is in terms of the “backwards channel” PZ|W ,
which is a result of the Lipschitz assumption being with respect to Z.



4.5. Bounds via the Kantorovich-Rubinstein Duality 67

While the proof of Lopez and Jog (2018) is a bit more involved, the
result for p = 1 follows immediately from KR duality.

For generalization bounds in expectation, we have an alternative
tool at our disposal: the individual-sample technique. By applying this,
as stated in Proposition 4.5, to the bound in Theorem 4.12, we obtain
the following (Rodríguez-Gálvez et al., 2021b).

Theorem 4.14. Assume that the loss function ℓ(·, z) is L-Lipschitz
on W for all z ∈ Z. Then,

|gen| ≤ L

n

n∑
i=1

EPZi

[
W1(PW |Zi

, PW )
]
. (4.36)

Proof. We first use the samplewise decomposition from the proof of
Corollary 4.6 to obtain

gen = 1
n

n∑
i=1

EPWZ
[LPZ

(W ) − ℓ(W,Zi)] (4.37)

= 1
n

n∑
i=1

EPWPZi
[ℓ(W,Zi)] − EPWZi

[ℓ(W,Zi)] . (4.38)

Since each term in the sum is a difference between the average of a
random variable taken under two different distributions, the result
immediately follows by applying the KR duality given in Theorem 3.21.

As for the mutual information-based bounds, the samplewise Wasser-
stein bound can be shown to be tighter than its full-sample counter-
part (Rodríguez-Gálvez et al., 2021b).

As mentioned earlier, an alternative approach to obtain samplewise
bounds is through the convexity of probability measures (Aminian et al.,
2022b). Using the decomposition in (4.27) and applying the KR duality,
we obtain the following result.

Theorem 4.15. Assume that the loss function ℓ(·, z) is L-Lipschitz
on W for all z ∈ Z. Then,

gen ≤ LEPZ

[
W1(PW |Z̄ , PW )

]
. (4.39)
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This bound is always tighter than the one in Theorem 4.14, due to
Jensen’s inequality and the convexity of the supremum. For symmetric
learning algorithms, where PW |Zi

is the same for all i, the bounds in
Theorem 4.14 and Theorem 4.15 coincide.

For bounded losses, the Wasserstein-based bound in Theorem 4.14
can be shown to be tighter than the corresponding slow-rate bound
in Corollary 4.6 based on the mutual information. This improvement
also has a clear interpretation, as discussed by Rodríguez-Gálvez et al.
(2021b): the Wasserstein distance can account for structure within the
hypothesis class by an appropriate choice of metric. If we use the discrete
metric, ρD(x, y) = 1{x ̸= y}, we discard this geometric information,
but we are able to recover bounds based on the relative entropy. Specif-
ically, for the discrete metric, W1(P,Q) = TV(P,Q) (Villani, 2008,
Thm. 6.15). Therefore, we can use either Pinsker’s inequality or the
BH inequality (Theorem 3.10) to upper-bound the Wasserstein distance
in Theorem 4.14. Specifically, consider a bounded loss function, with
range restricted to [0, 1]. Then, it is 1-Lipschitz for any z ∈ Z under
the discrete metric on W , i.e., ρD(w,w′) = 1{w ≠ w′}. By applying the
upper bound from (3.14) to the Wasserstein distance in Theorem 4.14,
we get

|gen| ≤ 1
n

n∑
i=1

EPZi

√D(PW |Zi
||PW )

2

 ≤ 1
n

n∑
i=1

√
I(W ;Zi)

2 , (4.40)

where the second step is due to Jensen’s inequality. This illustrates that
the Wasserstein-based bound is tighter for any bounded loss, through
the use of Pinsker’s inequality. Furthermore, the Wasserstein-based
bound is never vacuous for this setting. When the relative entropy is
high, the BH inequality in (3.15) gives a tighter upper-bound than
Pinsker’s inequality in (3.14) does, and in particular, it is never greater
than 1.

Similar arguments can also be made in more general settings. For
instance, if ρ is an arbitrary metric, we still have

W1(P,Q) ≤ dρ(X )TV(P,Q) (4.41)

where dρ(X ) denotes the diameter of X . The relaxation in terms of
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the BH and Pinsker’s inequality can thus be relevant for other metrics,
provided that the diameter of the hypothesis space is bounded.

Furthermore, a Pinsker-type relaxation can also be obtained under a
sub-Gaussianity assumption. Specifically, consider a probability distribu-
tion PX on X . If every 1-Lipschitz function f : X → R is σ-sub-Gaussian
under PX , we have (Van Handel, 2016)

W1(P,Q) ≤
√

2σ2D(P ||Q). (4.42)

If the loss function ℓ(W, z) is 1-Lipschitz and sub-Gaussian under PW
for all z ∈ Z, the Wasserstein-based bounds can thus also be shown to
be tighter than the corresponding ones based on the relative entropy.
Note that this is a different sub-Gaussianity assumption than the one
used in Section 4.1, where the loss was instead assumed to be sub-
Gaussian under PZ . Further discussion of this, including the relation to
the backward channel, can be found in (Rodríguez-Gálvez et al., 2021b,
Sec. B.1).

4.6 Bibliographic Remarks and Additional Perspectives

In Section 2.4, we discussed the history of information-theoretic gener-
alization bounds and the connection to PAC-Bayesian theory. In this
section, we will specify how the results that we covered in this chapter
are related to existing literature, and give a brief overview of some
results that we did not cover in detail. We note that we will not discuss
results for the conditional mutual information (CMI) framework, as
these will be covered in Chapter 6.

As previously pointed out, Proposition 4.1 is simply a restatement of
the Donsker-Varadhan variational representation of the relative entropy.
This generic formulation of a generalization bound is similar to many
PAC-Bayesian bounds which are stated for generic (convex) functions,
like those of Alquier and Guedj (2018), Bégin et al. (2016), Germain et al.
(2009a), and Rivasplata et al. (2020). The bound in Corollary 4.2, under
the alternative sub-Gaussianity assumption, is due to Xu and Raginsky
(2017), but, as discussed in Section 2.4, appeared around the same time
in similar forms under slightly different assumptions. The use of the
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two different assumptions is explicitly discussed by, e.g., Rodríguez-
Gálvez et al. (2020). The bound with the binary KL divergence in
Corollary 4.3 is essentially implicit in the work of McAllester (2013),
but only explicitly stated in a looser form. The exact statement was
given explicitly in Hellström and Durisi (2022a). Theorem 4.4 was
stated by Jiao et al. (2017) for adaptive data analysis, but obtaining
an analogous generalization bound is straightforward by following the
same procedure as Xu and Raginsky (2017) used when adapting the
result of Russo and Zou (2016).

The randomized-subset and individual-sample technique of Propo-
sition 4.5 was introduced by Bu et al. (2020) and Bu et al. (2019),
and subsequently applied in more settings by, e.g., Haghifam et al.
(2020), Hellström and Durisi (2021a), Negrea et al. (2019), Rodríguez-
Gálvez et al. (2020), and Zhou et al. (2021), who also introduced the
notion of disintegration (Section 4.3). Several key properties of the
randomized-subset approach were studied by Harutyunyan et al. (2021,
2022), establishing the general dependence on the size of the subsets
and the impossibility of obtaining bounds on the average squared gen-
eralization gap in terms of the individual-sample mutual information.
Aminian et al. (2022a) provided an alternative perspective, wherein the
randomized subsets were instead considered for the probability measures
themselves, leading to improved bounds for some settings.

A detailed discussion of chaining and its use in learning theory,
where it is used to derive the tightest generalization bounds in terms
of the VC dimension, can be found in the book by Vershynin (2018,
Chapter 8). The chaining approach was combined with PAC-Bayesian
theory by Audibert and Bousquet (2007). Theorem 4.10 is due to Asadi
et al. (2018), while Theorem 4.11 is due to Zhou et al. (2022).

Bounds based on the Wasserstein distance, discussed in Section 4.5,
were obtained by Raginsky et al. (2016) for learning algorithms that are
stable in terms of Wasserstein distance, in the sense that the distribution
of W does not change much (in terms of Wasserstein distance) if one
sample of the training set is replaced. Wintenberger (2015) considered
weak transport inequalities, and used this to obtain oracle inequali-
ties with fast convergence rates. Results in terms of the Wasserstein
distance between the conditional PW |Z and its marginal PW were de-
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rived independently by Lopez and Jog (2018) and Wang et al. (2019a).
The bounds in Theorems 4.12 and 4.13 are based on these works.
Tighter variants of these bounds were obtained by Rodríguez-Gálvez
et al. (2021b), also through the use of the individual-sample technique.
Aminian et al. (2022a) demonstrated that through the convexity of
probability measures, tighter bounds can be obtained for non-symmetric
learning algorithms. Finally, the chaining technique was generalized to
information measures beyond the mutual information by Clerico et al.
(2022b), who obtained bounds in terms of, for instance, the Wasserstein
distance and various f -divergences.

We conclude this chapter by mentioning works on average gen-
eralization bounds that we did not cover in detail. Alabdulmohsin
(2020) considered a notion of uniform generalization over all pos-
sible parametric loss functions, and showed that this is equivalent
to TV(PWZ , PWPZ), termed the “variational information.” Hafez-Kolahi
et al. (2020) discussed methods of tightening information-theoretic
generalization bounds through the techniques of conditioning and pro-
cessing, based on a graphical model perspective. Many approaches,
such as samplewise bounds and chaining, can be expressed through
this framework. Aminian et al. (2020) obtained bounds in terms of
the Jensen-Shannon divergence, which can be seen as a symmetrized
version of the relative entropy. Modak et al. (2021) derived variants of
the results of Xu and Raginsky (2017) in terms of the Rényi divergence
of orders α ∈ (0, 1), which can potentially be tighter for some settings.
Aminian et al. (2021b) considered bounds on higher moments of the
generalization error, providing bounds in terms of mutual information
and other information measures, based on for instance the χ2 diver-
gence. Raginsky et al. (2021) provided a comprehensive discussion of
bounds in terms of information-theoretic stability, while Sefidgaran et al.
(2022b) used tools from rate-distortion theory. Esposito and Gastpar
(2022) derived a result that allows them to derive both generalization
bounds and transportation-cost inequalities, and used this framework
to obtain new bounds in terms of arbitrary divergence measure and
recover known bounds in terms of, e.g., the mutual information. Wongso
et al. (2022, 2023) considered the sliced mutual information, based on
one-dimensional random projections, and established connections to
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generalization both theoretically and empirically. Chu and Raginsky
(2023) provide a unified approach to deriving information-theoretic
bounds via a change of measure and Young’s inequality. By incorporat-
ing other techniques, such as symmetrization and chaining, they obtain
new bounds and recover several existing ones. Finally, Hafez-Kolahi et al.
(2021) and Xu and Raginsky (2022) derived bounds for the minimum
excess risk in Bayesian learning, while Hafez-Kolahi et al. (2023) derived
information-theoretic bounds for the minimax excess risk and Dogan
and Gastpar (2021) derived lower bounds on the expected excess risk.



5
Generalization Bounds in Probability

In the previous chapter, we considered generalization bounds in expec-
tation. While this allowed for compact derivations, and enabled us to
use techniques such as disintegration and randomized subsets that are
effective only for average bounds, it is not sufficient for answering the
most pertinent question that a practitioner may ask regarding general-
ization. Generalization bounds in expectation give us information about
the generalization gap that we incur averaged over all possible datasets
and all possible instantiations of our learning algorithm. While this is
often sufficient to gain insight, in practice, we usually only have access
to a specific, given dataset, and we do not know the distribution that
generated it. In this case, we are interested in whether this specific
dataset will allow generalization, and not in the performance averaged
over other hypothetical datasets. Furthermore, the learning algorithm
is often used only once for this given data set, and we only concern
ourselves with the performance of the specific hypothesis that this
yields, rather than the average performance when running the learning
algorithm several times.

Motivated by these considerations, we now turn to generalization
bounds in probability. We will focus on two flavors: first, PAC-Bayesian

73
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bounds, which hold with high probability over the draw of the training
set, but are averaged over the learning algorithm. These bounds apply
when we are concerned with distributions over the hypothesis class.
Then, we look at single-draw bounds, which hold with high probability
over the draw of both the dataset and a single hypothesis. This captures
the situation that probably occurs most often in practice. Finally, we
briefly discuss mean-hypothesis bounds, which are a sort of hybrid: high-
probability bounds on the generalization error of the average hypothesis
output from the learning algorithm, given the dataset.

As mentioned in the beginning of Chapter 4, there is a unified
way to derive average, PAC-Bayesian, and single-draw bounds through
exponential stochastic inequalities. Hence, many of the bounds that we
present in this chapter imply corresponding average bounds. Below, we
give a brief exposition of exponential stochastic inequalities, and then
proceed with the PAC-Bayesian and single-draw bounds that are the
main focus of this chapter.

5.1 Exponential Stochastic Inequality

In this section, we state a basic version of an exponential stochastic
inequality, and demonstrate how it can be used to establish bounds of
all three flavors (in expectation, PAC-Bayes, and single draw).

Theorem 5.1. Consider two random variables X and Y and two func-
tions f and g such that, for all η > 0,

EPXY

[
eη(f(X,Y )−g(X,Y ))

]
≤ 1. (5.1)

Then, we have the “average” bound

EPXY
[f(X,Y )] ≤ EPXY

[g(X,Y )] . (5.2)

Furthermore, with probability at least 1 − δ over PXY , we have the
“single-draw” bound

f(X,Y ) ≤ g(X,Y ) +
log 1

δ

η
. (5.3)
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Finally, with probability at least 1 − δ over PY , we have the “PAC-
Bayesian” bound

EPX|Y [f(X,Y )] ≤ EPX|Y [g(X,Y )] +
log 1

δ

η
. (5.4)

Proof. To obtain (5.2), we use Jensen’s inequality to move the expecta-
tion inside the exponential. After re-arranging terms, the result follows.
Next, to obtain (5.3), we note that (5.1) and Markov’s inequality imply
that

PXY

[
eη(f(X,Y )−g(X,Y )) ≤ 1

δ

]
≥ 1 − EPXY

[
eη(f(X,Y )−g(X,Y ))

]
δ (5.5)

≥ 1 − δ. (5.6)

From this, (5.3) follows after re-arranging terms. Finally, to obtain (5.4),
we first apply Jensen’s inequality only with respect to PX|Y . After
using Markov’s inequality in the same way as above, the stated result
follows.

When applying Theorem 5.1 to obtain generalization bounds, we will
typically set X = W , Y = Z, let f be a function of the generalization
gap, and let g be a function of an information measure. The use of expo-
nential inequalities to derive generalization bounds of different flavors
can be traced back at least to the work of Zhang (2006) and Catoni
(2007). For a more thorough discussion of this approach, see the recent
work of Grünwald et al. (2023).

5.2 PAC-Bayesian Generalization Bounds

The PAC-Bayesian framework, originating in the seminal works of Shawe-
Taylor and Williamson (1997) and McAllester (1998), is concerned with
high-probability bounds, under the draw of the data, on the averaged
loss of the learning algorithm. The learner, rather than selecting a
specific hypothesis given the training data, selects a distribution over
the hypothesis class. Then, when we want to use the hypothesis for
whichever downstream task we are interested in, we draw a hypothesis
according to the distribution. This is sometimes referred to as a “Gibbs
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classifier.” This stochasticity enables us to capture uncertainty in our
choice of hypothesis.

In this section, we overview some PAC-Bayesian generalization
bounds. Now, it should be noted that the PAC-Bayes literature is rich
and varied, and we will only cover some of the main developments
herein. In particular, we will highlight how information-theoretic and
PAC-Bayesian generalization bounds are closely related via similarities
in the derivations and interpretation of the results. For a complementary
overview, with additional bounds, details, and historical comments, the
reader is encouraged to consult the excellent introduction to PAC-Bayes
by Alquier (2024), along with the shorter primer by Guedj (2019).

Throughout, to make the notation more compact, we will use the fol-
lowing shorthands: the PAC-Bayesian population loss, averaged over the
randomness of the learning algorithm when trained on the training set Z,
is denoted by L(Z) = EPW |Z [LPZ

(W )]. Similarly, the PAC-Bayesian
training loss is denoted by L̂(Z) = EPW |Z [LZ(W )]. The difference be-
tween these, that is, the PAC-Bayesian generalization gap, is denoted
as gen(Z) = L(Z) − L̂(Z).

5.2.1 Bounds via the Donsker-Varadhan Variational Representation

To begin, we derive a generic PAC-Bayesian bound, analogous to Propo-
sition 4.1, given in terms of a function f(·, ·) to be specified later. Similar
results are discussed by, e.g., Alquier and Guedj (2018), Bégin et al.
(2014), Germain et al. (2009a), and Rivasplata et al. (2020).

Proposition 5.2. Assume that almost surely under PZ , f : W ×Zn → R
is a function satisfying EPW |Z [f(W,Z)] < ∞ and PW |Z ≪ QW |Z . Then,
we have that with probability at least 1 − δ under PZ ,

EPW |Z [f(W,Z)] ≤ logEQWZ

[
ef(W,Z)

δ

]
+D(PW |Z ||QW |Z). (5.7)

Proof. By applying the Donsker-Varadhan variational representation of
the relative entropy, we can conclude that almost surely,

EPW |Z [f(W,Z)] ≤ logEQW |Z

[
ef(W,Z)

]
+D(PW |Z ||QW |Z). (5.8)
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The result follows by noting that Markov’s inequality implies that, with
probability at least 1 − δ under PZ ,

EQW |Z

[
ef(W,Z)

]
≤ EQWZ

[
ef(W,Z)

δ

]
. (5.9)

In the PAC-Bayesian vernacular, the distribution PW |Z is referred
to as a posterior while the distribution QW |Z is called a prior, in line
with the historical connection with Bayesian inference. However, we
once again emphasize that these distributions are not required to have
any relation to actual Bayesian priors and posteriors. We only require
that the prior is selected so that the first term in the right-hand side
of (5.7) can be controlled and that the posterior and prior satisfy the
absolute continuity criterion. Typically, the prior QW |Z is selected to
be independent of the training data Z. However, as highlighted by,
for instance, Rivasplata et al. (2020), this is not technically required,
although often convenient.

Clearly, the result in Proposition 5.2 is very similar to the one in
Proposition 4.1, and in fact, the two results are connected through an
exponential stochastic inequality. Predictably, we can therefore derive
a result very similar to Corollary 4.2 for sub-Gaussian losses. How-
ever, some care has to be taken. In the derivation of Corollary 4.2,
we set f(W,Z) = λgen(W,Z) and applied the concentration result
from (3.46), after which we optimized the parameter λ. Such an op-
timization cannot be performed for Proposition 5.2, since the bound
therein holds with probability 1 − δ for a fixed function f(W,Z), and
hence, a fixed λ if we set f(W,Z) = λgen(W,Z). Thus, to use a similar
approach here, we would need to use some sort of union bound over
the set of candidate values for λ. Now, while this can be done—as can
be seen, for instance, in Section 9.4.1 and the work of Catoni (2007),
Rodríguez-Gálvez et al. (2023), and Seldin et al. (2012b)—we will
take an alternative approach here, and use the bound on the moment-
generating function of the square of sub-Gaussian random variables
from Proposition 3.26.
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Corollary 5.3. Assume that ℓ(w,Z) is σ-sub-Gaussian under PZ for
all w ∈ W. Then, with probability at least 1 − δ under PZ , we have

L(Z) ≤ L̂(Z) +

√√√√√2σ2

D(PW |Z ||QW ) + log
√
n
δ

n− 1

. (5.10)

Proof. First, we use Proposition 5.2 with QW |Z = QW and

f = (n− 1)gen(W,Z)2

2σ2 . (5.11)

The result then follows by applying (3.48) with λ = (n− 1)/n.

Thanks to the flexibility of the theoretical framework, which allows
the prior and posterior to be freely chosen, the relative entropy term can
be used in a number of different ways which may be practical for certain
applications. For instance, one can choose the prior to have a desirable
property—for instance, sparsity (Alquier and Biau, 2013; Guedj and
Alquier, 2013)—and select the posterior by minimizing (5.10) directly.
This encourages the same desirable property in the posterior, subject
to fitting the training data.

For bounded losses, we can derive results with better dependence
on the sample size n, which are useful in the regime of small training
losses. To do this, we use the techniques from Section 3.3.2. For instance,
by setting f(W,Z) = nd(LZ(W ) ||LPZ

(W )), we can use Theorem 3.29
to bound the second term in the right-hand side of (5.9). This result,
first obtained by Maurer (2004), improves on a previous bound due
to Langford and Seeger (2001). It is sometimes referred to as the Maurer-
Langford-Seeger (MLS) bound.

Corollary 5.4. Assume that the range of the loss function ℓ(·, ·) is [0, 1].
Then, with probability at least 1 − δ under PZ ,

d
(
L̂(Z) ||L(Z)

)
≤
D(PW |Z ||QW ) + log 2

√
n
δ

2n . (5.12)

As noted by Langford (2002) (who attributes this observation to
Patrick Haffner), this PAC-Bayesian bound has an appealing dimen-
sional consistency as compared to, say, Theorem 2.2. Both sides are
given in terms of logarithms of probabilities, i.e., nats.
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In order to use Corollary 5.4 to obtain explicit bounds on the popu-
lation loss, we somehow need to invert the function d(LZ(W ) || ·). As
discussed after Corollary 4.3, this can be done via the numerical in-
verse d−1(p, ε), defined in (3.53). In words, given a training loss L̂(Z)
and an upper-bound on d

(
L̂(Z) ||L(Z)

)
, this “inverse” of the binary

relative entropy gives the highest possible value of L(Z) that is consis-
tent with the upper bound and training loss. While it does not admit
an analytical expression, it can be found efficiently via numerical search.
Analytical relaxations can be obtained either by using Pinsker’s inequal-
ity (Theorem 3.10) or the more refined bound in Proposition 3.30.

In the PAC-Bayesian literature, a distinction is sometimes made
between parametric and non-parametric bounds. The MLS bound in
Corollary 5.4, for instance, is an example of a non-parametric bound. It
admits a parametric counter-part due to Catoni (2007) and McAllester
(2013). Unsurprisingly, this is obtained by using the parametric version of
the concentration result for binary relative entropy from Theorem 3.31.

Corollary 5.5. Assume that the range of the loss function ℓ(·, ·) is [0, 1].
Then, with probability at least 1 − δ under PZ , for any constant γ,

dγ
(
L̂(Z) ||L(Z)

)
≤
D(PW |Z ||QW ) + log 1

δ

n
. (5.13)

We see that, as compared to the MLS bound, this parametric version
saves a log(2

√
n)/n-term. However, this comes at the cost of having

to choose the constant γ appropriately (and in a data-independent
way). As discussed following Proposition 5.2, we cannot simply optimize
over γ, since the bound is probabilistic. Catoni (2007) discusses how to
select γ by constructing a dyadic grid of candidate values and optimizing
over it, while McAllester (2013) advises a heuristic set of candidates
values over which one can optimize.

A relaxation of Corollary 5.5, which more clearly reveals how the
parameter γ can be used to control a trade-off between the training loss
and the relative entropy, can be obtained as follows (McAllester, 2013).

Corollary 5.6. Assume that the range of the loss function ℓ(·, ·) is [0, 1].
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For any fixed λ > 1, with probability 1 − δ under PZ , we have

L(Z) ≤ λL̂(Z) +
λ
(
D(PW |Z ||QW ) + log 1

δ

)
2n(1 − 1/λ) . (5.14)

Proof. Starting from (5.13) and using (3.51), we obtain

γL̂(Z) − log(1 + (eγ − 1)L(Z)) ≤
D(PW |Z ||QW ) + log 1

δ

n︸ ︷︷ ︸
B

. (5.15)

Now, assume that γ ∈ (−2, 0). Then, (5.15) implies that

L(Z) ≤ 1 − exp(γL̂(Z) −B)
1 − eγ

. (5.16)

When γ ∈ (−2, 0), we have eγ ≥ 1 + γ and eγ ≤ 1 + γ + γ2/2, so that

L(Z) ≤ 1 − exp(γL̂(Z) −B)
1 − eγ

≤ L̂(Z) −B/γ

1 + γ/2 . (5.17)

Finally, let λ = 1/(1 + γ/2), and note that γ ∈ (−2, 0) implies λ > 1,
from which the result follows.

In Section 4.2, we introduced the individual-sample technique for
generalization bounds in expectation. Given any bound on the average
population loss depending on the joint distribution of the hypothesis
and the training set PWZ , this technique allowed us to obtain a bound
depending on the joint distribution of the hypothesis and each individual
sample, PWZi . In most cases, this allowed us to obtain tighter bounds
in expectation, sometimes enabling us to turn a vacuous bound into
a nonvacuous one. A natural question is then the following: can we
similarly derive PAC-Bayesian individual-sample bounds? Unfortunately,
the answer is, in general, negative. As shown by Harutyunyan et al.
(2022), there exists a counter-example for which W is independent of
each Zi, but where the PAC-Bayesian generalization gap is high with
non-negligible probability. It is, however, possible to derive such bounds
based on subsets of size m ≥ 2.
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5.2.2 PAC-Bayesian Bounds Beyond the Relative Entropy

The bounds that we discussed so far are all based on the Donsker-
Varadhan variational representation of the relative entropy. Similar
to the average bound case, PAC-Bayesian bounds in terms of other
information measures have also been considered. Notably, these bounds
often allow for heavy-tailed losses. We will give a brief exposition of two
approaches, one based on Hölder’s inequality and the other based on
the variational representation of f -divergences. Additional works on this
topic are mentioned in the bibliographic remarks of Section 5.5, and a
more detailed discussion can be found in Alquier (2024, Chapter 5).

The basic idea behind using Hölder’s inequality to obtain gener-
alization bounds is as follows. First, we consider an expectation of
a quantity of interest related to generalization under the true, joint
distribution. By using the Radon-Nikodym theorem (Theorem 3.16),
this can be turned into an expectation under an auxiliary distribution,
at the cost of a Radon-Nikodym derivative appearing. Finally, Hölder’s
inequality can be used to disentangle the Radon-Nikodym derivative
and the generalization quantity, which can then be handled separately.
This was done for bounded losses by Bégin et al. (2016), and extended
to unbounded losses by Alquier and Guedj (2018). We present the result
of Alquier and Guedj (2018, Thm. 1) below.

Theorem 5.7. Let Z denote a training set, the samples of which are
allowed to be dependent and drawn from different distributions. Further-
more, let LPZ

(W ) = EPZ
[LZ(W )].1 For some p > 1, we let q = p/(p−1),

and set fα(x) = xα. Assume that PW |Z ≪ QW almost surely. Then,
with probability at least 1 − δ under PZ ,

|gen(Z)| ≤
(EQWPZ

[|LPZ
(W ) − LZ(W )|q]
δ

)1/q

× (Dfp−1(PW |Z ||QW ) + 1)1/p. (5.18)

Proof. Let ∆(W,Z) = |LPZ
(W ) − LZ(W )|. Then, by Jensen’s inequal-

1While this reduces to the previously defined population loss LPZ (W ) for i.i.d.
data, this does not hold in general.
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ity and the Radon-Nikodym theorem (Theorem 3.16),

|gen(Z)| ≤ EPW |Z [∆(W,Z)] = EQW

[
∆(W,Z)

dPW |Z
dQW

]
. (5.19)

Then, by Hölder’s inequality (Theorem 3.22),

EQW

[
∆(W,Z)

dPW |Z
dQW

]
≤ E1/q

QW
[∆(W,Z)q]E1/p

QW

[(dPW |Z
dQW

)p]
. (5.20)

Finally, it follows from Markov’s inequality that with probability at
least 1 − δ,

E1/q
QW

[∆(W,Z)q] ≤ E1/q
QW

[
EPZ

[∆(W,Z)q

δ

]]
. (5.21)

Note that EQW

[(dPW |Z
dQW

)p]
= Dfp−1(PW |Z ||QW ) + 1. Thus, the desired

result follows after combining the steps above.

As shown by Alquier and Guedj (2018) and Bégin et al. (2016), this
bound can be specialized to settings such as i.i.d. data with bounded
variance, and even auto-regressive data with finite moments. One draw-
back is the linear dependence on the inverse confidence parameter 1/δ,
in contrast to the more benign logarithmic dependence of the previous
bounds in this chapter.

An alternative route can be taken based on the unconstrained (The-
orem 3.19) or constrained (Theorem 3.20) variational representations
for f -divergences. This was done by Ohnishi and Honorio (2021), who
derived explicit bounds in terms of a whole host of divergences under
various assumptions. For instance, they obtained tighter versions of
some bounds from Alquier and Guedj (2018) for heavy-tailed losses. To
illustrate the benefit of the constrained representation of Theorem 3.20,
one can compare the two results in Lemma 2 and 3 of Ohnishi and Hon-
orio (2021). Using the unconstrained representation in Theorem 3.19,
Ohnishi and Honorio (2021) obtain the change of measure result

EP [ϕ] ≤ χ2(P ||Q) + EQ[ϕ] + 1
4 EQ

[
ϕ2
]
, (5.22)

where χ2(P ||Q) = EQ
[
(dP

dQ − 1)2
]

is the χ2 divergence, which can be
expressed as an f -divergence (see Definition 3.9) by setting f(x) = (

√
x−
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1)2. In contrast, using the constrained representation in Theorem 3.20,
this can be improved to

EP [ϕ] ≤ χ2(P ||Q) + EQ[ϕ] + 1
4

√
EQ[(ϕ− EQ[ϕ])2]. (5.23)

Since the variance is upper-bounded by the second moment, this is
always tighter.

Below, we state a bound in terms of the Rényi divergence for sub-
Gaussian losses from Ohnishi and Honorio (2021, Prop. 6), to illustrate
that the variational representation for f -divergences allows for the
derivation of bounds with a more benign logarithmic dependence on 1/δ.

Theorem 5.8. Assume that the loss function ℓ(w,Z) is σ-sub-Gaussian
under PZ for all w ∈ W . Fix α > 1. Then, with probability at least 1−δ,

gen(Z) ≤

√
2σ2

m
log
(2
δ

)
(α(α− 1)Dα(PW |Z ||QW ))1/α. (5.24)

This result is obtained by specializing Theorem 3.19 to the Rényi di-
vergence, from which one obtains (Ohnishi and Honorio, 2021, Lemma 5)

EP [ϕ] ≤ Dα(P ||Q) + (α− 1)
α

α−1

α
EQ
[
ϕ

α
α−1

]
+ 1

α(α− 1) . (5.25)

The remaining steps follow after setting P = PW |Z , Q = QW , ϕ =
λgen(w, z), and using a sub-Gaussian concentration argument (Defini-
tion 3.23).

5.2.3 Data-Dependent Priors

So far, we have only covered generalization bounds with data-
independent priors. However, as we have indicated when discussing
Proposition 5.2, data-dependent priors can also be considered. There
are several ways of obtaining generalization bounds with data-dependent
priors. The approach that is perhaps simplest, but which can lead to very
tight bounds in practice, is the data-splitting technique (Ambroladze
et al., 2006; Dziugaite et al., 2021). It does not actually involve any new
tool—we simply need to apply the tools we have already introduced in
a slightly different way. The idea is to split the training set into two
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parts as Z = (ZB,ZP ), where |ZB| = m and |ZP | = n − m. Then,
the training loss in the bound is evaluated only on ZB, which means
that we are free to use ZP to inform our prior. To be clear: the full
training data Z is still used as input to the posterior (i.e., the learning
algorithm). The only difference is in how we evaluate the generalization
bound itself; the learning procedure remains the same. Since the prior,
which can now be written QW |ZP

, is independent of the data ZB used
to compute the training loss in the bound, we can apply the same
concentration arguments as in the case of a data-free prior.

As an example, we apply this approach to the bound in Corollary 5.4.
Note that it can be applied to all other PAC-Bayesian bounds reviewed
in this chapter (and in fact, also to the average generalization bounds
discussed in Chapter 4).

Corollary 5.9. With probability at least 1 − δ under PZ ,

d
(
EPW |Z [LZB

(W )] ||L(Z)
)

≤
D(PW |Z ||QW |ZP

) + log 2
√
m
δ

2m . (5.26)

Here, a trade-off emerges between two factors that affect the tightness
of the bound. Evaluating the training loss based only on the m samples
in ZB means that we divide the right-hand side by a smaller overall
factor. However, this is compensated by the fact that the relative entropy
term can be significantly lower, since there may exist a posterior with
low training loss that is close (in terms of relative entropy) to a suitably
chosen data-dependent prior.

Data-dependent priors with the data-splitting technique can be
connected to a class of learning algorithms called compression schemes.
We discuss this more in Section 6.3. Furthermore, data-dependent priors
have been used to obtain numerically accurate generalization bounds
for neural networks. We cover this in more detail in Section 8.2.

We conclude by noting that there are other ways to obtain data-
dependent priors—for instance, through differential privacy (Dziugaite
and Roy, 2018b) or algorithmic stability (Rivasplata et al., 2018).
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5.3 Single-Draw Generalization Bounds

The PAC-Bayesian bounds in Section 5.2 apply to losses that are
averaged over the posterior, PW |Z . In practice, it is common to instead
use a randomized learning algorithm to select a single hypothesis,
and then use this specific instance of W for future inference. In the
PAC-Bayesian literature, bounds for this scenario are often termed
de-randomized or pointwise PAC-Bayes bounds. We will refer to this
scenario, and bounds that apply for it, as single-draw, following the
terminology of Catoni (2007): the bounds apply to a single draw of the
training data and a single draw from the stochastic learning algorithm.
In this section, we present several such single-draw bounds.

5.3.1 Bounds via Variational Representations of Divergences

As we did for both the average case in Chapter 4 and the PAC-Bayesian
setting in Section 5.2, we begin by deriving a generic single-draw in-
equality for a function f(·, ·) to be specified later. However, this will
require slightly stronger absolute continuity assumptions than we had
before.

Proposition 5.10. Assume that PWZ ≪ QWZ and QWZ ≪ PWZ . For
any function f(·, ·), with probability at least 1 − δ under PWZ ,

f(W,Z) ≤ logEQWZ

[
ef(W,Z)

δ

]
+ log dPWZ

dQWZ
. (5.27)

Proof. From Polyanskiy and Wu (2022, Proposition 18.3), we have

EQWZ

[
ef(W,Z)

]
= EPWZ

[
exp

(
f(W,Z) − log dPWZ

dQWZ

)]
. (5.28)

Rewriting this, we obtain

EPWZ

[
exp

(
f(W,Z) − logEQWZ

[
ef(W,Z)

]
− log dPWZ

dQWZ

)]
= 1. (5.29)

Applying Markov’s inequality (in the same way as in (5.5)) to (5.29),
we conclude that with probability at least 1 − δ under PWZ ,

exp
(
f(W,Z) − logEQWZ

[
ef(W,Z)

]
− log dPWZ

dQWZ

)
≤ 1
δ
. (5.30)

The result follows by taking the logarithm and rearranging terms.
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As previously mentioned, for the specific choice of QWZ = PWZ , the
logarithm of the Radon-Nikodym derivative reduces to the information
density ı(W,Z).

By making the same specific choices for f(W,Z) and using the same
sub-Gaussian concentration inequality as in Corollary 5.3, we can obtain
the following analogous single-draw generalization bound.

Corollary 5.11. With probability at least 1 − δ under PWZ , we have

LPZ
(W ) ≤ LZ(W ) +

√√√√√2σ2

 log dPWZ
dQWPZ

+ log
√
n
δ

n− 1

. (5.31)

In this bound, the population loss, training loss, and information
metric log dPWZ

dQWPZ
all depend on the specific instances of W and Z.

One benefit of this is that the bound is fully empirical: all quantities
that appear in the bound can be computed given the training data
and hypothesis. Another benefit of the pointwise information mea-
sure log dPWZ

dQWPZ
is that it can be evaluated in closed form for a wider

class of distributions than, say, the relative entropy. For example, as
long as the distributions PWZ and QWPZ have densities, the Radon-
Nikodym derivative can easily be evaluated in closed form. In contrast,
the relative entropy has a closed form only for a limited number of
probability distributions.

All PAC-Bayesian bounds that are derived through an exponen-
tial stochastic inequality approach admit a single-draw counterpart—
provided that the more stringent absolute continuity criterion in Propo-
sition 5.10 is satisfied. Hence, we can obtain single-draw variants of
Corollaries 5.4 to 5.9, with the PAC-Bayesian losses replaced by their
single-draw counterparts and with the relative entropy replaced by the
logarithm of the corresponding Radon-Nikodym derivative.

5.3.2 Using Hölder’s Inequality

An alternative way to obtain single-draw generalization bounds is
through the use of Hölder’s inequality (Theorem 3.22), via an ap-
proach introduced by Esposito et al. (2021a). We start by providing the
following general theorem.
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Theorem 5.12. Assume that PWZ ≪ PWPZ . For any con-
stants α, α′, γ, γ′ such that 1/α + 1/γ = 1/α′ + 1/γ′ = 1 and all
measurable sets E ∈ W × Zn, we have

PWZ [E ] ≤ E1/γ′

PW

[
PZ(EW )γ′/γ

]
E1/α′

PW

[
Eα

′/α
PZ

[( dPWZ

dPWPZ

)α ]]
. (5.32)

Here, EW = {Z : (Z,W ) ∈ E}.

Proof. Let 1E denote the indicator function of E . By the Radon-Nikodym
theorem we have

PWZ [E ] = EPWZ
[1E ] (5.33)

= EPWPZ

[
1E

dPWZ

dPWPZ

]
(5.34)

= EPW

[
EPZ

[
1EW

dPWZ

dPWPZ

]]
. (5.35)

By applying Hölder’s inequality twice, we get

PWZ [E ] ≤ EPW

[
E1/γ
PZ

[
1γEW

]
E1/α
PZ

[( dPWZ

dPWPZ

)α ]]
(5.36)

≤ E1/γ′

PW

[
Eγ

′/γ
PZ

[1EW
]
]
E1/α′

PW

[
Eα

′/α
PZ

[( dPWZ

dPWPZ

)α ]]
(5.37)

from which the result follows.

By choosing E and the parameters in Theorem 5.12 appropriately,
we can derive many generalization bounds. We will focus on a bound
for sub-Gaussian losses which is expressed in terms of the α-mutual
information (see Definition 3.14).

Corollary 5.13. Assume that the loss function ℓ(w,Z) is σ-sub-Gaussian
under PZ for all w ∈ W . Furthermore, assume that PWZ ≪ PWPZ . Then,
with probability at least 1 − δ under PWZ , for any α > 1,

|gen(W,Z)| ≤

√
2σ2

n

(
Iα(W ; Z) + log 2 + α

α− 1 log 1
δ

)
. (5.38)

In particular, when α → ∞,

|gen(W,Z)| ≤

√
2σ2

n

(
L(Z → W ) + log 2

δ

)
. (5.39)
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Proof. Let α′ → 1, implying that γ′ → ∞. Consider the error
event E = {W,Z : |LPZ

(W ) − LZ(W )| > ε}. By sub-Gaussianity (see
Theorem 3.25), for each w ∈ W we have

PZ [Ew] ≤ 2 exp
(

− ε2

2σ2

)
. (5.40)

Furthermore, note that

EPW

[
E1/α
PZ

[ dPWZ

dPWPZ

]]
= exp

(
α− 1
α

Iα(W ; Z)
)
. (5.41)

By setting δ = PWZ [E ] and solving for ε, we obtain the desired result.

Notice that, unlike the single-draw bounds we presented previously,
the right-hand side of this bound is a constant: it does not depend on
the specific instances of W and Z in the left-hand side. A drawback of
this is that the bound is no longer empirical, and requires knowledge
of PZ to be computed exactly. An advantage is that the same bound
holds regardless of the specific data or output of the algorithm, and the
bound can thus be stated a priori.

5.4 Mean-Hypothesis Generalization Bounds

Before concluding this chapter, we will briefly mention a third flavor of
generalization bounds in probability: bounds for the mean hypothesis.
To this end, we consider a stochastic learning algorithm PW |Z with a
fixed, randomly drawn Z. There are many ways to define determin-
istic classifiers based on this, by averaging over the randomness of
the learning algorithm in various ways. For instance, in Banerjee and
Montufar (2021), the goal is to bound, with high probability over PZ ,
the population loss of the average hypothesis output by the learning
algorithm: w∗ = EPW |Z [W ]. The motivation for this is that, when evalu-
ating PAC-Bayesian generalization bounds, it is common to start from
a deterministic learning algorithm and make it stochastic by adding
zero-mean Gaussian noise to the parameters. We will see this in more
detail in Chapter 8. While this can allow the bounds to be computed,
the new classifier with added noise often has degraded performance
relative to the underlying deterministic one. However, since the mean of



5.5. Bibliographic Remarks and Additional Perspectives 89

this randomized classifier is the underlying, original hypothesis, bounds
on w∗ apply to this deterministic classifier.

For binary classifiers, we can obtain various type of majority vot-
ing algorithms on the basis of the posterior. Following the discussion
from Seeger (2002), we assume that W denotes the parameters of a
map fW : X → R. The goal is to predict the binary label of X, and
we use the sign of fW (X) to achieve this. For the stochastic predic-
tors we considered previously, the output is given by sign(fW (X)),
where W ∼ PW |Z . However, we can also consider the majority vote
classifier given by fmv(X) = sign

(
EPW |Z [sign(fW (X))]

)
, as well as the

averaging classifier, given by fBPM(X) = sign
(
EPW |Z [fW (X)]

)
. These

are referred to as the Bayes voting classifier and the Bayes classifier,
respectively, by Seeger (2002). As noted by Langford and Shawe-Taylor
(2002), a bound on the population loss of the stochastic predictor based
on PW |Z leads to a bound on the population loss of the BPM classifier,
at the price of a factor 2. This is based on the observation that, for any
sample for which fBPM incurs a loss, the underlying stochastic classifier
must incur a loss with probability at least 1/2.

5.5 Bibliographic Remarks and Additional Perspectives

In this section, we discuss how the presented results relate to the
literature, and briefly mention some results that we did not cover
in detail. As the literature is vast, in particular for PAC-Bayesian
bounds, this brief overview will not be exhaustive. See Section 2.4 for
further discussion of the early history of PAC-Bayesian bounds, and
the monograph of Alquier (2024).

The underlying concepts of the exponential stochastic inequality
framework of Section 5.1 can be traced to the works of Zhang (2006)
and Catoni (2007). This was formalized using ESI notation by Grünwald
and Mehta (2020), Koolen et al. (2016), and Mhammedi et al. (2019),
and was recently given an exhaustive treatment by Grünwald et al.
(2023).

The generic PAC-Bayesian bound in Proposition 5.2 is similar to
statements given by Bégin et al. (2014) and Germain et al. (2009a), while
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this exact form is due to Rivasplata et al. (2020). While Corollary 5.3 is
very similar to earlier results, such as the one from McAllester (2003a),
this exact form is from Hellström and Durisi (2020a). The bound in
Corollary 5.4 is due to Maurer (2004), where the logarithmic factor is
improved compared to the result of Langford and Seeger (2001). See the
work of Foong et al. (2021) for an in-depth discussion of the tightness of
this bound and whether this logarithmic dependence can be improved
further. Corollary 5.5 is implicit in the work of McAllester (2013) (who
in turn describes the result as a corollary of statements from Catoni
(2007)), while the loosened version in Corollary 5.6 is stated explicitly.
The role of the generic convex function in the bound is studied in
(Hellström and Guedj, 2024), where optimal choices are established.
Jang et al., 2023 used the coin-betting framework from online learning
to improve PAC-Bayesian bounds for bounded losses.

Theorem 5.7 is due to Alquier and Guedj (2018), and is an extension
of a result from Bégin et al. (2016) for bounded losses. Ohnishi and Hon-
orio (2021) provided a comprehensive treatment of change of measure
inequalities with f -divergences and their application in PAC-Bayesian
bounds, including Theorem 5.8, as well as a whole host of additional
results.

Data-dependent priors based on data splitting were introduced
by Ambroladze et al. (2006), and have since been extended and used
in various ways by, for instance, Dziugaite et al. (2021), Dziugaite
and Roy (2018b), Mhammedi et al. (2019), Parrado-Hernández et al.
(2012), and Rivasplata et al. (2020, 2018). Seeger (2002) used a similar
technique, whereby an independent set of “model selection” samples
is used to learn the prior and the model class. However, unlike in
the works mentioned above, this set is disjoint from the training set
used to find the posterior. Data-dependent priors through differential
privacy were studied by Dziugaite and Roy (2018b), while Rivasplata
et al. (2020) used algorithmic stability. Distribution-dependent priors
are discussed by, e.g., Catoni (2007) and Lever et al. (2010, 2013). We
discuss data-dependent priors further in Sections 6.3 and 8.2.

While mainly focusing on PAC-Bayesian bounds, Catoni (2007,
Thm. 1.2.7) mentioned in passing that similar techniques can be used
to obtain bounds for single draws from the posterior, which is the



5.5. Bibliographic Remarks and Additional Perspectives 91

basis for our terminology of “single-draw.” The generic inequality in
Proposition 5.10 is due to Rivasplata et al. (2020), while Corollary 5.11
can be found in Hellström and Durisi (2020a). Explicit derivations of
more single-draw generalization bounds can be found in Hellström and
Durisi (2021a,b).

Theorem 5.12 and Corollary 5.13 are due to Esposito et al. (2021a),
who also presented several additional bounds and results beyond learning
theory. In (Hellström and Durisi, 2020a), the “strong converse” lemma
from binary hypothesis testing is used to obtain single-draw bounds in
terms of the tail of the information density. Xu and Raginsky (2017)
adapted the monitor technique from Bassily et al. (2016) to convert
their average generalization bound to a single-draw one, albeit with a
detrimental linear dependence on the inverse confidence parameter 1/δ.

Langford and Shawe-Taylor (2002) pointed out that certain mean-
hypothesis generalization bounds follow immediately from standard
PAC-Bayesian bounds, stating that this was essentially folklore, with
further discussion in the work of Seeger (2002). PAC-Bayesian bounds
for aggregated predictors have been studied by, e.g., Alquier and Biau
(2013), Dalalyan and Salmon (2012), Dalalyan and Tsybakov (2007,
2008, 2012), Guedj and Alquier (2013), Leung and Barron (2006),
and Salmon and Dalalyan (2011). Further discussion of this can be
found in Alquier (2024, Sec. 2.2). Germain et al. (2015) introduced the
celebrated C-bound, which studies the behavior of majority votes in
binary classification. Bounds for voting classifiers are also discussed
by Lacasse et al. (2006), while Biggs et al. (2022) and Zantedeschi et al.
(2021) consider stochastic majority votes.

Finally, we provide some pointers to results that we did not explic-
itly cover. As mentioned, a complementary overview of PAC-Bayesian
bounds can be found in the introduction by Alquier (2024), as well as the
primer by Guedj (2019). Two particularly notable topics that we did not
cover are oracle bounds and the localization technique of Catoni (2007).
Oracle bounds, also called excess risk bounds, bound the difference
between the population loss of the posterior (or hypothesis, depending
on the flavor under consideration) and the minimal achievable loss for
the given hypothesis class. Such bounds are covered in Alquier (2024,
Chapter 4). Some notable works proving oracle bounds are Alquier and
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Guedj (2017), Alquier and Lounici (2011), Dalalyan and Salmon (2012),
Dalalyan and Tsybakov (2008, 2012), Rigollet and Tsybakov (2012),
and Salmon and Dalalyan (2011). The localization technique of Catoni
(2007) is a method for selecting a suitable distribution-dependent prior,
and is discussed in Alquier (2024, Sec. 4.5).

Tolstikhin and Seldin (2013) used (3.30) to obtain a relaxation of
Corollary 5.4 to obtain a bound that interpolates between a fast and
slow rate, depending on the value of the training loss, while Thiemann
et al. (2017) considered a relaxation of Corollary 5.4, and provided a
procedure for minimizing it. The connection between PAC-Bayesian
bounds and Bayesian inference is discussed by Germain et al. (2016a),
while the connection to KL-regularized objective functions is covered
by Germain et al. (2009b). PAC-Bayesian bounds for sub-exponential
random variables are discussed by, e.g., Catoni (2004b). Alquier (2006,
2008) used truncated losses in order to handle unbounded loss functions,
while Catoni and Giulini (2018) used a robust loss function to handle
heavy-tailed distributions. Holland (2019) derived PAC-Bayesian bounds
for heavy-tailed losses, obtaining a novel Gibbs posterior on this basis.
Biggs and Guedj (2023) obtained tighter bounds based on the excess risk
by using the underlying difficulty of the problem. Herbrich and Graepel
(2002) and Langford and Shawe-Taylor (2002) derived bounds in terms
of the margins of the learned predictor—an approach recently used
by Biggs and Guedj (2022b) to establish derandomized generalization
bounds. Audibert and Bousquet (2007) combined the chaining technique
(discussed in Section 4.4) with PAC-Bayesian bounds. Similarly, Asadi
and Abbe (2020) derived bounds based on a multilevel relative entropy,
while Clerico et al. (2022b) derived an alternative chained bound. Yang
et al. (2019) derived fast-rate PAC-Bayesian bounds through the use
of Rademacher processes. Saunshi et al. (2019) derived generalization
bounds involving Rademacher complexities for contrastive unsupervised
representation learning (CURL), the state-of-the-art technique to learn
representations (as a set of features) from unlabelled data. Their results
were generalized by Nozawa et al. (2020) to obtain PAC-Bayesian
generalization bounds for CURL, holding for non-i.i.d. data and allowing
for new representation learning algorithms. Mhammedi et al. (2020)
noted that while many works study bounds for the expected risk, i.e., the
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mean performance of an algorithm, this might not be the relevant metrics
in many problems (e.g., medical, environmental or sensitive engineering
tasks). Motivated by this, they presented a PAC-Bayesian generalization
bound for the Conditional Value at Risk (CVaR).2 Chérief-Abdellatif
et al. (2022) analyzed Variational Auto-Encoders (VAE) (Kingma and
Welling, 2019), a popular generative model, through PAC-Bayesian
generalization bounds on the reconstruction error of the VAE, and
used it to study the regularization effect of classical VAE objectives.
Mbacke et al. (2023b) provided further PAC-Bayesian bounds for VAEs,
while Mbacke et al. (2023a) studied adversarial generative models.
Haddouche et al. (2021) considered losses with a hypothesis-dependent
range, and obtained bounds for these through the use of self-bounding
functions. Haddouche and Guedj (2023a) developed bounds for heavy-
tailed loss functions through the use of supermartingales. Amit et al.
(2022) derived bounds in terms of integral probability metrics (IPM),
which includes the total variation and the Wasserstein distance. This
is achieved by essentially using the definition of IPMs as a change
of measure (which is similar to the Kantorovich-Rubinstein duality).
Notably, this can be used to convert uniform convergence bounds,
as those discussed in Section 1.3, into algorithm-dependent bounds
where the uniform convergence bound is multiplied by a total variation
between the posterior and a prior. Recently, Haddouche and Guedj
(2023b) and Viallard et al. (2023) proposed PAC-Bayesian generalization
bounds given in terms of a Wasserstein distance. These bounds hold
for unbounded (possibly heavy-tailed) losses, and are used as training
objectives.

2For any α ∈ (0, 1) and any random variable Z, CVaRα(Z) measures the expec-
tation of Z conditioned on the event that Z is greater than its (1 − α)-th quantile.
See, for instance, Pflug (2000).



6
The CMI Framework

In previous chapters, the majority of the results that we presented
required an absolute continuity assumption to be satisfied. The reason
for this requirement is that without it, quantities such as the mutual
information in Chapter 4 and the relative entropy in Section 5.2 would be
infinite. This absolute continuity requirement is not satisfied when both
the training data and the hypothesis are continuous random variables
and the hypothesis is a deterministic function of the training data. For
average bounds, this issue can be alleviated by the individual-sample
technique of Bu et al. (2020), as discussed in Section 4.2. However, this
approach still yields a vacuous generalization bound when the hypothesis
is a deterministic function of a single training sample. So, while the
individual-sample technique mitigates the problem, the fundamental
issue still remains: the information carried by a single training sample
can be infinite.

These considerations motivate the conditional mutual information
(CMI) approach, introduced to the literature of information-theoretic
generalization bounds by Steinke and Zakynthinou (2020). An essentially
equivalent approach was introduced in the PAC-Bayesian context much
earlier by Audibert (2004) and Catoni (2007), under the name of “almost

94
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exchangeable priors” and “transductive learning,” the motivation of
which was to reduce the variance of PAC-Bayesian generalization bounds.
The terminology used to describe the CMI framework is not uniform—it
has also been referred to as the random-subset setting (Hellström and
Durisi, 2020b), randomized-subsample setting (Rodríguez-Gálvez et al.,
2020), and the supersample setting (Wang and Mao, 2023c). Here, we
will stick with the terms “CMI approach” or “CMI framework.” These
names are motivated by one of the main end-products of the approach:
generalization bounds in expectation given in terms of a conditional
mutual information. As we will show, many of the techniques covered
in the preceding chapters are readily extended to this new setting.

An intuitive view of the CMI framework is that, rather than asking
whether one can identify a given training sample based on the chosen
hypothesis, we instead ask if, given two candidate samples, we can
figure out which one was used for training. Whereas the first question
can reveal infinite information, the second one is a binary question, so
the answer can carry at most 1 bit. From a technical standpoint, this
will guarantee that the desired absolute continuity criterion is always
satisfied. We now introduce the CMI framework more formally.

6.1 Definition of the CMI Framework

The CMI framework consists of the following elements. First, we assume
that we generate a supersample Z̃ = (Z̃1, . . . , Z̃2n) ∈ Z2n consisting
of 2n samples drawn i.i.d. from PZ . Only half of these samples are actu-
ally used for training, as determined by a membership vector S ∈ {0, 1}n,
consisting of n Bernoulli-1/2 random variables that are independent
of each other and Z̃. Specifically, the ith training sample Zi(Si) is
given by Z̃i+Sin, i.e., the Bernoulli-1/2 random variable Si determines
whether Z̃i or Z̃i+n is used for training. Through this procedure, the
training set ZS = (Z1(S1), . . . , Zn(Sn)) is built, and the hypothesis W is
chosen based on this training set. This leads to the Markov chain (Z̃,S)—
ZS—W (i.e., W and (Z̃,S) are conditionally independent given ZS).
We denote the entry-wise modulo-2 complement of S as S̄, i.e., the ith
element of S̄ is given by S̄i = 1 − Si. Note that ZS̄ is conditionally
independent from W given ZS , and can hence be considered a test set.
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We will use the notation PW |Z̃S = PW |ZS
to refer to the conditional

distribution on W that characterizes the learning algorithm and PWZ̃S =
PW |Z̃SPZ̃S for the induced joint distribution on W , Z̃ and S.

It is important to note that this framework is actually just a re-
formulation of the standard learning setting from before. Indeed, the
training set ZS still consists of n i.i.d. samples from PZ , on the basis
of which we select W according to our learning algorithm. Here, the
supersample Z̃ can be viewed as a “ghost sample,” which is used purely
for the purpose of analysis.

The remainder of this chapter is structured as follows. First, we
present generalization bounds in expectation using the CMI framework.
Then, we review PAC-Bayesian bounds in the CMI framework, with
a particular focus on the connection to data-dependent priors, before
briefly discussing single-draw bounds. We end the chapter with some
extensions of the CMI framework. Specifically, we present bounds in
terms of the so-called evaluated and functional CMI, which improve
upon the standard CMI bounds due to the data-processing inequality.
Finally, we present the leave-one-out setting, where the supersample
has size n+ 1 instead of 2n. This turns out to be closely related to the
concept of leave-one-out validation.

6.2 Generalization Bounds in Expectation

We now derive generalization bounds in expectation using the struc-
ture of the CMI framework. In order to keep the notation more com-
pact, we will use the following shorthands: the average population loss
is L = EPWZ̃S

[LPZ
(W )], the average training loss is L̂ = EPWZ̃S

[LZS
(W )],

and the average generalization gap is gen = L− L̂. When originally in-
troducing the CMI framework, Steinke and Zakynthinou (2020) derived
the following bound.

Theorem 6.1. Assume that the range of the loss function ℓ(·, ·) is [0, 1].
Then,

|gen| ≤

√
2I(W ; S|Z̃)

n
. (6.1)

Proof. The proof is very similar to that of Corollary 4.2, but with some
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minor modifications. We begin by noting that, in expectation, the test
loss, i.e., the loss evaluated on the test set ZS̄ , equals the population
loss:

EPWZ̃S

[
LZS̄

(W )
]

= EPWZ̃S
[LPZ

(W )] = L. (6.2)

Hence, a bound on the average difference between the training and
test loss is also a bound on the average generalization gap. To this
end, let gen(W, Z̃,S) = LZS̄

(W ) − LZS
(W ). Note that this quantity

satisfies the symmetry property gen(W, Z̃,S) = −gen(W, Z̃, S̄). Hence,
for any W and Z, we have

EPS

[
gen(W, Z̃,S)

]
= EPS

[
LZS̄

(W ) − LZS
(W )

]
= 0. (6.3)

Furthermore, since ℓ(·, ·) is bounded to [0, 1], it follows that for each i,
the loss difference ℓ(W,Zi(Si)) − ℓ(W,Zi(S̄i)) is bounded to [−1, 1].
Hence, the loss difference is a 1-sub-Gaussian random variable un-
der PS (as well as under QWZ̃PS for every distribution QWZ̃ of (W, Z̃)).
Since gen(W, Z̃,S) is an average of n such terms, it is 1/

√
n-sub-

Gaussian.
Next, by the Donsker-Varadhan variational representation of the

relative entropy, we have

λgen = EPWZ̃S

[
λgen(W, Z̃,S)

]
(6.4)

≤ logEPWZ̃PS

[
eλgen(W,Z̃,S)

]
+D(PWZ̃S ||PWZ̃PS). (6.5)

Note that D(PWZ̃S ||PWZ̃PS) = I(W ; S|Z̃). The rest of the argument
follows the same lines as the proof of Corollary 4.2: specifically, we apply
the sub-Gaussian concentration inequality and optimize over λ, from
which the result follows.

The benefit of the CMI framework can now be clearly seen. No-
tice that we did not need to impose any absolute continuity assump-
tion. Since I(W ; S|Z̃) = D(PWZ̃S ||PWZ̃PS |PZ̃S), we need PWZ̃S to
be absolutely continuous with respect to PWZ̃PS. But since PW |Z̃ is
obtained by marginalising PW |Z̃SPS over the discrete random vari-
able S, this is automatically guaranteed. More specifically, we actually
have I(W ; S|Z̃) ≤ H(S) = n log 2, where H(S) is the entropy of S

(see Definition 3.3). This confirms the motivation for introducing the
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framework: the training set, consisting of n samples, cannot carry more
information than n bits. However, in the worst case scenario where the
trivial upper bound holds with equality—which can occur when PW |Z̃S

represents a deterministic learning algorithm and gives distinct outputs
for each value of S—the resulting generalization bound is vacuous,
since

√
2 log 2 > 1.

The following interesting observation regarding the connection be-
tween CMI and mutual information was noted by Haghifam et al. (2020).
The motivation for having a supersample consisting of 2n data samples
was to normalize the information carried by each training sample to 1 bit.
However, we could have a different scheme where Z̃ consisted of kn sam-
ples, for an integer k > 2, and instead have Si uniformly distributed on
an index set of size k. While such a construction leads to looser bounds
than using k = 2, it can be shown that, when the hypothesis space W
is finite, the resulting conditional mutual information I(W ; S|Z̃) equals
the mutual information I(W ; ZS) in the limit k → ∞.

We note that the assumption of bounded loss can be somewhat
relaxed, as shown in Steinke and Zakynthinou (2020, Thm. 5.1). Specif-
ically, assume that there exists a function ∆ : Z2 → R such that, for
all z1, z2 ∈ Z and w ∈ W , we have |ℓ(w, z1) − ℓ(w, z2)| ≤ ∆(z1, z2). Fur-
thermore, define ∆̄ =

√
EZ1,Z2∼P 2

Z
[∆(Z1, Z2)2]. Due to boundedness, it

is clear that ℓ(w, zi(Si)) − ℓ(w, zi(S̄i)) is ∆(zi(1), zi(0))-sub-Gaussian
under PSi for all w ∈ W, i ∈ [n], and z̃ ∈ Z2n. By following the same
argument as above, this therefore leads to the bound

gen ≤

√
2∆̄2I(W ; S|Z̃)

n
. (6.6)

For simplicity, we will assume a bounded loss throughout this chapter,
but we note that all bounds that are derived through a sub-Gaussianity
argument can be generalized in this way.

While the bound in Theorem 6.1 achieves a slow 1/
√
n-rate with

respect to the training set size, this can, just as before, be improved
at the cost of worse multiplicative constants. In this vein, Steinke and
Zakynthinou (2020) also presented the following average bound. The
result essentially follows along the same lines as Theorem 6.1, but using
Theorem 3.32 for the concentration step.
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Theorem 6.2. Assume that the range of the loss function ℓ(·, ·) is [0, 1].
For all constants γ, λ > 0 satisfying λ(1 − γ) + (eλ − 1 − λ)(1 + γ2) ≤ 0,
we have

L ≤ γL̂+ I(W ; S|Z̃)
λn

. (6.7)

Under the assumption that the learning algorithm interpolates the
training data almost surely, meaning that it achieves zero training loss,
the constants in the bound can be improved.

Theorem 6.3. Assume that the range of the loss function ℓ(·, ·) is [0, 1].
Furthermore, assume that L̂ = 0, meaning that the algorithm interpo-
lates the data almost surely. Then, we have

L ≤ I(W ; S|Z̃)
n log 2 . (6.8)

We will postpone the proof of this result, and instead prove it in
Section 6.5, when we introduce the evaluated CMI. While it is possible
to prove it without reference to evaluated CMI, as was done by Steinke
and Zakynthinou (2020), the proof becomes somewhat shorter once we
introduce it.

The constant log 2 in the bound can be shown to be sharp. Indeed, as
mentioned before, the conditional mutual information is trivially upper-
bounded as n log 2. Inserting this bound into (6.8) yields a population
loss bound of 1. Thus, if the constant could be improved, we would
have a non-trivial generalization bound that holds for any algorithm,
which is not possible.

We now prove a generalization bound with the binary relative
entropy on the left-hand side, as before. The functional form may
appear surprising at first glance, but the reason for this quickly becomes
apparent in the proof.

Theorem 6.4. Assume that the range of the loss function ℓ(·, ·) is [0, 1].
Then, for every γ ∈ R,

dγ

(
L̂

∣∣∣∣∣∣∣∣ L̂+ L

2

)
≤ d

(
L̂

∣∣∣∣∣∣∣∣ L̂+ L

2

)
≤ I(W ; S|Z̃)

n
. (6.9)
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Proof. First, by Jensen’s inequality and the definition of the
parametrized binary relative entropy, we have

d

(
L̂

∣∣∣∣∣∣∣∣ L̂+ L

2

)
= sup

γ
dγ

(
L̂

∣∣∣∣∣∣∣∣ L̂+ L

2

)

≤ sup
γ

EPWZ̃S

[
dγ

(
LZS

(W )
∣∣∣∣∣∣∣∣ LZS

(W ) + LZS̄
(W )

2

)]
≤ sup

γ
EPWZ̃S

[
dγ
(
LZS

(W ) ||LZ̃(W )
)]
. (6.10)

In the last step, we used that for any W and Z, the value of (LZS
(W ) +

LZS̄
(W ))/2 = LZ̃(W ) is actually independent of S—it is just the

average loss on the entire supersample. In fact, for fixed W, Z̃, we have

EPS
[LZS

(W )] = LZ̃(W ). (6.11)

Therefore, under PS , the second argument of the binary relative entropy
in (6.10) is the mean of the first argument—this motivates the form
of the bound. As per usual, we use the Donsker-Varadhan variational
representation of the relative entropy to change measure from PWZ̃S

to PWZ̃PS . Then, we use Theorem 3.31 to find that

logEPWZ̃PS

[
endγ(LZS

(W ) ||LZ̃(W ))] ≤ 0. (6.12)

The final result follows after reorganizing terms.

Without the CMI approach, the corresponding bound in Corol-
lary 4.3 had the training loss as the first argument and the population
loss as the second. Here, we instead have the arithmetic mean of the
training and population loss as the second argument. The reason for this,
as seen in the proof, is that the averaging is done over S rather than Z,
necessitating a different form in order to use the concentration result
for the binary relative entropy. This gives rise to an additional factor of
2—similar to how this extra factor arose in the sub-Gaussian argument
in the proof of Theorem 6.1 where we had to apply sub-Gaussianity to
a bounded random variable with range [−1, 1] instead of [0, 1].

Naturally, the bound in (6.9) can be relaxed as before to obtain a
result that more clearly illustrates the scaling of the bound, by following
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the same recipe used to derive Corollary 5.6. This yields a result very
similar to Theorem 6.2, albeit with slightly different constants.

We conclude this section by discussing the application of the
individual-sample technique and disintegration to the CMI framework.
When introducing the individual-sample technique in Section 4.2, one of
the main motivations was to avoid infiniteness of the mutual information.
Now, as mentioned before, this problem has been solved with the CMI,
which is always finite. However, if the CMI reaches its maximum value,
our bounds are still vacuous—although finite. Hence, it is still of interest
to apply these techniques in the CMI framework. This was done by, for
instance, Haghifam et al. (2020). We present a bound incorporating
these techniques below without proof—as expected, the bound is derived
by suitably adapting the proof methods from Sections 4.2 and 4.3 to
the CMI bound in Theorem 6.1.

Theorem 6.5. Assume that the range of the loss function ℓ(·, ·) is [0, 1].
Then,

gen ≤ 1
n

n∑
i=1

EPZ̃

√IZ̃(W ;Si)
n

 , (6.13)

where IZ̃(W ;Si) = D(PW |Z̃Si
||PW |Z̃ |PSi). Similar extensions can be

obtained for the other CMI bounds in this section.
The application of the individual-sample technique in Theorem 6.5

can be naturally extended as follows. While we have I(W ; S|Z̃) ≤
I(W ; ZS), meaning that the CMI-based generalization bounds improve
on their mutual information-based counterparts (up to constants), the
same does not hold true when comparing Theorem 6.5 to its individual-
sample counterpart in Corollary 4.6. The issue is that conditioning on
the entire supersample can reveal an unnecessarily large amount of
information, so that there are scenarios where we are better off not
using any conditioning. The technical reason behind this is that, in
the derivation of Theorem 6.5, parts of Z̃ that can be marginalized
out in the samplewise decomposition of the generalization error are
not marginalized. This issue was noted by both Rodríguez-Gálvez et al.
(2020) and Zhou et al. (2021), who rectified it to obtain the following
result.
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Theorem 6.6. Assume that the range of the loss function ℓ(·, ·) is [0, 1].
Then,

gen ≤ 1
n

n∑
i=1

EPZ̃iZ̃i+n

√2IZ̃iZ̃i+n(W ;Si)
n

 . (6.14)

The proof of this is essentially the same as for Theorem 6.5, but
with more care taken with regards to marginalization. Due to the data-
processing inequality, this always improves on Corollary 4.6, up to a
constant factor.

6.3 PAC-Bayesian Generalization Bounds

So far, we have used the CMI framework to obtain generalization bounds
in expectation. Indeed, this has been the main focus in the recent CMI
literature. However, as in Chapter 5, we can also derive bounds in
probability, that is, bounds on the PAC-Bayesian or single-draw loss.
PAC-Bayesian bounds were the focus of Audibert (2004) and Catoni
(2007) in their use of almost exchangeable priors. In this section, we will
discuss such PAC-Bayesian generalization bounds in the CMI framework.
These results—which can be seen as PAC-Bayesian analogues of the
results in Section 6.2 or CMI analogues of the results in Section 5.2—can
be derived for all manner of bounds discussed previously. Here, we will
present one such extension of a previous bound, as well as a simplified
version of an excess risk bound due to Grünwald et al. (2021) based on
the Bernstein condition. We will also discuss the relation between the
“CMI prior” and the data-dependent prior mentioned in Section 5.2,
and touch upon some connections to other topics in learning theory.
These latter points will be fleshed out further in Chapter 7.

We begin by presenting a PAC-Bayesian version of Theorem 6.1,
which can also be seen as a CMI version of Corollary 5.3.

Theorem 6.7. Assume that the range of the loss function ℓ(·, ·) is [0, 1]
and assume that PW |Z̃S ≪ QW |Z̃ . Then, with probability at least 1 − δ
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under PZ̃S ,

EPW |Z̃S

[
gen(W, Z̃,S)

]
≤

√√√√ 2
n−1

(
D(PW |Z̃S ||QW |Z̃) + log

√
n

δ

)
.

(6.15)

The role of the unused data points, Z(S̄), and the auxiliary condi-
tional distribution QW |Z̃ , which acts as the prior in the PAC-Bayesian
bounds for the CMI framework, merit some discussion. In the average
bounds presented earlier in this section, these samples are purely hypo-
thetical “ghost samples,” and the data-generation process can be seen
as a thought experiment that is just used for the proofs. In the left-hand
side, averaging gen(W, Z̃,S) over PWZ̃S transforms the test loss LZS̄

(W )
into the ordinary population loss LPZ

(W ). On the right-hand side, the
information measure is the conditional mutual information I(W ; S|Z̃),
where these ghost samples are averaged out.

In contrast, for the data-dependent bound in Theorem 6.7, the
left-hand side depends on the PAC-Bayesian test loss EPW |Z̃S

[
LZS̄

(W )
]
.

Since this is an unbiased estimate of the population loss, one can convert
this into a bound on the PAC-Bayesian population loss through the
triangle inequality (Hellström and Durisi, 2020b, Thm. 3). Furthermore,
the right-hand side actually explicitly depends on these unused training
samples. An upside of this is that this leads to bounds that are actually
manageable to compute. Indeed, given a set of 2n training samples, one
can just implement the subset-selection procedure in practice, use the
obtained ZS to select a hypothesis, and select the prior freely based
on Z̃—provided that one does not use any knowledge of S. This shares
many similarities with the data-splitting approach for data-dependent
priors in PAC-Bayes, discussed in Section 5.2.3, wherein one splits the
training data into two parts: one part ZP for selecting the prior, and
one part ZB for evaluating the training loss in the generalization bound.
Crucially, in the data-splitting approach, the selected hypothesis is still
allowed to depend on all of the training data. The two approaches are
explained pictorially in Fig. 6.1 and Fig. 6.2 respectively.

From a practical standpoint, there are many reasons to prefer the
data-splitting approach. The most obvious difference is that with the
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Z PW |Z

ZB

ZP QW |ZP

LZB
(W )

Evaluate bound

Figure 6.1: The data-splitting approach to data-dependent priors, discussed in
Section 5.2.3.

Z̃ PW |ZS

ZS

QW |Z̃

LZS
(W )

Evaluate bound

S

Figure 6.2: The CMI approach to data-dependent priors.

data-splitting approach, all available samples can be used as input to
the learning algorithm, which typically leads to better performance. Fur-
thermore, the PAC-Bayesian bound can be directly optimized, meaning
that the information measure between posterior and prior is used as a
regularizer. For the CMI approach, such regularization would introduce
illegal dependencies between W and Z̃, violating the Markov property
upon which the proof is based. Thus, the resulting generalization bounds
would no longer hold.

However, if the motivation is to theoretically understand learning
algorithms, rather than to derive risk certificates for practical hypotheses
or to devise the best algorithm, the difference is more conceptual. The
data-splitting approach can be seen as a generalization of compression
schemes (Shalev-Shwartz and Ben-David, 2014). Roughly speaking,
a learning algorithm is a compression scheme of size k if its output
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on any training set Z with n > k samples is the same as its output
on ZC , consisting of k samples from Z. Indeed, a version of the standard
generalization bounds for stable compressors can be derived from the
data-splitting PAC-Bayesian bound by setting ZP = ZC , paying a
union bound cost for the

(n
k

)
possible choices of ZC . Since the output of

the learning algorithm based on Z can be obtained entirely on the basis
of ZC , the relative entropy will vanish, as the data-dependent prior
exactly matches the posterior. So, in this compression-related approach,
the hypothesis is allowed to depend strongly on a few samples, as long
as the dependence on the remaining samples is weak.

The CMI approach, on the other hand, can be seen as drawing
on the notion of algorithmic stability, discussed in Section 1.4. Intu-
itively, algorithmic stability measures how sensitive the output hypoth-
esis is to the inclusion of any one sample in the training set. In a
sense, this is closely related to the CMI. Indeed, the individual-sample
CMI I(W ;Si|Zi, Zi+n) measures how strong the dependence of the hy-
pothesis is on the specific ith sample. This connection is explored in
more detail by Harutyunyan et al. (2021). We will discuss all this further
in Chapter 7, where the information complexity of specific algorithms
is evaluated. Of course, by repeating the arguments from Section 5.2.3,
we can combine the data-splitting technique and the CMI approach.
This ensures that the prior and posterior have a fixed set of samples in
common, which are absent from the training loss in the bound, while the
remaining samples are randomly selected through the CMI procedure.

We conclude this section by stating a variant of a result of Grünwald
et al. (2021, Cor. 1), which provides a PAC-Bayesian excess risk bound
with potentially fast rates. Since the statement of the result and its proof
are quite involved, we will only provide a simplified version without
proof. The full details, including extensions to average bounds through
an exponential stochastic inequality and other variants, can be found
in the work of Grünwald et al. (2021).

Theorem 6.8. Assume that the range of the loss function ℓ(·, ·) is [0, 1].
Furthermore, assume that the β-Bernstein condition is satisfied, i.e.,
for some β ∈ [0, 1], there exists a w∗ ∈ W such that, for all w ∈ W,

EPZ

[
(ℓ(w,Z)−ℓ(w∗, Z))2

]
≤ 4 (EPZ

[ℓ(w,Z)−ℓ(w∗, Z)])β . (6.16)
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Then, for some C1, C2 ∈ R+ with probability at least 1 − δ under PZS
,

EPW |Z̃S

[
gen(W, Z̃,S)

]
≤ min(1, 2β)

(
EPW |Z̃S

[LZS
(W )] − LZS

(w∗)
)

+ C1

EPZ
S̄

[
D(PW |Z̃S ||QW |Z̃)

]
+ log(

√
n)

n


1

2−β

+
C2 log 1

δ√
n

. (6.17)

The first term on the right-hand side of (6.17) is the (scaled) empir-
ical excess risk, i.e., the degree to which the training loss of the learning
algorithm exceeds the training loss of the optimal hypothesis with re-
spect to the population loss. For many algorithms this is negligible, and
for empirical risk minimizers, it is guaranteed to be non-positive. There
are several notable aspects of this result. Since the loss is bounded,
the β-Bernstein condition always holds with β = 0, which means that
the slow rate of 1/

√
n can be obtained (in which case the empirical

excess risk does not enter the bound). However, for smooth losses such
as the squared or logistic loss, it also holds with β = 1, enabling the
relative entropy-dependent term to decay faster. Furthermore, the rela-
tive entropy enters only averaged over the test data. While this leads to
the relative entropy being non-empirical, in the sense that it cannot be
computed based on the training set and learning algorithm, it can still
be shown to be bounded in several cases, such as for hypothesis classes
with bounded VC dimension. Indeed, this is the main focus of Grünwald
et al. (2021): deriving a fast-rate bound that is well-behaved for VC
classes. We will discuss this further in Section 7.3. We emphasize again
that the result in Theorem 6.8 is not stated in its full generality nor
tightness, but has been significantly simplified in terms of assumptions,
constants, and logarithmic dependencies in the interest of brevity.

6.4 Single-Draw Generalization Bounds

Before moving on to extensions of the CMI framework, we turn to
single-draw bounds. As for the average and PAC-Bayesian bounds, we
can also derive CMI versions of the single-draw bounds from Section 5.3.

We begin by stating a basic single-draw bound, now given in terms
of the conditional information density ı(W,S|Z̃). When averaged over
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the joint distribution PWZ̃S , the conditional information density gives
the CMI I(W ; S|Z̃)—hence the name. As the proof is a straightforward
adaptation of previous derivations, we do not give it explicitly.

Theorem 6.9. Assume that the range of the loss function ℓ(·, ·) is [0, 1].
Then, with probability at least 1 − δ under PWZ̃S ,

∣∣∣gen(W, Z̃,S)
∣∣∣ ≤

√√√√ 2
n− 1

(
ı(W,S|Z̃) + log

√
n

δ

)
. (6.18)

The techniques from Section 5.3.2, where repeated uses of Hölder’s
inequality were used to obtain a generic bound on the probability of an
event under one distribution in terms of another, can also be extended
to the CMI framework. In terms of the proof, we need to consider three
random variables, perform the change of measure conditioned on one
of them, and make use of Hölder’s inequality an additional time. We
present the generic result below.

Theorem 6.10. For all constants α, γ, α′, γ′, α̃, γ̃ > 1 such that 1/α+
1/γ = 1/α′ + 1/γ′ = 1/α̃ + 1/γ̃ = 1 and all measurable sets E ∈
W × Z2n × {0, 1}n,

PWZ̃S [E ] ≤E1/γ̃
PZ̃

[
Eγ̃/γ

′

PW |Z̃

[
P
γ′/γ
S

[
EWZ̃

]]]
× (6.19)

E1/α̃
PZ̃

[
Eα̃/α

′

PW |Z̃

[
Eα

′/α
PS

[
eαı(W,S|Z̃)

]]]
.

Here, EWZ̃ = {S : (W, Z̃,S) ∈ E}.

Proof. First, we rewrite PWZ̃S[E ] in terms of the expectation of the
indicator function 1E and perform a change of measure:

PWZ̃S [E ] = EPW |Z̃PZ̃S

[
1E ·

dPWZ̃S

dPW |Z̃PZ̃S

]
(6.20)

= EPW |Z̃PZ̃PS

[
1E · eı(W,S|Z̃)

]
. (6.21)

To obtain the desired result, we apply Hölder’s inequality thrice. Let α,
γ, α′, γ′, α̃, γ̃ > 1 be constants such that 1/α+ 1/γ = 1/α′ + 1/γ′ =
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1/α̃+ 1/γ̃ = 1. Then,

PWZ̃S [E ] ≤ EPW |Z̃PZ̃

[
E1/γ
PS

[
1EWZ̃

]
·E1/α
PS

[
eαı(W,S|Z̃)

] ]
(6.22)

≤ EPZ̃

[
E1/γ′

PW |Z̃

[
P
γ′/γ
S

[
EWZ̃

]]
· E1/α′

PW |Z̃

[
Eα

′/α
PS

[
eαı(W,S|Z̃)

]] ]
≤ E1/γ̃

PZ̃

[
Eγ̃/γ

′

PW |Z̃

[
P
γ′/γ
S

[
EWZ̃

]] ]
· E1/α̃

PZ̃

[
Eα̃/α

′

PW |Z̃

[
Eα

′/α
PS

[
eαı(W,S|Z̃)

]] ]
.

Many different types of bounds can be obtained by making different
choices for the three free parameters in Theorem 6.10. We will focus on
a choice that leads to bounds in terms of a version of the conditional α-
mutual information (Definition 3.14).

We emphasize two properties of the conditional α-mutual informa-
tion. First, in the limit α → ∞, it reduces to the conditional maximal
leakage (Issa et al., 2020, Thm. 6):

L(S → W |Z̃) = log ess sup
PZ̃

EPW |Z̃

ess sup
PS|Z̃

eı(W,S|Z̃)

 . (6.23)

Second, for α > 1, one can see that the conditional α-mutual information
is upper-bounded by the conditional Rényi divergence of order α, as
shown in (3.27).

After this aside, we return to presenting the generalization bound
in terms of the conditional α-mutual information.

Corollary 6.11. Assume that the range of the loss function ℓ(·, ·) is [0, 1].
Then, for any fixed α > 1, the following holds with probability at
least 1 − δ under PWZ̃S :

∣∣∣gen(W, Z̃,S)
∣∣∣ ≤

√
2
n

(
Iα(W ; S | Z̃) + log 2 + α

α− 1 log 1
δ

)
. (6.24)

Proof. In (6.19), set α̃ = α and let α′ → 1, which implies that γ̃ = γ

and γ′ → ∞. Also, let E be the error event

E = {W, Z̃,S :
∣∣∣gen(W, Z̃,S)

∣∣∣ > ε}. (6.25)
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For this choice of parameters, the second factor in (6.19) reduces to

E1/α
PZ̃

[
EαPW |Z̃

[
E1/α
PS

[
exp

(
αı(W,S|Z̃)

)]]]
= exp

(
α− 1
α

Iα(W ; S | Z̃)
)
. (6.26)

Furthermore, we can bound PS

[
EWZ̃

]
in the first factor in (6.19) by

using sub-Gaussianity to find that, for all W and Z̃,

PS

[
EWZ̃

]
≤ 2 exp

(
−nε2

2

)
. (6.27)

Using this in the first factor of (6.19), we conclude that

lim
γ′→∞

E1/γ
PZ̃

[
Eγ/γ

′

PW |Z̃

[
P
γ′/γ
S

[
EWZ̃

]]]
= E1/γ

PZ̃

ess sup
PW |Z̃

P
1/γ
S

[
EWZ̃

]γ
≤
(

2 exp
(

−nε2

2

))1/γ

. (6.28)

By substituting (6.26) and (6.28) into (6.19), noting that 1/γ = (α−
1)/α, we conclude that

PWZ̃S [E ] ≤
(

2 exp
(

−nε2

2

))α−1
α

· exp
(
α− 1
α

Iα(W ; S | Z̃)
)
. (6.29)

We obtain the desired result by requiring the right-hand side of (6.29)
to equal δ and solving for ε.

By letting α → ∞, we obtain a generalization bound in terms of
the conditional maximal leakage:

∣∣∣gen(W, Z̃,S)
∣∣∣ ≤

√
2
n

(
L(S → W |Z̃) + log 2

δ

)
. (6.30)

It can be shown that L(S → W |Z̃) ≤ L(ZS → W ) (Hellström and
Durisi, 2020b, Thm. 5). Thus, up to constants and the penalty term
incurred to obtain a bound on the population loss (as per Hellström
and Durisi, 2020b, Thm. 3), (6.30) improves on (5.39).
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6.5 Evaluated CMI and f -CMI

As noted by Steinke and Zakynthinou (2020), there is a potential
deficiency that comes with measuring information as captured by the
hypothesis W itself. For instance, if W is a real number, we can take the
output of an algorithm with low CMI, and change W so that it encodes
the training set in its insignificant digits. For most settings, this change
should have a negligible effect on the generalization of the algorithm,
but the CMI will be maximized, leading to vacuous bounds. Another
way to see the issue is to consider the case where W consists of the
weights of a neural network. Neural networks (which will be discussed in
Chapter 8) typically possess many symmetries, such as permutation and
scaling invariance, so that different values of W can represent the exact
same function. Ideally, we would want to obtain generalization bounds
in terms of a measure that is more directly related to the predictions
our hypothesis produces and the losses that they incur.

As it turns out, this can be accomplished in a straightforward way.
In fact, we barely need to change the derivations we have used so far.
Consider, for instance, the derivation of Theorem 6.1. In the proof, W
only appears in a “processed” version, either through the loss on a
training sample or the loss on a test sample. Hence, the derivation
can be adapted so that no explicit mention is made of W , but instead,
only the losses that it incurs on the supersample appear in both the
derivation and the final result. Motivated by this, we introduce the
notation Λ ∈ [0, 1]2n to denote the random vector that contains the
losses that the hypothesis incurs on the entire supersample. Specifically,
the ith element of Λ is Λi = ℓ(W, Z̃i). Now, we proceed as in the
proof of Theorem 6.1, with Λ replacing W . As observed by Steinke
and Zakynthinou (2020), this leads to a bound in terms of I(Λ; S|Z̃),
referred to as the evaluated CMI, or e-CMI for short. In fact, as pointed
out by Haghifam et al. (2022), we can even avoid any explicit reference
to the supersample, leading to a bound in terms of the evaluated mutual
information I(Λ; S), abbreviated as e-MI. For Theorem 6.1, this can be
taken even further, in fact, by noting that only the difference between
training and test losses actually enters the derivation, as done by Wang
and Mao (2023c). To this end, we define the vector of loss differences ∆,
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with elements given by ∆i = ℓ(W, Z̃i+n) − ℓ(W, Z̃i), and the resulting
loss-difference mutual information I(∆; S), or ld-MI for short. This gives
rise to the following three upper bounds on the average generalization
error. While we only present the bounds for the full-sample square-root
bound, analogous results can be derived for other comparator functions
and using individual samples.

Theorem 6.12. Assume that the range of the loss function ℓ(·, ·) is [0, 1].
Then,

gen ≤

√
2I(∆; S)

n
≤

√
2I(Λ; S)

n
≤

√
2I(Λ; S|Z̃)

n
. (6.31)

Proof. We start off by rewriting the generalization gap in terms of ∆:

EPWZ̃S

[
LZS̄

(W )−LZS
(W )

]
=EPΛZ̃S

[
1
n

n∑
i=1

(
Λi+S̄in

−Λi+Sin

)]
(6.32)

= EPΛS

[
1
n

n∑
i=1

(
Λi+S̄in

−Λi+Sin

)]
(6.33)

= EP∆S

[
1
n

n∑
i=1

(−1)Si∆i

]
. (6.34)

The remainder of the proof proceeds by changing measure to P∆PS

through the use of the Donsker-Varadhan variational representation of
the relative entropy. The remaining steps of the proof are identical to
those used in deriving Theorem 6.1. The relaxation in terms of the e-MI
follows due to the data-processing inequality. Finally, since S and Z̃

are independent, the relaxation in terms of the e-CMI follows since
conditioning on independent random variables does not decrease mutual
information.

Expressing generalization bounds in terms of ld-MI, e-MI, and e-
CMI can have drastic consequences for the tightness of the resulting
bound. This new approach guarantees that any two hypotheses that
lead to the same losses on the supersample will be considered equivalent
by our information measure. While we will not present it explicitly, it is
of course possible to apply this approach to the other bounds discussed
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in the previous sections, including the PAC-Bayesian and single-draw
bounds.

By the data-processing inequality, bounds in terms of the CMI from
earlier in this chapter can be re-obtained from the ld-MI. For supervised
learning, where the learning algorithm implements a function fW :
X → Y, we can also consider the functional CMI (f -CMI), studied
by Harutyunyan et al. (2021). Specifically, if we assume that each sample
consists of label—example pairs Z̃i = (X̃i, Ỹi), and let F = (F1, . . . , F2n)
denote the vector of predictions induced by W , i.e., Fi = fW (X̃i), we
get the following chain of inequalities:

I(∆; S) ≤ I(Λ; S) ≤ I(Λ; S|Z̃) ≤ I(F; S|Z̃) ≤ I(W ; S|Z̃). (6.35)

Here, each step is a consequence of the data-processing inequality (or
conditioning on independent random variables). Thus, the tightest of
these bounds is the one in terms of the ld-MI, and all the others can
be obtained in a straightforward way from this. It should be noted
that the bounds in terms of evaluated mutual informations are, in a
sense, more restrictive: they only apply to a specific loss function. In
contrast, bounds in terms of the f -CMI and CMI bounds apply to
any bounded loss function. Finally, bounds in terms of the CMI only
require knowledge of the hypothesis itself. In Chapters 7 and 8, we will
provide interpretations of each of these information-theoretic quantities
as components of generalization bounds.

We end this section by providing the promised proof of the sharp
generalization bound for interpolating learning algorithms, as mentioned
after Theorem 6.3. We will do this through a communication-inspired
proof, due to Wang and Mao (2023c).

Theorem 6.13. Assume that the loss function is binary, meaning that
for all w ∈ W and z ∈ Z, ℓ(w, z) ∈ {0, 1}. Consider an interpolating
learning algorithm, so that the training loss L̂ = 0. Then,

L = 1
n

n∑
i=1

I(∆i;Si)
log 2 ≤ I(∆; S)

n log 2 . (6.36)

Proof. Consider the weighted directed graph in Fig. 6.3, depicting the
communication channel between Si and ∆i = ℓ(W, Z̃i+n) − ℓ(W, Z̃i)
that is induced by the learning problem.
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Figure 6.3: Communication channel from Si to ∆i induced by the learning algorithm.

We can now interpret the meaning of these transitions, and hence
their probabilities. First, notice that both 0 → −1 and 1 → 1 imply
that the learning algorithm incurs a loss on the training sample, which
contradicts the interpolating assumption. Hence, we have εi = 0. Next,
note that any transition to ∆i = 0 means that the test loss is zero, so
that we do not incur a loss. Only the transitions 0 → 1 and 1 → −1
represent situations where a loss is incurred. Hence, for each input, the
probability of incurring a loss on the test sample is 1 −αi. Furthermore,
for the specified communication channel, it can be shown that the
Shannon capacity (with εi = 0) is (1 − αi) log 2 (Cover and Thomas,
2006, Problem 7.13). It is well-known that this equals the mutual
information between input and output for a uniform input distribution,
i.e., I(∆i;Si). Hence,

L = 1
n

n∑
i=1

EP∆S

[
(−1)Si∆i

]
= 1
n

n∑
i=1

(1 − αi) = 1
n

n∑
i=1

I(∆i;Si)
log 2 . (6.37)

The full-sample relaxation follows by the chain rule and conditioning
on independent random variables.

Thus, remarkably, for the case of a binary loss and interpolating
learning algorithm, the average population loss can be exactly charac-
terized in terms of the samplewise, loss-difference mutual information.
By progressively upper-bounding this information measure through the
data-processing inequality and the chain rule of mutual information,
we can go step by step all the way to bounds in terms of the mutual
information between the hypothesis and the training data. More on
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this result, as well as several interesting extensions, can be found in the
work of Wang and Mao (2023c).

Now, Theorem 6.13 and data-processing do not directly imply The-
orem 6.3, since the latter assumes a generic bounded loss. In order to
relate these two results, we need the following observations. Let ℓ(·, ·) be
a generic loss function bounded to [0, 1], and let ℓ̃(·, ·) denote a binarized
version of the underlying loss function, given by ℓ̃(w, z) = 1{ℓ(w, z) > 0}.
Let L̃ denote the population loss with respect to ℓ̃(·, ·), and let ∆̃ denote
the loss-difference vector with respect to ℓ̃(·, ·). Since ℓ̃(·, ·) is an upper
bound to ℓ(·, ·), we have L ≤ L̃. Furthermore, since ∆̃ is a processed
version of ∆, we have I(∆̃i;Si) ≤ I(∆i;Si). Thus, Theorem 6.13 can
be relaxed in order to obtain Theorem 6.3.

6.6 Leave-One-Out CMI

When we introduced the CMI framework, the size of the supersample
being 2n was natural: the aim was to normalize the information carried
by each sample to 1 bit. Then, the bounds were derived by comparing
the loss on the randomly selected samples, which gives a training loss,
and the loss on the parts of the supersample that were not selected,
which gives a test loss. In a sense, however, the n unused samples of Z̃

seem quite wasteful. Indeed, if we instead were to use all but one sample
for the training set, the single remaining sample would suffice for a test
loss that provides an unbiased estimate of the population loss.

As it turns out, a variant of the CMI framework where the su-
persample is of size n+ 1 is possible, as demonstrated independently
by Haghifam et al. (2022) and Rammal et al. (2022). In order to avoid
confusion with the 2n-supersample setup, we will use a slightly different
notation. Specifically, we let Ż = (Ż1, . . . , Żn+1) denote a vector of n+1
samples drawn independently from PZ , and let U be drawn uniformly
at random from [n + 1] = {1, . . . , n + 1}. Based on this, the training
set ZŪ is formed by removing the Uth element from Ż, while the Uth
element ZU is a test sample. We denote the vector of losses on the
supersample by Λ̇, with elements given by Λ̇i = ℓ(W, Żi). Throughout,
we assume that the range of ℓ(·, ·) is [0, 1]. Using this setup, we can
derive bounds in terms of the leave-one-out CMI I(W ;U |Ż), or loo-CMI
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for short, or analogous variants as we have seen before, such as the
evaluated loo-MI I(Λ̇;U). The name is due to its connections to the
leave-one-out loss cross validation error, defined as

loo-cv(Λ̇, U) = 1
n

∑
i ̸=U

Λ̇i − Λ̇U . (6.38)

Note that, when averaged over the joint distribution of the random
variables involved, the leave-one-out cross validation error equals the
generalization gap gen.

Compared to the CMI quantities from before, the loo-CMI is sig-
nificantly less complex to compute. When computing the CMI (and
evaluated versions of it), one needs to average over the 2n possible
values of S. In contrast, for the loo-CMI, U can only take n+ 1 possible
values—an exponential reduction in the number of cases that need to
be considered.

With this notation in place, let us derive generalization bounds. For
the change of measure step, there are no surprises: we can simply use,
for instance, the Donsker-Varadhan variational representation of the
relative entropy to replace the true joint distribution with one where U
is independent from the other random variables. For the concentration
of measure step, we need the following result.

Lemma 6.14. Assume that the range of the loss function ℓ(·, ·) is [0, 1].
For all Λ̇ and λ ∈ R,

EPU

[
exp

(
λloo-cv(Λ̇, U) − λ2(n+ 1)2

8n2

)]
≤ 1. (6.39)

This looks very similar to the exponential inequality for sub-Gaussian
random variables from Definition 3.23, and can be used in an analogous
way to derive generalization bounds. The proof of this result is given
by Rammal et al. (2022). A simpler bound (of the same order), as
used by Haghifam et al. (2022), can be obtained by simply noting
that loo-cv(Λ̇, U) is bounded to [−1, 1] and using the fact that bounded
random variables are sub-Gaussian. This gives

EPU

[
exp

(
λloo-cv(Λ̇, U) − λ2

2

)]
≤ 1, (6.40)
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which can also be directly obtained from (6.39) by using the fact
that (n+ 1)/n ≤ 2.

As before, by following the recipe from the proof of Corollary 4.2,
we can obtain the following generalization bound.

Theorem 6.15. Assume that the range of the loss function ℓ(·, ·) is [0, 1].
Then,

|gen| ≤ n+ 1
n

√
I(Λ̇;U)

2 . (6.41)

Proof. We begin from (6.39). By averaging over PΛ̇, changing measure
to PΛ̇U , and using Jensen’s inequality, we get, for λ > 0,

EPΛ̇U

[
loo-cv(Λ̇, U)

]
≤ λ(n+ 1)2

82 + I(Λ̇;U)
λ

. (6.42)

As previously mentioned, the average of the leave-one-out cross-
validation loss is the generalization gap. The result follows by optimizing
over λ and repeating the argument for λ < 0.

Unlike most generalization bounds that we reviewed so far, the result
in Theorem 6.15 does not decay with n (ignoring the n-dependence of
the information measure). Since U can take at most n + 1 values, a
trivial upper bound on the evaluated loo-MI is I(Λ̇;U) ≤ log(n+ 1), so
the bound could grow logarithmically with n in the worst case.

Finally, we present a bound for interpolating learning algorithms
in terms of the evaluated loo-MI due to Haghifam et al. (2022). As
for Theorem 6.13, this result can be derived through an argument
that, essentially, just uses the Shannon capacity formula of a suitably
chosen discrete memoryless communication channel. The proof below,
which follows the one of Haghifam et al. (2022), proceeds without
explicit reference to such a channel, and instead simply relies on the
manipulation of information-theoretic quantities.

Theorem 6.16. Assume that the loss function is binary, meaning that
for all w ∈ W and z ∈ Z, ℓ(w, z) ∈ {0, 1}. Consider an interpolating
learning algorithm, so that the training loss L̂ = 0. Then,

L = I(Λ̇;U)
log(n+ 1) . (6.43)
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Proof. To prove this result, we will simply compute the entropies in
the decomposition I(Λ̇;U) = H(Λ̇) −H(Λ̇|U). For i ∈ [n+ 1], let 0(i)

denote the n + 1 vector with 0(i)
j = 0 for j ̸= i and 0(i)

i = 1, and
let 0(0) denote the all-zeros vector of size n + 1. Since the learning
algorithm is interpolating, Λ̇ can incur a loss for at most one element
of Ż, and hence, the support of Λ̇ is the set {0(i) : i ∈ {0, . . . , n+ 1}}.
For i > 0, P [Λ̇ = 0(i)] is the probability of not training on the ith
sample times the probability of incurring a loss on that sample if it is
not used for training—i.e., the test loss. Hence,

P [Λ̇ = 0(i)] = 1
n+ 1P [Λ̇ = 0(i)|U = i] = L

n+ 1 . (6.44)

Furthermore, P [Λ̇ = 0(0)] is the probability of not incurring a loss on
the test sample, i.e., 1 −L. Hence, we can calculate the entropy of Λ̇ as

H(Λ̇) = −
n+1∑
i=0

P [Λ̇ = 0(i)] log
(
P [Λ̇ = 0(i)]

)
(6.45)

= −(1 − L) log(1 − L) − L log
(

L

n+ 1

)
. (6.46)

Through a similar calculation, we get

H(Λ̇|U) = −(1 − L) log(1 − L) − L log(L) . (6.47)

Putting it all together, we find that

I(Λ̇;U) = H(Λ̇) −H(Λ̇|U) = L log(n+ 1), (6.48)

from which the result follows.

As noted after Theorem 6.13, this result can be leveraged to obtain
a bound for generic bounded losses.

We thus have two characterizations of the binary loss of interpolating
learning algorithms that hold with equality, both from Theorem 6.13
and Theorem 6.16. Hence, it follows that the two characterizations must
be equivalent, implying that

1
n

n∑
i=1

I(∆i;Si)
log 2 = I(Λ̇;U)

log(n+ 1) . (6.49)

This dual perspective may be beneficial in specific applications, making
it possible to choose whichever representation is easier to analyze.
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6.7 Bibliographic Remarks and Additional Perspectives

The underlying concept of the CMI framework can be traced back to
the work of Audibert (2004) under the name of almost exchangeable
priors. Specifically, a function Q on Z2n is almost exchangeable if, for
any permutation π such that {π(i), π(i+ n)} = {i, i+ n} for all i ∈ [n],
it satisfies (Audibert, 2004, Definition 1.1)

Q(Z̃ ′
1, . . . , Z̃

′
2n) = Q(Z̃ ′

π(1), . . . , Z̃
′
π(2n)) (6.50)

for any Z̃ ′ ∈ Z2n. Given a Z̃ ′ = (Z,Z ′) ∈ Z2n, where the first n
samples are the training set and the last n are n independent samples (a
“ghost sample”), an almost exchangeable prior is an almost exchangeable
function of Z̃ ′. Thus, it has to be invariant to permutations that swap n-
separated pairs, i.e., the ith training sample with the ith independent
ghost sample. This ensures that the prior does not encode knowledge
of which samples are in the training set. Such priors were also used
by Catoni (2007) in the transductive learning setting.

This is equivalent to the CMI prior QW |Z̃ , from the independently
constructed CMI framework of Steinke and Zakynthinou (2020). Specif-
ically, in both cases, the prior is allowed to depend on the training
set and a ghost sample, as long as it cannot tell one from the other.
There is a very slight difference in formulation between the two settings:
for almost exchangeable priors, Z̃ ′ is ordered so that the training set
comes first, followed by the ghost sample, and the function is required
to be invariant to permutations within pairs. For the CMI framework,
the n-separated pairs of Z̃ are instead randomly assigned, which di-
rectly eliminates the information of which samples are in the training
set. Hence, the CMI prior is allowed to depend in an arbitrary way on Z̃.
In the end, both formulations lead to equivalent results. We remark
once more, though, that the construction of Steinke and Zakynthinou
(2020) was formulated independently and with a different motivation.

Many of the results from this chapter were introduced already in the
work of Steinke and Zakynthinou (2020), namely Theorems 6.1 to 6.3;
the extension to unbounded losses in (6.6); and the concept of e-CMI
from Section 6.5. Bounds in terms of a generic convex function, and the
specific bound from Theorem 6.4, can be found in (Hellström and Durisi,
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2022a). The use of disintegration and the random-subset technique for
the CMI framework, as in Theorem 6.5, was introduced by Haghifam
et al. (2020), later extended in the form of Theorem 6.6 independently
by Rodríguez-Gálvez et al. (2020) and Zhou et al. (2021).

The tail bounds in Theorems 6.7 and 6.9 can be found in Hell-
ström and Durisi (2020a). As mentioned, the PAC-Bayesian bound in
Theorem 6.8 is a heavily simplified version of the result of Grünwald
et al. (2021, Thm. 1). This result, which gives fast-rate CMI-flavored
PAC-Bayesian bounds under the Bernstein condition, is significant in
how is leads to non-trivial fast-rate bounds in terms of the VC di-
mension, which was previously shown to be impossible for standard
PAC-Bayesian bounds (Livni and Moran, 2017). We will discuss this
further in Section 7.3. The single-draw bounds in Theorem 6.10 and
Corollary 6.11 can be found in Hellström and Durisi (2020a), and are
extensions of bounds from Esposito et al. (2021a) to the CMI setting.

As pointed out, the concept of e-CMI was introduced by Steinke and
Zakynthinou (2020). This was studied further by Haghifam et al. (2022),
Harutyunyan et al. (2021), Hellström and Durisi (2022a), Rammal et al.
(2022), and Wang and Mao (2023c), who extended the original bounds in
various ways. The form given in Theorem 6.12 is due to Wang and Mao
(2023c), as is the result in Theorem 6.13. The extension to leave-one-out
CMI, discussed in Section 6.6, was introduced essentially simultaneously
by Haghifam et al. (2022) and Rammal et al. (2022). The result in
Theorem 6.15 is due to Rammal et al. (2022), while Theorem 6.16 is
from Haghifam et al. (2022). The information-theoretic approach to
generalization was combined with techniques from algorithmic stability
by Wang and Mao (2023b), leading to improved bounds for certain
stochastic convex optimization problems. Recently, Sachs et al. (2023)
derived bounds in terms of an algorithm-dependent Rademacher com-
plexity, which is conceptually similar to the CMI framework. Finally,
Sefidgaran et al. (2023) used related ideas, combined with the infor-
mation bottleneck and the minimum description length principle, to
obtain generalization bounds for representation learning.
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7
The Information Complexity of Learning

Algorithms

As argued in Section 2.2, one of the benefits of the information-theoretic
approach to analyzing generalization is that the resulting bounds depend
on both the learning algorithm and the data distribution. This is in
contrast to the uniform convergence-flavored bounds of Section 1.3, i.e.,
bounds that hold uniformly over all data distributions, or even uniformly
over all hypotheses. Still, this is not very useful if we cannot compute
or bound the information measures that appear in the information-
theoretic generalization bounds.

In this chapter, we study these information measures for specific
learning algorithms. We begin by looking at the Gibbs posterior, which
naturally emerges as the minimizer of some PAC-Bayesian bounds,
and whose generalization error can be exactly characterized via a sym-
metrized relative entropy. After this, we discuss the Gaussian location
model, wherein the learner aims to estimate the mean of a Gaussian dis-
tribution. This simple setting allows us to exactly evaluate the training
and population losses, as well as several information measures, and thus
allows us to compare various bounds for a concrete setting. Next, we
consider the VC dimension, which plays a fundamental role in uniform
convergence-flavored generalization bounds, as well as bounds for com-
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pression schemes. It can be shown that, in many cases, such uniform
convergence-flavored bounds can (essentially) be recovered from the
information-theoretic bounds from the previous chapters. We refer to
this property as the expressiveness of the bounds—i.e., the extent to
which the information-theoretic bounds are able to express results from
alternative frameworks. Finally, we discuss connections to algorithmic
stability and privacy measures. We postpone applications to neural
networks and gradient-based algorithms, such as stochastic gradient
descent and stochastic gradient Langevin dynamics, to Chapter 8.

7.1 The Gibbs Posterior

Given a generalization bound, it is tempting to design a learning algo-
rithm so as to minimize it. So far, when presenting information-theoretic
bounds, we have considered a specific learning algorithm, characterized
in terms of a posterior PW |Z . Given this posterior, we mostly focused on
the prior given by the marginal distribution PW , as this typically mini-
mizes the bounds in expectation. However, a slightly different approach
is possible, as we exemplified when discussing PAC-Bayesian bounds
in Section 5.2. There, we discussed bounds that hold for any prior and
posterior. Crucially, the bounds based on the Donsker-Varadhan varia-
tional representation of the relative entropy in Theorem 3.17 actually
hold simultaneously for all posteriors. This is because of the supremum
over P in (3.34). This implies that for a fixed prior, we can choose the
posterior that minimizes the bound.

Of particular relevance is the Gibbs posterior. Given a prior QW ,
a training loss LZ(W ), a parameter λ referred to as the inverse tem-
perature, the Gibbs posterior for any measurable set E ⊆ W is given
by

PGW |Z(E|Z) =
∫

E exp(−λLZ(w)) dQW (w)∫
W exp(−λLZ(w)) dQW (w) . (7.1)

The normalization constant in the denominator, referred to as the parti-
tion function, is a random variable that depends on Z. This terminology
comes from statistical physics, where the Gibbs posterior also appears
under the name of Boltzmann distribution. For later use, it will be
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convenient to define the log-partition function

Ψλ(Z) = log
∫

W
exp(−λLZ(w)) dQW (w). (7.2)

The relevance of the Gibbs posterior is that it is the minimizer of
many PAC-Bayesian bounds. Specifically, we have the following result,
which is a simple consequence of the Donsker-Varadhan variational
representation of the relative entropy applied conditionally on Z.

Lemma 7.1. Let the prior QW be given. Then, for any PW |Z ,

EPW |Z [LZ(W )] +
D(PW |Z ||QW )

λ
≥ − 1

λ
Ψλ(Z), (7.3)

and equality is achieved uniquely by the Gibbs posterior PGW |Z .

The inverse temperature parameter λ controls the trade-off between
the influence of the prior and the influence of the data, and the rel-
ative entropy D(PW |Z ||QW ) acts as a regularizer. On the one hand,
when λ → ∞, we completely ignore this regularizer and perform un-
fettered empirical risk minimization. On the other hand, if λ → 0, the
optimal posterior equals the prior, and we pay no mind to the collected
data. In PAC-Bayesian bounds such as (5.14), the inverse temperature
is typically chosen to be proportional to n. This leads to a very sensible
trade-off: when the amount of data is small, we are not easily convinced
to stray far from the prior. However, when the amount of data grows
large, we are inclined to place more importance on it, without relying
much on the prior.

Lemma 7.1 can be used to obtain bounds on the average generaliza-
tion error of the Gibbs posterior. To that end, we start with a simple
observation based on Corollary 4.2 and the identity

inf
λ>0

(
aλ+ b

λ

)
= 2

√
ab. (7.4)

Suppose that ℓ(w,Z) is σ-subgaussian for all w ∈ W. Then, for any
PW |Z and any λ > 0,

E[LPZ
(W )] ≤ E[LZ(W )] + I(W ; Z)

λ
+ λσ2

2n . (7.5)
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It is tempting to use this inequality to construct a learning algorithm
with small expected population loss as follows: fix the inverse temper-
ature λ > 0 and then choose PW |Z to minimize the right-hand side
of (7.5). However, the mutual information I(W ; Z) depends on both
PW |Z and on the marginal distribution PZ , while the learning algorithm
has to be designed without knowledge of PZ . This can be solved by
relaxing the bound using the so-called golden formula for the mutual
information: for any QW ≪ PW , we have (Csiszar and Körner, 2011,
Eq. (8.7))

I(W ; Z) = D(PW |Z∥QW |PZ) −D(PW ∥QW ). (7.6)

Using this, along with the fact that the relative entropy is nonnegative,
we can weaken (7.5) to

EPWZ
[LPZ

(W )] ≤ EPWZ
[LZ(W )] +

D(PW |Z∥QW |PZ)
λ

+ λσ2

2n (7.7)

= EPZ

[
EPW |Z [LZ(W )] +

D(PW |Z∥QW )
λ

]
+ λσ2

2n . (7.8)

Thus, applying Lemma 7.1 conditionally on Z, we arrive at the following.

Theorem 7.2. Assume ℓ(w,Z) is σ-subgaussian under PZ for all w ∈ W .
Then, the expected population loss of the Gibbs posterior PGW |Z at
inverse temperature λ satisfies

E[LPZ
(W )] ≤ − 1

λ
E[Ψλ(Z)] + λσ2

2n . (7.9)

Bounds of this sort are common in the PAC-Bayes literature (Catoni,
2007; McAllester, 1998, 1999; Zhang, 2006). To instantiate them in a
given setting, we need lower bounds on the log-partition function Ψλ(Z),
which are typically derived on a case-by-case basis. As an example, we
give the following result, due to Pensia et al. (2018).

Theorem 7.3. Assume the following:

1. The hypothesis space W is the d-dimensional Euclidean space Rd.

2. The loss function ℓ(w, z) is differentiable in w, and its gradient
∇ℓ(w, z) with respect to w is Lipschitz-continuous uniformly in z,
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that is, there exists a constant M > 0, such that for all w,w′ ∈ W

sup
z∈Z

∥∇ℓ(w, z) − ∇ℓ(w′, z)∥ ≤ M∥w − w′∥ (7.10)

where ∥ · ∥ denotes the Euclidean (ℓ2) norm on Rd.

3. For every realization of Z, all global minimizers of the training
loss LZ(W ) lie in the ball of radius R centered at 0.

4. The loss ℓ(w,Z) is σ-subgaussian under PZ for all w ∈ W.

Let PGW |Z be the Gibbs posterior with inverse temperature λ > 0
associated to the Gaussian prior QW = N (0, ρ2Id). Then

E[LPZ
(W )] − min

w∈W
LPZ

(w)

≤ Mπρ2d

λ
+ 1

2λρ2

R+

√
2πρ2d

λ

2

+ d

2λ log λ
d

− 1
λ

log Vd + λσ2

2n ,

(7.11)

where Vd is the volume of the unit ball in (Rd, ∥ · ∥).

Proof. Fix Z and let w∗
Z be any global minimizer of LZ(W ), where

∥w∗
Z∥ ≤ R by hypothesis. Since the gradient w 7→ ∇ℓ(w,Z) is M -

Lipschitz and ∇LZ(w∗
Z) = 0, we have

LZ(w) − LZ(w∗
Z) ≤ M

2 ∥w − w∗
Z∥2. (7.12)

Therefore,

Ψλ(Z) = −λLZ(w∗
Z) + logEQW

[exp (−λ (LZ(W ) − LZ(w∗
Z)))] (7.13)

≥ −λLZ(w∗
Z) + logEQW

[
exp

(
−λM

2 ∥W − w∗
Z∥2

)]
, (7.14)

so, in order to lower-bound the log-partition function Ψλ(Z), we need
to lower-bound the Gaussian integral

G = 1
(2πρ2)d/2

∫
Rd
e

− 1
2ρ2 ∥w∥2

e− λM
2 ∥w−w∗

Z∥2 dw. (7.15)
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Let B be the ℓ2 ball of radius ε > 0 (to be tuned later) centered at w∗
Z

with volume Vold(B). Then

G ≥ 1
(2πρ2)d/2 e

− λMε2
2 ·

∫
B
e

− 1
2ρ2 ∥w∥2

dw

≥ 1
(2πρ2)d/2 e

− λMε2
2 · e− 1

2ρ2 (∥w∗
Z∥+ε)2

Vold(B)

= 1
(2πρ2)d/2 e

− λMε2
2 · e− 1

2ρ2 (∥w∗
Z∥+ε)2

εdVd

≥
(

ε2

2πρ2

)d/2

exp
(

−λMε2

2 − 1
2ρ2 (R+ ε)2

)
Vd.

For all ε > 0, this leads to the estimate

− 1
λ
E[Ψλ(Z)] ≤ E

[
min
w∈W

LZ(W )
]

(7.16)

+ Mε2

2 + 1
2λρ2 (R+ ε)2 + d

2λ log
(

2πρ2

ε2

)
− 1
λ

log Vd, . (7.17)

Choosing ε = 2πρ2d
λ and using that

E
[

min
w∈W

LZ(W )
]

= E[LZ(w∗
Z)] ≤ min

w∈W
LPZ

(w), (7.18)

we get (7.11).

Recently, Aminian et al. (2021a) provided an exact information-
theoretic characterization of the average generalization error of the Gibbs
posterior. Let PGW = EPZ

[
PGW |Z

]
denote the marginal distribution on W

induced by the Gibbs posterior. Then, for the Gibbs posterior, we let
the symmetrized KL information between W and Z be given by

ISKL(W ; Z) = D(PZP
G
W |Z ||PZP

G
W ) +D(PZP

G
W ||PZP

G
W |Z). (7.19)

This symmetrized relative entropy, where we sum two relative entropies
with their arguments swapped, is sometimes referred to as Jeffreys’
divergence. Notice that the term D(PZP

G
W |Z ||PZP

G
W ) is the mutual

information I(W ; Z) while the term D(PZP
G
W ||PZP

G
W |Z) is sometimes

referred to as the lautum information (Palomar and Verdu, 2008).1 With
1This provides a strong incitement to refer to ISKL(·; ·) as the mutualautum

information, but we digress.
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this, Aminian et al. (2021a) derived the following exact characterization
of the average generalization error of the Gibbs posterior.

Theorem 7.4. Given an inverse temperature λ and a prior distribu-
tion QW , the average generalization error of the Gibbs posterior is given
by

EPZP
G
W |Z

[LPZ
(W ) − LZ(W )] = ISKL(W ; Z)

λ
. (7.20)

Proof. Note that EPZP
G
W |Z

[
logPGW

]
= EPZP

G
W

[
logPGW

]
. Hence, using

(7.19), we can write

ISKL(W ; Z) = EPZP
G
W |Z

[
log

PGW |Z

PGW

]
+ EPZP

G
W

[
log PGW

PGW |Z

]
(7.21)

= EPZP
G
W |Z

[
logPGW |Z

]
− EPZP

G
W

[
logPGW |Z

]
. (7.22)

From the definition of the Gibbs posterior, we see that

logPGW |Z(W |Z) = logQW (W ) − Ψλ(Z) − λLZ(W ). (7.23)

Since the marginal distributions ofW and Z are the same under PZP
G
W |Z

and PZP
G
W we have

EPZP
G
W |Z

[logQW (W )−Ψλ(Z)]=EPZP
G
W

[logQW (W )−Ψλ(Z)] . (7.24)

From this, it follows that

EPZP
G
W |Z

[
logPGW |Z

]
− EPZP

G
W

[
logPGW |Z

]
=EPZP

G
W |Z

[−λLZ(W )] − EPZP
G
W

[−λLZ(W )] (7.25)

=λEPZP
G
W |Z

[LPZ
(W ) − LZ(W )] . (7.26)

From this, the result follows.

In order to interpret this result, we need to discuss the extreme cases.
First, if λ → ∞, it may seem as if the generalization error vanishes. This
is the case if ISKL(W ; Z) remains finite when we perform exact empirical
risk minimization. For this to occur, we need not only that PGW |Z ≪ PGW ,
but also that PGW ≪ PGW |Z . Since the Gibbs posterior with infinite
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temperature is supported only on empirical risk minimizers, the second
criterion can only be fulfilled if the prior is also supported only on
empirical risk minimizers. For any non-trivial case, we expect the prior
to assign some probability mass to non-minimizers as well, meaning
that ISKL(W ; Z) would diverge as λ → ∞. In a similar vein, when λ → 0,
the posterior does not change relative to the prior, so ISKL(W ; Z) → 0
as well.

While the Gibbs posterior has many attractive properties theoreti-
cally, it is not always straightforward to implement in practice. This
is discussed further by, for instance, Alquier et al. (2016) and Perlaza
et al. (2023).

7.2 The Gaussian Location Model

We now turn to a simple learning problem in which many of the quanti-
ties in the generalization bounds that we discussed can be evaluated
explicitly, allowing us to perform a direct comparison between different
bounds for a concrete setting. Specifically, we assume that the data
distribution PZ = N (µ, σ2) is a Gaussian distribution with mean µ and
variance σ2, and the training set Z = (Z1, . . . , Zn) ∈ Rn consists of n
independent samples from PZ . Based on this, the goal is to learn the
mean of the Gaussian distribution. Thus, the hypothesis space consists
of the real numbers W = R. A natural choice for the loss function,
which we will consider throughout, is the squared loss ℓ(w, z) = (w−z)2.
We will focus on the empirical risk minimizer obtained by taking the
sample average, W = 1

n

∑n
i=1 Zi.

For this setting, the average generalization error can in fact be
computed explicitly as (Bu et al., 2020)

gen=EPWZ

[
EZ′∼PZ

[
(Z ′−W )2

]
− 1
n

n∑
i=1

(Zi−W )2
]

(7.27)

= 2σ2

n
. (7.28)

We thus have a known baseline with which to compare the generalization
bounds that we derived in Chapters 4 and 6, and for this setting, many
of them can be computed exactly. It should be noted here that if a
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bound gives a loose characterization of the generalization error for this
specific problem, this is not an indictment of the bound as a whole.
Since all of the bounds that we will discuss have been derived for a
very general class of learning problems and learning algorithms, it is
not unexpected that they will be loose for many specific problems and
algorithms. Nevertheless, due to its analytical tractability, this setting
serves as an instructive case study. Also note that, as mentioned in
Section 7.1, the average generalization error of the Gibbs posterior is
exactly characterized by the symmetrized KL information. By evaluat-
ing this information-theoretic quantity, one can show that the Gibbs
posterior also has a generalization error of order σ2/n. For more details,
see the work of Aminian et al. (2022b).

First, we note that the mutual information I(W ; Z) gives a vacuous
bound on the generalization gap. Indeed, since the training data and
hypothesis are continuous and we use a deterministic learning algorithm,
the mutual information is infinite. However, as noted by Bu et al. (2020),
this can be rectified by using the individual-sample technique: since
the hypothesis is not a deterministic function of any single sample,
the individual-sample mutual information is finite. Indeed, it can be
computed in closed form as (Bu et al., 2020)

I(W ;Zi) = 1
2 log n

n− 1 . (7.29)

Inserting this into the generalization bound in Corollary 4.6, we find
that

gen ≤ 1
n

n∑
i=1

√
2σ2I(W ;Zi) (7.30)

= σ

√
log
(

n

n− 1

)
(7.31)

≤ σ

√
1

n− 1 . (7.32)

Thus, this gives a bound of order 1/
√
n, which is quadratically worse

than the true generalization gap.
Next, let us consider the CMI framework. To do this, one needs

to go beyond the assumption of a bounded loss that was considered
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throughout most of Chapter 6. As indicated in (6.6), the main results
extend to certain unbounded losses. This includes the squared loss under
a Lipschitz condition, provided that the fourth moment of the data
is finite (Steinke and Zakynthinou, 2020, Sec. 5.4). This is satisfied
for the Gaussian location problem—see the work of Zhou et al. (2021)
for details. While the CMI yields a finite result, unlike the mutual
information, it is significantly looser than the individual-sample mutual
information bound. Indeed, we have (Zhou et al., 2021)

I(W ; S|Z̃) = n

log2(e) . (7.33)

The reason for this is that conditioning on the supersample reveals
too much information, due to the continuous nature of the output. In
fact, if we consider a naïve individual-sample version of the CMI, where
we still condition on the full supersample, that is, I(W ;Si|Z̃), we still
get a constant—leading to a generalization bound that does not decay
with n. Motivated by this, Zhou et al. (2021) argue for the individually
conditioned CMI, where the conditioning is also on individual pairs of
the supersample—as discussed in Theorem 6.6. With this, it can be
shown that (Zhou et al., 2021, Lemma. 4)

I(W ;Si|Zi = zi, Zi+n = zi+n) = (zi − zi+n)2

8σ2(n− 1) + o

( 1
n

)
. (7.34)

Inserting this into the corresponding generalization bound of Zhou et al.
(2021), we again get a bound that decays as 1/

√
n, but with a slightly

improved constant factor.
This raises the question: is it possible to obtain the correct 1/n-

dependence from information-theoretic generalization bounds? The
answer turns out to be yes. Through the use of stochastic chaining,
as mentioned in Section 4.4, Zhou et al. (2022, Sec. 4.1) obtained a
generalization bound of gen ≤ 13σ2/n, thus matching the dependence of
the true generalization error but with a larger constant. An alternative
approach was taken by Wu et al. (2022b), who derived a bound that,
on its face, is identical to the individual-sample bound of Bu et al.
(2020), but with a key modification—instead of assuming the loss to be
sub-Gaussian, the excess risk, r(w,Z) = ℓ(w,Z) − ℓ(w∗, Z), is assumed
to be sub-Gaussian under PZ for all w ∈ W, where w∗ is a minimizer
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of the population loss. For sufficiently large n, the excess risk of the
Gaussian location problem with the sample-averaging algorithm actually
turns out to be

√
4σ4/n-sub-Gaussian—the sub-Gaussianity parameter

decays with n. Evaluating the generalization bound with this yields
an O(1/n) rate.

However, it is possible to demonstrate that this fast rate is achievable
with arguably simpler techniques. In fact, it turns out that it is possible
to derive an information-theoretic generalization bound that is exactly
tight for this problem, even up to constants, which was done by Zhou et
al. (2023a). This is achieved through a variant of the individual-sample
approach of Bu et al. (2020), with some key modifications: the change
of measure is applied to the generalization gap rather than the training
loss; disintegration is used; a different prior than the true marginal is
used; and the straight-forward sample-averaging algorithm is replaced
with a weighted one where Gaussian noise is added (which has the
same performance as the sample-averaging algorithm in expectation).
This includes many of the techniques that we covered in Chapter 4,
applied in a very careful way. If we are satisfied with a bound that is
optimal only in an asymptotic sense, the alternative prior and weighted
sample-averaging are not needed. The interested reader is referred to
the work of Zhou et al. (2023a) for the full details.

7.3 The VC Dimension

As discussed in Section 1.3.1, a fundamental quantity that character-
izes distribution- and algorithm-independent learnability for binary
classification is the VC dimension. While our original motivation for
pursuing information-theoretic generalization bounds was to go beyond
this style of uniform convergence analysis, an interesting question is
whether or not the information-theoretic approach is still expressive
enough to capture complexity measures such as the VC dimension.
More precisely, we seek to answer the following question: consider a
hypothesis class W with bounded VC dimension dVC. Can we provide
a bound on the information measures that appear in our generalization
bounds in terms of dVC, and if so, do the resulting bounds coincide with
the best available generalization bounds?
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To partially answer this question, we will focus on the case of
generalization bounds in expectation and consider binary classification
with the 0 − 1 loss. Throughout, we assume that the instance space Z
factors into a feature space X and label space Y = {0, 1}, and we
associate each hypothesis w ∈ W with a function fw : X → Y.

7.3.1 Mutual Information

We begin by considering the mutual information between the training
data Z and hypothesis W , I(W ; Z), that appears in, e.g., Corollary 4.2.
As an illustrative example of a class with finite VC dimension, we
consider threshold classifiers: that is, the set of classifiers is given
by {fw(x) = 1{x ≥ w} |w ∈ R}. As this hypothesis class can induce
arbitrary labels for a set with a single element, but not a set with two
elements (as achieving fw(x1) = 1 and fw(x2) = 0 for x1 < x2 is not
possible), its VC dimension is one. Throughout, we shall refer to data
distributions for which an element of the hypothesis class achieves zero
population loss as realizable.

Immediately, we can establish one negative result: the mutual infor-
mation I(W ; Z) can be unbounded, even for very reasonable empirical
risk minimizers. Consider, for instance, the case of threshold classi-
fiers for a realizable distribution. Let us denote each training sample
as Zi = (Xi, Yi), which consists of a real number feature Xi and a
label Yi ∈ {0, 1}. A reasonable empirical risk minimizer is an algorithm
that outputs fŴ , where Ŵ = min{x : (x, 1) ∈ Z}, i.e., the smallest
feature labelled 1. Due to the realizability assumption, this must achieve
zero training loss. However, since the learning algorithm is a determinis-
tic function of the training set with a continuous output, I(W ; Z) = ∞.

In order to circumvent this, Xu and Raginsky (2017) considered the
following two-stage algorithm. First, split the training set into two halves,
so that Za = (Z1, . . . , Zn/2) and Zb = (Zn/2+1, . . . , Zn), where we
assume n to be even for simplicity. In the first stage of the algorithm, one
constructs an empirical cover of W on the basis of Xa = (X1, . . . , Xn/2),
i.e., a subset Wa ⊂ W such that

∣∣∣{(fw(X1), . . . , fw(Xn/2)) : w ∈ Wa}
∣∣∣ =

|Wa|, meaning that each element of Wa induces a distinct classification,
and

∣∣∣{(fw(X1), . . . , fw(Xn/2)) : w ∈ W}
∣∣∣ = |Wa|, meaning that each
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possible classification using W is induced by an element of Wa. In the
second stage of the algorithm, one selects an empirical risk minimizer
for Zb from the finite Wa. By applying Corollary 4.2 conditional on Za,
evaluating the training loss with respect to Zb, we thus find that

EPWZ
[LPZ

(W )−LZb
(W )]=EPZa

[
EPWZb|Za

[LPZ
(W )−LZb

(W )]
]

(7.35)

≤

√
I(W ; Zb|Za)

n
, (7.36)

where we used the fact that the 0 − 1 loss is 1/2-sub-Gaussian. Now,
given Za, W can only take values in the finite set Wa. Furthermore,
the cardinality of Wa can be bounded using the Sauer-Shelah lemma
(Lemma 1.3). We thus conclude that

I(W ; Zb|Za) ≤ H(W |Za) ≤ log(|Wa|) ≤ dVC log
(

en

2dVC

)
, (7.37)

where the first step follows from the non-negativity of entropy, the second
step from the fact that entropy is maximized by a uniform distribution,
and the final step from the Sauer-Shelah lemma. Note that, through
these arguments, we have obtained an average version of the standard
generalization guarantee in terms of the VC dimension from Theorem 1.4,
up to constants and logarithmic dependencies. Still, this applies only to a
very particular algorithm, and not the standard empirical risk minimizer.
Indeed, Bassily et al. (2018) and Nachum et al. (2018) showed that for
any empirical risk minimizer over a finite input space, there exists a
realizable data distribution for which the mutual information I(W ; Z)
scales with the cardinality of the input space. Furthermore, Livni and
Moran (2017) demonstrated that for any learning algorithm for threshold
classifiers, there exists a realizable distribution for which either the
population loss or the mutual information is large (in fact, their result
applies more generally to the relative entropy that appears in PAC-
Bayesian bounds). On the positive side, Nachum and Yehudayoff (2019)
showed that there does exist learning algorithms with bounded mutual
information for “most” hypotheses in VC classes.
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7.3.2 Conditional Mutual Information

We now turn to the CMI framework of Chapter 6. Specifically, we con-
sider the conditional mutual information between the hypothesis W and
the membership vector S given the supersample Z̃, that is, I(W ; S|Z̃).
As discussed in Chapter 6, bounds in terms of the CMI are tighter (up
to constants) than the ones based on the mutual information I(W ; Z).
In contrast to the mutual information, there is a wide class of nat-
ural empirical risk minimizers for which the CMI can be shown to
be bounded by (approximately) the VC dimension. In particular, this
applies to any algorithm satisfying the following consistency property.
For simplicity, following Steinke and Zakynthinou (2020), we restrict
ourselves to deterministic learning algorithms.

Definition 7.5 (Global consistency property). Let W (z) denote the point
mass on which PW |Z=z concentrates when trained on z = (x,y) ∈
Zn. Let z′ = (x′,y′) ∈ Zm with m ≥ n be constructed so that (i):
for all i ∈ [n], there is a j ∈ [m] such that xi = x′

j , and, (ii): for
all i ∈ [m], fW (z)(xi) = y′

i. Then, the learning algorithm characterized
by PW |Z has the global consistency property if, for any z ∈ Zn, PW |Z=z′

concentrates on W (z).

This property requires that if a training set z is re-labelled to obtain z′,
which is fully consistent with the output hypothesis W (Z) obtained
from training on z and possibly expanded with more consistent samples,
the output hypothesis obtained from training on z′ should still be W (Z).
Clearly, this property is satisfied for many reasonable empirical risk
minimizers.

With this, we can show the following.

Theorem 7.6. Consider the 0 − 1 loss and assume that the VC dimen-
sion dVC of W is finite. Assume that the learning algorithm satisfies
the global consistency property. Then, if n > dVC,

I(W ; S|Z̃) ≤ dVC log
( 2en
dVC

)
. (7.38)

Proof. Let z̃∗ = arg maxz̃ I(W ; S|Z̃ = z̃). Also, let Ŵ ⊆ W denote the
set of possible output hypotheses obtainable by varying S given the
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fixed supersample z̃∗ = (x̃∗, ỹ∗). Then, we have

I(W ; S|Z̃) ≤ I(W ; S|Z̃ = z̃∗) ≤ log
∣∣∣Ŵ∣∣∣ . (7.39)

Now, by the global consistency property, the output hypothesis w(z̃∗(s))
obtained by running the learning algorithm on the training set z̃∗(s)
can also be obtained by running the learning algorithm on the train-
ing set z̃′

∗ = (x̃′
∗, ỹ

′
∗), which is constructed so that x̃∗ = x̃′

∗ and, for
all i ∈ [2n], fw(z̃∗(s))((x̃∗)i) = (ỹ′

∗)i. In words: the output hypothe-
sis w(z̃∗(s)) from the training set z̃∗(s) can be obtained by running
the learning algorithm on z̃′

∗, which only contains samples that are
consistent with w(z̃∗(s)). Hence, the number of distinct possible output
hypotheses

∣∣∣Ŵ∣∣∣ is upper-bounded by the number of possible labellings
of x̃∗ using hypotheses from W. This, in turn, can be bounded using
the Sauer-Shelah lemma (Lemma 1.3). Specifically,

I(W ; S|Z̃) ≤ log
∣∣∣Ŵ∣∣∣ ≤ dVC log

( 2en
dVC

)
. (7.40)

To complete this argument, it remains to show that there exist
deterministic empirical risk minimizers with the global consistency
property. Since the argument is quite technical, we will not reproduce
it here. The proof can be found in Steinke and Zakynthinou (2020,
Lemma 4.15).

Note that this result does not imply that every empirical risk min-
imizer over a hypothesis class with finite VC dimension has bounded
CMI. For this, we need to consider further processed versions of the
CMI.

7.3.3 Evaluated and Functional CMI

We now turn to the evaluated and functional versions of the CMI,
or e-CMI and f -CMI for short. Specifically, recall that the f -CMI
is given by the mutual information between the predictions F (for
the supersample Z̃ induced by the hypothesis W ) and the membership
vector S given Z̃, that is, I(F; S|Z̃). The e-CMI is obtained by replacing
the predictions with the losses Λ that they induce, that is, I(Λ; S|Z̃).
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For binary classification with the 0−1 loss, there is a bijection between F
and Λ given Z̃: the loss of a prediction is 0 if and only if it matches the
corresponding label, otherwise the loss is 1. Thus, for this particular
case, I(Λ; S|Z̃) = I(F; S|Z̃), although the latter more generally only
gives an upper bound. We will thus consider only the f -CMI. In contrast
to the CMI, it is possible bound the f -CMI for every learning algorithm
over a hypothesis class with finite VC dimension. We establish this
result in the following theorem.

Theorem 7.7. Consider the 0 − 1 loss and assume that the VC dimen-
sion dVC of W is finite. Then, if n > dVC,

I(F; S|Z̃) ≤ dVC log
( 2en
dVC

)
. (7.41)

Proof. Let z̃∗ = arg maxz̃ I(F ; S|Z̃ = z̃). Also, let F̂ ⊆ Y2×n denote
the set of possible predictions obtainable by varying S given the fixed
supersample z̃∗ = (x̃∗, ỹ∗). Then, we have

I(F; S|Z̃) ≤ I(F ; S|Z̃ = z̃∗) ≤ log
∣∣∣F̂ ∣∣∣ . (7.42)

The number of distinct possible output predictions F̂ is upper-bounded
by the number of possible labellings of x̃∗ using hypotheses from W.
This can be bounded using the Sauer-Shelah lemma (Lemma 1.3), from
which the final result follows.

Again, we emphasize that this result holds for every learning algo-
rithm, even beyond empirical risk minimizers. Furthermore, by using
the f -CMI, the proof of this result just involves an application of the
Sauer-Shelah lemma. In a sense, this provides an information-theoretic
re-interpretation of this classic uniform convergence argument (dis-
cussed in Section 1.3.1). Specifically, when the hypothesis class has low
complexity as measured by the VC dimension, any learning algorithm
for the hypothesis class has low information complexity, as measured
by the f -CMI.

While this demonstrates that one can obtain bounds for the f-CMI
of any learning algorithm, this does not generally lead to optimal
generalization bounds, as they are off by a log-factor (Haghifam et al.,
2021, Thm. 4.4).
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7.3.4 Leave-One-Out CMI

We conclude the discussion of the VC dimension by describing a bound
for learning of VC classes over realizable distributions obtained through
the leave-one-out evaluated CMI (loo-e-CMI), due to Haghifam et al.
(2022). Since the proof of this result is somewhat more involved, we will
not give it in full detail, but instead just sketch the arguments.

For the purposes of this discussion, we consider the leave-one-out
CMI setting introduced in Section 6.6 with the 0−1 loss, and assume the
data distribution to be realizable. First, we connect the binary loss loo-
e-CMI of interpolating learning algorithms and the leave-one-out-error,
defined as

R̂loo = EPU

[
EPΛ̇|UŻ

[
Λ̇U
]]
. (7.43)

In words, given a supersample Ż, R̂loo is the test loss when leaving
out the Uth sample, averaged over U and the randomness of the learn-
ing algorithm. Notice that R̂loo ∈ [0, 1]. It can be shown that the
loo-e-CMI I(Λ̇;U |Ż) can be bounded by Hb(R̂loo) + R̂loo log(n + 1),
where Hb(R̂loo) denotes the binary entropy (i.e., the entropy of a
Bernoulli random variable with parameter R̂loo) (Haghifam et al., 2022,
Thm. 3.1).

Next, we briefly describe the one-inclusion graph algorithm intro-
duced by Haussler et al. (1988). Given Ż = (Ẋ, Ẏ ) ∈ Zn+1, let V denote
the set of possible labellings of Ẋ = (Ẋ1, . . . , Ẋn+1) with hypotheses
from W. We refer to elements of V as adjacent if they differ in only
one element. We define a probability assignment P : V × V → [0, 1] so
that P (v,w) = 0 if v,w ∈ V are not adjacent, and P (v,w)+P (w,v) = 1
if they are, where P is chosen solely on the basis of Ẋ. Recall that ZŪ de-
notes the training set, formed by removing the Uth entry of Ż, while ZU
is a test sample. Due to the realizability assumption, either one or two
elements of V are consistent with Żū for u ∈ [n]. The one-inclusion
graph algorithm, given the training set Żū, predicts the label of ẏu as
follows: if only one element v ∈ V is consistent with Żū, it predicts vu.
If two elements v,w ∈ V are consistent with Żū, it predicts vu with
probability P (v,w) and wu otherwise. Let v∗ denote the vector of
correct labels for Ẋ. When using Żū as training set, the probability of
incurring an error on Żu is given by P (v′,v∗) for v′ such that v′

u ̸= v∗
u
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but all other entries of v′ and v∗ are equal, provided that such a v′

exists in V. Otherwise, it is zero. Therefore, the leave-one-out error is
given by

R̂loo =
∑

v′∈V

P (v′,v∗)
n+ 1 . (7.44)

Haussler et al. (1988, Lemma 5.2) established that there exists a proba-
bility assignment such that

∑
v′∈V P (v′,w) ≤ dVC uniformly for w ∈ V .

By combining this with the bound on I(Λ̇;U |Ż) in terms of R̂loo pro-
vided in the first step, a bound for learning realizable VC classes can
be established.

Notably, in the works of Haghifam et al. (2021, 2022), the CMI of a
learning algorithm is demonstrated to provide a universal characteriza-
tion of realizable generalization in a certain sense: specifically, for every
interpolating learning algorithm and data distribution, the population
loss vanishes as n goes to infinity if and only if the CMI of the learning
algorithm grows sub-linearly in n. For the loo-e-CMI, an even stronger
characterization can be established, in the sense that the loo-e-CMI also
captures the decay rate when the population loss decays polynomially
or converges to a positive value. For more details, the reader is referred
to Haghifam et al. (2021, 2022).

7.4 Compression Schemes

We now consider a class of learning algorithms known as compression
schemes (Littlestone and Warmuth, 2003). A compression scheme of
size k consists of two components: a sequence of maps κ : Zn → Zk

for n ≥ k, which given an input vector Z of size n outputs a vector κ(Z)
consisting of k elements of Z; and a map ρ : Zk → W that selects a
hypothesis based on this compressed training set. By composing these
maps, we obtain a learning algorithm for training sets of size n ≥ k.

As an example, consider threshold classifiers, as introduced in Sec-
tion 7.3.1, and a learning algorithm that simply sets the threshold W

to be the smallest training feature with the label 1, i.e., W = min{x :
(x, 1) ∈ Z} (and W = ∞ if there is no sample with the label 1).
Clearly, this can be written as the composition of a map κ that out-
puts κ(Z) = (xi∗ , yi∗), where i∗ = arg mini{xi : (xi, 1) ∈ Z}, and a
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map

ρ(x, y) =

x if y = 1
∞ otherwise.

(7.45)

Therefore, it is a compression scheme of size 1.
The mutual information I(W ; Z) of such algorithms will generally

be unbounded, since we are dealing with deterministic algorithms with
continuous inputs and outputs. However, for the CMI, the following
can be established, as per Steinke and Zakynthinou (2020, Thm 4.2).

Theorem 7.8. Assume that PW |Z is a compression scheme of size k.
Then, we have I(W ; S|Z̃) ≤ k log(2n).

Proof. Since W is a function of κ(ZS),

I(W ; S|Z̃) ≤ I(κ(ZS); S|Z̃) ≤ H(κ(ZS)|Z̃) ≤ k log(2n). (7.46)

Here, the last step follows since, given Z̃, there are at most
(2n
k

)
≤ (2n)k

possible values of κ(ZS). This establishes the result.

Up to constants, this bound cannot be improved for general compres-
sion schemes. However, for the important subclass of stable compression
schemes, the logarithmic dependence on n can be removed. A compres-
sion scheme is said to be stable if it is invariant to permutations of its
input, and κ(Z) = κ(Z ′) if κ(Z) ⊆ Z ′ ⊆ Z—that is, if only elements
that are not in the compressed set are removed from the training set, this
does not change the output. For stable compression schemes, Haghifam
et al. (2021, Thm. 3.4) showed that I(W ; S|Z̃) ≤ 2k log(2). This result
demonstrates that the CMI suffices to obtain generalization bounds for
stable compression schemes without a logarithmic dependence on n,
which is optimal up to constants (Haghifam et al., 2021, Thm. 3.1).

7.5 Algorithmic Stability

We now turn to algorithmic stability, as discussed in Section 1.4. As
mentioned therein, several notions of stability have been discussed in the
literature. In this section, following Harutyunyan et al. (2021, Thm. 4.2),
we will focus on average prediction stability with respect to sample
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replacement and bound the f -CMI. This notion of stability is comparable
to the pointwise hypothesis stability in Bousquet and Elisseeff (2002,
Def. 4). Note that Harutyunyan et al. (2021) also consider other notions
of stability, which we do not cover for brevity. We will discuss further
connections between algorithmic stability and information-theoretic and
PAC-Bayesian generalization bounds in Section 7.7.

Theorem 7.9. Assume that Z = X × Rd and ℓ(w, z) = ℓf (fw(x), y),
where each w ∈ W induces a function fw : X → Rd. Let Z

(i)
S equal ZS

for all entries except the ith, which we denote by Z ′ = (X ′, Y ′), and
assume to be independently drawn from PZ . Consider a deterministic
learning algorithm, and let fW |ZS

: X → Rd denote the function that
the learning algorithm induces given the training set ZS . Assume that
the learning algorithm is β-stable, meaning that for all i ∈ [n],

EPWZ̃SPZ′

[∥∥∥∥fW |ZS
(X̃i+Sin) − f

W |Z(i)
S

(X̃i+Sin)
∥∥∥∥2
]

≤ β2. (7.47)

Roughly speaking, this means that the prediction that the hypothesis
issues for X̃i+Sin does not depend too strongly on whether or not this
specific sample is included in the training set. Furthermore, suppose
that the loss function ℓf (·, ·) is γ-Lipschitz in its first argument. Then,
we have that

|gen| ≤ d1/4√8γβ. (7.48)

Proof. In order to establish this result, we will relate the deterministic
algorithm to a stochastic one. Specifically, let

fσW |ZS ,N
(x) = fW |ZS

(x) +Nσ. (7.49)

Here, the Gaussian noise Nσ ∼ N (0, σ2Id), where Id denotes the d-
dimensional identity matrix, is independent for all training sets and
inputs. With this, we find that the average generalization gap of the
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learning algorithm with added noise is

genσ =
∣∣∣∣EPWZ̃SPZ′

[
EPNσ

[
ℓf (fσW |ZS ,N

(X ′), Y ′)
]

− 1
n

∑
i∈[n]

EPN

[
ℓf (fσW |ZS ,N

(Xi+Sin), Yi+Sin)
] ]∣∣∣∣

=
∣∣∣∣EPWZ̃SPZ′

[
ℓf (fW |ZS

(X ′), Y ′) + EPNσ

[
∆′] (7.50)

− 1
n

∑
i∈[n]

(
ℓf (fW |ZS

(Xi+Sin), Yi+Sin) + EPNσ
[∆i]

)]∣∣∣∣,
where

∆′ =ℓf (fσW |ZS ,N
(X ′), Y ′)−ℓf (fW |ZS

(X ′), Y ′), (7.51)

∆i=ℓf (fσW |ZS ,N
(Xi+Sin), Yi+Sin)−ℓf (fW |ZS

(Xi+Sin), Yi+Sin). (7.52)

Due to the Lipschitz assumption, we have |∆′| ≤ γ ∥Nσ
′∥, where Nσ

′ ∼
N (0, σ2Id). Similarly, |∆i| ≤ γ ∥Nσ

′∥. Since E[∥Nσ
′∥] ≤ 2σ

√
d, we find

that

genσ ≥ gen − 2γσ
√
d. (7.53)

We now need to bound genσ. Let Fσ denote the vector of predictions
on X̃ induced by fσW |ZS ,N

. By the individual-sample f -CMI version of
Theorem 6.12, we have

genσ ≤ 1
n

∑
i∈[n]

√
2I(F σi , F σi+n;Si|Z̃) (7.54)

≤ 1
n

∑
i∈[n]

√
2I(F σi , F σi+n;Si|S−i, Z̃), (7.55)

where S−i is S with the ith entry removed. Here, the last step fol-
lows since S−i is independent from Si. To establish the result, it
remains to bound the conditional mutual information in (7.55). In-
tuitively, computing this quantity involves comparing the conditional
joint distribution of (F σi , F σi+n) and Si, given S−i and Z̃, with the prod-
ucts of their conditional marginals. When Si is drawn independently
from all other random variables, there is a 50% chance of drawing
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the “matching” instance, in which case the two distributions coincide,
and a 50% chance of drawing the “opposite” instance, in which case
the ith sample of the training set is replaced. Hence, we are comparing
two Gaussian distributions with covariance σ2Id and means given by
the predictions based on the training set corresponding to S−i and
either Si = 1 or Si = 0. By the stability assumption, the difference
between the means is on average bounded by β2 (for more details, see
the work of Harutyunyan et al., 2021, Prop. 4.2 and Eq. (175)-(179)).
Since D(N (x1, σ

2Id) || N (x2, σ
2Id)) = ∥x1 − x2∥2 /(2σ2), we get

I(F σi , F σi+n;Si|S−i, Z̃) ≤ β2

2σ2 . (7.56)

By combining (7.53), (7.55), and (7.56), setting σ2 = β/(2γ
√
d) to

optimize the bound, we obtain the desired result.

Thus, for Lipschitz losses, certain notions of algorithmic stability
imply bounds on certain information measures for the learning algorithm,
allowing us to (essentially) recover known generalization bounds (cf.
Section 1.4). The technique used in this proof, where a learning algorithm
is compared to a noisy surrogate in order to more easily evaluate the
mutual information, is a fruitful approach that has also been used to
establish generalization bounds for stochastic gradient descent (Neu
et al., 2021).

7.6 Differential Privacy and Related Measures

We now discuss differential privacy, which can be seen as a type of
stability measure. As the name suggests, this measure was originally
constructed as a guarantee on the privacy of the training data used by a
learning algorithm. Specifically, let z, z′ ∈ Zn be two training sets that
differ in a single element. Then, the algorithm PW |Z is ε-differentially
private if, for any measurable set E ∈ W (Dwork et al., 2015)

PW |Z=z(E|z) ≤ eεPW |Z=z′(E|z′). (7.57)



7.7. Bibliographic Remarks and Additional Perspectives 143

This is related to so-called ε-MI stability, which requires that for any
random Z ∈ Zn (Feldman and Steinke, 2018)

1
n

n∑
i=1

I(W ;Zi|Z−i) ≤ ε, (7.58)

where Z−i denotes Z with the ith element removed. As shown by Feld-
man and Steinke (2018), an algorithm that is

√
2ε-differentially private

is ε-MI stable. If the elements of Z are independent, we have

I(W ; Z) =
n∑
i=1

I(W ;Zi|Z<i) ≤
n∑
i=1

I(W ;Zi|Z−i) ≤ εn, (7.59)

where Z<i = (Z1, . . . , Zi−1) (and Z<1 = ∅). Thus, any ε-MI stable
(including any

√
2ε-differentially private) learning algorithm has mutual

information bounded by εn.
We conclude with a brief mention of max information, defined

as (Dwork et al., 2015)

Imax(W ; Z) = ess sup
PWZ

ı(W,Z). (7.60)

As established by Esposito et al. (2021a, Lemma 12), L(Z → W ) ≤
Imax(W ; Z). Furthermore, since the α-mutual information is non-
decreasing with α (Verdú, 2015), and it coincides with the mutual
information for α = 1 and the maximal leakage for α → ∞, we have

I(W ; Z) ≤ L(Z → W ) ≤ Imax(W ; Z). (7.61)

Thus, bounds in terms of max information, as discussed by Dwork et al.
(2015), can be recovered from bounds in terms of the mutual information
and maximal leakage.

7.7 Bibliographic Remarks and Additional Perspectives

In this section, we discuss the relation of the results we presented
to the literature, and give a brief overview of results that we did
not cover explicitly. For the Gibbs posterior, Theorem 7.3 is largely
based on Raginsky et al. (2021, Chapter 10), while Theorem 7.4 is due
to Aminian et al. (2021b).
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The Gaussian location model has been studied as an example ap-
plication of information-theoretic generalization bounds since the work
of Bu et al. (2019), with later improvements by Wu et al. (2022a) and
Zhou et al. (2021, 2022). An information-theoretic bound that is tight
up to constants was provided by Zhou et al. (2023a).

For learning with VC classes, Xu and Raginsky (2017) constructed
a two-phase learning algorithm with finite mutual information, but this
result does not apply to standard empirical risk minimizers. As shown
by Bassily et al. (2018), Livni and Moran (2017), and Nachum et al.
(2018), there are certain limitations in obtaining finite PAC-Bayesian
and information-theoretic generalization bounds using the standard,
non-CMI framework. Recently, Pradeep et al. (2022) showed that under
the stricter requirement of a finite Littlestone dimension, it can be shown
that learnability is possible with finite mutual information, demonstrat-
ing a gap compared to just having finite VC dimension. Through the
use of the CMI framework, Steinke and Zakynthinou (2020) obtained
Theorem 7.6 for all empirical risk minimizers satisfying the consistency
property of Definition 7.5. As shown by Harutyunyan et al. (2021), the
use of functional CMI enables Theorem 7.7, which applies to any learn-
ing algorithm. An extension to the Natarajan dimension, which is an
analogue of the VC dimension for the multiclass setting, was provided
by Hellström and Durisi (2022a). Finally, the leave-one-out CMI frame-
work enables optimal bounds for VC classes in certain situations, as
shown by Haghifam et al. (2022) and discussed in Section 7.3.4. Further
discussion of the expressiveness of information-theoretic generalization
bounds can be found in the work of Haghifam et al. (2021). Notably,
generalization bounds in terms of the VC dimension obtained from
PAC-Bayesian bounds were originally derived in the work of Catoni
(2004a, Corollary 2.4). The derivation is very similar to the CMI case,
and based on the formalism of exchangeable priors. This was extended
to almost exchangeable priors by Audibert (2004) and Catoni (2007).
Recently, a further extension that allows for bounds with fast rates
under a Bernstein condition was provided by Grünwald et al. (2021).
Furthermore, Grünwald and Mehta (2019) also explored connections
between PAC-Bayesian bounds and the Rademacher complexity.

For compression schemes, Steinke and Zakynthinou (2020) obtained
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the result of Theorem 7.8. This was improved by a logarithmic factor
for stable compression schemes by Haghifam et al. (2021, Theorem 3.1).
Catoni (2004a, Sec. 3) studied the use of exchangeable priors to obtain
bounds for compression schemes.

The result in Theorem 7.9 is due to Harutyunyan et al. (2021),
who also established results for other notions of algorithmic stability.
Bounds based on average stability, with connections to information-
theoretic generalization bounds, were also established by Banerjee et al.
(2022). PAC-Bayesian generalization bounds in terms of stability have
been established by, for instance, London (2017), London et al. (2014),
Rivasplata et al. (2018), Sun et al. (2022), and Zhou et al. (2023b).

The discussion of privacy measures, such as the differential pri-
vacy of Dwork et al. (2015), in Section 7.6 is largely based on results
from Feldman and Steinke (2018), with additional results due to Es-
posito et al. (2021a). For further discussion of these and other privacy
measures, see for instance the work of Esposito et al. (2021a), Hellström
and Durisi (2020a), Oneto et al. (2020), Rodríguez-Gálvez et al. (2021a),
and Steinke and Zakynthinou (2020).



8
Neural Networks and Iterative Algorithms

In this chapter, we apply the bounds from Chapters 4 to 6 to learning
algorithms that are iterative in nature, in the sense that they proceed
by updating a hypothesis step-by-step with the aim to converge to a
final output hypothesis with good properties. A key example of such
an algorithm is the ubiquitous gradient descent, which updates the
current hypothesis by adding the negative gradient of the training loss,
scaled by a parameter called the learning rate. Of particular importance
in modern machine learning are neural networks, which are typically
trained using variants of (stochastic) gradient descent. However, the
framework of iterative learning algorithms applies to a much broader
class of learning algorithms.

In Section 8.1, we discuss iterative, noisy algorithms in general,
before specializing to the case of stochastic gradient Langevin dynamics
(SGLD). SGLD is a variant of stochastic gradient descent (SGD) with
added Gaussian noise, which makes it particularly well-suited to analysis
via information-theoretic bounds. In Section 8.2, we discuss the applica-
tion of generalization bounds from Chapters 4 to 6 to neural networks.
Clearly, some bounds cannot be computed for practical scenarios—for
instance, the mutual information depends on the unknown data distri-

146
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bution, and some information metrics can be prohibitively expensive to
estimate due to high dimensionality or the lack of closed-form expres-
sions. For many bounds, however, it is possible to obtain informative
values, for instance by using Monte Carlo estimates. We will mainly
focus on methods for numerically evaluating the bounds, and discuss
training algorithms inspired by them. We will also provide pointers to
methods for obtaining generalization bounds in closed form.

8.1 Noisy Iterative Algorithms and SGLD

Here, we consider iterative learning algorithms of the following general
form. The hypothesis space W is the d-dimensional Euclidean space Rd.
Given the training data Z = (Z1, . . . , Zn), we generate the hypothesis
W as follows:

W = f(V1, . . . , VT )
Vt = g(Vt−1) − ηtF (Vt−1, ZJt) + ξt, t = 1, . . . , T

(8.1)

where V0 is a random initial condition independent of everything else;
T ∈ N is a fixed number of iterations; J1, . . . , Jt is a sequence of
random elements of [n] = {1, . . . , n}; ξt ∼ N (0, ρ2

t Id) is a sequence of
independent Gaussian random vectors which are also independent of
everything else; and finally, f(·), g(·), F (·, ·) are deterministic mappings.
We will use the shorthand V = (V0, . . . , VT ).

The analysis relies on the following regularity assumptions:

1. The following holds for the algorithm’s sampling strategy, i.e., the
conditional probability law of J = (J1, . . . , JT ) given (Z,V ): for
each t ∈ [T − 1],

PJt+1|J1,...,Jt,V ,Z = PJt+1|J1,...,Jt,Z . (8.2)

That is, the index of the sample in round t+1 does not depend on
the iterates V1, . . . , Vt, given the previous choices J1, . . . , Jt and
the data Z.

2. The update function F (·, ·) is bounded:

sup
v∈Rd

sup
z∈Z

∥F (v, z)∥ ≤ L < ∞. (8.3)
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To control the generalization error, we will upper-bound the mutual
information I(W ; Z). Let ZJ = (ZJ1 , . . . , ZJT

) denote the random T -
tuple of the training instances “visited” by the algorithm and observe
that Z and V are conditionally independent given ZJ . Using this fact
together with the data processing inequality and the chain rule, we have
the following:

I(W ; Z) = I(f(V ); Z) (8.4)
≤ I(V ; Z) (8.5)
≤ I(V ; ZJ ) (8.6)

=
T∑
t=1

I(Vt; ZJ |V t−1). (8.7)

Each term in (8.7) admits a simple expression involving only random
variables from two successive time steps, as we show in the following
lemma.

Lemma 8.1. Under the conditional independence assumption on the
sampling strategy in (8.2),

I(Vt; ZJ |V t−1) = I(Vt;ZJt |Vt−1). (8.8)

Proof. First, we express I(Vt; ZJ |V t−1) as

I(Vt; ZJ |V t−1) = h(Vt|V t−1) − h(Vt|V t−1,ZJ ), (8.9)

where h(·|·) is the conditional differential entropy (Definition 3.4).
From the update rule for Vt in (8.1) and the assumption on {ξt}t∈[T ],
it follows that Vt is conditionally independent from (V t−2,ZJ\{Jt})
given (Vt−1, ZJt). Using this, we conclude that

h(Vt|V t−1,ZJ ) = h(Vt|Vt−1, ZJt , V
t−2,ZJ\{Jt})

= h(Vt|Vt−1, ZJt).

By the same token, h(Vt|V t−1) = h(Vt|Vt−1). Using these expressions
in (8.9), we obtain the desired result.

The following lemma provides an easy-to-compute upper bound on
I(Vt;ZJt |Vt−1) .
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Lemma 8.2. For every t ∈ [T ],

I(Vt;ZJt |Vt−1) ≤ d

2 log
(

1 + η2
tL

2

dρ2
t

)
≤ η2

tL
2

2ρ2
t

. (8.10)

Proof. Given Vt−1 = vt−1, we have

Vt = g(vt−1) − ηtF (vt−1, ZJt) + ξt, (8.11)

where ZJt and ξt are independent. Consequently, by the shift-invariance
property of differential entropy,

h(Vt|Vt−1 = vt−1) = h(Vt − g(vt−1)|Vt−1 = vt−1) (8.12)
= h(−ηtF (vt−1, ZJt) + ξt|Vt−1 = vt−1). (8.13)

Now, recall that for any d-dimensional random vector U with finite
second moment, i.e., E

[
∥U∥2] < ∞, we have (Polyanskiy and Wu, 2022,

Thm. 2.7)

h(U) ≤ d

2 log
(

2πeE
[
∥U∥2]
d

)
. (8.14)

Since ZJt and ξt are independent and ξt has zero mean, we obtain

E
[
∥ − ηtF (vt−1, ZJt) + ξt∥2 |Vt−1 = vt−1

]
= η2

t E
[
∥F (vt−1, ZJt)∥2 |Vt−1 = vt−1

]
+ E

[
∥ξt∥2

]
≤ η2

tL
2 + ρ2

td, (8.15)

where we have also used the uniform boundedness assumption on F (·, ·).
Consequently,

h(Vt|Vt−1) ≤ d

2 log
(

2πe(η2
tL

2 + ρ2
td)

d

)
. (8.16)

By the same reasoning,

h(Vt|Vt−1, ZJt) = h(g(Vt−1) − ηtF (Vt−1, ZJt) + ξt|Vt−1, ZJt) (8.17)
= h(ξt|Vt−1, ZJt) (8.18)
= h(ξt) (8.19)

= d

2 log(2πeρ2
t ), (8.20)
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where we have used the fact that ξt is independent of the pair (Vt−1, ZJt).
Hence,

I(Vt;ZJt |Vt−1) = h(Vt|Vt−1) − h(Vt|Vt−1, ZJt) (8.21)

≤ d

2 log
(

1 + η2
tL

2

ρ2
td

)
(8.22)

≤ η2
tL

2

2ρ2
t

, (8.23)

where the last step follows from the inequality log x ≤ x− 1.

Combining Lemmas 8.1 and 8.2 and the mutual information general-
ization bound in Corollary 4.2, we get the following result, due to Pensia
et al. (2018).

Theorem 8.3. Suppose that ℓ(w,Z) is σ2-subgaussian for every w ∈ W
under PZ . Then, under the assumptions on the sampling strategy and
on F stated in (8.1) and (8.2), we have

EPWZ
[gen(W,Z)] ≤

√√√√σ2

n

T∑
t=1

η2
tL

2

ρ2
t

. (8.24)

We now specialize the result in (8.24) to the case of SGLD. Specifi-
cally, we assume that the loss ℓ(w, z) is differentiable as a function of w
for every z, and take

V0 = 0
Vt = Vt−1 − ηt∇ℓ(Vt−1, ZJt) + ξt, t = 1, . . . , T
W = VT

(8.25)

where J1, . . . , JT are i.i.d. samples from the uniform distribution on [n]
(in each iteration, we sample with replacement from the n-tuple Z);
η1, . . . , ηT are positive step sizes; and ξt ∼ N (0, ρ2

t Id), with ρ2
t = ηt

β

for some β > 0. The resulting SGLD algorithm is a special case of
(8.1) with g(v) = v, F (v, z) = ∇ℓ(v, z), and f(v1, . . . , vT ) = vT . Thus,
W is the last iterate VT , although other choices are possible, such as
f(v1, . . . , vT ) = 1

T

∑T
t=1 vt (trajectory averaging). There exists a large

literature on generalization bounds in expectation for SGLD; here we
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provide one such result due to Pensia et al. (2018), obtained under the
(restrictive) assumption of a Lipschitz-continuous loss.

Theorem 8.4. Suppose that the loss function w 7→ ℓ(w, z) is L-Lipschitz
uniformly in z:

sup
z∈Z

|ℓ(w, z) − ℓ(w′, z)| ≤ L∥w − w′∥. (8.26)

Assume that the SGLD algorithm in (8.25) (with an arbitrary postpro-
cessing step) runs for T = nk steps, where k is a positive integer, and
let ηt = 1

t . Then

EPWZ
[gen(W,Z)] ≤

√√√√βσ2L2

n

nk∑
t=1

1
t

(8.27)

≤

√
βσ2L2

n
(logn+ log k + 1). (8.28)

Proof. By the Lipschitz assumption on ℓ, its gradient ∇ℓ(·, ·) is bounded
by L in ℓ2 norm. The result then follows from Theorem 8.3.

8.2 Numerical Bounds for Neural Networks

In recent years, many practical successes in machine learning have relied
on neural networks (NNs). Although a comprehensive discussion of
NNs is beyond the scope of this monograph, we will provide a very
brief description of NNs and introduce some notation. Further details
can be found in, for instance, Murphy (2022, Chapter III). While
a whole host of different NN architectures have been developed for
specific application areas, we will focus solely on so-called feedforward
NNs. We proceed by defining a single layer, from which NNs can be
formed through composition. Each layer consists of two components: an
affine transformation and an activation function. Denote the input to
the lth layer as xl−1 ∈ Rdl−1 . The weights of the lth layer are denoted
by Al ∈ Rdl×dl−1 , while the bias vector is bl ∈ Rdl . We refer to dl
as the width of the layer. Then, the pre-activation output is given
by al = Alxl−1 + bl, which is simply an affine transformation of the
input. In order to allow the network to express non-linear functions,
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we also use an activation function ϕl : R → R. Then, the final output
from the layer is given by xl = ϕl(al), where the activation function
is applied elementwise to the pre-activation vector al. Since NNs are
typically trained through a gradient-based algorithm, this activation
function is often required to be (almost everywhere) differentiable. An
NN fW (·) of depth L consists of L such layers, where we let W ∈ Rp,
with p =

∑L
l=1(dl−1 + 1)dl, denote the concatenation of all weights and

biases expressed in vector form. We will typically also denote the output
as ŷ = xL ∈ RdL and the input as x = x0 ∈ Rd0 . Thus, the final output
is ŷ = fW (x) = ϕL(aL).

For a given sample z = (x, y), the loss is given by ℓ(W, z) = ℓf (ŷ, y).
Given the training set Z, we assume that the NN is trained as follows:
first, the weights and biases of the network are initialized as W0. At
each time step t, they are then updated as

Wt = Wt−1 − η∇WLZ(W ) (8.29)

= Wt−1 − η
n∑
i=1

∇W ℓf (ŷi, yi) (8.30)

= Wt−1 − η
n∑
i=1

∇W fW (xi)
dℓf (ŷi, yi)

dŷi
. (8.31)

Here, η > 0 is the learning rate. The exact form of this update depends
on the specific activation function under consideration, and can be
computed for each parameter of the network through the chain rule.
This process may, for instance, continue for a fixed number of steps or
until a certain target loss, either evaluated on the training set or on
a held-out validation set, is reached. One common variant of (8.31) is
SGD, where the training loss gradient is not evaluated with respect
to the entire training set at each time step. Instead, a “mini batch”
of K < n samples is selected at each time step, and the weight update
is computed with respect to these samples. This has several benefits,
such as speeding up computation and reducing memory requirements.

Typically, NNs operate in the so-called overparameterized regime.
This means that p, which is determined by the widths and depth of the
network, is greater than what would be needed in order to interpolate
the n training samples in Z after gradient descent training. In many
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practically relevant scenarios, p is many orders of magnitude greater
than n. In fact, NNs often have the capacity to interpolate the training
data even with randomly assigned labels. This indicates that they
do not operate in a regime where notions like the VC dimension are
relevant (Zhang et al., 2021). Still, when trained using data with the
correct labels, NNs display impressive generalization performance. So,
in the regime that is relevant in practice, NNs generalize well when
trained with true labels, but generalize poorly when trained with random
labels. This appears to indicate that any generalization guarantee that
is uniform over all data distributions is doomed to be vacuous, since
such a guarantee would need to hold for both scenarios. This provides
a motivation for considering PAC-Bayesian and information-theoretic
bounds, as these can incorporate data-distribution dependence. We
now discuss various ways to evaluate information-theoretic and PAC-
Bayesian bounds for NNs.

8.2.1 Weights with Gaussian Noise

One issue with applying many standard PAC-Bayesian and information-
theoretic generalization bounds, as repeatedly discussed, is that they
are often vacuous for deterministic learning algorithms. For instance,
training an NN using gradient descent with a fixed initialization and
stopping criterion would yield infinite mutual information between the
training data and the parameters of the NN. Now, typically, there
are sources of stochasticity in NN training. First, the initialization is
often not fixed, but instead drawn from some distribution. Second,
training is usually based on SGD, or one of its variants, rather than
deterministic gradient descent. However, characterizing information-
theoretic quantities in the presence of these sources of stochasticity is not
entirely straightforward. Furthermore, one would still expect the bulk of
generalization performance to be present even for deterministic gradient
descent—while the stochasticity of SGD, for instance, may provide a
marginal benefit, it is unlikely to make the difference between very
poor and very good generalization. This was empirically demonstrated
by Geiping et al. (2022).

An alternative approach builds on the popular hypothesis that
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the generalization capabilities of an NN are related to the flatness of
the loss function in the vicinity of its global minima. If the training
loss of the NN is not significantly affected when its parameters are
perturbed, this indicates some kind of robustness that could lead to
good generalization. This is intimately related to the concept of margins,
which has previously been successfully used to analyze the performance
of support vector machines (Cristianini and Shawe-Taylor, 2000). It
is with this motivation that Langford and Caruana (2001) considered
stochastic NNs, for which the parameters are randomly drawn from a
particular distribution each time the NN is used. The distribution of
each parameter is set as an independent Gaussian distribution, whose
mean coincided with the underlying deterministic NN and with variance
selected to be as large as possible without degrading the training loss
by more than a given threshold. Exploiting this randomization, they
were able to evaluate PAC-Bayesian generalization bounds, which can
be related to the performance of the underlying deterministic NN
through parameters such as the margin and Lipschitz properties of
the NN. In order to be able to select reasonable parameters for the
prior, Langford and Caruana (2001) considered a suitable dyadic grid of
candidate values, applying a union bound over these to obtain bounds
that hold simultaneously for all candidates on the entire grid. This led
to bounds that are nonvacuous, and significantly better than known
generalization bounds for deterministic networks—although the NNs
that were considered by Langford and Caruana (2001) were naturally
significantly less complex than what has been used in recent years.

This approach was adapted to more modern settings by Dziugaite
and Roy (2017). While Langford and Caruana (2001) performed a
sensitivity analysis for each parameter separately, this is not tenable
for large NNs. Instead, given a trained NN, Dziugaite and Roy (2017)
selected the weight distributions by directly optimizing a PAC-Bayesian
bound, using Corollary 5.4 as a starting point. By using the relaxation
obtained via Pinsker’s inequality, replacing the training loss with a
convex surrogate, fixing the prior to be a Gaussian distribution centered
on the underlying deterministic network, and restricting the posterior to
be an isotropic Gaussian, they obtained a training objective that can be
optimized via gradient-based methods. The underlying motivation for
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why this procedure is successful is, as already indicated, the hypothesized
flatness of the loss landscape around minimizers of the training loss.
While certain measures of flatness have been criticized as insufficient
to explain generalization, since they can be arbitrarily altered through
reparameterizations that do not affect the neural network itself (Dinh
et al., 2017), measuring flatness through the relative entropy avoids such
drawbacks. Indeed, the relative entropy is invariant under parameter
transformations.

This idea was further developed by Dziugaite et al. (2021), who
pointed out the crucial role that data-dependent priors, discussed in
Section 5.2.3, can play in the tightness of PAC-Bayesian bounds, as
observed earlier by, e.g., Ambroladze et al. (2006) and Mhammedi et al.
(2019). In fact, as demonstrated in Dziugaite et al. (2021, Lemma 3.3),
there exist learning settings for which data-dependent priors are neces-
sary in order to obtain a nonvacuous PAC-Bayesian bound.

Motivated by this, Dziugaite et al. (2021) proceed to evaluate such
data-dependent priors for NNs. Roughly speaking, a fraction α of the
training set, ZP , is used to train an NN upon which the prior is based,
while the full training set Z is used to train another NN that corresponds
to the posterior. In order to obtain a tighter characterization, this is
done in such a way that both NNs process the same samples in the initial
epochs, since these will have the largest impact on the final weights.
Experiments are also performed where the prior is further informed
by a ghost sample, which is not used for selecting the posterior, in
order to approximate an oracle prior. The use of data-dependent priors
leads to tighter bounds than just the use of a ghost sample. Crucially,
unlike the aforementioned results, this leads to nonvacuous bounds
when the posterior is chosen through a standard SGD-based procedure
(with added noise). However, an even tighter bound can be obtained by
optimizing the PAC-Bayesian bound via SGD, as shown in Dziugaite
et al. (2021, Fig. 5). Even tighter results, where bounds with data-
dependent priors were directly optimized, were obtained by Pérez-Ortiz
et al. (2021), who argued that this could potentially be used for self-
certified learning, where no separate test set is needed to certify the
performance of the learned hypothesis. Still, the utility of these data-
dependent priors is not entirely clear. As argued by Lotfi et al. (2022,
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Fig. 1(a)), similar or better bounds can be obtained by simply letting
the posterior equal the data-dependent prior, and using the remaining
data to obtain an unbiased estimate of the population loss.

8.2.2 Using the CMI Framework

As discussed in Section 6.3, the CMI framework of Chapter 6 can
be viewed as an alternative path to data-dependent priors. This was
exploited in Hellström and Durisi (2021a,b), wherein an approach similar
to that of Dziugaite et al. (2021) and Dziugaite and Roy (2017) was
used, in that Gaussian distributions centered on the outputs of SGD
are set as the posterior and prior. Specifically, given a supersample Z̃ of
training samples, half of them are selected to form the training set ZS .
The mean of the posterior is then found by running SGD for a fixed
set of iterations on ZS. Next, the true marginal distribution PW |Z̃S

in Theorem 6.7 is replaced by an auxiliary QW |Z̃ , the mean of which
is obtained by averaging the output of SGD trained on a number
of samples of ZS with a fixed Z̃. For both the posterior and prior,
the variance is set to be as large as possible while not degrading the
training loss of the randomized NN too much—similar to Langford and
Caruana (2001), but with a uniform choice for all parameters. While
this yields similar numerical bounds as Dziugaite et al. (2021), there
is one notable drawback—the bound cannot be directly optimized, as
this would introduce a direct dependence of the posterior on ZS̄ . This
would violate the required conditional independence between Z̃ and W
given ZS .

All these bounds apply to stochastic networks, with noise added to
the parameters, and not to the underlying, deterministic ones that are
typically used in practice. While the CMI bounds are finite without this
added noise, as guaranteed by the CMI framework, they are typically
vacuous. This can be avoided through the use of evaluated or functional
CMI (e-CMI or f -CMI). Motivated by the aim of obtaining information-
theoretic generalization bounds that depend on the predictions induced
by a learning algorithm, instead of the hypothesis itself, Harutyunyan
et al. (2021) derived several bounds in terms of the f -CMI. To illustrate
the benefits of this shift, consider the case of binary classification.
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Figure 8.1: Numerical evaluation for a CNN trained on a binary version of MNIST
(Hellström and Durisi, 2022a, Fig. 2(a)).

Then, the f -CMI I(F; S|Z̃) measures the mutual information between
the predictions F and the membership vector S—two discrete random
variables—given the supersample Z̃. Furthermore, for individual-sample
f -CMI bounds, I(Fi, Fi+n;Si|Z̃) measures mutual information between
binary random variables. This dramatically expands the set of possible
scenarios where the information measure, and thus the bound itself, can
be small even for deterministic learning algorithms, while being easy to
evaluate numerically. Specifically, Harutyunyan et al. (2021) evaluated
an average, disintegrated, individual-sample f -CMI bound through
Monte Carlo estimation, and obtained nearly accurate estimates of the
test error for deterministic NNs with relatively small training set sizes.
These numerical evaluations were extended to tighter generalization
bounds and e-CMI by Hellström and Durisi (2022a). In subsequent
work, Wang and Mao (2023c) obtained further improvements through
the use of ld-MI.

For a concrete example, consider Fig. 8.1 (Hellström and Durisi,
2022a, Fig. 2(a)). The setting under consideration is binary classification
for a version of the MNIST data set, which consists of 32 × 32 images of
handwritten digits. Specifically, the data set is restricted to the digits
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4 and 9, and a CNN trained with Adam (a variant of SGD) is used.
The plot shows the test error, i.e., the test loss using the 0 − 1 loss,
along with several upper bounds. Specifically, these are samplewise,
disintegrated e-CMI versions of the square-root bound in (6.1), the
binary KL bound in (6.9), and the interpolation bound in (6.8). To be
explicit, the bounds are, recalling the notation of Section 6.5,

L ≤ L̂+ 1
n

n∑
i=1

EZ̃

[√
2IZ̃(Λi; Si)

]
(8.32)

L ≤ EZ̃

[
d−1

2

(
EPWS|Z̃

[LZS
(W )] , 1

n

n∑
i=1

IZ̃(Λi; Si)
)]
. (8.33)

L ≤
n∑
i=1

I(Λi; Si|Z̃)
n log(2) . (8.34)

where d−1
2 (q, c) = sup

{
p ∈ [0, 1] : d

(
q || q+p2

)
≤ c

}
. The disintegrated

samplewise e-CMI IZ̃(Λi; Si) is evaluated via sampling: for each n ∈
{75, 250, 1000, 4000}, a supersample of 2n samples is drawn from the full
data set. Half of these are selected to obtain the n training samples, and
the network is then trained and evaluated. This is repeated several times
to build an empirical distribution of the relevant random variables, which
is used to compute the mutual information term via a plug-in estimator.
The results show that, whenever it is applicable, the interpolating
bound (8.34) is tightest. For n = 4000, not all training losses were zero,
precluding its use. Thus, the binary KL bound of (8.33) is tightest of
the applicable bounds. For all values, it improves on the square-root
bound (8.32). Thus, these results demonstrate that the bounds can be
estimated and are numerically fairly accurate. For more details and
results for other settings, the reader is referred to, for instance, the work
of Harutyunyan et al. (2021), Hellström and Durisi (2022a), and Wang
and Mao (2023c).

Note that, in contrast to the aforementioned bounds for stochastic
NNs, these bounds hold only in expectation. While corresponding
results can be obtained in probability, this would limit the possibility of
using the individual-sample technique, potentially degrading the bounds
significantly.
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8.2.3 Compression-Based Bounds

An alternative approach to obtaining numerically nonvacuous general-
ization bounds for NNs is through the lens of compression (Arora et al.,
2018; Bu et al., 2021). This approach builds on the observation that,
often, well-performing NNs can be significantly compressed without
noticably affecting their performance. While generalization bounds for
the original NN may be far from accurate, applying the same bound to
a compressed NN can yield much better results. While these bounds
still do not explain the generalization capabilities of the original NN,
they can provide guarantees for the compressed counterparts.

This approach was used by Zhou et al. (2019), who obtained non-
vacuous generalization bounds for NNs by combining off-the-shelf com-
pression algorithms and PAC-Bayesian bounds. The idea is essentially
to set the posterior in the PAC-Bayesian bound to be a point mass
centered on the output of the combined NN training and compression
algorithm, and combine this with a suitably chosen prior on the set of
possible hypotheses following the compression step. The specific com-
pression algorithm considered by Zhou et al. (2019) is weight pruning,
whereby a large number of parameters are set to zero in a way that
aims to minimize adversely affecting predictive performance (Han et al.,
2016). Finally, in order to further exploit the flatness of the loss surface,
Gaussian noise is added to the non-zero weights, similar to the approach
taken by Dziugaite and Roy (2017).

This approach was extended in several ways by Lotfi et al. (2022),
who aimed to leverage these bounds to shed light on various factors
behind generalization in NNs. First, they perform training only in a care-
fully constructed random linear subspace of the parameters, constraining
the space of possible hypotheses and thus enabling smaller compressed
sizes. Instead of pruning, Lotfi et al. (2022) use trainable quantization,
whereby the quantization levels and the weights themselves can be
learned simultaneously. Furthermore, whereas Zhou et al. (2019) consid-
ered a prior based on a uniform distribution, Lotfi et al. (2022) replaced
it with a so-called universal prior, which places greater weight on more
compressed hypotheses. This leads to nonvacuous bounds, which can be
further tightened through the use of data-dependent priors in the style
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of Ambroladze et al. (2006) and Dziugaite et al. (2021). However, Lotfi
et al. (2022) argue that while this leads to numerically accurate bounds,
it does not explain generalization for the full learning procedure: such
bounds only compare the posterior to the data-dependent prior, but the
question of why the prior is good is left unanswered. Finally, numerical
experiments by Lotfi et al. (2022) indicate that one possible explanation
for why techniques such as transfer learning and the use of symmetries
improve generalization is that they improve compressibility.

8.3 Bibliographic Remarks and Additional Perspectives

The results in Section 8.1 are based on the work of Pensia et al. (2018).
Additionally, information-theoretic bounds for SGLD have also been
derived by, for instance, Bu et al. (2020), Futami and Fujisawa (2023),
Haghifam et al. (2020), Issa et al. (2023), Li et al. (2020), Mou et al.
(2018), Negrea et al. (2019), Wang et al. (2021a), and Wang et al.
(2021b, 2023). By relating the parameter trajectory of SGLD to the
corresponding noise-free trajectory of SGD, Neu et al. (2021) and Wang
and Mao (2022) obtained bounds for SGD. However, as demonstrated
by Haghifam et al. (2023), current information-theoretic approaches
are not sufficient to obtain minimax optimal rates for stochastic convex
optimization problems. This was rectified to some extent by Wang and
Mao (2023b), who combined the information-theoretic approach with
techniques from algorithmic stability.

In addition to the results for NNs that we have discussed so far,
several alternative approaches to obtain generalization bounds for neural
networks have been explored in the literature, both within the scope of
information-theoretic and PAC-Bayesian bounds and beyond it. While
a comprehensive overview of all such work is beyond the scope of this
monograph, we will mention some of the approaches here. For instance,
bounds have been derived based on the norms of the weights of the
NN (Bartlett et al., 2017; Neyshabur et al., 2015). A PAC-Bayesian view
on this approach was taken by Neyshabur et al. (2018), who used the
robustness of NNs to parameter perturbations in order to obtain a de-
randomized bound in terms of a relative entropy that can be evaluated
explicitly. Bartlett and Mendelson (2002) derived norm-based bounds
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for NNs starting from the Rademacher complexity. The connection
between PAC-Bayesian bounds and flatness has also been explored by,
e.g., Foret et al. (2021) and Tsuzuku et al. (2020). Several works have
derived generalization bounds for NNs trained via SGLD (Bu et al.,
2020; Haghifam et al., 2021), and other noisy versions of SGD (Banerjee
et al., 2022). Pitas (2020) explored the use of Gaussian posteriors in PAC-
Bayesian bounds for NNs, while Dziugaite and Roy (2018a) established
a connection to entropy-SGD.

In the limit of infinite width, and under certain conditions on their
initialization, NNs can be described as a Gaussian process (Neal, 1994),
a correspondence referred to as the NN Gaussian process (NNGP—Lee
et al., 2018). For certain loss functions and suitably scaled learning rates,
the evolution of the infinitely wide NN during training is also tractable,
and is described by the neural tangent kernel (NTK) (Jacot et al.,
2018). Pérez et al. (2019) combined PAC-Bayesian bounds with the
NNGP correspondence to argue that the functions learned by NN tend
to be simple in a sense that leads to generalization, and support their
arguments by numerically estimating the relevant quantities. Bernstein
and Yue (2021) took a similar approach, but derived analytical upper
bounds that lead to nonvacuous generalization guarantees. Shwartz-
Ziv and Alemi (2020) used the NTK formalism to analytically study
many information metrics for NNs, such as I(W ; Z). Clerico et al.
(2023), Clerico and Guedj (2024), and Huang et al. (2023) extended
the NTK formalism to networks trained by optimizing PAC-Bayesian
bounds, while Wang et al. (2022) explored connections to the information
bottleneck.

Viallard et al. (2019) used the PAC-Bayesian framework to analyze
a particular two-phase procedure to train NNs. Rivasplata et al. (2019)
considered a broad family of methods for training stochastic NNs by
minimizing PAC-Bayesian bounds. Letarte et al. (2019) considered NNs
with binary activation functions, and used PAC-Bayesian bounds to
both formulate a framework for training and to obtain nonvacuous gen-
eralization guarantees. Biggs and Guedj (2021) considered ensembling
over stochastic NNs, obtaining differentiable PAC-Bayes objectives,
while Biggs and Guedj (2022a) derived a de-randomized PAC-Bayesian
bound for shallow NNs, using data-dependent priors to get nonvacuous
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generalization bounds. Zantedeschi et al. (2021) used PAC-Bayesian
bounds to learn stochastic majority votes, while Nagarajan and Kolter
(2019) obtained de-randomized PAC-Bayes bounds via noise-resilience.
Tinsi and Dalalyan (2022) obtained tractable bounds for certain aggre-
gated shallow NNs, using a PAC-Bayesian bound with Gaussian priors
as the starting point, while Clerico et al. (2022a) derived a training
algorithm for stochastic NNs without the need for a surrogate loss. Jin
et al. (2022) discussed how the use of dropout affects PAC-Bayesian
generalization bound through the concept of weight expansion. Liao
et al. (2021) used PAC-Bayes to derive generalization bounds for graph
NNs, while Viallard et al. (2021) and Xiao et al. (2023) derived bounds
for adversarial robustness.

Comprehensive surveys of various complexity measures and their
connection to generalization can be found in, for instance, the works
of Dziugaite et al. (2020), Jiang et al. (2020), and Neyshabur et al.
(2017).



9
Alternative Learning Models

So far, we have considered a generic learning model in which the learner
has access to n (typically i.i.d.) data points from a fixed data distribution,
and the goal is to achieve a small loss on new samples from the same
distribution. While this learning model covers many learning settings of
interest, it is not all-encompassing. In this chapter, we consider learning
problems that do not fit neatly into the generic setting we discussed
so far. We will not analyze any of these settings in depth. Our aim is
merely to illustrate the wide applicability of the information-theoretic
and PAC-Bayesian approaches to generalization.

First, we discuss the setting of meta learning, wherein the learner
observes training data from several related tasks, and the goal is to
learn how to perform well on a new task. Next, we consider transfer
learning, wherein the distribution of the training data is not the same
as the distribution of the test data. This is closely related to domain
adaptation and out-of-distribution generalization. Following this, we
present an information-theoretic generalization bound for federated
learning, where a set of distributed nodes separately observe training
samples, on the basis of which a composite hypothesis is formed under
certain communication constraints. Finally, we look at reinforcement
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learning, wherein the learner collects observations by interacting with
an environment. Specifically, it observes states, takes actions according
to a policy, and receives rewards, with the goal of learning a policy that
yields high rewards. We conclude by briefly discussing the application
of information-theoretic and PAC-Bayesian generalization bounds to
online learning, active learning, and density estimation.

9.1 Meta Learning

In typical supervised learning, each learning task is considered in a
vacuum: the learner has access to n training samples from the task,
and this is all it has to go by. In reality, this is usually not the case:
different tasks of interest may have many commonalities. For instance,
any computer vision task is based on processing of visual data, which
may be similar across many different tasks.

This idea is captured by the framework of meta learning (Baxter,
2000; Caruana, 1997; Thrun and Pratt, 1998). In this setting, we assume
that there exists a task space T , paired with a task distribution Pτ . For
each task τ ∈ T , there is a corresponding in-task data distribution P τZ .
In order to form the meta-training set Ẑ ∈ Zm×n, m tasks are drawn
from Pτ , and for each of these, n samples are drawn from the correspond-
ing P τZ . Thus, for each i ∈ [m], τi is drawn independently from Pτ , and
for each j ∈ [n], Ẑi,j is drawn independently from P τi

Z . On this basis, the
meta learner aims to find a hyperparameter (or meta hypothesis) U ∈ U
on the basis of the meta-learning algorithm PU |Ẑ . This hyperparame-
ter will serve as an additional input to a base learner, allowing it to
use information from the meta-training set for new tasks. Specifically,
for Z ∈ Zn, the base learner is characterized by the conditional distribu-
tion PW |ZU . The performance of the meta learner is evaluated through
the test loss of the base learner on a test task. Specifically, let τ be drawn
from Pτ , independently from Ẑ, let the “test-training set” Zτ consist
of n i.i.d. samples from P τZ , and let the “test-test sample” Zτ ∼ P τZ .
Then, the average meta-test loss is defined as

L = EPẐPU|ẐPZτ PW |ZτUPZτ [ℓ(W,Zτ )] = EPWPZτ [ℓ(W,Zτ )] . (9.1)

While the meta learner does not have access to L, it can compute the
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meta-training loss, defined as

L̂ = EPẐPU|Ẑ

 1
m

m∑
i=1

EPWi|Ẑi,:U

 1
n

n∑
j=1

ℓ(Wi, Ẑi,j)

 . (9.2)

Here, Ẑi,: = (Ẑi,1, . . . , Ẑi,n) denotes the training set for the ith task
and Wi is the corresponding hypothesis of the base algorithm. For
simplicity, we only focus on generalization bounds in expectation. We
can extend all of these results to obtain PAC-Bayesian and single-draw
counterparts, by following the approach detailed in Chapter 5.

In the standard learning setting, a key step was to perform a change
of measure to handle the dependence between the training data and
the hypothesis. In the meta-learning setting, there is an additional
dependence between the training data and the hyperparameter. One
way to handle this additional dependence is to use a two-step approach,
wherein an auxiliary loss is introduced as an intermediate step between
the meta-training and meta-population loss. This allows us to obtain
generalization bounds by applying two changes of measure, separately:
one to relate the meta-training loss to the auxiliary loss, and one to
relate the auxiliary loss to the meta-population loss. This allows us to
apply standard generalization bounds on the intra-task and inter-task
levels separately. However, tighter bounds can be obtained by dealing
with them simultaneously. This joint approach leads to the following
generalization bound for meta learning, due to Chen et al. (2021).

Theorem 9.1. Assume that the loss is σ-sub-Gaussian. Let Ŵ =
(W1, . . . ,Wm) denote the output hypotheses of the base learners for
the m training tasks. Then,

∣∣∣L− L̂
∣∣∣ ≤

√
2σ2I(U, Ŵ ; Ẑ)

nm
. (9.3)

Proof. The proof essentially follows immediately by the same approach
as was used in the proof of Corollary 4.2, once we make the following
observation: the average loss on the meta-training set under the joint
distribution of U , Ŵ , and Ẑ equals L̂. If we instead draw (U, Ŵ )
independent from Ẑ, it equals L. We begin by re-writing the training
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loss as

L̂ =EPẐPU|Ẑ

 1
m

m∑
i=1

EPWi|Ẑi,:U

 1
n

n∑
j=1

ℓ(Wi, Ẑi,j)

 (9.4)

= 1
m

m∑
i=1

EPWi|Ẑi,:UPẐPU|Ẑ

 1
n

n∑
j=1

ℓ(Wi, Ẑi,j)

 . (9.5)

Furthermore, since the tasks and samples are i.i.d.,

1
m

m∑
i=1

EPWi|UPẐPU

 1
n

n∑
j=1

ℓ(Wi, Ẑi,j)

 = EPWPZτ [ℓ(W,Zτ )] = L. (9.6)

We conclude the proof by changing measure from PUŴẐ to PUŴPẐ and
using sub-Gaussian concentration.

The effects of the environment level and in-task level in Theorem 9.1
can be disentangled through the use of the chain rule:√

2σ2I(U, Ŵ ; Ẑ)
nm

=

√
2σ2(I(U ; Ẑ) + I(Ŵ ; Ẑ|U))

nm
(9.7)

≤

√
2σ2I(U ; Ẑ)

nm
+

√
2σ2I(W1; Ẑ1,:|U)

n
. (9.8)

In the second step, we used the fact that I(Ŵ ; Ẑ|U) can be separated
as m mutual information terms, one for each task, with the same
underlying distributions.

The bound in Theorem 9.1 can be tightened through the use of al-
ternative changes of measure and concentration methods, disintegration,
and the individual-sample technique. We will not discuss this explicitly,
but instead provide pointers for such extensions and to additional re-
sults. PAC-Bayesian bounds for meta learning have been derived, often
with a focus on algorithms that minimize these bounds to improve gen-
eralization, by, e.g., Amit and Meir (2018), Pentina and Lampert (2014),
Rezazadeh (2022), and Rothfuss et al. (2021). Information-theoretic
bounds were provided by Jose and Simeone (2021a) and Jose et al.
(2022b), who used a two-step derivation, and Chen et al. (2021) who
used the one-step derivation above. A CMI formulation of meta learning
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was introduced by Rezazadeh et al. (2021), which was later extended
to incorporate one-step derivations, disintegration, and alternative com-
parator functions by Hellström and Durisi (2022b). Finally, Jose and
Simeone (2021c) derived generalization bound that explicitly incorpo-
rate task similarity, as measured through, for instance, the relative
entropy.

9.2 Out-of-Distribution Generalization and Domain Adaptation

In the standard learning setting, the population loss is defined with
respect to the same distribution from which the training set was drawn.
While this is a natural assumption to make from a theoretical standpoint,
there are many situations in which one expects a distribution shift when
deploying a model. There are also scenarios where there is an abundance
of data from a surrogate distribution, while there is a lack of data from
the actual distribution of interest. This motivates theoretical settings
where the population loss is defined with respect to a target distribution,
which may differ from the source distribution used to generate the
training data.

For the purposes of this discussion, we assume that the sample
space factors into a feature space and a label space as Z = X × Y.
The overarching framework, where the only assumption is that the
training data is drawn from a source distribution PZ but we evaluate
the model on a target distribution P TZ , is usually referred to as out-
of-distribution (OOD) generalization (Liu et al., 2021a). When the
marginal distribution on X induced by PZ differs from the one induced
by P TZ , but the conditional distributions of the label given the features
are identical, we refer to this as domain adaptation (Kouw and Loog,
2019; Redko et al., 2022). Finally, whenever the learner has access
to (partial) samples from the target distribution, we refer to this as
transfer learning, categorized as unsupervised if the learner only has
access to unlabelled target features and supervised if it has access
to full target samples (Weiss et al., 2016). While the definitions of
OOD generalization and domain adaptation provided above are fairly
established, the term transfer learning is overloaded, and is sometimes
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used to refer to OOD generalization more broadly, or even to certain
variations of meta learning.

For simplicity, we will only consider bounds in expectation. As
usual, we denote the training set as Z, drawn from PZ = PnZ , and the
output hypothesis from the stochastic algorithm PW |Z as W . Similarly,
the average training and population loss with respect to the source
distribution are still given by

L̂ = EPWZ
[LZ(W )] , L = EPWZ

[EPZ
[ℓ(W,Z)]] . (9.9)

However, the performance metric that we actually wish to minimize is
the average target population loss, given by

LT = EPWZ

[
EPT

Z

[
ℓ(W,ZT )

]]
. (9.10)

9.2.1 Generic OOD Generalization Bounds

Our first approach to obtaining OOD generalization bounds is natural.
Since we have already established bounds for the population loss under
the source distribution, but are now interested in bounds under the
target distribution, we can just apply a change of measure. By a direct
application of the Donsker-Varadhan variational representation of the
relative entropy, we obtain the following (Wang and Mao, 2023a).

Proposition 9.2. Assume that the loss function is σ-sub-Gaussian un-
der PZ almost surely under PW and that P TZ ≪ PZ . Then,∣∣∣LT − L

∣∣∣ ≤
√

2σ2D(P TZ ||PZ). (9.11)

Proof. By the Donsker-Varadhan variational representation of the rela-
tive entropy in Theorem 3.17, we have for any λ ∈ R

D(P TZ ||PZ)≥EPT
Z

[
λEPWZ

[
ℓ(W,ZT )

]]
−logEPZ

[
eλEPWZ

[ℓ(W,Z)]
]
. (9.12)

Due to the sub-Gaussianity assumption, we have

logEPZ

[
eλEPWZ

[ℓ(W,Z)]
]

= logEPZ

[
eλ(EPWZ

[ℓ(W,Z)]−EPZ [EPWZ
[ℓ(W,Z)]]+EPZ [EPWZ

[ℓ(W,Z)]])] (9.13)

≥λEPZ
[EPWZ

[ℓ(W,Z)]] + λ2σ2

2 . (9.14)
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By combining these steps and optimizing over λ for the two cases λ > 0
and λ < 0, we obtain the final result.

Proposition 9.2 allows us to turn any generalization bound for
standard learning into an OOD generalization bound via the triangle
inequality, at the cost of a term depending on D(P TZ ||PZ). This result
confirms the intuition that OOD generalization works well if the target
and source distribution are similar, with the added specificity that
similarity in terms of relative entropy is sufficient. One drawback of the
relative entropy is that it requires absolute continuity for finiteness. This
can be alleviated to some extent: the role of the source distribution PZ
and target distribution P TZ in the derivation above can be swapped,
leading to a bound in terms of D(PZ ||P TZ ). For this to work, we instead
need to assume that the loss function is σ-sub-Gaussian under P TZ
almost surely under PW and that PZ ≪ P TZ .

Unfortunately, there are scenarios where neither of these conditions
are satisfied—for instance, if the two distributions have disjoint supports.
This motivates bounds in terms of other information measures, such as
the Wasserstein distance. The following result follows directly from the
Kantorovich-Rubinstein duality.

Proposition 9.3. Assume that the loss is 1-Lipschitz. Then,∣∣∣LT − L
∣∣∣ ≤ W1(PZ , P TZ ). (9.15)

The benefit of this result is that, unlike for the relative entropy, it
remains finite even for the case where the source and target distributions
have disjoint support.

9.2.2 Unsupervised Transfer Learning

In the previous section, we derived generic bounds in which minimal
assumptions were made on the distributions and task, and the learning
algorithm did not have access to any samples from the target distribution.
While this led to explicit bounds in terms of discrepancy measures
between the source and target distribution, the utility is limited—we
cannot minimize these discrepancy measures, and in fact, we do not
have any access to the source and target distributions.
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In order to gain algorithmic insights, we will now consider unsu-
pervised transfer learning. More precisely, we assume that the sample
space factors into a feature space and label space as Z = X × Y . Hence,
the target distribution also factors as P TZ = P TXP

T
Y |X . Furthermore, we

assume that the hypothesis W implements a function fW : X → Y,
and that its loss depends on the true label and the corresponding pre-
diction as ℓ(W,Z) = ℓf (fW (X), Y ). In addition to the training set Z

drawn from PZ , the learning algorithm now also has access to a set
of unlabelled features XT = (XT

1 , . . . , X
T
m), with each element drawn

independently from P TX . The learning algorithm is now characterized by
the conditional distribution PW |ZXT , and the training loss and target
population loss are thus given by
L̂ = EP

WZXT
[LZ(W )] , LT = EP

WZXT

[
EPT

Z

[
ℓ(W,ZT )

]]
. (9.16)

Following Wang and Mao (2023a), we can derive bounds on LT directly
from L̂, i.e., without going through the source-distribution population
loss.
Theorem 9.4. Assume that the loss function is σ-sub-Gaussian un-
der PZ almost surely under PW and that P TZ ≪ PZ . Then,∣∣∣LT − L̂

∣∣∣ ≤ EP
XT

√2σ2IXT (W ; Z)
n

+ 2σ2D(P TZ ||PZ)

 . (9.17)

Proof. We begin by considering a specific XT . Then, by the same
argument as used in Proposition 9.2, for all λ ∈ R

D(PWZi|XT
j

||PW |XT
j
P TZ )

≥ EP
WZi|XT

j

[λℓ(W,Zi)] − EP
W |XT

j
PT

Z

[
λℓ(W,ZT )

]
− σ2λ2

2n . (9.18)

Now, note that
D(PWZi|XT

j
||PW |XT

j
P TZ ) = IX

T
j (W ;Zi) +D(PZ ||P TZ ). (9.19)

Hence, by optimizing over λ as before, we get∣∣∣∣∣EPWZi|XT
j

[λℓ(W,Zi)] − EP
W |XT

j
PT

Z

[
λℓ(W,ZT )

]∣∣∣∣∣
≤
√

2σ2IX
T
j (W ;Zi) +D(PZ ||P TZ ) (9.20)
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The stated result now follows by decomposing
∣∣∣LT − L̂

∣∣∣, applying (9.20)
termwise, and performing a full-sample relaxation.

The role of XT in the disintegrated mutual information here is
not entirely clear. Indeed, if we use Jensen’s inequality to move the
expectation inside the square root, we get

EP
XT

[√
IXT (W ; Z)

]
≤
√
I(W ; Z|XT ). (9.21)

This conditional mutual information is lower-bounded as I(W ; Z|XT ) ≥
I(W ; Z). If we had not fixed XT at the beginning of the derivation,
and had instead just averaged it out, we would have obtained a gen-
eralization bound in terms of I(W ; Z), where the role of XT is ig-
nored, as was done by Jose and Simeone (2021d). However, the relation
between EP

XT

[√
IXT (W ; Z)

]
and I(W ; Z) is not clear. Indeed, the

unlabelled target features could potentially be used to decrease the
information measure that appears in the bound, as discussed by Wang
and Mao (2023a).

Still, this does not address the term D(PZ ||P TZ ) in Theorem 9.4.
This term can be controlled to some extent when the function im-
plemented by the learning algorithm can be expressed as a composi-
tion fW = gW ◦ hW , where hW : X → R is a mapping to a representa-
tion space R and gW : R → Y is the final mapping to the prediction.
Here, fW (·) can for instance be an N -layer neural network, where hW (·)
consists of the first N − k layers and gW (·) consists of the remaining k
layers, for some k ∈ [N ]. For this setting, we can try to align the
distributions on the representation induced by the source and target
distributions.

For the purposes of this discussion, we will look at the relative
entropy D(P TZ ||PZ), but similar techniques can be applied to, e.g., the
Wasserstein distance. First, consider a fixed function h : X → R, and
let P ThW

denote the pushforward of P TX with respect to h—that is, the
distribution on R induced by h acting on P TX—and similarly for PhW

.
Furthermore, let P TY |hW

and PY |hW
denote the conditional target and

source distributions for the label, given the representation. Then, for a
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fixed W , we have

LT (W ) = EPT
Z

[ℓ(W,Z)] = EPT
hW

PT
Y |hW

[ℓ(gW (hW (X)))] , (9.22)

L(W ) = EPZ
[ℓ(W,Z)] = EPhW

PY |hW
[ℓ(gW (hW (X)))] . (9.23)

Therefore, by repeating the argument of Proposition 9.2 with this
re-formulation at the start, we obtain∣∣∣LT − L

∣∣∣ ≤ EPW

[√
2σ2D(P ThW

P TY |hW
||PhW

PY |hW
)
]
. (9.24)

The result in Theorem 9.4 can be adapted similarly. Next, note that
the relative entropy can be decomposed as

D(P ThW
P TY |hW

||PhW
PY |hW

)=D(P ThW
||PhW

)+D(P TY |hW
||PY |hW

). (9.25)

Consequently, we have two components of the discrepancy measure: the
representation discrepancy D(P ThW

||PhW
) and the conditional discrep-

ancy D(P TY |hW
||PY |hW

). The representation discrepancy is something
that we actually can aim to minimize by suitably designing our learn-
ing algorithm. While we do not have access to the underlying feature
distribution for neither the source nor the target, we have empirical
estimates based on the source features in Z and the unlabelled target
features XT . Thus, as part of choosing W , we can aim to minimize
the discrepancy between the pushforward of these empirical source and
target feature distributions with respect to hW .

Now, the relative entropy between the two conditional distributions
is not under our control in the same sense, but there are situations where
its contribution can be minor. For the setting of domain adaptation,
this term will be zero, as we assume that the conditional distribution
on the label given the features is identical for the source and target
distributions. This implies that the corresponding pushforward measures
are also equal. Under some additional assumptions, this relative entropy
can also be replaced by a term that is small for settings of practical
relevance. Specifically, as shown by Wang and Mao (2023a, Thm. 4.2), if
we assume that the loss is symmetric and satisfies the triangle inequality,
we find that, for any fixed W ,

LT (W )−L(W ) ≤
√

2σ2D(P TX ||PX)+ min
w∗∈W

{LT (w∗)+L(w∗)}. (9.26)
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Thus, the relative entropy between the conditional distributions can be
replaced by the smallest possible sum of source and target population
losses. If transfer learning is to be successful in the sense that we
should be able to find a hypothesis that works well for both the source
and the target distributions—even given oracle knowledge of the true
distributions—this quantity has to be small.

We conclude this section by presenting a generalization bound for
supervised transfer learning, where the learning algorithm has access
to labelled data from the target distribution. This bound is in terms
of the f -mutual information and uses total variation as discrepancy
measure, and is due to Wu et al. (2022a). We shall assume that, in
addition to the source training set Z, the learning algorithm also has
access to a set of m labelled examples from the target distribution ZT =
(ZT1 , . . . , ZTm), with all elements drawn independently from P TZ . Thus, the
learning algorithm is characterized by a conditional distribution PW |ZZT .
We define the weighted training loss as

L̂ = EP
WZZT

[
α

m

m∑
i=1

ℓ(W,ZTi )
]

+ EP
WZZT

[
1 − α

n

n∑
i=1

ℓ(W,Zi)
]

(9.27)

= α

m

m∑
i=1

EP
WZT

i

[
ℓ(W,ZTi )

]
+ 1 − α

n

n∑
i=1

EPWZi
[ℓ(W,Zi)] . (9.28)

Here, the parameter α ∈ [0, 1] determines the relative emphasis that we
place on the data from the target distribution. When α = 1, it reduces
to the standard training loss for supervised learning. When α = 0, we
are instead back to a generic OOD setting with no target data to learn
from.

Theorem 9.5. Assume that, for any w ∈ W, the loss is bounded by σ
in L∞-norm, i.e.,

|ℓ(w,Z)|∞ = inf{s : P TZ (ℓ(w,Z) > s) = 0} ≤ σ. (9.29)
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Then, we have∣∣∣LT − L̂
∣∣∣ ≤ 2ασ

m

∑
i∈[m]

TV(PWZi , PWPZT
i

)

+ 2(1 − α)σ
n

∑
i∈[n]

(
TV(PWZi , PWPZi) + TV(PZ , P TZ )

)
. (9.30)

Proof. First, we decompose the generalization gap as∣∣∣LT−L̂
∣∣∣ =

∣∣∣∣∣LT − α

m

m∑
i=1

EP
WZT

i

[
ℓ(W,ZTi )

]
− 1 − α

n

n∑
i=1

EPWZi
[ℓ(W,Zi)]

∣∣∣∣∣
≤ α

m

m∑
i=1

∣∣∣∣EPWPZT
i

[
ℓ(W,ZT )

]
− EP

WZT
i

[
ℓ(W,ZTi )

]∣∣∣∣ (9.31)

+ 1 − α

n

n∑
i=1

∣∣∣∣EPWPZT
i

[
ℓ(W,ZT )

]
− EPWZi

[ℓ(W,Zi)]
∣∣∣∣ .

Now, the terms in the first sum are individual-sample generalization
gaps. By applying Theorem 4.4 to each term, we can bound them as

EPWPZT
i

[
ℓ(W,ZT )

]
− EP

WZT
i

[
ℓ(W,ZTi )

]
≤ TV(PWZT

i
, PWPZT

i
). (9.32)

Proceeding similarly with the second sum, we can bound each term as

EPWPZT
i

[
ℓ(W,ZT )

]
− EPWZi

[ℓ(W,Zi)] ≤ TV(PWZi , PWPZT
i

). (9.33)

To isolate the effect of the distribution shift, we can decompose this
last upper bound as

TV(PWZi , PWPZT
i

) = 1
2

∫
W×Z

∣∣∣dPWZi − dPWPZT
i

∣∣∣ (9.34)

≤ 1
2

∫
W×Z

|dPWZi − dPWPZi | (9.35)

+ 1
2

∫
W×Z

∣∣∣dPWPZi − dPWPZT
i

∣∣∣
= TV(PWZi , PWPZi) + TV(PZ , P TZ ). (9.36)

We obtain the desired result by substituting (9.32), (9.33) and (9.36)
into (9.31).
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While we only covered bounds in expectation, many of these results
can be extended to PAC-Bayesian and single-draw variants. Further
discussion regarding many of these topics, as well as practical algorithms
based on these bounds, are provided by Aminian et al. (2022a), Wang
and Mao (2023a), and Wu et al. (2022a).

9.3 Federated Learning

Federated learning is a framework for describing distributed learning,
for instance in mobile networks (Kairouz et al., 2021). Specifically, we
assume that there are K separate nodes, all having access to their
own training set Zk = (Zk,1, . . . , Zk,n) of size n, for each k ∈ [K].
We assume that Zk,i ∼ PZ for all (k, i) ∈ [K] × [n], and denote the
collection of all training sets as Z = (Z1, . . . ,ZK). Each node uses
a learning algorithm PWk|Zk

to generate the hypothesis Wk on the
basis of Zk. These local models are then combined to form the final
model W through an aggregation algorithm PW |W1,...,Wk

. A common
choice is to use averaging, so thatW = 1

K

∑K
k=1Wk. Composing the local

learning algorithms and the aggregation algorithm induces a conditional
distribution on W given the full training set Z, denoted as PW |Z . As
usual, our aim is to bound the population loss LPZ

(W ).
One way to obtain generalization bounds is simply to consider PW |Z

as a learning algorithm acting on nK samples, and use a generalization
bound for standard supervised learning. Alternatively, assuming that the
aggregation algorithm performs averaging and that the loss is convex,
we have

LPZ
(W ) = EPZ

[
ℓ

(
1
K

K∑
k=1

Wk, Z

)]
(9.37)

≤ 1
K

K∑
k=1

EPZ
[ℓ(Wk, Z)] . (9.38)

This allows us to apply a standard generalization bound for each node.
Neither of these approaches, as noted by Barnes et al. (2022), exploits
the specific structure of federated learning, except potentially implicitly
through the information measures that appear in the bounds. We will
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therefore focus here on the result in Barnes et al. (2022, Thm. 4), in
which an explicit improved dependence on the number of nodes K is
achieved.

To this end, we need to assume that the loss can be described as a
Bregman divergence. Specifically, for a continuously differentiable and
strictly convex function f : Rm → R, the Bregman divergence between
two points p, q ∈ Rm is defined as

Bf (p, q) = f(p) − f(q) − ⟨∇f(q), p− q⟩, (9.39)
where ⟨·, ·⟩ is the inner product. Notably, this includes the squared loss,
which is obtained by setting f(·) to be the squared two-norm. With
this, the following can be established.
Theorem 9.6. Assume that the loss function is a Bregman diver-
gence ℓ(w, z) = Bf (w, z). Furthermore, assume that ℓ(w,Z) is σ-sub-
Gaussian under PZ for all w ∈ W. Then, if W = 1

K

∑K
k=1Wk,

EPWZ
[LPZ

(W ) − LZ(W )] ≤ 1
K2

∑
k∈[K]

√
I(Wk; Zk)

n
. (9.40)

Proof. Let Z ′ = (Z ′
1, . . . ,Z

′
K) be an independent copy of Z, and

let Z(k,i) equal Z for all elements except Z
(k,i)
k,i = Z ′

k,i. Then, we
have (Shalev-Shwartz et al., 2010, Lemma 11)

EPWZ
[LPZ

(W )]= 1
nK

∑
k,i

EPWZPZ′

[
ℓ(W,Z ′

k,i)
]

(9.41)

= 1
nK

∑
k,i

EPWZPZ′

[
f(W )−f(Z ′

k,i)−⟨∇f(Z ′
k,i),W−Z ′

k,i

]
,

since Z ′
k,i is independent from W . Here, the summation indices implicitly

run over k ∈ [K] and i ∈ [n]. Let W k,i be drawn according to PWk,i|Z(k,i) .
Then,

EPWZ
[LZ(W )] = 1

nK

∑
k,i

EP
W k,iZZ′

[
ℓ(W k,i, Z ′

k,i)
]

(9.42)

= 1
nK

∑
k,i

EP
W k,iZZ′

[
f(W k,i) − f(Z ′

k,i) (9.43)

− ⟨∇f(Z ′
k,i),W k,i−Z ′

k,i

]
,
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since Z ′
k,i is in the training set of W k,i. It follows that

EPWZ
[LPZ

(W ) − LZ(W )]

= 1
nK

∑
k,i

EP
W W k,iZZ′

[
⟨∇f(Z ′

k,i),W k,i −W ⟩
]
. (9.44)

Here, we used that EPW
[f(W )] = EP

W k,i

[
f(W k,i)

]
since W and W k,i

have the same marginal distributions. The key observation that leads to
the improved dependence on K, compared to an approach using (9.38),
is that W and W k,i are the average of K sub-models, but they differ
only in the kth sub-model. Hence, W k,i−W = 1

K (W i
k −Wk), where W i

k

denotes the kth submodel trained on Z
(i)
k . Therefore,

EPWZ
[LPZ

(W ) − LZ(W )]

= 1
nK2

∑
k,i

EP
W W k,iZZ′

[
⟨∇f(Z ′

k,i),W i
k −Wk⟩

]
. (9.45)

Hence, we can conclude that

EPWZ
[LPZ

(W )−LZ(W )]= 1
K2

∑
k∈[K]

EPWZ
[LPZ

(Wk)−LZk
(Wk)] . (9.46)

We obtain the desired result by applying Corollary 4.2.

If z = (x, y), this result also holds if ℓ(w, (x, y)) = Bf (⟨w, x⟩, y), with
a nearly identical proof. Intuitively, the improved dependence onK arises
because the dependence of the final hypothesis W on any individual
sample is dampened by 1/K due to the averaging. Naturally, this result
can be extended to incorporate disintegration, the individual-sample
technique, or by using other generalization bounds than Corollary 4.2
in the proof. For further discussion and extensions of these bounds, see
for instance the work of Barnes et al. (2022) and Yagli et al. (2020).

9.4 Reinforcement Learning

So far, we have assumed that the training data is independent from the
learning algorithm. In this section, we instead look at reinforcement
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learning, wherein the learner collects observations by taking observation-
dependent actions in an environment. Specifically, in Section 9.4.1,
we present extensions of PAC-Bayesian bounds from i.i.d. data to
martingales, which allows us to capture some of the interactions that
occur in reinforcement learning. Then, in Section 9.4.2, we discuss
information-theoretic bounds for Markov decision processes (MDP),
which constitute an important class of reinforcement learning problems.

9.4.1 PAC-Bayesian Bounds for Martingales

We begin by presenting a PAC-Bayesian bound for martingales (de-
scribed in Section 3.3.4) due to Seldin et al. (2012b). This can be used
to apply generalization bounds like those in Section 5.2 developed for
i.i.d. training samples to various types of interactive settings.

Theorem 9.7. Let Mi for i ∈ [n] be a martingale sequence of random
functions Mi : W → [−1, 1] such that E[Mi+1(w)|M≤i(w)] = 0 for
all w ∈ W, where M≤i(w) = (M1(w), . . . ,Mi(w)). Suppose that the
randomness of each Mi is captured by a random variable Zi, and
let M̄t =

∑t
i=1Mi and Z = (Z1, . . . , Zn). Fix a prior distribution QW

on W and a δ ∈ (0, 1). Then, for every distribution PW |Z on W, with
probability at least 1 − δ over PZ ,∣∣∣∣∣EPW |Z

[
M̄n(W )

n

]∣∣∣∣∣ ≤

√
D(PW |Z ||QW ) + log 4en

δ

2n . (9.47)

Proof. By the Donsker-Varadhan variational representation of the rela-
tive entropy, we have, for a fixed λ > 0,

EPW |Z

[
λM̄n(W )

n

]
≤ D(PW |Z ||QW ) + logEQW

[
e

λM̄n(W )
n

]
. (9.48)

By Markov’s inequality, we have with probability at least 1 − δ

logEQW

[
e

λM̄n(W )
n

]
≤ logEQWPZ

[1
δ
e

λM̄n(W )
n

]
(9.49)

≤ log 1
δ

+ λ2

8n, (9.50)
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where the last step is due to Theorem 3.34. After repeating this argument
for −M̄n and using the union bound, we find that with probability at
least 1 − δ,∣∣∣∣∣EPW |Z

[
M̄n(W )

n

]∣∣∣∣∣ ≤
D(PW |Z ||QW ) + log 2

δ

λ
+ λ

8n. (9.51)

To complete the proof, we need to select λ. We will do this by op-
timizing the bound over a grid of candidate values, using a union
bound to ensure that the result is valid for all possible values.1 First,
note that if D(PW |Z ||QW ) > 2n, the right-hand side of (9.51) is
lower-bounded by 1 for all λ, meaning that the resulting bound is
vacuous (since M̄n(W ) ≤ n). Hence, the result in (9.47) holds trivially
in this case. Thus, we only consider D(PW |Z ||QW ) ≤ 2n. Specifically,
assume that D(PW |Z ||QW ) ∈ [k − 1, k] for k ∈ [2n]. Then, by (9.51),
we have ∣∣∣∣∣EPW |Z

[
M̄n(W )

n

]∣∣∣∣∣ ≤
k + log 2

δ

λ
+ λ

8n. (9.52)

For a fixed k, this is minimized by λ = 2
√

2n(k + log 2
δ ), which gives∣∣∣∣∣EPW |Z

[
M̄n(W )

n

]∣∣∣∣∣ ≤

√
k + log 2

δ

2n . (9.53)

By the union bound, this holds simultaneously for k ∈ [2n] with prob-
ability at least 1 − 2nδ. Hence, by substituting δ with δ/(2n), noting
that k ≤ D(PW |Z ||QW ) + 1,∣∣∣∣∣EPW |Z

[
M̄n(W )

n

]∣∣∣∣∣ ≤

√
D(PW |Z ||QW ) + 1 + log 4n

δ

2n (9.54)

with probability at least 1 − δ. From this, the desired result follows.

By suitably selecting M̄i—for instance, as the difference between
the loss for a training instance and its expectation—this bound can
be instantiated for various settings with martingale data, extending

1In the original proof, Seldin et al. (2012b) use a dyadic grid and a weighted
union bound over an infinite range. We restrict ourselves to a finite range, similar
to Rodríguez-Gálvez et al. (2023), in order to simplify the proof.
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the applicability of PAC-Bayesian bounds beyond i.i.d. data. For in-
stance, Seldin et al. (2011, 2012a) apply these bounds to the case of
multiarmed bandits. It is worth noting that Seldin et al. (2012b) derive
additional bounds using martingale versions of the concentration for
binary relative entropy in Theorem 3.29 as well as Bernstein’s inequality.

9.4.2 Markov Decision Processes

In reinforcement learning, the learner is viewed as an “agent” that
interacts with an environment and takes actions according to a strategy,
also known as policy, obtaining rewards on this basis. The goal of this is
to learn a good policy for how to select actions depending on the state
of the environment. A defining characteristic of reinforcement learning
is that the environment is only partially observed through the agent’s
interaction with it. A specific example of this is the setting of contextual
bandits, where the PAC-Bayesian bounds for martingales can be applied,
as demonstrated by Seldin et al. (2011). Here, following Gouverneur
et al. (2022), we will focus on Bayesian regret in an MDP, presenting a
bound that extend the result obtained by Xu and Raginsky (2022) for
supervised learning.

In order to formally describe an MDP, we need the following defi-
nitions. We let S denote a set of states, let A denote a set of actions,
and let Y denote a set of outcomes. At each time t ∈ [T ], the learner
observes the state St ∈ S and takes an action At ∈ A, after which
the environment produces an outcome Yt ∈ Y. This leads to the re-
ward Rt = r(Yt, At) ∈ R. The environment is characterized by a random
variable θ ∈ Θ, drawn according to Pθ. More specifically, it consists of
a transition kernel PSt+1|St,At,θ, an outcome kernel PYt|St,θ, an initial
state distribution PS|θ, from which S1 is drawn, and the reward func-
tion r : Y × A → R. The stochastic mapping from the state St and
action At to the reward Rt is characterized by the kernel PRt|St,At,θ.
The goal is to learn a policy φ = {φt : S × (S,A,R)t → A}t∈[T ],
which selects an action At on the basis of St and the observed his-
tory H≤t = (H1, . . . ,Ht−1), where Ht = (St, At, Rt). Specifically, the
policy should be chosen to obtain a high cumulative expected re-
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ward rc(φ), defined as

rc(φ) = E

∑
t∈[T ]

r(Yt, φt(St, H≤t))

 . (9.55)

We refer to the maximal expected cumulative reward as the Bayesian
cumulative reward, and denote it by Rc = supφ rc(φ), where the supre-
mum is taken over all policies that lead to a finite expectation in (9.55).
We will compare this to the maximal expected cumulative reward that
can be obtained by an oracle that has knowledge of θ. Specifically, we
consider decision rules ψ = {ψt : S × Θ → A}t∈[T ] and define the oracle
Bayesian cumulative reward as

RoB = sup
ψ

E

∑
t∈[T ]

r(Yt, ψt(St, θ))

 . (9.56)

We let ψ∗ = {ψ∗
t }t∈[T ] denote the policy that achieves the supremum

in (9.56), and assume that it exists. With this, we are ready to define
the key quantity that we wish to bound: the minimum Bayesian regret
(MBR) given by

MBR = RoB −Rc. (9.57)

This quantity is the difference between the reward that is obtainable
based only on observing the system through interactions and the one
that is obtainable when the underlying system parameters are known.

In order to bound the MBR, we will consider a specific learning
algorithm, related to Thompson sampling (Russo and Van Roy, 2016;
Thompson, 1933). One approach to selecting ϕt is to use H≤t to compute
an estimate θ̂t through a kernel Pθ̂t|H≤t

, and then select an action on the
basis of (St, θ̂t). Since this is a special instance of a learning algorithm,
the resulting cumulative expected reward cannot be greater than the
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Bayesian cumulative reward.

Rc = sup
φ

E

∑
t∈[T ]

r(Yt, φt(St, H≤t))

 (9.58)

≥ sup
ψ

E

∑
t∈[T ]

r(Yt, ψt(St, θ̂t))

 (9.59)

≥ E

∑
t∈[T ]

r(Yt, ψ∗
t (St, θ̂t))

 . (9.60)

We now introduce Y ∗
t and S∗

t as the outcomes and states that are ob-
tained through ψ∗ acting on the MDP with the true θ as input. Similarly,
we let Ŷt, Ŝt, and Ĥt denote the outcomes, states, and histories that are
obtained through ψ∗ acting on the MDP with the estimated {θ̂t}t∈[T ]
as input. Now, by expanding the expression above, we find that the
MBR can be bounded as

MBR ≤ RoB − E

∑
t∈[T ]

r(Yt, ψ∗
t (St, θ̂t))

 (9.61)

=
∑
t∈[T ]

EPθθ̂tĤ≤t

[
EPY ∗

t
S∗

t
ŶtŜt|θθ̂tĤ≤t

[
r(Y ∗

t , ψ
∗
t (S∗

t , θ))−r(Ŷt, ψ∗
t (Ŝt, θ̂t))

]]
.

Now, observe that the following Markov chain holds:

Y ∗
t , S

∗
t ) − θ − (Ŷt, Ŝt) − Ĥ≤t − θ̂t. (9.62)

From this, it follows that for each t ∈ [T ], the first term of the inner
expectation is distributed according to PY ∗

t ,S
∗
t |θ, while the second is

distributed according to PŶt,Ŝt|H≤t
. Therefore, we can use change of

measure techniques to relate the two terms, by following the same
arguments as in Chapter 4 (and in particular, Section 4.2). This leads
to the following result (Gouverneur et al., 2022, Prop. 1).

Theorem 9.8. Assume that, for all t ∈ [T ], r(Ŷt, ψ∗
t (Ŝt, θ)) is σ2

t -sub-
Gaussian under PŶt,Ŝt|Ĥ≤t

for all θ ∈ Θ. Then,

MBR ≤
∑
t∈[T ]

EPθĤ≤t

[√
2σ2

tD(PY ∗
t ,S

∗
t |θ ||PŶt,Ŝt|Ĥ≤t

)
]
. (9.63)
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More discussion of these results, including applications to special
cases and results in terms of the Wasserstein distance, can be found in
the work of Gouverneur et al. (2022).

9.5 Bibliographic Remarks and Additional Perspectives

The result in Theorem 9.1 is due to Chen et al. (2021). Information-
theoretic generalization bounds for meta learning can also be found
in the work of Jose and Simeone (2021a) and Jose et al. (2022b), and
were extended to the case of e-CMI in Hellström and Durisi (2022b).
Additional works that provide PAC-Bayesian and information-theoretic
generalization bounds for meta learning include, e.g., Amit and Meir
(2018), Farid and Majumdar (2021), Flynn et al. (2022), Jose et al.
(2022a), Liu et al. (2021b), Meunier and Alquier (2021), Pentina and
Lampert (2014), Rezazadeh (2022), Riou et al. (2023), and Rothfuss
et al. (2021). The bounds for OOD generalization in Propositions 9.2
and 9.3 and Theorem 9.4 are due to Wang and Mao (2023a), while
Theorem 9.5 is due to Wu et al. (2022a). Jose et al. (2022b) consid-
ered a combination of transfer learning and meta learning, while Jose
and Simeone (2023) analyzed transfer learning for quantum classifiers.
Additional results for transfer learning and domain adaptation can be
found in the works of Achille et al. (2021), Aminian et al. (2022b), Bu
et al. (2022), Germain et al. (2016b), and Jose and Simeone (2021c).
Relatedly, He et al. (2022) derived bounds for iterative semi-supervised
learning. Theorem 9.6 is due to Barnes et al. (2022), with earlier work
by Yagli et al. (2020). Sefidgaran et al. (2022a) derived generalization
bounds for distributed learning using rate-distortion techniques. The
extension of PAC-Bayesian bounds to martingales in Theorem 9.7 is due
to Seldin et al. (2012b); Seldin et al. (2011) applied these to contextual
bandits. Theorem 9.8 is due to Gouverneur et al. (2022). Additional
PAC-Bayesian results for reinforcement learning can be found in the
work of Fard and Pineau (2010) and Wang et al. (2019b).

We conclude by mentioning alternative learning models, and their
connections to PAC-Bayesian and information-theoretic generalization
bounds. Seeger (2002) applied PAC-Bayesian bounds to Gaussian pro-
cess classification, while Shawe-Taylor and Hardoon (2009) considered
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the problem of maximum entropy classification. Unsupervised learning
models, such as various types of clustering, were studied by, e.g., Higgs
and Shawe-Taylor (2010), Li et al. (2018), and Seldin and Tishby (2010).
Alquier and Lounici (2011) considered the sparse regression model in
high dimension, while Guedj and Robbiano (2018) derived PAC-Bayesian
bounds for the bipartite ranking problem in high dimension. Ralaivola
et al. (2010) derived bounds for non-i.i.d. data, with applications to
certain ranking statistics, while Li et al. (2013) extended PAC-Bayesian
bounds to the nonadditive ranking risk. Jose and Simeone (2021b) used
PAC-Bayesian bounds to analyze machine unlearning, where a learn-
ing algorithm has to “forget” specific samples. Online learning, where
the learner has to sequentially select hypotheses to minimize losses
set by a potentially adversarial environment (a recent introduction is
provided by Orabona, 2023), is intimately related to PAC-Bayesian and
information-theoretic bounds. In particular, there is a formal relation-
ship between the Gibbs posterior and the exponential weights algorithm.
PAC-Bayesian bounds for a version of online learning were studied
by Haddouche and Guedj (2022). Recently, Lugosi and Neu (2022, 2023)
established a method for converting regret bounds from online learning
to PAC-Bayesian and information-theoretic bounds, allowing them to
(essentially) recover established results and derive new ones. Finally,
Sharma et al. (2023) exploited PAC-Bayesian generalization bounds in
the context of inductive conformal prediction, allowing the calibration
data set to be used for learning the hypothesis and score function.



10
Concluding Remarks

In this monograph, we provided a broad overview of information-
theoretic and PAC-Bayesian generalization bounds. We highlighted
the connection between these fields; presented a wide array of bounds
for different settings in terms of different information measures; detailed
analytical applications of the bounds to specific learning algorithms; dis-
cussed recent applications to iterative methods and neural networks; and
covered extensions to alternative settings. We hope that this exposition
demonstrates the versatility and potential of the information-theoretic
approach to generalization results.

Still, there are many unanswered questions and directions to explore.
On the one hand, as shown by Haghifam et al. (2021, 2023), there are
certain settings for which the information-theoretic approaches discussed
in this monograph yield provably suboptimal bounds. On the other
hand, there are bounds in terms of the evaluated mutual information
that equal the population loss for interpolating settings (Haghifam
et al., 2022; Wang and Mao, 2023c), as discussed in Section 6.5, and by
appropriately adapting standard information-theoretic bounds, optimal
characterizations of the generalization gap in the Gaussian location
model can be derived (Zhou et al., 2023a). This raises the question of

185
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which settings the information-theoretic approach to generalization is
suitable for, and whether or not it can be extended further through new
ideas, or whether alternative approaches are necessary.

As discussed in Section 8.2, information-theoretic and PAC-Bayesian
bounds have been shown to be numerically accurate for certain set-
tings with neural networks. However, the utility and interpretation of
these results is not entirely clear. Dziugaite and Roy (2017) connect
their bound to the flatness of the loss landscape; Harutyunyan et al.
(2021) draw parallels to stability; and Lotfi et al. (2022) point towards
compressibility, exploring its relation to, e.g., equivariance and transfer
learning. Pinning down these connections more precisely, and developing
the bounds to such an extent that they can guide model selection a
priori, are intriguing avenues to explore.

Regarding the structure of the bounds themselves, Foong et al. (2021)
and Hellström and Guedj (2024) explore the question of what the tightest
attainable bound is. For instance, what is the best comparator function
to use in Proposition 5.2? Can the log

√
n dependence in Corollary 5.4

be removed? Another question is whether the most suitable information
measure to use for a given setting can be determined. As discussed
throughout, the specific information measure that arises in a bound is
just a consequence of the change of measure technique that is used in
its derivation.

Finally, there are several interesting extensions to other settings and
connections to other approaches that can be explored. While we covered
some topics in Chapter 9, the relation to, for instance, active learning,
wherein the information carried by a sample is a central quantity (Settles,
2012), and online learning, the analysis of which shares many tools with
the information-theoretic approach (Orabona, 2023), is a promising
direction. For instance, recently, Lugosi and Neu (2023) showed that any
regret bound for online learning implies a corresponding generalization
bound for statistical learning.

While this discussion is far from comprehensive, addressing these
questions and exploring the aforementioned connections may be a
fruitful path forward. We hope that this monograph will be valuable in
pursuing these goals.
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