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We study the influence of quantizing perpendicular magnetic fields on the ground state of a bi-
layer with electron and hole fluids separated by an opaque tunnel barrier. In the absence of a field,
the ground state at low carrier densities is a condensate of s-wave excitons that has spontaneous
interlayer phase coherence. We find that a series of phase transitions emerge at strong perpen-
dicular fields between condensed states and incompressible incoherent states with full electron and
hole Landau levels. When the electron and hole densities are unequal, condensation can occur in
higher angular momentum electron-hole pair states and, at weak fields, break rotational symmetry.
We explain how this physics is expressed in dual-gate phase diagrams, and predict transport and
capacitively-probed thermodynamic signatures that distinguish different states.

I. INTRODUCTION

Recent progress [1–4] in the field of two-dimensional
materials has made it possible to prepare electron-hole
fluids in which the electrons and holes are isolated in
separate layers and have densities that can be tuned in-
dependently. In the absence of a magnetic field, the
ground state of neutral electron-hole fluids is expected
[5–10] to be an exciton-condensate at low carrier densi-
ties, and a Fermi liquid at high carrier densities. The
condensation in electron-hole bilayers, is spatially indi-
rect and implies spontaneous interlayer phase coherence.
The most spectacular properties of bilayer exciton con-
densates are electrical quantities that can be measured
[11, 12] when the layers are separately contacted, includ-
ing counter-flow superfluidity and giant electrical drag
[13, 14].

Spatially indirect exciton condensates were first ob-
served in the quantum Hall regime and in systems with
conduction-band electrons present at the Fermi level in
both layers [12, 15]. Spontaneous interlayer phase co-
herence is then expected to appear only in the strong
magnetic field quantum Hall regime. Although the prop-
erties of electron-hole bilayers, in which the carriers in
one of the two layers are valence band holes, are very
similar to those of electron-electron bilayers in the quan-
tum Hall regime, the two systems behave very differ-
ently at weaker magnetic fields. In particular, conden-
sation is expected to survive all the way to zero mag-
netic field in the electron-hole case, at least when the
system is close to overall neutrality. In this article, we
analyze, through Hartree-Fock mean-field approach, the
crossover between large quantizing magnetic fields and
weak magnetic fields in the electron-hole case. We find
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that exciton-condensate states appear over the full range
of magnetic fields, but that they are interrupted by in-
coherent states when at least one species is at an integer
Landau-level filling factor ν. When the electron and hole
densities are unequal, we find that electron-hole pairing
at strong fields can occur in non-zero angular momentum
channels and that states with broken rotational symme-
try in the electron-hole pair amplitude (nematic exciton
insulators) are common at weaker magnetic fields.
Our paper is organized as follows. In Section II, we

formulate the electrostatics of a prototype of dual-gate
electron-hole devices in a way that allows strong electron-
hole correlations, essential for the physics of interest
here, to be conveniently incorporated. In Section III,
we explain the mean-field theory that we use to approx-
imate electron-hole many-body states in a strong mag-
netic field. Our main results are summarized and dis-
cussed in Section IV and Section V.

II. MODEL AND ELECTROSTATIC
DESCRIPTION

We study dual-gated electron-hole bilayer systems like
the one illustrated schematically in Fig. 1(a) in a strong
perpendicular magnetic field. We have in mind in partic-
ular transition metal dichalcogenide (TMD) single-layer
two-dimensional semiconductors because this platform
allows for good electrical isolation between layers that
are close enough to maintain strong electron-hole interac-
tions. In Fig. 1 carrier densities are controlled by apply-
ing voltages −Ve and Vh between gates (held at ground)
and the electron and hole layers. When the gate voltages
are tuned to the proper regime (see below), free carriers
are injected into the layers to form an electron-hole fluid
with electron density n in one layer and hole density p
in the other. (The valence band of electron layer is as-
sumed to be full and the conduction band of the hole
layer to be empty, and the signs of Ve and Vh are chosen
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FIG. 1. (a) Dual-gate semiconductor bilayer device in a strong
magnetic field. (b) The energy bands and chemical potentials
in a quasi-equilibrium state, with a bias-voltage controlled dif-
ference between electron and hole layer chemical potentials.
The conduction and valence energy bands are shifted by elec-
trostatic potentials. Assuming that the two layers are electri-
cally isolated, the chemical potential difference is equal to the
difference between electron and hole layer bias voltages. The
chemical potentials in each layer depend on carrier-density
both through band-filling effects (shaded yellow for electrons
and green for holes in the figure) and interaction effects dis-
cussed in the main text. The difference between the chemical
potentials in the two layers acts as a chemical potential for
excitons.

so that positive voltages induce carriers.) Critically, the
two layers are assumed to be electrically isolated so that
the carrier chemical potentials in each layer is fixed by
its electrical contact. Because the many-body physics of
electron-hole bilayers is most conveniently calculated in
models that set the electrical potential and the energies
of the band extrema to zero in each layer, it is necessary
to take some care in analyzing the relationship between
the experimental control parameters, the gate voltages,

to the many-body chemical potentials calculating in in-
teracting electron-hole models. This analysis has been
undertaken in Ref. [10], and is briefly repeated below in
order to establish critical notations. The analysis is read-
ily generalized to allow for a chemical potential difference
between the two gate layers.
The geometry of our model system implies the follow-

ing electrostatic relations between the electron potential
energies (ϕe and −ϕh for the electron and hole layers)
and the carrier densities (n, p) of the two layers (in cgs
units):

ϕe =
4πe2de

ϵ

(dh + d)n− dhp

de + dh + d
,

ϕh =
4πe2dh

ϵ

(de + d)p− den

de + dh + d
.

(1)

Here ϵ is the dielectric constant of the tunnel barriers
separating the active layers and the gates, de/h is the
vertical distance between the electron/hole layer and the
top/bottom gate, and d is the interlayer distance, which
is typically much smaller than de and dh. (For conve-
nience we define the voltages Ve/h as quantities with
dimensions of energy by absorbing a factor of electron
charge e.) In Eqs. (1) we have assumed that both layers
have uniform charge densities. In this article we limit our
attention to translationally invariant states.
As shown in Fig. 1(b), the voltages shift the chemi-

cal potential and gather carriers. These in turn induce
potential energies that shift the band extrema. The equi-
librium state of the bilayer is one in which electrons are
in equilibrium with the contact to the electron layer and
holes are in equilibrium with the contact to the hole layer:

Ve − ϕe (n, p) = ϵc + µe(n, p),

Vh − ϕh(n, p) = −ϵv + µh(n, p),
(2)

where µe and µh are the electron and hole many-body
chemical potentials calculated in a model with neutral-
izing charge backgrounds in each layer, and ϵc (ϵv) are
the energies of the conduction and valence band extrema
in the absence of carriers. Given results for µe(n, p) and
µh(n, p) from many-body theory, the values of n and p for
a given set of layer voltages are determined by satisfying
Eqs. 2.
When a magnetic field B is applied perpendicular

to the two-dimensional plane, the dispersive conduction
and valence bands are replaced by two sets of Lan-
dau levels with energies {ϵn,c = ϵc + (n + 1

2 )ℏωc} and

{ϵn,v = ϵv − (n+ 1
2 )ℏωc}. For simplicity we assume that

the conduction band electrons and valence band holes
have the same effective mass m∗ and thus same cyclotron
frequency ωc = eB/m∗c. We also neglect the roles of
the electron and hole spin degrees of freedom. Neither
simplification is important for our principle conclusions,
and our theory can easily be generalized to describe the
experimental properties of particular devices. The den-
sity of carriers in a single Landau level is (2πl2)−1 where
l = (ℏc/eB)1/2 is the magnetic length. Below, we express
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carrier densities in terms of Landau level filling factors
νe = nS/g and νh = pS/g, where S is the area of the
sample and g = S/2πl2 is the degeneracy of the Landau
levels. The total charge filling factor is νc = νe − νh.

III. HARTREE-FOCK MEAN FIELD THEORY

We apply Hartree-Fock mean-field theory to a system
with two sets of Landau levels, conduction band Landau
levels in the electron layer and valence band Landau lev-
els in the hole layer. Hartree-Fock theory provides an
accurate description of electron-hole pair condensates in
both weak and strong coupling limits, just as BCS the-
ory does for electron-electron pairs. The condensate so-
lutions we seek have the gate-voltage-dependent exciton
chemical potential equal to Ve + Vh, and can be mapped
to equilibrium exciton-condensates with chemical poten-
tial equal to zero by reducing the effective band gap by
Ve + Vh. Making this choice and taking the overall zero
of energy at the mid-point of the effective gap leads to
the interacting Hamiltonian

H =
∑
τ,n,X

ϵn,τ c
†
τ,n,Xcτ,n,X

+
1

2S

∑
τ,τ ′

∑
q

∑
n1,n2,n3,n4
X1,X2,X3,X4

Vττ ′(q)

〈
τ n1X1

∣∣e−iq·r∣∣τ n4X4

〉 〈
τ ′ n2X2

∣∣eiq·r∣∣τ ′ n3X3

〉
c†τ,n1,X1

c†τ ′,n2,X2
cτ ′,n3,X3

cτ,n4,X4
,

(3)

where τ = c, v labels bands (layers), n labels Landau lev-
els, andX is a Landau guiding center label for degenerate

states in the same Landau level. In Eq. 3, Vττ (q) =
e2

ϵ
2π
q

is the Coulomb interaction within the same layer, and in-
teractions between layers have an extra e−qd factor. The
energy difference between the bottom conduction and
top valence Landau levels is ϵ0,c − ϵ0,v = ℏωc + ϵc − ϵv.
When the bilayer is charged, the Hartree mean fields
generated by this Hamiltonian diverge. These electro-
static potentials should in that case be replaced by those
discussed in the previous section, which take account
of the role of the gate electrodes in the electrostatics.
This replacement, generalizes the conventional neutral-
izing background ansatz of electron gas theory, and is
equivalent to a neutralizing background in the balanced
and distant gate limit de = dh ≫ d, which we have as-
sumed in the specific results results presented in the fol-
lowing sections.

The parameters to specify the system are: 1) magnetic
field B which determines the Landau level spacing ℏωc

and the Landau level degeneracy g; 2) the effective energy
gap ∆E = ϵ0,c − ϵ0,v − ℏωc; 3) the charge filling factor
νc; and 4) d, dh and de that describe the geometry of
gates and layers. In Section IV we explain how these
parameters influence the behavior of the system.
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FIG. 2. Inter-layer exchange integrals X ′ defined in the
text vs. layer separation d in units of magnetic length l.
The intra-layer exchange integrals X = X ′(d = 0). The
(nn′;m′m′) exchange integral specifies the (n, n′) matrix-
element of the mean-field self-energy operator contributed
by the (m,m′) density-matrix element, and is non-zero only
when s = m′ − n = m − n′. Exchange is weaker when s is
non-zero; the solid lines are for s = 0, the dashed lines are for
s = 1, and the dotted lines for s = 2.

Replacing the Hartree terms and adding the exchange
terms, we obtain the mean-field Hamiltonian

H(HF) = g
∑
n

[
(ϵn,c + ϕe)ρnn

c c
+ (ϵn,v − ϕh)ρnn

vv

]
+ g

∑
nn′ττ ′

U(n, n′; τ, τ ′)ρnn′

ττ ′
,

(4)

where

U(n, n′; τ, τ) = −W0

∑
m,m′

Xnn′;mm′

〈
ρmm′

ττ

〉
r
,

U(n, n′; τ, τ) = −W0

∑
m,m′

X ′
nn′;mm′

〈
ρmm′

ττ

〉
r
,

(5)

W0 = e2/ϵl is the natural interaction energy scale, and
the intralayer (X) and interlayer (X ′) exchange integrals
are given explicitly below. The guiding-center indepen-
dent density matrices of the spatially uniform states we
seek is

ρnn′

ττ ′
= g−1

∑
X

c†τ,n,Xcτ ′,n′,X , (6)

and the electron and hole filling factors are

νe =
∑
n

〈
ρnn
c c

〉
; νh =

∑
n

(
1−

〈
ρnn
vv

〉)
. (7)

Note that these solutions we seek correspond to a con-
densate of electron-hole pairs that have total momentum



4

6 5 4 3 2 1 0 0 1 2 3 4 5 6
6
5
4
3
2
1
0
0
1
2
3
4
5
6

 v
 c

v 
c 

c v

c vB = 0.02B₀
d = 2.0a
ΔE = -0.5Ry
νc = 0

6 5 4 3 2 1 0 0 1 2 3 4 5 6
6
5
4
3
2
1
0
0
1
2
3
4
5
6

 v
 c

v 
c 

c v

c vB = 0.02B₀
d = 2.0a
ΔE = -0.5Ry
νc = 1

6 5 4 3 2 1 0 0 1 2 3 4 5 6
6
5
4
3
2
1
0
0
1
2
3
4
5
6

 v
 c

v 
c 

c v

c vB = 0.01B₀
d = 2.0a
ΔE = 0.25Ry
νc = 1

0.0

0.2

0.4

0.6

0.8

1.0
a b c

FIG. 3. Density matrices of three typical XI solutions. Each block plots the magnitude of the density matrix element for the
specified layer and Landau level indices on the color scale at right. The diagonal elements show the conduction and valence band
fillings of the Landau levels. We have assumed that only the conduction (c) band is relevant in one layer and only the valence
(v) band is relevant in the other layer. The magnetic field B, layer separation d, effective gap ∆E, and charge filling factor
νc are specified in the upper-left corners of the figures. (a) ∆n=0: only conduction and valence levels with index difference 0
cohere, corresponding to an s-wave condensate; (b) ∆n=1: only conduction and valence levels with index difference 1 cohere
corresponding to a p-wave condensate; (c) at weak magnetic fields solutions appear with non-zero density matrix values for
more than one ∆n, implying that the electron-hole pair amplitude is not rotationally invariant.

zero. We will find that when the total charge density
of electrons and holes is non-zero, we sometimes obtain
solutions that break rotational symmetry. Under these
circumstances the ground state condensate in the ab-
sence of a magnetic field has [16] a finite momentum.
We shall, nevertheless, leave the study of this possibility
in the strong field limit to future work.

In Eq. 5, the subscript r implies that the density-
matrix is to be calculated relative to δmm′δττ ′δτv, the
density matrix of a system with a filled valence band
and an empty conduction band - whose interacting sys-
tem mean-field is conventionally included in the single-
particle Hamiltonian.

The exchange integrals

Xnn′;mm′ =

(
n! n′!

m!m′!

) 1
2
∫ ∞

0

d(kl) e−
1
2k

2l2

×
(
k2l2

2

)s

L(s)
n

(
k2l2

2

)
L
(s)
n′

(
k2l2

2

)
,

X ′
nn′;mm′ =

(
n! n′!

m!m′!

) 1
2
∫ ∞

0

d(kl) e−
1
2k

2l2−kd

×
(
k2l2

2

)s

L(s)
n

(
k2l2

2

)
L
(s)
n′

(
k2l2

2

)
,

(8)

vanish unless s ≡ m′ − n = m − n′. In Eq. 8 s is as-

sumed to be non-negative and L
(s)
n (x) is a generalized

Laguerre polynomial. (The s ≤ 0 integrals are given by

X
(′)
nn′;mm′=X

(′)
m′m;n′n.) Fig. 2 plots some of the X ′ inte-

grals vs. electron-hole layer separation. We see that the
exchange strength is weaker for higher Landau level in-
dices n or n′, and for larger s. The inter-layer coefficients

decrease when layer separation d is increased.
The n′ − n = m−m′ selection rule for exchange inte-

grals implies coherent electron-hole pair amplitudes can
be classified by the difference between their Landau level
indices ∆n. In the ∆n = M case, the n-th level in the
conduction band is coherently coupled only to levels n′ in
the valence band, such that n−n′ = M . At strong mag-
netic fields, all coherent solutions have a definite value of
∆n, which can be interpreted as the exciton angular mo-
mentum of the condensed excitons. The property that so-
lutions with a definite value of ∆n can be self-consistent
is related to the rotational symmetry of the models we
study. In this strong-field regime we will discuss solu-
tions with ∆n = 0 and ∆n = 1; typical self-consistent
density matrices for these cases are illustrated in Fig. 3.
At weaker fields we find that rotational symmetry can be
broken by solutions do not conserve ∆n.
The coherence between conduction and valence bands

develops via spontaneous symmetry breaking, and serves
as a signal (or the order parameter) of excitonic conden-
sation. All coherent solutions represent different types
of excitonic insulator states (XI) and compete with in-
coherent quantum Hall insulator states (QHI) in which
both electrons and holes have integer Landau level filling
factors. Comparisons between total energy per area

E0/S =
g

S

∑
n,τ

[
ϵn,τ +

(−1)τ

2
ϕτ

]〈
ρnn
ττ

〉
r

+
g

2S

∑
nn′ττ ′

U(n, n′; τ, τ ′)
〈
ρnn′

ττ ′

〉
r

(9)

computed for different self-consistent solutions that start
from different seeds identify the mean-field ground state.
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FIG. 4. Energy per area vs. effective energy gap ∆E for ground and metastable excited states: (a) charge filling factor νc=0,
layer separation d=0 and magnetic field B=1.3B0. (b) νc=0, d=2a and B=0.05B0. (c) νc=1, d=2a and B=0.03B0. (d) νc=0,
d=0 and B=0.8B0. (e) νc=0, d=2a and B=0.02B0. (f) νc=1, d=2a and B=0.015B0. The slopes of the energy-∆E curves
do not change within the stability ranges of the QHI states within which νe and νh are fixed integers, specified by the colors
indicated in the insets. Segments of these strait lines claim the ground state where QHI states are stable and are evident in
the plots. The slopes of the electron-hole pair states (XI) curves do vary continuously in their stability ranges, highlighted by
using bold curved lines. The figure shows that the ground state exciton density nex = min{n, p} increases monotonically with
decreasing ∆E. In neutral systems the interlayer coherence, when it occurs, is always between electron and hole Landau levels
with identical indices (∆n = 0). For charge filling factors that are non-zero, states with an electron-hole Landau level index
difference ∆n ̸= 0 can be ground states. (Blue and brown curves plot the energies of ∆n = 0 and ∆n = 1 XI solutions.) An
asterisk after the electron and hole filling factors in a QHI state legend implies that the electrons of that state are not filled
in order of energy. For TMDs the Bohr radius of excitons a is about 1.3nm, the Rydberg energy is about 0.11eV, and B0 is
about 2.4kT. In comparison these numbers for GaAs are 12nm, 4.6meV, and 27.9T, respectively.

The characteristic length and energy scales for quan-
tum particles with Coulomb interactions are the Bohr
radius a = 2ϵℏ2/e2m∗, and the Rydberg constant Ry =
e2/2ϵa. From these we can construct a magnetic field
scale B0 = 2πℏc/ea2, defined so that there is a quantum
of magnetic flux through the area a2. B0 is the magnetic
field scale at which a spatially direct exciton is strongly
distorted. If we choose values for m∗ and ϵ that are ap-
propriate for a TMD bilayer encapsulated by hexagonal
boron nitride (hBN) (m∗ ≈ 0.4 m0, where m0 is the free
electron mass, and ϵ ≈ 5), we have a ≈ 1.3nm, Ry ≈
0.11eV and B0 ≈ 2.4 × 103T. These scales are typical
for TMD semiconductor bilayer devices in experiments.
A similar calculation for III-V semiconductor quantum
wells yields a ≈ 12nm, Ry ≈ 4.6meV, and B0 ≈ 28T.

The Coulomb interaction scaleW0/Ry = 2(2π B/B0)
1
2

and the Landau level spacing ℏωc/Ry = 2π B/B0. The
ratio between these two quantities increases with de-
creasing magnetic field. For example, when B=0.1B0,
W0=2.52ℏωc; while when B=0.01B0, W0=7.98ℏωc. This
trend implies that the influence of the discreteness of the
Landau level spectrum gradually increases with increas-
ing magnetic field strength, as we will see in the follow-
ing section, and also reminds us that the lowest Landau
level approximation is valid only for sufficiently strong
magnetic fields. All numerical results are converged with
respect to the number of retained Landau. In our cal-
culations we retain a maximum number of Landau levels
NLL = 15 and are therefore able to obtain converged
results only for B0/B ≲ 400.
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FIG. 5. Phase diagram vs. effective gap and dimensionless inverse magnetic field B0/B where B0 is the magnetic field scale at
which the flux through area a2 (where a is the Bohr radius) is a flux quantum Φ0 = hc/e. For WSe2 parameters, B0 ≈ 2400
Tesla, whereas for GaAs B0 ≈ 28 Tesla. The grey regions are quantum Hall insulators (QHI) with the filling factor of two
layers (νe,νh) specified. The white regions indicate excitonic insulator (XI) states with spontaneous interlayer phase coherence.
The phase diagrams are constructed by dividing the parameter space into rectangular pixels and performing self-consistent
calculations at the center point of each pixel: (a) layer separation d = a and equal electron and hole Landau level filling factors,
(b) and (c) like (a) but with layer separations d = 2a and d = 5a, (d) like (a) but with electron and hole filling factors different
by 1, and (e) and (f) respectively d = 2a and d = 5a with filling factor difference 1. Pairing is weaker at realistic layer separation
- in the d = 2a to d = 5a range for TMD two-dimensional materials. Non-zero angular momentum ∆n pairing states can be
ground states when the electron and hole densities are unequal. The solid red lines mark the points at which adjacent QHI
states are equal in energy (the crossing points of QHI lines in Fig. 4). In the strong field limit these lines follow the mid-points
of XI state stability range fingers that protrude between QHI insulator islands with different Landau level quantum numbers.

IV. ELECTRON-HOLE FLUIDS IN THE
QUANTUM HALL REGIME

A. Integer Total Filling Factors

In Fig. 4 we show typical results for the mean-field
ground state energies E0 calculated from Eq. (9), plot-
ted as a function of the effective gap ∆E between single-
particle conduction and valence bands in the zero mag-
netic field limit, when the total charged filling factor νc
is a fixed integer. Since we have in mind mainly the
case of quasi-equilibrium spatially indirect exciton con-
densates in two-dimensional TMD bilayers, excitons are
first present when ∆E is decreased to equal the exciton

binding energy, and the exciton density increases if ∆E
decreases further. Panels (a) and (d) on the left side of
Fig. 4 are for the case of layer separation d = 0; this
limit is artificial for spatially indirect condensate since
layer isolation, i.e. the absence of interlayer tunneling
terms in our model, requires a minimum spatial separa-
tion. We include this limit for comparison purposes only.
Panels (b) and (e) in the middle show the realistic layer
separation case d = 2a at charge neutrality Ne = Nh;
while panels (c) and (f) on the right show results for the
electrostatically doped case νc=1. The top three panels
(a-c) are for strong magnetic fields, and the bottom three
panels (d-f) are for weaker magnetic fields.

The mean-field ground states are either quantum Hall
insulator (QHI) states with fixed integer filling factors
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FIG. 6. Phase diagrams of νc=1 case over a weaker mag-
netic field regime than in Fig. 5. No QHI states with filling
factor (νe,νh) greater than (1,0) appear in this region of the
phase diagram, but we find that XI states states that break
rotational symmetry (which we refer to as nematic XI states)
by coherently mixing condensates with different angular mo-
menta are stable over a range of exciton energy that increases
with decreasing magnetic field. The phase boundary (black
line) between the ∆n=1 exciton insulator phase and the ne-
matic XI state was determined by allowing rotational symme-
try to break and noting the properties of the lowest energy
solution of the mean-field equations. We do not find nematic
XI solutions for νc = 0.

for both electron and hole layers and no interlayer phase
coherence, or excitonic condensates with interlayer co-
herence (XC), also called excitonic insulators (XI). We
note that the numbers of electrons and holes can be read
off the slopes of the energy curves using

⟨Ne +Nh⟩ =
〈

∂H

∂∆E

〉
=

∂E0

∂∆E
. (10)

In Fig. 4, we can see thatNe+Nh increases monotonically
as ∆E is reduced. The energies of the QHI states depend
linearly on ∆E as expected, since their carrier densities
are independent of ∆E over their stability ranges. The
coherent excitonic insulator (XI) states appear at ∆E
values that are intermediate between those at which the
QHI states with adjacent integer electron and hole filling
factors are stable. The energies of the XI states are not
linear in ∆E, because the electron and hole filling fac-
tors increase from one integer to the next over their ∆E
stability range.

As explained in Section III, exciton condensates can
be classified by ∆n, the integer-valued difference between
the Landau level indices of the electrons and holes that
are paired. The value of ∆n can be recognized as the
angular momentum of the electron-hole pairs. The prop-
erty that the Hartree-Fock solutions have coherence with
a fixed ∆n, i.e., that there is no mixing between angular
momentum pairing channels, follows from the isotropy of
our two-dimensional electron system model. At neutral-
ity only ∆n = 0 states are ground states at any value of
layer separation, although as seen in Fig. 4(b,e), ∆n ̸= 0
solutions exist as metastable states at some values of
layer separation d. Because the ∆n = 0 XI state and
∆n = 1 states have different types of coherence, they

connect the νe = νh = 0 QHI state to two different
νe = νh = 1 QHI states, shown as two lines with the
same slope in the figure. At neutrality the ∆n = 1 XI
solution connects the vacuum state to a QHI state that
has population inversion and is clearly unstable, i.e., a
state in which higher Landau levels are occupied while
lower levels are left empty. ∆n = 1 solutions can, how-
ever, be stable when the electron and hole filling factors
are unequal.

In Fig. 5 we present phase diagrams vs. magnetic field
strength and ∆E. (The phase boundaries in Fig. 5 are
choppy because the set of ∆E and B0/B values consid-
ered is discrete.) As the zero-field limit is approached (at
the tops of the phase diagrams), the XI state is stable
when ∆E is smaller than the zero-field exciton binding
energy and QHI states do not appear. Because electron
and hole densities increase with decreasing ∆E, and Lan-
dau level degeneracies also increase with increasing B,
a given QHI state’s stability range moves to larger B
(smaller B0/B) as ∆E becomes more negative. We also
see in Fig. 5 that ∆n = 0 XI states interpolate between
QHI states with the same filling factors for electrons and
holes, whereas ∆n = 1 XI states interpolate between
νc = 1 QHI states which have a higher Landau level fill-
ing factor for electrons than for holes.

Comparing Fig. 4(a-c) with Fig. 4(d-f) we see that the
QHI states have smaller stability range in weaker mag-
netic fields. This property is reflected in the phase dia-
grams Fig. 5 through the width of each QHI phase island
at fixed B, which decreases when B is weakened and
vanishes at a critical magnetic field strength. Comparing
Fig. 5(a), (b) and (c), we see that these critical points
move to weaker B as the layer separation increases and
exciton binding energies decrease. Comparing Fig. 5(a)
and Fig. 5(d), Fig. 5(b) and Fig. 5(e), or Fig. 5(c) and
Fig. 5(f), the same decrease in field scale is seen in the
transition from ∆n = 0 to ∆n = 1 phase diagrams, and
again signals a reduction in exciton binding energies.

The red lines in Fig. 5 show where adjacent QHI states
with adjacent integer filling factors are equal in energy.
At strong fields these lines locate near the centers of the
stability regions of the XI states that host coherence be-
tween the corresponding electron and hole Landau levels.
At weak fields, the QHI states are no longer stable. The
phase diagram is then occupied by XI states in which
several Landau levels close to the Fermi level participate
in coherence, and the Landau level structure has little
impact.

At weaker fields than those covered in Fig. 5 we find
that the lowest energy solutions of the mean-field equa-
tions for νc = 1 break rotational symmetry by coherently
mixing different values of ∆n. Fig. 6 illustrates the com-
petition between non-zero ∆n and states with mixed ∆n.
Although we have not explicitly verified this property, we
believe that the broken rotational symmetry likely im-
plies that the optimal pairing wavevector of these states
is non-zero, and that the true ground states states are
closely related to FFLO states [9, 16–19],
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FIG. 7. (a) Energy per area vs. gap ∆E at charge filling factor νc = 0.5 for d=2.0a. (b,c) Phase diagrams vs. νc and ∆E
at d=2.0a and B=0.04B0 and 0.02B0, respectively. The dark green regions are exciton condensate(XC) phases with pairing
angular momentum ∆n = 0 and the dark blue regions are exciton condensate phases with pairing angular momentum ∆n = 1.
The light green regions are non-condensate (NC) phases distinquished by electron and hole filling factors (νe, νh): A - (νc, 0),
B - (1, 1− νc), C - (1+ νc, 1), D - (2, 2− νc). Regions B and C merge at νc = 0 as the QHI (0,0) phase; regions A and B merge
at νc = 1 as the QHI (1,0) phase.

B. Non-Integer Filling

We can perform the same mean-field calculations for
the case of non-integer charge filling factors νc. Fig. 7(a)
summarizes the results obtained when νc = 0.5. We
note two important differences compared to the integer
νc case. First of all insulating states cannot occur at
fractional charge filling factor in mean-field theory. This
property is simply a limitation of mean-field theory since
we do expect that fractional incompressible states can
be compatible with electron-hole coherence when inter-
actions are treated accurately. In mean-field theory, we
nevertheless find that coherence is suppressed when the
filling factor in either layer is close to an integer; freez-
ing one layer or the other by placing a Landau level gap
at the Fermi level is sufficient to prevent interlayer co-
herence. Secondly, solutions with ∆n = 1 and ∆n = 0
appear at different points in the same phase diagram.

In the quantum Hall regime, mean-field theory is usu-
ally reliable at integer filling factors, but we know that
it is not reliable at fractional filling factors. In partic-
ular, we anticipate that fractional QHI states, not ac-
cessible in mean-field-theory calculations, will sometimes
[20] appear between integer QHI states, especially at
larger d/l. Other exotic states [21] built from composite-
fermion quasiparticles are also a possibility. We also an-
ticipate [22] that non-uniform density meron and anti-
meron lattice states that are not captured by the present
mean-field calculations, which do not allow translational
symmetry breaking, will be stable in some regions of frac-
tional charge filling factors.

C. The Role of Spin

One simplification that we have made, but did not
yet comment on, is that we have assumed spinless elec-
trons. In single layer TMD semiconductors the band
extrema are at one of the two K-points in the trian-
gular lattice Brillouin-zone, where spin-orbit splitting is
large. The two K points define valleys in momentum
space that are related to each other by time reversal
symmetry. When we refer to spin we mean the valley-
locked spins of the spin-orbit coupled state. States of
opposite spin are therefore in opposite valleys. When
the spin degree-of-freedom is included in the absence of
a magnetic field, the exciton condensate spontaneously
spin-polarizes [8, 23] when a critical layer separation is
exceeded due to Coulomb generated exciton-exciton in-
teractions. Spin-orbit interactions are needed of course if
this order is to survive at finite temperature. In a strong
magnetic field, we expect that the tendency toward com-
plete spin-polarization will survive and be further sup-
ported by the Zeeman coupling effect, which favors par-
ticular spin quantum numbers for each type of particle.
According to ab initio theory the g-factors of TMD semi-
conductor states at the conduction and valence band ex-
trema range from 0.5 − 6 [24–26], with larger g-factors
for valence band states. Once the valence band holes are
spin-polarized, they can pair with only one of the two
conduction band spins and will choose the one with lower
energy. Application of a magnetic field will therefore re-
duce the range of layer separations over which both spins
are relevant. For the strong magnetic fields of interest
here, we expect that exciton condensate states will al-
most always be fully spin-polarized. We have tested this
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expectation by including spin explicitly and performing
mean field calculations at B = 0.02B0 and d = 2a. Using
realistic valence band g-factors, we find that the exciton
condensate is maximally spin-polarized even if we choose
the conduction electron g-factor to be zero.

V. SUMMARY AND CONCLUSION

In the absence of a magnetic field neutral bilayer
electron-hole fluids condense at low temperatures [2, 4, 5,
10, 27–30] into two-dimensional exciton superfluids pro-
vided that the exciton density is well below the Mott
limit. In this manuscript we have addressed the fate of
exciton condensates in the presence of quantizing mag-
netic fields.

We have summarized our results in a phase diagram,
Fig. 5, that specifies where condensation occurs as a func-
tion of dimensionless field strength B/B0 and reference
band gap ∆E. We choose ∆E as a model parameter in-
stead of exciton density because it is a proxy for exciton
chemical potential, which can now [2, 4] be controlled
electrically in two-dimensional materials. We find that
condensation is suppressed in the strong field limit when
the electrons and holes are able to form low-energy in-
compressible states (with integer filling of both electron
and hole Landau levels). These incompressible states ap-
pear as a series of stability islands in (B/B0,∆E) space
distinguished by the integer filling factors of the elec-
tron and hole Landau levels. The periodic variations be-
tween condensed and uncondensed states in Fig. 5 are the
strong-field analogs of the magnetic oscillations discussed
in Ref. 31. The phase diagram in Fig. 5 is also relevant to
the properties of the optically pumped electron-hole or
polariton fluids [6, 32–34] if the steady state they form
is close to a thermodynamic equilibrium state. Fig. 5
is constructed using a mean-field theory approach which
fails to capture the Mott transition to electron-hole flu-
ids at high carrier densities [35–37], if that does indeed
occur, and also fails to capture the special correlations
that can occur within fractionally filled Landau levels.
We anticipate that additional stability islands that are
not present in our phase diagram arise in which the in-
compressible states have fractional Landau level filling
factors[20, 38].

It is interesting to compare the exciton condensates
studied here with the quantum Hall exciton fluids stud-
ied experimentally [12, 15] since the 1990’s in electron-
electron bilayers. These have been much more accessi-
ble experimentally since they do not require that elec-
trical contact be made simultaneously to the conduction
band of one two-dimensional semiconductor layer and the

valence band of a nearby layer. In the extreme strong
field limit in which Landau level mixing can be neglected
the electron-hole systems studied here and the electron-
electron systems studied previously are identical apart
from a difference in the physical meaning of the ∆E pa-
rameter. In the electron-electron case, it is universally
assumed that both electron layers come to equilibrium
with the same electrical reservoir. The meaning of ∆E is
then simply the difference in external electrical potential
between the layers. The meaning of ∆E is more sub-
tle in our case [10], but it is equally tunable if the two
layers can be contacted to different reservoirs. It turns
out that at strong magnetic fields ∆E = 0 in the elec-
tron case corresponds to the red lines in Figs. 5(a) and
(b) at the center of the strong field condensate stability
regions at strong field. The two cases are most distinct
in the weak magnetic field regime where the condensate
is suppressed in the electron-electron case. At finite net
charge carrier density we find that the system can break
rotational symmetry, as it does in the absence of a mag-
netic field [16]. Broken rotational symmetry is expected
[16] to lead to finite momentum pairing, which should be
explored in future work.
Exciton condensation in separately contacted electron-

hole bilayers has been identified experimentally either by
looking for drag effects or for counterflow superfluidity
[12, 13, 15, 39] in transport, the technique used most
often in bilayer electron systems, or by looking for co-
herent luminescence at the condensate chemical poten-
tial, the technique used most often in studies of optically
pumped systems. We expect that the pattern of lumi-
nescence to be spatially anisotropic in nematic XI states.
Order enhanced interlayer tunneling, often studied in the
electron-electron case [40–43], contributes in the electron
hole case not to dc transport, but to ac transport at
frequency ω such that ℏω is equal to the finite exciton
chemical potential. The strength of the enhanced lumi-
nescence is proportional to the overlap of conduction and
valence band wavefunctions centered in different 2D ma-
terials, and will therefore be very sensitive to the number
of atomic layers of hBN between the electron layer and
the hole layer.
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