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Abstract

We first present a formalism that incorporates the input-output formalism and the linear re-

sponse theory to employ cavity-magnon-polariton coupling as a spectroscopic tool for investigating

strongly hybridized electro-nuclear spin excitations. A microscopic relation between the generalized

susceptibility and the scattering parameter |S11| in strongly hybridized cavity-magnon-polariton

systems has been derived without resorting to semi-classical approximations. The formalism is

then applied to both analyze and simulate a specific systems comprising a model quantum Ising

magnet (LiHoF4) and a high-finesse 3D re-entrant cavity resonator. Quantitative information on

the electro-nuclear spin states in LiHoF4 is extracted, and the experimental observations across a

broad parameter range were numerically reproduced, including an external magnetic field travers-

ing a quantum critical point. The method potentially opens a new avenue not only for further

studies on the quantum phase transition in LiHoF4 but also for a wide range of complex magnetic

systems.

I. INTRODUCTION

The light-matter interaction has long been a focal point of intense research [1–4]. It is not

only a fundamental aspect of our universe but also crucial for studying of a wide variety of

condensed matter materials. Furthermore, it is pivotal for candidate systems for quantum

communication and quantum computing as it is the most promising means to facilitate qubit

manipulations [5] as well as information transmission among quantum computing elements

[6]. Most existing studies have concentrated on manipulating ensembles of weakly interacting

spins typically found in either optical traps or a paramagnetic crystals [5, 7–9]. Only recently

has research on manipulating spins in strongly interacting magnetic compounds using light

begun to gain traction, with much of the focus being on the single Kittel mode in yttrium

iron garnet (YIG) [10–12].

Traditionally, spin excitation spectra are measured using techniques such as electron spin

resonance (ESR) and nuclear magnetic resonance (NMR), which are built upon very sim-

ilar principles but target different processes in a magnetic sample. While both techniques

are relatively mature in their own individual domain, strong hyperfine interaction causes

complications for either application. On the one hand, it would likely move the interested

spin transitions out of the frequency range of conventional NMR techniques and at the same
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time greatly shorten the spin coherence time, rendering the technique insensitive to the

dynamics. On the other hand, conventional ESR spectroscopy by design directly addresses

electronic spin transitions, and a strong hyperfine interaction incurs considerable broaden-

ing of line widths of these transitions. Inelastic neutron scattering is another frequently

employed method when investigating spin excitations, it has the advantage of being able to

measure crystal momentum dependent excitations across a wide energy scale. However, it is

limited by its energy resolution [13]. As a result of these difficulties, to date, measurements

on samples with multi-mode spin excitations and strong hyperfine interactions have been

scarce.

In the present study, we exploit the strong hyperfine interaction to indirectly measure and

manipulate nuclear spin states through interfacing with the electronic spins, in other words,

an nuclear magnetic resonance (NMR) measurement facilitated by electron spin resonance

(ESR) measurement. The method is applied to LiHoF4, an insulating rare-earth magnet

with large electronic and nuclear spins (J = 8, I = 7/2) that has been established as a

model 3D Ising magnet undergoing a quantum phase transition (QPT) induced by transverse

magnetic field [14–17]. The localized hyperfine interaction on Ho3+ sites in LiHoF4 is very

strong, which fundamentally alters the collective energy landscape and is responsible for the

incomplete softening of the electronic mode [16, 18] at the quantum critical point (QCP).

Concomitantly, it results in field-dependent excitation spectra in the GHz frequency range

with long life-times [19, 20], providing the compound potentials for applications in quantum

communications such as spatial multiplexing.

In order to perform the ”ESR assisted NMR” measurement described above on LiHoF4,

we strongly couple a single crystal sample of LiHoF4 to the photon field inside a re-entrant

cavity, thereby creating a cavity-magnon-polariton (CMP) system. Such systems are tradi-

tionally modelled as two- or multi-level-systems (TLS/MLS) interacting with a bosonic bath

that represents the cavity field. These systems are often characterized within the frame-

work of the input-output formalism with frequent use of either macrospin representation

[21] or Bosonization procedures [22] for simplification. While this provides some technical

convenience when dealing with a single magnon mode, it quickly becomes cumbersome as

the number of transitions increases, which is the case for most real materials. Further-

more, in deriving expressions for the scattering parameters under these procedures, rotating

wave approximation (RWA) is often employed to simplify the interaction term between the
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TLS/MLS and the cavity field, limiting the applicability of the theory.

In contrast, we start with a total Hamiltonian using reaction coordinate and circumvent

both semi-classical approximations by establishing an explicit connection between the input-

output formalism and the generalized susceptibilities from the linear response theory. We

then apply this model to analyze our experimental data on LiHoF4 in a cavity at the radio

frequency (RF), followed by numerically reproducing all observed behaviours to demonstrate

the model’s capacity as both an investigative instrument for magnon-polariton systems alike

as well as a benchmark for theories that aim to provide comprehensive descriptions of spin

dynamics in real materials [23].

II. THEORY

To capture the essence of interactions between a cavity field and a magnetic system, it is

essential to examine the dynamical magnetic response of the magnetic material. Conversely,

from the perspective of the cavity field, there exists a well established theoretical framework,

namely input-output formalism, to describe its behaviors. In this section, we first recall

the calculation of susceptibilities using linear response theory. Subsequently, starting with

the full Hamiltonian of the cavity-spin system, we derive an expression for the scattering

parameter |S11| using input-output formalism with the use of explicit spin operators instead

of resorting to RWA on the spin-photon interaction. Finally, we establish an explicit link

between these two results to provide a simpler yet more effective description for multi-mode

magnon-polariton systems in general.

A. Generalized susceptibility from linear response theory

The theoretical treatment of the dynamics of a quantum mechanical system subject to

an external, time-dependent and perturbative parameter is often well captured by the linear

response theory. Let the Hamiltonian of a closed quantum mechanical system be denoted

by Ĥ0. If we introduce a time-dependent perturbation to the system by the environment

through an operator Â, then total Hamiltonian can be written as Ĥ = Ĥ0 + f(t)Â, where

f(t) describes the time-dependence of the perturbation. The eigenstates and thus the ex-

pectation values of all the physical observables of the original system will vary in response
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to the perturbation, and these changes can be quantified by a generalized susceptibility. For

instance, consider a specific operator B̂. If a complete set of eigenstates of the system is

known, the susceptibility can be directly calculated and expressed as follow [24]:

χAB(ω) =
∑
mn

⟨m|Â|n⟩⟨n|B̂|m⟩
Em − En − ℏω − iℏγmn

(Nm −Nn) (1)

where m and n index through all the eigenstates and Em,n represent the corresponding

eigen-energies. ω is the angular frequency, and γmn is a vanishing quantity that, in real

systems, represents the spectral line-width of the transition between eigenstates |m⟩ and

|n⟩. Nm,n are the occupation factors determined by the partition function and Boltzmann

distribution. As there is no restriction on operators Â and B̂, one can therefore use Eq.1, for

example, to calculate AC susceptibilities due to interactions between an applied magnetic

field and an ensemble of magnetic moments. In this scenario, Â = B̂ =
∑

r µ̂
α
r , where µ̂

α
r is

the magnetic moment on site r with a spin along the polarization α̂.

B. Reflection spectrum from Input-output Formalism

The study of the hybridization between an ensemble of weakly interacting spins and

a single-mode-cavity field has long been a subject of intense research [2, 10, 25–27]. A

significant milestone was the establishment of the input-output formalism established in

late 1980s [28], which has since been widely applied in the field of quantum optics and

has consistently proven its efficacy [29–31]. The formalism has been instrumental in the

development of cavity-magnon-polariton (CMP) systems [32–34]. In the present study, we

begin by adopting the same approach in treating the coupling between an spin ensemble

and the cavity electromagnetic (EM) field as a magnon-polariton system. We then derive a

microscopic relation between the scattering parameter |S11| and the magnetic susceptibility

of the sample, which eventually leads to a formula that can adequately describe such a

complex system across a wide range in the parameter space.

To start, a cavity magnon-polariton system can be conveniently broken down to three

parts: 1) the Cavity resonator. 2) A spin ensemble and 3) the environment (reservoir)
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outside the cavity. The system’s total Hamiltonian can therefore be written as:

Ĥ = Ĥcavity + Ĥreservoir + Ĥspin

+ Ĥint
cav−res + Ĥint

cav−spin + Ĥint
res−spin (2)

where the first three terms represent the diagonal Hamiltonians of the three individual

subsystems, whose pairwise interactions are captured by the last three terms. At this stage,

the specific form of Ĥspin is irrelevant; it is only assumed to be hermitian and therefore can

be unitarily diagonalized. It then follows that there exists a complete set of eigenstates |n⟩

so that Ĥspin|n⟩ = En|n⟩.

In free space, the spin ensemble would interact with all electromagnetic waves. How-

ever, when confined within a cavity, the cavity resonator serves as a filter and shields the

spin ensemble from non-resonant modes in the environment (reservoir), which reshapes the

spectral weight of the cavity EM field according to the physical constraint to center around

the resonance of the cavity resonator. This eventually leads to a much stronger coupling

between the spin ensemble and the cavity mode in contrast to its interaction with other EM

modes. Therefore, it is a reasonable approximation to discard the direct interaction term

(Ĥint
res−spin) between the spin ensemble and the reservoir. This redefines the system boundary

as schematically illustrated in figure 1, in alignment with the reaction coordinate method

described in Ref. [35, 36]. To retain generality, we adopt the same convention in Ref. [31],

and impose quantization rules for cavities of arbitrary shape, in which the field is linearly

polarized with an inhomogeneous distribution. It is natural to assume that a cavity supports

discrete modes while the reservoir, being non-resonant, has a continuous spectrum in the

frequency space. Therefore we use subscripts ”c” on the creation and annihilation operators

(â
(†)
c = â(†)(ωc, t)) to denote all permitted discrete cavity field modes and to differentiate

from reservoir operators b̂(†)(ω, t) that are continuous function of modes in free space.

All the measurements presented in this report were conducted within frequency windows

smaller than 300 MHz, which is significantly less than the magnitude of ωc > 3 GHz itself.

Consequently, it is appropriate to apply the rotating wave approximation (RWA) to the

cavity-reservoir interaction and discard terms involving â†b̂† and âb̂. This approximation
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FIG. 1. Schematic illustration of reaction coordinate Hamiltonian. Left panel: the spin system

directly interacts with all the photon modes in the reservoir. Right panel: the spin system only

directly interact with the cavity mode who interaction with other modes in the reservoir, forming

an extended system highlighted by the dashed box.

further simplifies the reservoir-cavity interaction Hamiltonian to:

Ĥint
cav−res =

∫
ω

dω iK(ω)[g∗(ωc)g(ω)a
†
cb(ω, t)

− g(ωc)g
∗(ω)b†(ω, t)ac] (3)

where g(ωc) = i
√
µ0ℏωc/2, with µ0 being the vacuum permeability and ℏ denoting the

reduced Planck constant. K(ω) characterizes the coupling between the cavity and reservoir

fields and is largely determined by the physical attributes of the cavity.

To avoid over-simplification, we treat the interaction term between the cavity field and

the spin ensemble without resorting to either the macro-spin description [21] or the Holstein-

Primakoff transformation [22] when describing the spin ensemble. Taking into consideration

of that all spins are localized in real space, we can transform the real-space integration

into a summation over all lattice sites. Then we normalize the gauge field following the

methodology outlined in Ref. [11]. After a few straightforward steps detailed in Appendix

A), the interaction term between the cavity field and the spin ensemble is given by:

Ĥint
cav−spin =

∑
c

g(ωc)η
√
ρs
(
â†cµ̂

α
kc + âcµ̂

α
−kc

)
(4)

where ρs stands for the volume density of spins in the sample, and µ̂α
kc

is the magnetic

moment in reciprocal space, kc represents the cavity photon mode. It is worth pointing

out that the momentum is conserved, and therefore even in the long wavelength limit, µ̂α
0

and µ̂α
−0 are differentiate. By using the Hubbard operator for a multi-level system [31]:

σ̂mn = |m⟩⟨n|, where |m⟩ and |n⟩ are pure states, we are then able to express the spin
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operator with a general momentum (q) dependence as: µ̂α
q =

∑
m,n⟨m|µ̂α

q |n⟩σ̂mn with the

summation running over the entire Hilbert space. It is evident that (µ̂α
q )

† = µ̂α
−q since∑

m,n⟨m|µ̂α
q |n⟩σ̂mn =

∑
m,n⟨n|µ̂α

−q|m⟩∗σ̂†
nm. Thus, it follows that the interaction Hamiltonian

in Eq. 4 is hermitian.

Furthermore, in Eq. 4, we have defined η2c = |
∫
Vs
êα · B⃗′(r)eikc·rdr|2/[Vs

∫
Vc
|B⃗′(r)|2dr]

as the filling factor to capture the degree to which the mode volume of the cavity field

overlaps with that of the sample[11]. B⃗′(r) is the magnetic component of the EM field

with a dimension defined in the supplementary material. êα is the unit vector along the

magnetic spin moment, and the dot product with it simply ensures that only field along the

spin component is taken into consideration. For the present experiment, noting that the

frequency range (< 4.8 GHz) corresponds to wavelengths (λ > 70 mm) that are much longer

than both the lateral dimensions of our sample (∼ 3 mm) and the inter-spin distance (∼ 10

Å), we are therefore well within the k ∼ 0 regime, where the exponential phase factor in the

filling factor vanishes (in the simpler case of a rectangle box cavity, the filling factor further

reduces to a simple ratio between the sample volume, Vs, and cavity volume, Vc.)

Thus, the total Hamiltonian can then be written explicitly as:

Ĥ =
∑
c

ℏωcâ
†
câc +

∫
ω

ℏωb̂†(ω, t)b̂(ω, t) + Ĥspin

+

∫
ω

dω iK(ω)[g∗cga
†
cb(ω, t)− gcg

∗b†(ω, t)ac]

+
∑
c

gcη
√
ρs
(
â†cµ̂

α
kc + âcµ̂

α
−kc

)
(5)

where we have used the shorthand notation gc = g(ωc) and g = g(ω).

The experimental setup discussed in the present report can be treated as a single sided

lossy cavity with an input field (b̂†i b̂i) and an output field (b̂†ob̂o). All data presented in this

study were acquired in the form of scattering parameter |S11| = |b̂o/b̂i|. Starting from the

Heisenberg equations of motion: ∂tb̂ = (i/ℏ)[Ĥ, b̂] and ∂tâ = (i/ℏ)[Ĥ, â], and following the

same steps laid out by ref. [27–30], we obtain a dynamical equation for the cavity field
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operator:

∂tâc = −iωcâc +
1

ℏ

∫
K∗(ω)b̂0(ω)e

−iωtdω

+
∑
c

[
K(ωc)

ℏ

]2
âc + η

∑
c

√
µ0ωcρs
2ℏ

µ̂α
kc (6)

We proceed by defining: b̂i = −
∫
b̂0(ω)e

−iω(t)dω (t < 0), b̂o =
∫
b̂0(ω)e

−iω(t)dω (t >

0), and adopting the first Markovian approximation to assume that the coupling strength

between the cavity field and the environment is frequency independent, in other words

K(ω) = ℏκe. Subsequently, we arrive at:

∂tâc =
∑
c

(
Γ(ωc)âc + i

√
µ0ωcρsη

2ℏ
µ̂α
kc

)
+
√
κeb̂i (7)

∂tâc =
∑
c

(
Γ(ωc)âc + i

√
µ0ωcρsη

2ℏ
µ̂α
kc

)
−
√
κeb̂o (8)

where Γ(ωc) = −iωc+(κi−κe)/2. Furthermore, we have introduced an additional Langevin

force, characterized by κi, originated from the internal dissipation of the cavity field. This

is equivalent of adding an imaginary term to the Hamiltonian that breaks the hermicity of

the total Hamiltonian and turns it into an open quantum system coupled to a large reservoir

of unknown specifics. More detailed discussions about the reasoning behind this term can

be found in [37, 38]. In the present case, this additional term enables us to capture the

impedance matching condition between the load (cavity) and drive (generator + circuit),

which is never truly perfect in reality. The next step is to find an expression for µ̂k.To this

end, we again resort to the Heisenberg equation of motion:

∂tµ̂
α
kc = − i

ℏ
[Ĥspin, µ̂

α
kc ]−

i

ℏ
[Ĥint

cav−spin, µ̂
α
kc ]

= − i

ℏ
[Ĥspin, µ̂

α
kc ]

− iη

√
µ0ωcρs

2

∑
m,n
p,q

⟨m|µ̂α
kc|n⟩⟨p|µ̂

α
kc|q⟩[σ̂mn, σ̂pq]âc

(9)

In order to compute [Ĥspin, µ̂
α
kc
], we recall the definition µ̂kc =

∑
m,n⟨m|µ̂α

kc
|n⟩σ̂mn and the

fact that our only constraint on Ĥspin is it being hermitian and hence could be diagonalized

unitarily. Therefore, we can write the spin Hamiltonian in its diagonal form using the

Hubbard operator: Ĥspin =
∑

q ϵqσ̂qq. Consequently, [Ĥspin, µ̂
α
kc
] =

∑
m,n ℏΩmnσ̂mn, where
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we have defined Ωmn = (ϵm − ϵn)/ℏ. After performing a Fourier transform on Eq.9 and

collect all the terms on the right hand side gives:

µ̂α
kc = −iη

√
µ0ωcρs
2ℏ

∑
m,n
p,q

⟨m|µ̂α
kc
|n⟩⟨n|µ̂α

−kc
|m⟩[σ̂mn, σ̂pq]

ω − Ωmn + iγmn

âc (10)

where the summation over m, n, p, and q accounts for contributions from all possible

excitation/decay process. γmn is an infinitesimal number that has the physical significance

of being the spectral line width. The commutation relation in the nominator can be further

expanded explicitly as [31]: [σ̂mn, σ̂pq] = δnpσ̂mq − δmqσ̂pn. To proceed, consider an arbitrary

eigen-state of the spin system |ψ⟩. By definition we have σ̂mm|ψ⟩ = ⟨m|ψ⟩|m⟩, where

⟨m|ψ⟩ is the expansion coefficient. Within the mean field framework, where no mode-mode

interaction exists, the spectral weights in equilibrium are entirely governed by the Boltzmann

distribution, therefore ⟨m|ψ⟩ = e−βEm/Z and σ̂mm = Nm. The last term of Eq.6 hence gives:

iη2
µ0ωcρs

2

∑
m,n

⟨m|µ̂α
kc
|n⟩⟨n|µ̂α

−kc
|m⟩

ℏ(ω − Ωmn) + iℏγmn

(Nm −Nn)

= i|G(ωc)|2χαα
kc (ω)

(11)

where we have defined G(ωc) = η
√
µ0ωcρs/2 and invoked Eq.1 with the definition Â = B̂ =

µ̂α
k . Finally, by using the Fourier transform Eq.7 and Eq.8, we arrive at a simple expression

for |S11| after some straightforward algebra:

|S11| =
∣∣∣∣1 + 2κe

i(ω − ωc)− (κe + κi) + i|G(ωc)|2χαα
kc
(ω)

∣∣∣∣ (12)

which includes contributions from all possible transitions of a diagonal susceptibility of the

spin system. Given that no specifics constraints have been imposed on the spin ensemble,

Eq.12 should, in principle, apply to all magnetic materials in the linear response regime.

Rewriting the generalized susceptibility in explicit real and imaginary parts (χαα
kc
(ω) =

Re
[
χαα
kc
(ω)

]
+ i · Im

[
χαα
kc
(ω)

]
) subsequently yields:

|S11| =

∣∣∣∣∣1 + 2κe

i(ω − ωc + |G(ωc)|2Re
[
χαα
kc
(ω)

]
)− (κe + κi + |G(ωc)|2Im

[
χαα
kc
(ω)

]
)

∣∣∣∣∣ (13)

it is evident from this expression that the real part of the susceptibility is responsible for

shifting the resonant frequencies of the cavity-spin system, whereas the imaginary part of it

influences the damping rate and hence the overall line width.
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C. Magnetic model for LiHoF4

All contributions to the net electronic magnetic moment of LiHoF4 originate from the

Ho3+ ions, which gives an effective spin of J = 8 according to Hund’s law. The resulting

2J+1 = 17-fold degeneracy of the spin degree of freedom is lifted due to the presence of the

crystal electric field (CEF), producing a ground state doublet situated 0.95 meV (229 GHz)

below the first excited state. The spin-spin interaction in LiHoF4, predominately dipolar in

nature, induces spontaneous symmetry breaking and ferromagnetically orders the compound

along its easy axis at temperatures below 1.53 K [14, 17]. Furthermore, each Ho nucleus has

a spin of I = 7/2, and a strong hyperfine interaction local to each Ho site further splits the

electronic states of LiHoF4. In addition, the hyperfine interaction also modifies the magnetic

phase boundary of LiHoF4 at temperatures below 300 mK and halts the complete softening

of the lowest electronic excitation[16].

LiHoF4 belongs to the space group I 41/a, n
◦88 and has a tetrahedral scheelite structure

with lattice constants of a = b = 5.164 Å, and c = 10.78 Åthat is also the easy axis. The

full spin Hamiltonian of LiHoF4 has been well established through many complementing

experiments and theoretical discussions [14–16, 19, 39], and can be written in the following

terms: Ĥ = ĤCF + ĤJ
Z + ĤI

Z + Ĥhyp+ Ĥex+ Ĥdip. Going from left to right, these terms are,

respectively, the crystal field Hamiltonian, the electronic Zeeman interaction, the nuclear

Zeeman interaction, the hyperfine interaction, the exchange interaction, and the dipole-

dipole interaction. The first four terms are all single-site interactions, whereas the last two

are pairwise interactions that grant the system its many-body nature. Details of the crystal

field parameters are available in numerous previous reports [17, 40, 41], and for the present

study, we adopt those provided in Ref. [17]. It is important to note that the coordinate

system used for the CEF parameters in all of the aforementioned reports differ from the

crystallographic axes by an −11◦ rotation around the c-axis [17, 41]. While this discrepancy

has minimal impact on calculations of the electronic spin states, it produces a sizeable effect

in the hyperfine level calculations. We therefore rectify it by projecting the crystal field

Hamiltonian onto the crystallographic coordinate for consistency, details of which can be

found in appendix B.

The transverse component of the electronic Zeeman interaction, gLµB

∑
i J⃗i ·B⃗⊥, serves as

a source of quantum fluctuations that drives the system to undergo a QPT at 4.95 T at the
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FIG. 2. (a) Magnetic phase diagram of LiHoF4. Red squares and blue circles are experimental

data from, respectively, Ref. [14] and this work. The black doted and solid curves are MFT values

of, respectively, an ideal Ising model and LiHoF4 with renormalized spins[17]. (b) The hyperfine

splitting of the first two electronic spin states of LiHoF4 by MFT calculation. The insets illustrates

the product-states of the electro-nuclear spins. (c) Photos of the LiHoF4 sample (inside the red

dashed box) in crystallographic a-c plane (upper panel) and a-b plane (lower panel) mounted

between two sapphire substrates (encompassed by black dashed lines). (d) Top view (upper panel)

and side view (lower panel) of the intensity (color map) and the magnetic polarization (small

black arrows) of the cavity photon field from FEM calculation using COMSOL®. The large black

arrow in the lower panel indicates the crystallographic c-axis of the mounted sample. The black

rectangle in both panels indicates the sample location to scale.(e) Color map: the imaginary part

of calculated longitudinal magnetic susceptibility of LiHoF4 at 100 mK. The white dashed lines

plotted on top are the first seven electro-nuclear spin transitions from MFT calculation. The two

green dashed lines indicates the bare resonant frequencies of the microwave cavity used in the

experiment. 12



lowest temperature limit [14, 16]. The detailed phase diagram has been both experimentally

and theoretically investigated as shown in figure 2(a). The hyperfine interaction can be

explicitly written as Ĥhyp =
∑

iAI⃗i · J⃗i, where A is the interaction strength, and Ĵi and

Îi represent, respectively, the electronic and the nuclear spin operators. This interaction

mixes the electronic and nuclear spin states, expanding the single-site Hilbert space to

(2J+1)×(2I+1) = 136 dimensions (J = 8, I = 7/2) for LiHoF4. Although the present

experiment is carried out at temperatures well below the energy gap (11 K) between the

electronic ground state and first excited state, we do not truncate the Hilbert space spanned

by the single-ion eigenstates. The value of the hyperfine interaction strength A can be

obtained from fitting to experimental data, and for the present report, we again adopt the

value reported in [17].

The total Hamiltonian of LiHoF4 then reads:

Ĥ =
∑
i

[ĤCF + gLµBĴi · B⃗⊥ + gNµN Îi · B⃗⊥ + AÎi · Ĵi]

+
∑
i>j

[JexĴi · Ĵj + (gLµB)
2ĴiDĴj] (14)

where gL/N are the electronic/nuclear Landé factor, µB/N are Bohr/nuclear magneton. Ĵi is

the electronic spin on lattice site i. D is the dipole interaction tensor. The summation in

Eq. 14 are carried over all sites (i, j).

Finding the exact eigen-states to a many-body system like LiHoF4 is in general difficult,

and a commonly used approximation to simplify the problem is the mean field approximation

(MFA), which is introduced through Ĵi = ⟨J⟩ + δĴi. Consequently, the aforementioned

many-body Hamiltonian is reduced to a single-ion Hamiltonian by discarding δĴi · δĴj and

δĴiDδĴj in the spin-spin interaction terms[19]. The resulting single-ion Hamiltonian is then

numerically diagonalized in a self-consistent manner, yielding the mean field (MF) eigen-

states and eigen-energies. The ground state doublet of the electronic spin states in this

solution are now split by the hyperfine interaction and is shown in figure 2(b): The two

”bundles” of hyperfine states, represented by the solid blue lines, each correspond to one

of the electronic ground state doublet. The cartoon insets depict the relative orientations

between the electronic and nuclear spin moments.

Next, the single-ion dynamical magnetic susceptibility is calculated using Eq.1 with the

MF eigen-states obtained in the previous step. Despite the inclusion of nuclear Zeeman
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interactions, the largest amplitude of AC magnetic susceptibility remains aligned with the

easy axis (c-axis) of LiHoF4, which echos the previous finding in Ref. [18].

To go beyond the MFA and include the two-site correlation effect to the lowest degree,

the random phase approximation (RPA) can be applied to the single-ion susceptibility in a

self-consistent calculation [24]:

χRPA(qqq, ω) =
χMF (ω)

1− J (qqq) χMF (ω)
(15)

where the double bars over the susceptibilities signify their tensorial nature, and J (qqq) is the

Fourier transform of the spin-spin interaction strength, which includes both dipole-dipole

interaction and exchange interaction in the present case. One of the advantages of the RPA

is that it, to a degree, accounts for the correlation effect at a relatively low computation

cost. In the case of LiHoF4, the most notable outcome from the RPA is the emergence

of a collective electro-nuclear excitation mode that softens completely at the QPT [18].

However, as it has been previous shown in Ref. [20] and Ref. [42], this collective electro-

nuclear excitation mode in LiHoF4 only couples very weakly to the cavity mode, possibly

due to its rapid decoherence rate, which greatly hinders its quantitative analysis. Therefore,

in the present report, we focus exclusively on the single-ion excitations and will leave the

discussion about the collective mode for future studies.

III. EXPERIMENTAL METHODS

In figure 2(c), we present the sample used in our experiment: a thin slab of a single crystal

LiHoF4 (a × b × c = 3.0 × 0.8 × 3.0 mm, singled out by the red dashed box, is mounted

onto a holder made of high purity-copper. The sample is reinforced with a piece of sapphire

substrate, singled out by black dashed boxes, on either side of the bigger surface (crystallo-

graphic ac-plane). This is intended to improve thermalization and fortify the sample against

the large magnetic torque exerted by the transverse magnetic field during experiments. The

sample is then installed in a closed 3D two-loop-one-gap re-entrant cavity resonator, seen in

figure 2(d), that has a diameter of 24 mm and a height of 5 mm. The resonant frequency of

our re-entrant cavity can be adjusted by varying the cavity gap size, achieved by changing

the inner insert in practice. For the present study, we varied gap size between 200 µm and

400 µm, enabling us to alter the frequency of the fundamental mode between ∼ 2 GHz and
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FIG. 3. (a) Left panel: measured |S11| at 150 mK as a function of external magnetic field and fre-

quency. Dashed line: theoretical values calculated using FEM, MFT and input-output formalism.

Solid line: theoretical values with calculated filling factor scaled by 1.06. Middle and right panel:

individual fits to measured |S11| at 0 T and 9 T (location indicated by arrows in the left panel) (b)

Fitted values (markers) from off-resonance measurements and calculated values (lines) of the real

part of the longitudinal susceptibilities as a function of magnetic field at ∼ 150 mK (blue), ∼ 300

mK (red), ∼ 500 mK (yellow), and ∼ 800 mK (purple). (c) Left panel: measured |S11| at zero

magnetic field as a function of temperature and frequency. Middle and right panel: individual fits

to the measured |S11| at 1.42 K and 1.70 K (location indicated by arrows in the left panel). (d)

Fitted imaginary part of susceptibility (blue dots) and Inverse of quality factor (red dots).

∼ 5 GHz.

As a re-entrant cavity, which separates the electric and magnetic components of its cavity

EM field, our cavity confines the electric field within the gap while the magnetic field fills

up the space surrounding it. The field distribution inside the cavity is simulated using finite

element method (FEM) by COMSOL®, the result of which is presented in figure 2(d). The

color map in the figure illustrates the amplitude of the magnetic component of the cavity
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EM field for the fundamental mode, while the black arrows indicate the polarization. The

solid black rectangles represent the single crystal sample of LiHoF4. As mentioned in Sec.

II, LiHoF4 produces the strongest response to magnetic probe field along its easy axis (c-

axis). Therefore, for the present report, the sample is oriented such that its easy axis is

parallel to the magnetic polarization of the cavity field. The inhomogeneity of amplitude

of the EM field is found by calculations to be less than 2% across the sample, and the

variation in field orientation is found to be about 5% across the sample. In addition, by

using ρs = 4/(5.17 × 5.17 × 10.75) Å−3 for the spin density and the physical dimensions

of the cavity and the single crystal sample used in the experiment, we computed the filling

factor η.

For the spectroscopic measurement presented in this report, a Vector Network Analyzer

(Rohde & Schwarz® ZVL-6) is used to generate the radio frequency signal in the continuous

wave (CW) mode at room temperature. The signal is then transmitted to the cavity res-

onator at milli-kelvins through segments of copper-clad-steel (> 4K) and superconducting

NbTi (≤ 4K) semi-rigid coax cables, which are thermalized at every stage of the dilution

refrigerator (Oxford Instrument® Kelvinox-400). The transmission line is eventually cou-

pled to the cavity resonator via a single-loop-antenna, with an excitation power maintained

well within the linear response regime at ≤ −25 dBm. The impedance matching condition

is determined by the relative angle between the antenna’s loop plane and the local magnetic

polarization of the cavity EM field. Together with the reproducible change in the perme-

ability of the LiHoF4 sample phase transitions, they enable us to reliably reach near-perfect

matching conditions at low temperatures by adjusting the antenna’s angle between cool-

down cycles of the setup. All experimental data are taken in the form of the scattering

parameter |S11|, measured in a narrow frequency window (≤ 240 MHz) while the external

magnetic field is swept at at rate of 20 mT/min using a vertical cryo-magnet up to 17 T. In

this report, we demonstrate the validity of our theoretical model by analyzing experimental

data from both off-resonance measurement around 4.73 GHz and on-resonance measurement

around 3.64 GHz, as indicated by the green dashed horizontal lines in figure 2(e).
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FIG. 4. Fitted values (markers) from off-resonance measurements and calculated values (lines) of

the imaginary part of the longitudinal susceptibilities as a function of magnetic field at ∼ 150 mK

(blue), ∼ 300 mK (red), ∼ 500 mK (yellow), and ∼ 800 mK (purple).

IV. RESULTS & DISCUSSION

We first focus on the off-resonance data, where the cavity mode is sufficiently detuned

from the electro-nuclear spin transitions, direct hybridization between the cavity and electro-

nuclear spin transitions are negligible. We present measured |S11| from this regime at 150

mK as a function of frequency and external magnetic field in Figure 3(a), obtained with a

cavity frequency of 4.74 GHz (above the nuclear spin transitions in LiHoF4 across the entire

magnetic field range). As expected, no evidence of direct hybridization, such as branching,

is seen in the result. In the meantime, apart from minor changes to the cavity line width, the

Coupling between the cavity and the sample does result in a dip with a kink at the critical

field of the quantum phase transition (∼ 5 T) in the cavity mode as a function of the magnetic

field. To compare with our model, we reproduce the experimental data by using Eq.12 with

the MF eigenstates of Eq.14 applied to Eq.1. We plot the theoretical results in dashed black

line, overlaid on top of the experimental data in figure 3(a). The shift in resonance frequency

is proportional to the squared coupling constant G(w), which in turn is proportional to

the filling factor (η) we calculated from FEM analysis via COMSOL. Remarkably, without

adjusting any parameters neither in the MF-RPA model nor in the cavity coupling constant,

the prediction (dashed black line) comes very close to the measurement. Scaling the coupling

constant by a factor 1.06 makes the agreement perfect (black solid line) up to the critical
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FIG. 5. Measured |S11| as a function of magnetic field at 130 mK. Red dashed lines: calculated

excitation spectra by the MFT. Black dots: fitted excitation spectra. The red arrow indicates the

cusp in the trace of cavity resonance frequency that was used to infer sample temperature. The

right three panels show individual fits to the experimental data (blue dots) at various field locations

indicated by the three black arrows on the left panel.

field. Our simulation captures well the essential features of the experimental data and hence

the kink in the resonance frequency is understood as a manifestation of the strongly elevated

magnetic susceptibility at the QCP.

In addition to the absence of direct hybridization between the cavity mode and the

electro-nuclear transitions in the off-resonance setup, both the real and imaginary parts of

the magnetic susceptibility of the spin ensemble are very flat, as functions of frequency, in

the vicinity of the cavity mode. Therefore, it is a good approximation to consider χzz
kc
(ω)

frequency independent within a narrow frequency window, akin to conventional AC suscep-

tibility measurements. This allows us to fit the measured |S11| in off-resonance experiments

using Eq.13. Since the hamiltonian commutes, at zero external magnetic field, with the

spin projector along the Ising axis for an Ising system, its logitudinal magnetic suscepti-

bility vanishes according to Eq. 1. Therefore, in fitting the data, we first establish the

baseline by fitting |S11| at zero magnetic field using Eq. 12 with χzz
kc
(ω) set to zero. This

yields the external (κe) and internal (κi) dissipation rates of the cavity [7, 9, 10], which are

κe/2π ≈ 556 kHz and κi/2π ≈ 381 kHz respectively. Subsequently, the remaining mea-

surement of |S11| at finite fields are fitted while keeping κe and κi fixed at these baseline

values. Two representative fits at zero field and the critical field are displayed in the right
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panels of figure 3(a), where the blue dots represent the experimental data and orange lines

are the corresponding fits. The extracted susceptibilities as functions of magnetic field at

four selected temperatures (150 mK, 300 mK, 500 mK, and 800 mK) are given in figure

3(b) with color coded markers. The evolution of the extracted susceptibility as a function of

magnetic field and temperature is qualitatively reproduced by the MFT model (solid lines).

The experimental susceptibility grows more than the prediction at elevated temperatures,

which is likely linked to the negligence of fluctuations in the MF approximation.

As the phase transition between ordered and polarized paramagnetic states is clearly

visible as a kink in the resonance frequency, we are able to obtain the field-temperature

phase diagram by repeat the off-resonance measurement at various temperatures. While this

method is very effective at low temperatures, it becomes unreliable at high temperatures

because: first, the phase boundary becomes nearly parallel to the field axis, causing the

measurement trajectory to intersect the phase boundary at increasingly shallow angles;

Secondly, strong thermal fluctuations in the spins lead to significant damping, resulting in

substantially broadened cavity mode. Consequently, near the zero-field-critical-temperature,

we perform temperature-sweeping measurements at fixed magnetic fields to track the phase

boundary. In figure 3(c), we show measured |S11| at zero field in the left panel, while

two individual sets of data with fits taken at temperatures on either side of the critical

temperature are given in the right panel. Unlike field-sweeping measurement, data from

temperature-sweeping measurement does not display any significant frequency shift but

rather a pronounced line-width broadening. In figure 3(d) we show both the fitted imaginary

part of AC susceptibility as well as the inverse of the loaded quality factor, defined as 1/Q =

FWHM/f0, where FWHM stands for full-width-half-max and f0 is the peak frequency.

A clear inflection point occur at the phase transition can be seen in both sets of curves.

Combining the experimental data from both field- and temperature-sweeping measurements,

we are able to map out the entire phase boundary, shown in figure 2(a) in solid circles. Our

results are in very good agreement with previously published data [14], given in solid squares

in the same figure.

In addition to the the real part of the longitudinal magnetic susceptibilities shown in figure

3(b), the imaginary part is also obtained from the fit and presented in figure 4 using dashed

lines and matching colors. Contrary to the case with the real part, it is evident that the two

sets of data of the imaginary part not only disagree with each other quantitatively but also
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qualitatively, exhibiting different behaviors as functions of the magnetic field. A prominent

and consistent feature seen in these experimental data is the double peak surrounding the

QCP, which are not present in the calculated results. While the origin of these peaks is

unclear to us, the failure of the MFT in capturing them suggest that they are likely related

to fluctuations. Furthremore, it is worth noting that they are not expected to be related to

the soft mode observed in Ref. [20], which manifested itself as also dual peaks in dissipation

surrounding the QCP. Despite the similarity on the surface, our data present in figure 4 is

taken at a frequency (4.9 GHz), which is not only far above in energy the expected collective

soft mode but also the first manifold of single-ion electro-nuclear spin excitations. Therefore,

the cavity mode presented here never intercepts the soft mode, and hence the peaks observed

in Im[χzz] in experiments are not expected to be related to the latter.

Next we focus on the on-resonance measurements where the resonance frequency of the

cavity cross through those of the electro-nuclear spin excitations, leading to direct hybridiza-

tion between the cavity photons and the spin transitions. We present the measured |S11| for

a cavity with resonance frequency 3.64 GHz as a function of frequency and field, at 100 mK

in figure 5. Several features are visible in the data: (1) similar to the off resonance data, the

kink (the red arrow in Fig. 5) at 4.75 T marks the phase transition and can now be used to

for direct determination of the sample temperature inside the cavity in presence of the cavity

photon field, yielding 130±5 mK. (2) apparent mode splittings are seen at the two ends of

the field axis (3.32 T and 13.90 T). The latter of the two has a very faint upper branch, but

nonetheless exhibits a visible avoid-crossing pattern. (3) All other features that appear in

between the two remain single-peaked. The occurrence of these features is consistent with

the prediction by the CMP theory of perturbation, or bifurcation, of the cavity mode as a

result of spin-photon mode hybridization at various strengths[4, 9, 11, 25, 28]. Furthermore,

these mode crossings below and above the critical field nearly coincide with those predicted

by the MFT (dashed red lines in fig. 5).

We proceed to fit the on-resonance experimental data, where the magnetic susceptibil-

ity can no longer be considered frequency independent due to direct mode hybridization.

However, noting that all the mode crossings above the critical field are well separated along

the frequency axis, as seen in fig. 5(a). At each of these crossings, only one spin transition

directly hybridizes with the cavity mode and exhibits appreciable frequency dependence

while all other transitions are sufficiently detuned from the cavity mode. Therefore, by ap-
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plying the same reasoning as in the previous analysis of off-resonance data, we can treat all

other transitions as frequency independent in the close vicinity of each of these crossings.

Consequently, we fit the experimental data piece wise at each mode crossing using Eq. 13,

retaining frequency dependence for only the relevant magnon mode. For the avoid-crossing

pattern below the critical field, since the MFT predicted that all the electro-nuclear spin

transitions at this field nearly coincide with each other (see figure 2(e)) and there is only

one branching feature visible in the experimental result, we thus fit this part of the data

using the same fitting function but with the assumption of all relevant transitions being

degenerate. The fitting function used explicitly reads:

|S11| =

∣∣∣∣∣∣1 + 2κe

i(ω − ωc)− (κe + κi) + χ′
0 +

G̃2
mn

i(ω−Ωmn)−γmn

∣∣∣∣∣∣ (16)

where the last term in the denominator describes the magnon mode that directly hybridizes

with the cavity mode, and χ′
0 contains contributions from all other spin transitions to the

magnetic susceptibility. The three fitting parameters relevant to the on-resonance mode are:

1. Ωmn, the frequency of the electro-nuclear spin transition between |m⟩ and |n⟩ that is on-

resonance with the cavity mode frequency; 2. G̃2
mn = |G(ωc)|2⟨m|µ̃z

kc
|n⟩⟨n|µ̃z

−kc
|m⟩(Nm−Nn)

characterizes the coupling strength between the cavity mode and magnon transition; and

3. γmn represent the spectral line width of the corresponding magnon transition. In the

right panel of figure 5, we show such examples of individual measurements and fits at three

selected magnetic fields that are marked by Roman numerals in the left panel. Panel ”I”

and ”II” clearly show branching, or the avoid crossing pattern, that is typical for the strong

coupling regime while panel ”II” displays only a single peak, indicating a weak coupling

between the cavity field and the spin system.

The electro-nuclear spin transition frequencies extracted from the fits are shown in black

points in the left panel of Fig. 5. To compare it to theoretical predictions, we plot the

MFT results of the electro-nuclear transitions between single-ion states |m⟩ and |n⟩ (Ωmn)

in red dashed lines in the same figure with corresponding labels. The agreement between

the calculated and experimental data is found to sensitively depend on the angle of the

external magnetic field in the crystallographic ab-plane of LiHoF4 (see appendix B for more

details). In order to reach the agreement shown in the figure, an angle of 13◦ away from

the crystallographic a-axis within the ab-plane was used for the MFT calculation. With
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FIG. 6. (a) Fitted individual (colored markers) and collective (solid black) coupling strengths of

electro-nuclear excitation spectra of LiHoF4 at various temperatures. Solid curves are calculated

values for individual magnon mode. Different transitions are color coded and matched for both

experimental and calculated values. (b) Fitted spin line width from experimental data. (c) Fitted

spin line width of the collective mode below critical field.

this small angle, a close agreement between the extracted frequencies and the theoretical

predictions is observed, both in the locations of the crossings and in the frequency-field

slopes.

We also fit the experimental data for coupling strengths at five different temperatures,

and the results are presented in figure 6(a), where the lines represent calculated values and

the markers are extracted from the fits to the data. The different magnon transitions are

color coded and consistent between the experimental and the theoretical results. For the

coupling strength below the critical field, the extracted values from the experimental data

are plotted using solid black markers while the MFT calculated values are presented using

a solid black line. It is labelled as
∑

(|n⟩ → |n + 1⟩) since it contains contributions from

all the nuclear spin transitions in the first electronic spin manifold. More specifically, it is

taken as
√∑

n G̃
2
n,n+1. It is clear from the figure that the fitted values appear to vary very

little from each other at different temperatures. This behavior is qualitatively consistent

with the theoretical prediction (solid black line in Fig. 6). However, there is a quantitative

difference of ≤15% between the two as the MFT at all temperatures overestimates the

collective coupling strengths.

In contrast, excellent agreement is reached for the isolated magnon transitions above the

critical field at all five temperatures, further confirming our assignment of the magnon tran-

sitions to the crossing features in the raw data. It also elucidates the mechanism underlying
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their varying appearances: When the cavity is driven at low power as is in our case, the in-

teraction between the probe field and the spin ensemble is kept in the perturbative regime.

The occupation numbers of spin states therefore do not deviate far from the Boltzmann

distribution.

The MFT calculation shows that the variation in values of the off diagonal matrix el-

ements (⟨m|µ̂α
kc
|n⟩ and ⟨n|µ̂α

−kc
|m⟩) in Eqn. 11 is of four orders of magnitude less than

the occupation numbers of states throughout the temperature range relevant to the present

experiment. Consequently, the coupling strength (G(ωc)) between the photon field and a

magnon transition are almost entirely dictated by the occupation number difference be-

tween the two involved spin states. This results in the coupling strength changing from

weak coupling regime for higher magnon transitions to strong coupling regime for lower

magnon transitions, as evidenced by panel “II” and “III” of figure 5, where the former

magnon transition is between |3⟩ and |4⟩ while the latter is between |0⟩ and |1⟩. Moreover,

as the temperature lowers, the higher spin states become depleted, which can weaken the

coupling strength significantly enough that the corresponding crossing feature is no longer

detectable. This is the case for the experimental data at 100 mK that corresponds to the

magnon transition between |5⟩ to |6⟩. Conversely, several fits for the lower transitions at

higher temperatures are also absent. In contrary to the case of higher transitions at low

temperatures, these lower transitions at high temperatures evade reliable and meaningful

fits primarily due to low cooperativity as a result of thermal broadening.

The thermal broadening of the spin spectral line width is also directly quantified in figure

6(c), where we plot the fitted values of the spectral line widths (γ0/2π) below the critical

field at three different temperatures between 100 mK and 250 mK. The solid lines serve

as visual guides only while the dashed lines represent our hypothesized trend. For each

magnon transition, it clearly shows a trend of broadening toward higher temperatures. In

the meantime, the line widths for different magnon transitions at the same temperature show

a bell shaped curve where the line widths are the lowest for both the highest and lowest

transitions while being elevated for those in between. In consideration of the distance in

energy among these magnon transitions, as shown in figure 5(a), the broadening of middle

transitions is likely due to the mode-mode coupling where a magnon transition is damped

by another nearby transition.

Having analysed individually each mode crossing as function of magnetic field and temper-
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FIG. 7. (a-c) Measured |S11| across the quantum critical point at 100 mK (a), 130 mK (b), and

250 mK (d-f) Simulated data of (a-c) in the same order. For 100 mK we assumed γ56 = γ45 and

for 250 mK we used γ12 = γ23 = γ34 = 70 MHz.

FIG. 8. (a) Measured |S11| near 3.5 T at 130 mK. (b) Simulated data of (a).
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ature, we now turn to compare our experimental data to the full MFT simulation obtained

from eq. (13), shown in figure 7 where panel (a), (b), (c) are experimental data and (d), (e),

(f) are simulations. For these simulations we used the experimentally extracted line widths

(Figure 6(c)) with the exception for the three transitions at 250 mK where reliable fitting

was hindered by the broadening. For these transitions, the line widths are set to 70 MHz,

which is the largest value obtained from fitting to the experimental data at 130 mK. It is

evident from figure 7 that the simulation adequately reproduces all key features observed

in the raw data. These include the kinks in the trace of the cavity mode at the critical

field, the increasing coupling strength toward lower magnon transitions, and the enhanced

broadening at higher temperatures. The overall agreement is remarkable considering that

besides the line widths and minor corrections to the filling factor and the orientation of the

transverse field, no other parameter was adjusted in the model.

Another minor discrepancy between the calculated and experimental data emerges when

zooming in on the branching features of the cavity mode below the critical field, Figure 8.

The MFT predicts that the underlying electro-nuclear spin transitions are non-degenerate

in the region, as shown in Fig. 5(a), resulting in the compact multi-crossing pattern in

Fig. 8(b). However, these features are largely subdued, if not completely absent, from the

experimental result. Attempts at scaling the transition energies, varying transition line-

widths could not resolve this difference. We therefore conjecture that a collective mode,

arising from the higher order effects of spin-spin correlation neglected by the MFT, may

be at play. This underscores the need for extending beyond the zeroth-order calculation to

achieve a comprehensive understanding of LiHoF4 as an interacting spin ensemble. Such an

extension is beyond the scope of this report and is left for future theoretical investigations.

V. CONCLUSION

In conclusion, we have established a microscopic relation between the magnetic suscepti-

bility and the scattering parameter |S11| for cavity-spin systems in general. This framework

was applied to investigate the strongly hybridized electron-nuclear spin states across the

quantum phase transition in LiHoF4. Employing a re-entrant cavity resonator we achieved

both off-resonance and resonant strong coupling and were able to relate the measured |S11|

parameters directly to the calculated generalized susceptibility of LiHoF4. Fitting the in-
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dividual spectra we were able to extract coupling parameter and line width for each of the

transitions. The extracted coupling parameters confirmed Boltzmann distribution of the

nuclear spin states, while the line widths displayed a non-monotonic dependency as func-

tion of transition number, which remains to be explained. Remarkably, with essentially no

adjustable parameters both the overall spectra and the extracted coupling parameters are

reproduced quite accurately by the established model for LiHoF4. This demonstrates that

cavity-magnon-polariton experiments can be employed as a powerful spectroscopy technique

providing detailed quantitative information of the generalized susceptibility of strongly hy-

bridized collective spin systems.

VI. ACKNOWLEDGEMENT

The authors would like to thank Dr. M. Müller, Dr. A. Turrini, and Dr. R McKenzie for

the helpful discussions. This work was funded by the European Research Council (ERC)

under the European Union’s Horizon 2020 research and innovation program projects HERO

(Grant No. 810451) and Swiss National Science Foundation (SNSF) grant No. 188648.

Appendix A: Cavity field-spin interaction

The interaction between the cavity photon field and a magnetic sample is in essence

Zeeman interaction:

Ĥint
cav−spin = −

∫
Vs

µ⃗ · B⃗(r)dr (A1)

= −
∑
c

∫
Vs

√
µ0ℏωc

2
(âc + â†c)µ⃗ · B⃗′(r)dr (A2)

where α⃗ stands for the magnetic moment and the integration is over the sample volume

(Vs), and we used the usual quantization rule on cavity photon field [31]. For arbitrary

shaped cavity, we normalize the field amplitude in the same fashion as in Ref. [11], thus the

interaction Hamiltonian reads:
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Ĥint
cav−spin = −

∑
c

√
µ0ℏωc

2
(âc + â†c)

∫
Vs
µ⃗ · B⃗′(r)dr√∫

Vc
|B⃗′(r)|2dr′

= −
∑
c

√
µ0ℏωc

2
(âc + â†c)

∫
Vs

dr
( 1√

Ns

∑
q

µ⃗qe
iq·r) · ∫ d3k

(2π)3
B⃗′(k)eik·r√∫
Vc
|B⃗′(r′)|2dr′

= −
∑
c

√
µ0ℏωc

2

âc + â†c√∫
Vc
|B⃗′(r′)|2dr′

1√
Ns

∑
q

∫
d3k

(2π)3
µ⃗q · B⃗′(k)

∫
Vs

ei(q+k)·rdr

= −
∑
c

√
µ0ℏωc

2

âc + â†c√∫
Vc
|B⃗′(r′)|2dr′

1√
Ns

∑
q

∫
d3k

(2π)3
µ⃗q · B⃗′(k)

Ns

Vs
δ(q+ k)

= −
∑
c

√
µ0ℏωcρs

2
(âc + â†c)

∑
q

|µ⃗q|

√√√√ [
∫
Vs
|B⃗′

µ(r)|eik·rdr]2

Vs
∫
Vc
|B⃗′(r′)|2dr′

(A3)

where in the second line we introduced Fourier transformations µ⃗ = 1√
Ns

∑
q µ⃗qe

iq·r and

B⃗′(r) =
∫

d3k
(2π)2

B⃗′(k) · eik·r, and again the total number of spins in the sample Ns = Vsρs.

In the last step, B⃗′
µ(r) is the magnetic component of the photon field projected along the

sample spin polarization. As we haven’t imposed any artificial restrains, the result should

be in principle true for any cavity and lattice spin system.

Appendix B: crystal field rotation

In LiReF4, the R ions are located at a site with local 4̄ (S4) local symmetry. The crystal

field Hamiltonian takes the form,

HCEF =
∑

l=2,4,6

B0
l O

0
l +

∑
l=4,6

B4
l O

4
l +B−4

l O−4
l , (B1)

where Stevens operators O4
l and O−4

l are sometimes referred to as O4
l (c) and O4

l (s), re-

spectively. In a coordinate system where z-axis is chosen to be along the four-fold axis, by

symmetry we have 7 crystal field parameters Bm
l which are to be determined experimentally.

A common approach in spectroscopic measurements such as by Hansen et al. [PRB 12, 5315

(1975)] is to chose a coordinate system where the x direction is chosen such that B−4
4 = 0.

Furthermore, one can approximate the 4̄ point symmetry by 4̄2m (D2d) symmetry, in which
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case B−4
6 = 0. This greatly reduces the number of free parameters in the fit. The Stevens

operators that we employ here are defined as,

O0
2 = 3J2

z −XI

O0
4 = 35J4

z − (30X − 25)J2
z + (3X2 − 6X)I

O4
4 = (J4

+ + J4
−)/2

O−4
4 = − i(J4

+ − J4
−)/2

O0
6 = 231J6

z − (315X − 735)J4
z

+ (105X2 − 525X + 294)J2
z

+ (−5X3 + 40X2 − 60X)I

O4
6 = [(11J2

z −XI− 38I)(J4
+ + J4

−)

+ (J4
+ + J4

−)(11J
2
z −XI− 38I)]/4

O−4
6 = − i[(11J2

z −XI− 38I)(J4
+ − J4

−)

+ (J4
+ − J4

−)(11J
2
z −XI− 38I)]/4

where X = J(J + 1) and I is the identity matrix of size (2J + 1) × (2J + 1). One can see

from the operators that in the case of 4̄ point symmetry, there will be imaginary terms in

the Hamiltonian. In the case of 4̄2m local symmetry, the total Hamiltonian can be made

real.

For a general rotation R(ψ,n) by an angle ψ about an axis in the direction of vector

n = (sin θ cosϕ, sin θ sinϕ, cos θ), by considering a product of infinitesimal rotations, one

finds the unitary transformation operator to be,

U(R(ψ,n)) = exp(−imψn · J). (B2)

This result can be used to determine how the operators J transform under a finite rotation.

We can apply the rotation operator on the Hamiltonian where HR
CEF = U†HCEFU. From

the Stevens operators above, we find that O0
l operators commute with exp(−imψJz) and

the rotation operator has effectively no effect on these terms. However, O±4
l terms contain

combination of raising and lowering operators J4
+ ± J4

− resulting in transformation of the

operators as {O4
6} = cos(4ψ)[O4

6] − sin(4ψ)[O−4
6 ], etc. This reflects the more general rule

that connects rotations of 3D space and their unitary representatives on the Hilbert space,

U†(ψ,n)VU(ψ,n) = R(ψ,n)V. (B3)
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An alternative way to tackle the problem for arbitrary rotation of the Stevens operators

are done by use of the rotation of Racah operators and the fact that the Stevens operators

are linear combinations of Racah operators. The Racah operators namely transform un-

der rotations of the frame of coordinates as the spherical harmonics, whereas the Stevens

operators transform as the tesseral harmonics. The Stevens operators, denoted Om
l , have

the disadvantage of not having systematic transformation properties under rotations of the

frame of coordinates. Another set of operators, the Racah operators, denoted Õl,m, are

tensor operators and they therefore have systematic transformation properties. The Racah

and Stevens operators are related as,

Om
l =

1

κml

(
2l + 1

8π

)1/2 [
Õl,−m + (−1)mÕl,m

]
(B4)

O0
l =

1

κ0l

(
2l + 1

4π

)1/2

Õl,0 (B5)

O−m
l =

1

κml

(
2l + 1

8π

)1/2 [
Õl,−m − (−1)mÕl,m

]
(B6)

The normalising coefficients κml in tesseral harmonics are tabulated elsewhere in Danielsen

and Lindg̊ard, Risø Report No 259 (1972). A comprehensive analysis of transformation

properties of Stevens operators for a general rotation (ϕ, θ) of the frame of coordinates is

described by Rudowicz [J. Phys. C: Solid State Phys. 18, 1415 (1985)] and Mulak and

Gajek, The effective crystal field potential, Elsevier Science Ltd, Oxford (2000). In the

appendix Rudowicz gives a summary of a general rotation of Stevens operators. For the

case where θ = 0, we find that,

{O4
6} = cos(4ϕ)[O4

6]− sin(4ϕ)[O−4
6 ], (B7)

and similarly,

{O4
4} = cos(4ϕ)[O4

4]− sin(4ϕ)[O−4
4 ], (B8)

where the curly brackets denote a column matrix of Stevens operators in the original axis

system and the square brackets denote the operator in the transformed axis system which

is rotated by an azimuthal angle ϕ. The expressions for {O−4
4 } are obtained by replac-

ing cos(mϕ) ⇒ sin(mϕ) and sin(mϕ) ⇒ − cos(mϕ). The transformation matrices Sl(ϕ, θ)

defined,

{Ol} = Sl(ϕ, θ)[Ol], (B9)
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are real but are not orthogonal – their inverse matrices are not equal to the transposed ones.

For the special case given in Eq. B1, we find that under a rotation about z, the Stevens

operators transform as,
O4

l

O0
l

O−4
l

 =


cos(4ϕ) 0 − sin(4ϕ)

0 1 0

sin(4ϕ) 0 cos(4ϕ)



O4

l

O0
l

O−4
l

 , (B10)

or alternatively from the view point of crystal field parameters,
B4

l

B0
l

B−4
l

 =


cos(4ϕ) 0 sin(4ϕ)

0 1 0

− sin(4ϕ) 0 cos(4ϕ)



B4

l

B0
l

B−4
l

 . (B11)
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