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We propose a quantum Monte Carlo algorithm capable of simulating the Bose-Hubbard model on
arbitrary graphs, obviating the need for devising lattice-specific updates for different input graphs.
We show that with our method, which is based on the recently introduced Permutation Matrix
Representation Quantum Monte Carlo [Gupta, Albash and Hen, J. Stat. Mech. (2020) 073105], the
problem of adapting the simulation to a given geometry amounts to generating a cycle basis for the
graph on which the model is defined, a procedure that can be carried out efficiently and and in an
automated manner. To showcase the versatility of our approach, we provide simulation results for
Bose-Hubbard models defined on two-dimensional lattices as well as on a number of random graphs.

I. INTRODUCTION

The Bose-Hubbard (BH) model, one of the pillars of
condensed matter physics, is the go-to model for a large
variety of physical phenomena, from Mott-Insulator-to-
superfluid transitions to bosonic atoms in optical lattices.
Similar to many other fundamental quantum systems of
importance in condensed matter physics, the BH model
does not admit analytical solutions in the general case
and studying it usually requires resorting to approxima-
tion techniques, as even exact-numerical methods become
unfeasible with increasing system size.

The most common approach for studying the BH
model is statistical Quantum Monte Carlo (QMC) tech-
niques [1–4]. QMC has been used to study the BH model
throughout the years in a variety of contexts. Among
these are supersolid phases [5–12], superfluid to Mott in-
sulator transition [13–17] and superfluid to Bose glass
transitions [13, 15, 18, 19]. Other studies focus on the BH
model manifested on optical lattices with confining po-
tentials [20–23] and extensions thereof [7, 11, 12, 24, 25].

Different setups of the BH model varying in both di-
mension and geometry have been explored, most notably
with the Stochastic Series Expansion technique [26–29],
employing different types of updates including dual vor-
tex theory [30], multi-site generalization [31] or directed
loops [11]. Other examples include studying the model
on one-dimensional lattices [18, 19, 22, 23, 25, 32, 33],
triangular [8–11, 16] or rectangular lattices in two dimen-
sions [5–7, 12–15, 17, 34–38] and cubic lattices in three
dimensions [20, 39, 40]. Other lattice types include a cu-
bic lattice with a harmonic confining potential [41], the
kagome lattice [30], the star lattice [31], the honeycomb
lattice [24] and more [42].

One notable observation from the above survey is that
simulating the BH model on different lattice structures
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and in different dimensions with QMC often requires one
to concoct specially tailored QMC updates for each such
setup. In this study, we present a resolution to this ob-
stacle by proposing a quantum Monte Carlo simulation
technique that is applicable to Bose-Hubbard models de-
fined on arbitrary input graphs, obviating the need for
implementing lattice-specific update rules for each setup
separately. The proposed technique may be used to sim-
ulate the BH model on any graph and in any dimension
(for the first time, as far as the authors are aware).
Our approach builds on the parameter-free Trotter

error-free Permutation Matrix Representation (PMR)
quantum Monte Carlo technique introduced in Ref. [43]
for spin systems, wherein the quantum partition function
is expanded in a power series of the off-diagonal strength
of the Hamiltonian, augmented with the necessary mod-
ifications that allow simulations of the Bose-Hubbard
model on arbitrary graphs. Specifically, we show that
QMC updates guaranteeing ergodicity and which also
maintain detailed balance can be achieved by generat-
ing what is known as a minimal cycle basis on the BH
graph [44] – the set of cycles that form a basis for all
cycles on the graph [45].
We validate our proposed algorithm by simulating the

Bose-Hubbard model on regular lattices as well as on a
number of irregular graphs with up to 64 sites and with
varying numbers of particles and Hamiltonian parame-
ters to showcase the capabilities of our technique.
The paper is structured as follows: In Sec. II, we pro-

vide an overview of the PMR quantum Monte Carlo tech-
nique, followed by the specifics of our proposed QMC al-
gorithm adapted to simulating BH models on arbitrary
graphs. Section III is devoted to illustrating how a very
wide variety of measurements may be carried out, includ-
ing quantities such as superfluid density and the one-
body density matrix. We then move on to explain the
concept of minimal cycle basis and its usage in the gener-
ation of the QMC updates for the algorithm in Sec. IV. In
Sec. V, we present some simulation results for a number
of Bose-Hubbard models defined on a variety of graphs.
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We summarize our work in Sec. VI along with some con-
clusions and a discussion of future work.

II. THE QMC ALGORITHM

Our proposed QMC algorithm builds on the recently
introduced Permutation Matrix Representation QMC
(PMR-QMC) method [43]. Below we provide a brief
overview of the general methodology, which we then dis-
cuss in more detail in the context of the Bose-Hubbard
model.

A. Permutation matrix representation

The basis for the PMR-QMC method begins with cast-
ing the to-be-simulated Hamiltonian H in PMR form,
namely, as

H =

M∑
j=0

P̃j =

M∑
j=0

DjPj = D0 +

M∑
j=1

DjPj , (1)

where {P̃j}Mj=0 is a set of M +1 distinct generalized per-
mutation matrices [46] – matrices that have at most one
nonzero element in each row and each column. One can
write each P̃j as P̃j = DjPj where Dj is a diagonal ma-
trix and Pj is a bonafide permutation matrix. One of
the permutations, which we denote by P0, can always be
chosen to be P0 = 1 (the identity operation), such that
the other permutation matrices have no fixed points, i.e.,
no nonzero diagonal elements. We refer to the basis in
which the {Dj} matrices are diagonal as the computa-
tional basis and denote its states by {|z⟩}. The opera-
tors DjPj for j > 0 represent the ‘quantum dimension’
of the Hamiltonian. Acting with a DjPj matrix on a
basis state |z⟩ gives DjPj |z⟩ = dj(z

′)|z′⟩ where dj(z
′) is

a (generally complex) coefficient and |z′⟩ is a basis state
|z⟩ ≠ |z′⟩. We will refer to D0 (the matrix multiplying
P0) as the ‘classical Hamiltonian’. The permutation ma-
trices derived from H are a subset of the permutation
group wherein P0 is the identity element [43]. One can
show that any finite-dimensional (or countable infinite-
dimensional) matrix can be written in PMR form [43].

B. The off-diagonal partition function expansion

Having cast the Hamiltonian in PMR form, one pro-
ceeds with expanding the canonical partition function
Z = Tr[e−βH ] about its diagonal part in powers of its
off-diagonal strength [43]. The expansion results in the
following expression for the partition function (a detailed
derivation can be found in Appendix A and in Ref. [43]).

Z =
∑
z

∑
Siq=1

D(z,Siq )
e−β[Ez0 ,...,Ezq ] . (2)

The double sum above runs over all computational basis
states |z⟩ and all products Siq = Piq . . . Pi2Pi1 of per-
mutation operators that evaluate to the identity. Here
q = 0, . . . ,∞ denotes the number of elements in each
product. Specifically, iq = (i1, i2, . . . , iq) is a q-element
multi-index where each index ij (j = 1 . . . q) runs from 1
to M .
In the above sum, each summand is a product of two

terms. The first is D(z,Siq )
≡
∏q

j=1 d
(ij)
zj consisting of a

product of the matrix elements

d(ij)zj = ⟨zj |Dij |zj⟩ . (3)

The various {|zj⟩} states are the states obtained from
the action of the ordered Pj operators in the product
Siq on |z0⟩, then on |z1⟩, and so forth. For example,
for Siq = Piq . . . Pi2Pi1 , we obtain |z0⟩ = |z⟩, Pi1 |z0⟩ =
|z1⟩, Pi2 |z1⟩ = |z2⟩, etc. The proper indexing of the states
|zj⟩ along the path is |z(i1,i2,...,ij)⟩ to indicate that the
state in the j-th step depends on all Pi1 . . . Pij . For con-
ciseness, we will use the shorthand |zj⟩. The sequence of
basis states {|zj⟩} may be viewed as a closed ‘walk’ on
the Hamiltonian graph – the graph defined by H such
that the Hij matrix element corresponds to an edge be-
tween the two basis states i and j, which serve as nodes
on the graph.

The second term in each summand, e−β[Ez0
,...,Ezq ],

is called the divided differences of the function
F (·) = e−β(·) with respect to the inputs [Ez0 , . . . , Ezq ].
The divided differences [47, 48] of a function F [·] is de-
fined as,

F [Ez0 , . . . , Ezq ] ≡
q∑

j=0

F (Ezj )∏
k ̸=j(Ezj − Ezk)

. (4)

In our case, the inputs Ezj are defined as
Ezj = ⟨zj |D0|zj⟩. The reader is referred to Appendix A
for additional details.

C. PMR of the Bose-Hubbard model

The Bose-Hubbard Hamiltonian, which is the focus of
this study, is given by

H = −t

M∑
m=1

b̂†jm b̂km +
U

2

L∑
i=1

n̂i(n̂i − 1)− µ

L∑
i=1

n̂i , (5)

where in the above expression i = 1, . . . , L labels the
sites, which we will treat as graph nodes for reasons that
will become clear later, and m = 1, . . . ,M labels the
(directed) ‘edges’ of the model, i.e., the ordered pairs of

sites (jm, km) between which hopping terms b̂†jm b̂km
exist.

In addition, hermiticity of the Hamiltonian dictates that
for every pair of indices (jm, km) there exists another pair
(jm′ , km′) such as (jm′ , km′) = (km, jm), corresponding
to a hopping term in the opposite direction.
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As the computational basis for the PMR expan-
sion, we use the second quantized occupation num-
ber basis for bosons, where a basis state is given as
|n⟩ = |n1, n2, . . . , nL⟩ with L being the number of sites
and n1, . . . , nL are nonnegative integers representing the
number of bosons in each site. We denote the total num-
ber of bosons,

∑L
i=1 ni, by N . The operators b̂†i , b̂i are

creation and annihilation operators, respectively, obeying

b̂†i b̂j |n⟩ =
√
(ni + 1)nj |n(i,j)⟩ , (6)

where |n(i,j)⟩ stands for the state |n⟩ with one additional
boson at site i and one fewer at site j. The operator

n̂i = b̂†i b̂i is the number operator. The coefficients t, U
and µ are real-valued parameters.
Casting H in PMR form with respect to the second

quantized basis dictates that the diagonal term D0 con-
sists of the on-site terms, namely,

D0 =
U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i . (7)

Likewise, the generalized permutation operators of the

BH model are P̃m = −tb̂†jm b̂km
. These can be written as

products of bonafide permutation operators which obey

Pm|n⟩ = |n(jm,km)⟩ , (8)

and accompanying diagonal operators

Dm = −t
∑
n

√
njm(nkm + 1)|n⟩⟨n| , (9)

which together give P̃m = DmPm. Here, the summation
index n runs over all basis states (though in the case
where the number of particles is conserved, the sum of
over states n can be restricted to those states that obey∑L

i=1 ni = N). The total Hamiltonian can now be recast
as

H = D0 +

M∑
m=1

DmPm . (10)

Using the above notation, the partition function can be
written as

Z =
∑
n

∑
iq

W(n,Siq )
=
∑
n

∑
iq

D(n,Siq )
e−β[En0 ,...,Enq ] .

(11)
As already discussed, the operator sequences are of
the form Siq = Piq . . . Pi2Pi1 and must evaluate to the
identity operation. Each Siq generates a sequence of
states |n0⟩ = |n⟩, Pi1 |n0⟩ = |n1⟩, Pi2 |n1⟩ = |n2⟩ and
so on where the last state is |nq⟩ = |n0⟩. Moreover,

D(n,Siq )
=

q∏
r=1

d(ir)nr
, where

d(m)
nr

= ⟨nr|Dm|nr⟩ = −t

√
n
(r)
jm

(n
(r)
km

+ 1) . (12)

Here, n
(r)
i refers to the i-th element of the state |nr⟩.

D. The algorithm

1. Preliminaries

Having presented the partition function as a sum of ef-
ficiently computable terms [Eq. (11)], we can now devise
a QMC algorithm, i.e., a Markov chain Monte Carlo pro-
cess, based on this decomposition. The partition function
has the form of a sum configuration weights

Z =
∑
C

WC , (13)

where the weights are given by

WC = D(n,Siq )
e−β[En0

,...,Enq ] , (14)

and each configuration C is the pair C = {|n⟩, Siq}.
Here, |n⟩ is the basis state of the configuration and Siq

is a product of operators that evaluates to 1. As al-
ready discussed, each configuration C induces a closed
walk on the Hamiltonian graph, a sequence of states
|n⟩ = |n0⟩, |n1⟩, . . . , |nq⟩ = |n⟩ which is acquired by act-
ing with the permutation operators in Siq , in sequence,
on |n⟩.

2. The initial configuration

The initial configuration of our QMC algorithm is set
to be C0 = {|n⟩, S0 = 1}, where |n⟩ is a randomly
chosen basis state acquired by acting with a predeter-
mined number of randomly picked operators Pi on a
predetermined basis state |n⟩, which we choose to be
|n⟩ = |N, 0, 0, . . . , 0⟩, where N is the total number of
particles chosen for the initial state. The sequence of
permutation operators is simply the empty sequence, for
which q = 0. The weight of the initial state is therefore
given by WC0

= e−β[En] = e−βEn .

3. The QMC updates

To ensure that every configuration in configuration
space is reachable from any other, i.e., that the Markov
chain is ergodic, we utilize five different types of moves.
These are (i) ‘classical’ moves, (ii) local swap moves (iii)
cyclic rotation moves, (iv) block swaps and (v) insertion-
deletion moves. We discuss these in detail below. We
then show that this set of moves together is sufficient to
guarantee ergodicity.
Classical moves.— Classical moves ensure that all ba-
sis states |n⟩ can be reached. During this move, a new
basis state |n′⟩ is proposed to replace the current one
|n⟩ in the configuration C. The sequence of operators
Siq is not altered. Our algorithm may work both in the
canonical ensemble and in the grand-canonical ensemble.
In a canonical ensemble treatment, updates may be eas-
ily adjusted so as to conserve the number of bosons in
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the system. Otherwise classical updates may change the
total number of particles. If working within a specific
particle number sector (i.e., in the canonical ensemble),
the new proposed basis state may be chosen such the to-
tal number of bosons is conserved. This can be achieved
by acting with a randomly selected permutation operator
Pm on the current basis state. A non particle-number-
conserving move may consist of adding or removing a
boson from a randomly chosen lattice site. In the case
where the proposed new state |n′⟩ is not a valid state,
i.e., whenever Pm|n⟩ = 0, the procedure is repeated un-
til a valid state is produced. The new configuration is
accepted with probability min(1,WC′/WC) where WC′ is
the weight of the proposed configuration C′ and WC is
the weight of the current one C.
Local swap moves.— A local swap move consists of
randomly picking two adjacent operators in Siq and then
swapping them to create a new sequence S′

iq
. Here

too, the new configuration is accepted with probability
min(1,WC′/WC) where WC′ is the weight of the proposed
configuration C′ and WC is the weight of the current one
C.
Cyclic rotation moves.— The cyclic rotation move
consists of rotating (typically small length) sub-sequences
within Siq that evaluate to 1 – we shall refer to these as
cycles – utilizing the fact that a rotated sub-sequence
that evaluates to 1 also evaluates to 1. The chosen sub-
sequence S is virtually ‘cut’ to two so that it can be writ-
ten as S = S1S2. Then, S is replaced with the modified
sub-sequence S′ = S2S1 in Siq . Here too, the new con-
figuration is accepted with probability min(1,WC′/WC)
where WC′ is the weight of the proposed configuration C′

and WC is the weight of the current one C.
Block swap moves.— The block swap move modifies
both the basis state and the sequence of operators. Here,
a random position k in the product Siq is picked such that
the product is split into two (non-empty) sub-sequences,
Siq = S2S1, with S1 = Pik · · ·Pi1 and S2 = Piq · · ·Pik+1

.
Denoting the classical state at position k in the product
as |n′⟩, namely,

|n′⟩ = S1|z⟩ = Pik · · ·Pi1 |n⟩ , (15)

where |n⟩ is the classical state of the current con-
figuration, the new block-swapped configuration is
C′ = {|n′⟩, S1S2}.
Insertion-deletion moves.— The insertion-deletion
move is the only type of move considered here that
changes the length q of the sequence of operators. An
insertion-deletion move either removes cycles (sequences
of operators that evaluates to the 1) from Siq or inserts
a randomly picked cycle from a pool of ‘fundamental cy-
cles’ (which we discuss in detail in the next section).

The insertion-deletion move consists of first randomly
selecting a length ml for the cycle that is to be inserted
or removed among all possible cycle lengths. As the next
step, a random choice is made as to whether insert a cycle
or remove one from Siq .

If deletion is selected, and ml = 2, a uniformly ran-
dom deletion point k is selected. If Pik−1

Pik is a cy-
cle, i.e., evaluates to the identity operation, then a
configuration with the two operators removed is pro-
posed. Otherwise, the move is rejected. For ml > 2,
a deletion point k is selected in a similar manner. If
{Pik−2

, Pik−1
, · · · , Pik+ml−3

} is equivalent to 1 and the
sequence is in the list of fundamental cycles, the sub-
sequence is removed and the resultant configuration is
proposed. Otherwise, no new configuration is proposed
and the move is rejected.

If insertion is selected, a random insertion point k is
selected. A random cycle of length ml is picked from the
pool of cycles which is then inserted into the full sequence
Siq at position k. The proposed new configuration is then
accepted or rejected based on its relative weight (and
other selection factors) maintaining detailed balance.

Cycle completion.— Although not strictly necessary
for ergodicity, one may augment the aforementioned
QMC updates with another type of moves, which we
refer to here as ‘cycle completion moves’. Here, one
chooses a sub-sequence S1 from Siq and subsequently
checks whether S1 is a sub-cycle of one the aforemen-
tioned fundamental cycles, namely if a fundamental cy-
cle of the form S1S2 = 1 exists. If it does, then S1 is
replaced (with the appropriate acceptance probability)
with S−1

2 as both S1 and its replacement evaluate to the
same permutation.

At this point, it would be worthwhile to contrast the
updates of the present algorithm against those usually
used in existing techniques. It is interesting to note that
while existing approaches such as Stochastic Series Ex-
pansion (SSE) [25? ] or continuous-time path integral
Monte Carlo-based methods [49] require world line-type
or worm-type updates where ‘disturbances’ along the
imaginary time dimension are created and then healed
in order to create new configurations, PMR-QMC does
not require such updates. This is for two main reasons.
The first of which is that unlike existing schemes the
PMR-QMC quantum imaginary-time dimension consists
only of off-diagonal operators (permutation operators)
as the diagonal component of the Hamiltonian is explic-
itly integrated out (diagonal matrix elements appear only
as divided-difference coefficients). Second, the insertion-
deletion of either pairs of operators or fundamental cycles
along the sequence of operators, i.e., along the imagi-
nary time dimension function as a short-distance worm
thereby minimizing the risk of percolation.

Nonetheless, worm-type moves in the framework of
PMR-QMC may also be implemented although as men-
tioned, they are not strictly necessary. A worm update
would introduce a ‘disturbance’ (or a ‘worm head’) into
the sequence of operators Siq by either inserting into Siq

a single permutation operator or removing one from it
(we will call this addition or removal of an operator a
‘single operator move’). An insertion or removal of a sin-
gle permutation operator causes the disturbed sequence
to evaluate to a non-identity permutation and hence cor-
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responds to a zero-weight configuration. As a result, the
disturbed sequence must be ‘healed’ in order to form a
sequence that evaluates to the identity. The healing pro-
cess proceeds by introducing additional moves: either
employing standard local updates such as the ones al-
ready discussed (namely, local swap, cycle completion,
and cycle rotation) or additional single operator moves.
These single operator moves have the power to heal the
sequence. After every such move, the instantaneous se-
quence can be checked to determine whether it evaluates
to the identity operator. If it does, the worm update can
be terminated. If it does not, additional moves are re-
quired. To make sure that detailed balance is conserved
and that eventual acceptance rates of the intermediate
worm moves are high, we assign non-identity intermedi-
ate configurations their ‘natural’ weight WC .

III. MEASUREMENTS

Deriving expressions for measurements of expectation
values of essentially any physical observable is straight-
forward with PMR [50]. Below we provide a number
of useful examples, including various energy measure-
ments, arbitrary functions of the Hamiltonian and local
observables. In addition, we discuss the measurement of
quantities that are of particular importance to the Bose-
Hubbard model such as superfluid density and the one-
body density matrix.

For all of above, the basic idea would be to write the
thermal average of any given operator A as

⟨A⟩ =
tr
[
Ae−βH

]
tr e−βH ]

=

∑
C ACWC∑
C WC

. (16)

The quantity AC is therefore the instantaneous quantity
associated with the configuration C that should be cal-
culated and stored during the simulation. Since the con-
figurations are visited in proportion to their weights, a
simple average of the above quantities will yield the cor-
rect expectation values for the diagonal, off-diagonal and
total energies respectively.

A. Energies

The average energy ⟨H⟩ may be calculated using the
expression:

⟨H⟩ =
tr
[
He−βH

]
tr[e−βH ]

=

∑
C W(n,Siq )

(
En + e

−β[En1 ,...,Enq ]

e
−β[En,...,Enq ]

)
∑

C W(n,Siq )
.

(17)
In the above expression we identify En as the instanta-
neous quantity that needs to be calculated for the diag-
onal component of the Hamiltonian throughout the sim-
ulation, namely,

⟨Hdiag⟩ =
tr
[
Hdiage

−βH
]

tr[e−βH ]
=

∑
C W(n,Siq )

En∑
C W(n,Siq )

, (18)

and e
−β[En1 ,...,Enq ]

e
−β[En,...,Enq ] as the quantity corresponding to the

off-diagonal component of the Hamiltonian, that is:

⟨Hoff-diag⟩ =
tr
[
Hoff-diage

−βH
]

tr[e−βH ]
=

∑
C W(n,Siq )

e
−β[En1

,...,Enq ]

e
−β[En,...,Enq ]∑

C W(n,Siq )
.

(19)
The sum of these two instantaneous quantities yields the
instantaneous total energy.

B. General functions of the Hamiltonian

Expectation values for more general functions of the
Hamiltonian, namely,

⟨g(H)⟩ =
tr
[
g(H)e−βH

]
tr[e−βH ]

, (20)

may be obtain by applying the off-diagonal series expan-
sion to tr

[
g(H)e−βH

]
which yields [50]:

⟨g(H)⟩ =

∑
C W(n,Siq )

(∑q
j=0 g[En0

, . . . , Enj
] e

−β[Enj
,...,Enq ]

e
−β[En0

,...,Enq ]

)
∑

C W(n,Siq )
,

(21)
where g[En0

, . . . , Enj
] is the divided difference with re-

spect to the function g(·). Given the above expression, we

may identify
∑q

j=0 g[En0
, . . . , Enj

] e
−β[Enj

,...,Enq ]

e
−β[En0

,...,Enq ] as the

quantity that is to be evaluated and collected during the
QMC simulation.
In the special case where powers of the Hamiltonian,

Hk, are considered, we get

⟨Hk⟩ =

∑
C W(n,Siq )

(∑max{k,q}
j=0 [En0

, . . . , Enj
]k e

−β[Enj
,...,Enq ]

e
−β[En0

,...,Enq ]

)
∑

C W(n,Siq )
,

(22)
which follows from the fact that [En0 , . . . , Enj ]

k evaluates
to 0 for j > k, for j = k it evaluates to 1, and in general
for k ≥ j and for arbitrary inputs x0, . . . , xj :

[x0, . . . , xj ]
k =

∑
a∈{0,...,n}k−j with a1≤a2≤···≤ak−j

∏
m∈a

xm.

(23)

C. Measurements of arbitrary static operators

We next consider the measurement of a general static
operator A. We proceed by casting it in PMR form,
i.e., as A =

∑
i ÃiP̃i where each Ãi is diagonal and the

P̃i’s are either permutation operators that appear in the
Hamiltonian or products thereof. In this case, we can
write

⟨A⟩ =
tr
[
Ae−βH

]
tr[e−βH ]

=
∑
i

tr
[
ÃiP̃ie

−βH
]

tr[e−βH ]
, (24)
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and we may therefore focus on a single ÃP̃ term at a
time. Carrying out the off-diagonal expansion, we end
up with:

tr
[
ÃP̃ e−βH

]
=
∑
n

Ã(n)

∞∑
q=0

∑
Siq

D(n,Siq )

× e−β[En0
,...,Enq ]⟨n|P̃Siq |n⟩ . (25)

where D(n,Siq )
e−β[En0

,...,Enq ] is the weight of the config-

uration {n, Siq}.
The operator to be measured has the form A = ÃP̃

where Ã is diagonal and P̃ = Pi1Pi2 · · ·Pik . We modify

Eq. (25) so that (n, S̃iq ) with S̃iq = P̃Siq is seen as a
configuration instead of (n, Siq ). Thus, we arrive at:

⟨A⟩ =

∑
(n,S̃iq )

w(n,S̃iq )
MÃP̃ (n, S̃iq )∑

(n,S̃iq )
w(n,S̃iq )

, (26)

where

MÃP̃ (n, S̃iq ) = δP̃ Ã(n)
1

D(n,P̃ )

e−β[En0 ,...,Enq−k
]

e−β[En0
,...,Enq ]

. (27)

In the above, δP̃ = 1 if the leftmost operators of S̃iq are
Pi1Pi2 · · ·Pik and is zero otherwise, and

D(n,P̃ ) =
D(n,S̃iq )

D(n,Siq )
=

k∏
m=1

⟨nq−m+1|Dim |nq−m+1⟩. (28)

One important example of operators of the above form
are the matrix elements of the so-called one-body den-
sity matrix, which establishes a condensation criterion
in terms of the properties of the matrix whose elements

are ρij = ⟨b†i bj⟩ [51–53]. Operators of the form b†i bj can

be written as products of the form (b†i bk)(b
†
kbm) · · · (b†l bj)

or permutations thereof, where each of the operators

b†i bk, b
†
kbm, . . . , b†l bj corresponds to a permutation oper-

ator appearing in the Hamiltonian and can therefore be
readily measured using PMR-QMC. We note that for any
given matrix element ρij there will be multiple distinct
‘paths’, or products of operators, that evaluate to the

target operator b†i bj all of which can be taken to con-
tribute to the statistics of ρij . In cases where the graph
distance between site i and site j is long, any particular
product may have low likelihood to be encountered, how-
ever in this case there will be in general factorially many
paths between the two sites, all of which can be taken
into account.

D. Calculating the superfluid density

The concept of superfluid density [54] in the Bose-
Hubbard model is particularly important when studying
phase transitions in ultracold atomic systems. It provides

insight into the coherent motion of particles and is a key
quantity in characterizing the different quantum phases
of the system. In cases where the number of particles
is conserved, in which case the winding number is well
defined, measurement of the superfluid density can be
directly connected to fluctuations of the winding num-
ber [55]. In the most general case, the superfluid density
is proportional to

ρs ∝

〈∑
j

LjWj r̂j

2〉
, (29)

where Lj is the linear size of the system is the r̂j direction
and the quantity Wj counts the number of particles that
cross the boundaries of the system in direction r̂j . For in-
stance, in the special case of a d-dimensional hypercubic
lattice, with Ld sites, one obtains

ρs =
L2−d

2βtd

〈
d∑

j=1

W 2
j

〉
, (30)

and where more complex geometries require the calcu-
lation of other bilinear combinations of Wj . Collect-
ing statistics for Wj , number of particles that cross the
boundaries of the system in the j-th direction, in PMR-
QMC is simple. Since every operator in the sequence of
operators Siq corresponds to a directed edge, Wj is given

by Wj = N+
j −N−

j where N+
j counts the number of edges

that cross the boundary in the positive j direction and
N−

j counts the number of edges that cross the boundary
in the negative j direction.

IV. ERGODICITY AND MINIMAL CYCLE
BASES

The QMC update moves used throughout the sim-
ulation must be able to generate an ergodic Markov
chain for any input graph and dimensionality of the BH
model. That is, any valid configuration (|n⟩, Siq ) has to
be reachable from any other. While the various (second-
quantized) basis states |n⟩ are trivially reachable from
one another by the so-called ‘classical moves’ discussed
in the previous section, which randomly alter the ba-
sis states (augmented by block swap moves, which also
change the basis state), less obvious is the guarantee that
all operator sequences Siq evaluating to the identity are
reachable from one another.
To show that the moves discussed in the previous sec-

tion do indeed generate an ergodic Markov chain, we be-
gin by making a few observations. The first is that local
swap and cyclic rotation moves shuffle, or permute, the
operators in the sequence of operators. Thus, to demon-
strate ergodicity one only needs to show that all valid
multi-sets of operators (irrespective of their ordering) are
produceable.
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The second observation we make is that every per-
mutation operator Pm in the BH model, which as al-
ready mentioned can be associated with a directed edge
on the BH graph, has an inverse permutation Pm′ such
that Pm′ = P−1

m – the permutation operator associated
with the same edge but which points in the opposite di-
rection. The insertion-deletion move consisting of the
insertion or deletion of pairs of operators PmP−1

m there-
fore corresponds to the insertion and deletion of operators
corresponding to the same edge (but with opposite direc-
tions) twice. The insertion-deletion of pairs can therefore
be used to remove edge pairs down to a core collection
of operators that multiply to the identity and in which
operators do not appear with their inverses. We con-
clude then, that to guarantee ergodicity, the only remain-
ing requirement is that there is an update move capable
of generating all multi-sets of operators (whose product
evaluates to the identity) which contain edges pointing
only in one direction but never both (that is, sequences
that never contain both Pm and P−1

m ). We shall call
such multi-sets of operators ‘multi-cycles’. We shall call
a multi-cycle that does not contain repeated edges a ‘cy-
cle’ and note that any multi-cycle is a concentration of
bonafide cycles.

In terms of edges on the BH graph, the ability to pro-
duce all multi-cycles reduces to the requirement that all
cycles on the underlying BH graph can be produced, or
inserted. An illustrative example of a single cycle on a
BH graph is given in Fig. 1.

FIG. 1. An example of a random graph on which the BH
model can be defined. Nodes correspond to sites that the
bosons can occupy and every edge is associated with two per-
mutation operators, or hopping terms – one in each direction.
In red is an example of a set of (directed) edges whose corre-
sponding sequence of operators multiply to the identity oper-
ation.

In what follows, we show that any cycle on a given
BH graph can be produced via combinations of inser-
tions and deletions of cycles taken from a finite set of
cycles, commonly referred to as a cycle basis – a set of
cycles that combinations thereof are capable of produc-
ing all possible cycles [44]. Setting up a QMC update
rule within which these ‘fundamental’ cycles are inserted
or deleted (see Sec. IID 3) will ensure then that all cycles
are produceable, guaranteeing ergodicity as desired. We

next discuss the process of generating a cycle basis for
any given input graph.
Let us consider a K-edge BH graph with n sites la-

beled 1, . . . , n. The M = 2K permutation operators of
the BH graph correspond to the directed edges, equiva-
lently ordered pairs of nodes of the form (jm, km), cor-
responding to the existence of a permutation operator
Pm in the Hamiltonian which creates a boson at site
jm and annihilates one at site km. A cycle c (of length
|c|) is a set of edges that can be ordered as a sequence
{(i1, i2), (i2, i3), . . . , (i|c|, i1)} where |c| denotes the num-
ber of edges in c, with the restriction that if an edge is in c
then its inverse cannot be in c. Succinctly, a cycle may be
written as a sequence of nodes i1 → i2 → · · · → i|c| → i1.
With the above definitions, one can assign every per-

mutation operator Pm corresponding to a directed edge
(jm, km) a ternary vector bm = (b1, b2, . . . , bn) such that
bjm = 1 (a boson is created at site jm), bkm

= −1 (a
boson is annihilated at site km) and all other entires are
set to zero. The product of two permutation operators
would correspond to the addition of two such vectors.
A cycle c would be a linear combination of ternary vec-

tors adding up to the zero vector, namely,
∑M

i=1 cibi = 0
where ci ∈ {−1, 0, 1}.
Finding a basis of cycles with which one could pro-

duce any possible cycle corresponds to finding a set of
ternary vectors of the form c = {c1, . . . , cM} that solve
the homogenous set of equations Bc = 0 where B is the
M × n matrix consisting of the M column vectors bi

(i = 1, . . . ,M). Expressed differently, finding a cycle ba-
sis can be accomplished via finding the nullspace of the
above linear system, which can be done efficiently using
Gaussian elimination. In Fig. 2, we provide an example
of a cycle basis found for the graph depicted in Fig. 1. In
the figure, a non-directed cycle is depicted as a collection
of red-colored edges.

FIG. 2. A cycle basis for the graph depicted in Fig. 1. Every
cycle on the BH graph can be represented as a combination
(or a concatenation) of these basis cycles.

Denoting by T the dimension of the cycle nullspace,
we note that the set of nullspace cycles is not unique, as
any T linearly independent vectors may serve as a basis.
For the QMC algorithm however, we find that in order to
maximize the acceptance ratios of insertion and removal
of cycles the length of cycles should preferably be as short
as possible. We therefore devise a protocol for producing
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a minimal cycle basis [44, 56, 57] – the set of shortest
possible cycles that form a basis. We find the minimal
cycle basis using an algorithm proposed by Kavitha et
al. [57].

We note that even though QMC updates based on the
generation of a minimal cycle basis are sufficient to ensure
an ergodic Markov chain, one may introduce additional
cycles into the pool of ‘fundamental’ cycles to improve the
convergence rate of the simulation. Having more cycles in
the pool of cycles available to choose from will increase
the acceptance rates of both the insertion-deletion and
cycle completion updates. On the other hand, searching
a long list of fundamental cycles stands to inevitably slow
down the algorithm. We find that these two opposing
considerations are appropriately balanced if one includes
all the chordless cycles of the BH graph that have a length
smaller than or equal to the longest basis cycle found (a
chordless cycle is defined as a cycle that does not have
a ‘chord’, i.e., a cycle for which there are no edges not
belonging to the cycle that connect two vertices that do
belong to it [45]).

V. ALGORITHM TESTING

To test the power and flexibility of our method, we
have carried out QMC simulations for a variety of BH
models, implementing the algorithm introduced above
allowing it to find within each setup a minimal cycle
basis and in turn provably ergodic QMC updates. We
next present the results of our simulations for several
BH graph configurations including rectangular lattices
with varying Hamiltonian parameters as well as irregular
graphs. For what follows, we have chosen to present the
performance of the algorithm in the canonical ensemble.
We have set the chemical potential µ to zero and have
employed classical update moves that conserve the num-
ber of particles.

A. Verification against exact diagonalization

To verify the correctness of our algorithm, we first
carry out simulations of the BH model on small two-
dimensional rectangular lattices so that the QMC results
can be compared against those obtained from exact di-
agonalization.

For concreteness, we choose to monitor and measure
the total energy, given in Eq. (17). It should be noted
that our algorithm is readily capable of measuring many
other physical observables as well [50]. All data points
presented in this section were obtained via the execution
of multiple independent simulations each of which yield-
ing a single value for the total energy. Data points were
obtained by averaging the values from each run whereas
error bars were obtained by the evaluation of the sample
error of the mean over said data points.

In Fig. 3(left), we plot the average thermal energy as
a function of number of bosons N for a BH model on
a 2 × 2 rectangular lattice (with open boundary condi-
tions). The parameters for which results are shown are
t = 1, µ = 0, U = 0.5 and β = 1. Figure 3(middle) shows
the average energy as a function of the on-site repulsion
U for N = 8 bosons. Here, t = 1, µ = 0 and β = 1.
Another set of results for simulations of a 2×2 rectangu-
lar lattice with open boundary conditions is presented in
Fig. 3(right). Here too, N = 8 and the average thermal
energy is plotted as a function of inverse-temperature β
(with t = 1, µ = 0 and U = 1). As can be seen from
the three panels of the figure, the QMC results are in
excellent agreement with those obtained from exact di-
agonalization.

B. Larger two-dimensional lattices

Having verified the validity of our approach, we next
provide simulation results for larger rectangular systems.
Figure 4(top) depicts the average thermal energy as a
function of the on-site repulsion U for a BH model defined
on an 8×8 rectangular lattice with open boundary condi-
tions containing N = 64 particles. The average thermal
energy is plotted as a function of of on-site potential U
for a 6 × 6 rectangular lattice with periodic boundary
conditions in Fig. 4(bottom). Here, t = 1, µ = 0 and
β = 1.

C. Simulations of the BH model on random graphs

To showcase the versatility of our approach we have
also carried out QMC simulations of BH models defined
on randomly generated graphs. For the results below,
we present the graphs themselves and their fundamental
basis cycles alongside the simulation results.
Starting with the 6-node random graph depicted in

Fig. 5(left) alongside its minimal cycle basis, we present
the average energy of an N = 6-boson system in
Fig. 5(right) as a function of the on-site repulsion U .
In Fig. 6(right), we show results of simulations con-

ducted on the 17-site graph shown in Fig. 6(left). Here,
we measure the total energy of the system as a function
of U for an N = 17-boson system.

D. Convergence properties of the algorithm

We further tested the convergence properties of our
algorithm by monitoring the error of the mean on an 8
by 8 lattice with open boundary conditions containing
64 bosons (t = 1, µ = 0, U = 0.001) across different in-
verse temperatures. We plot the error against number of
sweepsin Fig. 7 on a log-log scale. As expected, the fig-
ure indicates a power-law dependence of the error with
simulation time. For each temperature, the error was
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FIG. 3. Comparison of QMC results with exact diagonalization. Left: Average energy E = ⟨H⟩ as a function of total number
of particles N for a 2 by 2 rectangular lattice with open boundary conditions and parameters t = 1, µ = 0, U = 0.5, β = 1.
Middle: Average energy ⟨H⟩ for a 2 by 2 rectangular lattice with N = 8 particles (open boundary conditions) and parameters
t = 1, µ = 0, β = 1 as a function of U . Right: Average energy for a 2 by 2 rectangular lattice with N = 8 particles (open
boundary conditions) and parameters t = 1, µ = 0, U = 1 as a function of inverse temperature β.

FIG. 4. Top: Average energy E = ⟨H⟩ for a BH model defined
on an 8×8 rectangular lattice with open boundary conditions
and N = 64 particles as a function of on-site potential U .
Here, t = 1, µ = 0 and β = 1. Bottom: Average energy
E = ⟨H⟩ as a function of U for a 6 × 6 rectangular lattice
with periodic boundary conditions and 36 particles. Here too,
t = 1, µ = 0 and β = 1.

calculated based on the standard deviation across 10 in-
dependent simulation runs.

VI. SUMMARY AND CONCLUSIONS

We presented a quantum Monte Carlo algorithm de-
signed to reliably simulate the Bose-Hubbard model on
arbitrary graphs. We showed that a provably ergodic
QMC algorithm can be devised by adapting the Permu-
tation Matrix Representation QMC [43] augmenting it
with update moves based on the minimal cycle basis of
the BH graph, which can be produced in an automated
way.
To demonstrate the versatility and generality of our

approach, we presented simulation results for the Bose-
Hubbard model defined on regular lattices with open and
periodic boundary conditions as well as on a number of
irregular graphs.
We believe that the algorithm presented in this study

may become a very useful tool in the study of the equi-
librium properties of Bose-Hubbard models in differ-
ent dimensions and setups, which have so far not been
amenable to simulations.
Moreover, the methods presented in this paper are

readily generalizable to other types of systems, e.g.,
fermionic or spin systems. We aim to explore such ex-
tended techniques in future work.
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FIG. 5. Left: The minimal cycle basis (in red) for a six-node graph containing eight edges. Right: Average energy E = ⟨H⟩ as
a function of U for the graph depicted in the left panel. Here, the number of particles is N = 6. The remaining parameters are
fixed and have the following values: t = 1, µ = 0 and β = 1.

FIG. 6. Left: The minimal cycle basis (in red) for a 17-node random graph. Right: Average energy E = ⟨H⟩ as a function of
U for the graph depicted in the left panel. Here, the number of particles is N = 17. The remaining parameters are fixed and
have the following values: t = 1, µ = 0 and β = 1.

FIG. 7. Left: Scaling of the error with number of QMC sweeps M for different inverse-temperatures (log-log scale). Error is
calculated based on the standard deviation of 10 independent runs. We observe a power-law dependence with an average power
of roughly −2. Right: Scaling of the error with runtime for different choices for number of particles N (log-log scale). Results
shown for a 64-boson system on an 8 by 8 lattice with open boundary conditions (t = 1, µ = 0, U = 0.001.)
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Science, edited by S. Džeroski, P. Panov, D. Kocev, and
L. Todorovski (Springer International Publishing, Cham,
2014) pp. 313–324.

[46] D. Joyner, Adventures in Group Theory: Rubik’s Cube,
Merlin’s Machine, and Other Mathematical Toys, Adven-
tures in Group Theory (Johns Hopkins University Press,
2008).

[47] E. T. Whittaker and G. Robinson, The calculus of obser-
vations: An introduction to numerical analysis (Dover
Publications, 1967).

[48] C. de Boor, Divided differences., Surveys in Approxima-
tion Theory (SAT)[electronic only] 1, 46 (2005).

[49] L. Pollet, Recent developments in quantum monte carlo
simulations with applications for cold gases, Reports on
Progress in Physics 75, 094501 (2012).

[50] E. Akaturk, N. Ezzell, and I. Hen, Permutation matrix
representation quantum monte carlo: advanced measure-
ment techniques, (in preparation).

[51] D. Raventós, T. Graß, M. Lewenstein, and B. Juliá-Dı́az,
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Appendix A: The off-diagonal partition function
expansion

Here, we describe the expansion of the partition func-
tion in terms of the off-diagonal operators of the Hamil-
tonian. The partition function is given as:

Z = Tr[e−βH ] (A1)

Replace trace by explicit sum
∑

⟨z| · |z⟩, then expand the
exponent in Taylor series in β

Z =
∑
z

∞∑
n=0

βn

n!
⟨z|(−H)n|z⟩

=
∑
z

∞∑
n=0

βn

n!
⟨z|
(
1−D0 −

∑
j=1

DjPj

)n

|z⟩

=
∑
z

∞∑
n=0

∑
{Sin}

βn

n!
⟨z|Sin |z⟩

(A2)

in last step, (−H)n expressed in all sequences of length
n composed of products of D0 and DjPj which is de-
noted as {Sin}, in = (i1, i2, . . . , in), ij ∈ {0, . . . ,M}
j ∈ {1, . . . , n}

Z =
∑
z

∞∑
q=0

∑
{Sq}

( q∏
j=1

d(ij)zj

)
⟨z|Sin |z⟩

( ∞∑
n=q

βn(−1)n

n!
×

∑
∑

ki=n−q

(Ez0)
k0 · . . . · (Ezq )

kq

)
(A3)

where Ezi = ⟨zi|D0|zi⟩.

d(ij)zj = ⟨zj |Dij |zj⟩ (A4)

Siq = Piq . . . Pi2Pi1 , |z0⟩ = |z⟩, Pij |zj⟩ = |zj+1⟩. |zj⟩ =
|z(i1,i2,...,ij)⟩ n → n+ q gives:

Z =
∑
z

∞∑
q=0

∑
{Sq}

⟨z|Siq |z⟩

(
(−β)q

( q∏
j=1

d(ij)zj

)

×
∞∑

n=0

−βn

(n+ q)!

∑
∑

ki=n

(Ez0)
k0 · . . . · (Ezq )

kq

) (A5)

{Ezi} are classical energies of |zi⟩ which are created by
the application of Siq .

Z =
∑
z

∞∑
q=0

( q∏
j=1

d(ij)zj

)∑
{Sq}

⟨z|Siq |z⟩

×

(
(∞,...,∞)∑

{ki}=(0,...,0)

−βq

(q +
∑

ki)!

q∏
j=0

(−βEzzj
)kj

) (A6)
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∑
{ki}

−βq

(q +
∑

ki)!

q∏
j=0

(−βEzzj
)kj = e−β[Ez0

,...,Ezq ] (A7)

[Ez0 , . . . , Ezq ] is a multiset of energies

F [Ez0 , . . . , Ezq ] ≡
q∑

j=0

F (Ezj )∏
k ̸=j(Ezj − Ezk)

(A8)

F is called divided differences, defined for real valued
variables [Ez0 , . . . , Ezq ].

Z =
∑
z

∞∑
q=0

∑
{Sq}

⟨z|Siq |z⟩D(z,Siq )
e−β[Ez0

,...,Ezq ] (A9)

where

D(z,Siq )
=

q∏
j=1

d(ij)zj (A10)

Note that, expansion of Z is not an expansion in β. It
begins with a Taylor series expansion in β but regrouping
of terms into the exponent of divided-differences means
no longer a high temperature expansion.
One can interpret Z expansion as a sum of weights.

Z =
∑

{C} WC , where {C} is all distinct pairs {|z⟩, Siq}

WC = D(z,Siq )
e−β[Ez0

,...,Ezq ] (A11)

WC is the configuration weight. ⟨z|Siq |z⟩ evaluates to
either 1 or 0. Since Pj , j ̸= 0 has no fixed points, Siq = 1
implies Siq = 1. Then,

Z =
∑
z

∑
Siq=1

D(z,Siq )
e−β[Ez0 ,...,Ezq ] . (A12)
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