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The manipulation of the valley degree of freedom can boost the technological development of novel
functional devices based on valleytronics. The current mainstream platform for valleytronics is to
produce a monolayer with inversion asymmetry, in which the strain-band engineering through the
substrates can serve to improve the performance of valley-based devices. However, pinpointing the
effective role of strain is inevitable for the precise design of the desired valley structure. Here, we
demonstrate the charge transport under continuously controllable external strain for bulk bismuth
crystals with three equivalent electron valleys and one hole valley. The strain response of resistance,
namely elastoresistance, exhibits the evolutions in both antisymmetric and symmetric channels
with decreasing temperature. The elastoresistance behaviors mainly reflect the significant changes
in valley density depending on the symmetry of induced strain, evidenced by our strain-dependent
quantum oscillation measurements and first-principle band calculations under strain. These facts
suggest the successful tune and evaluation of the valley populations through strain-dependent charge
valley transport.

I. INTRODUCTION

Quantum degrees of freedom provide a central ingre-
dient for the applications of functional electronic de-
vices. Among them, the local conduction-band mini-
mum, valley, is attracting attention as a key element
for high-profile valleytronics, subsequently to charge for
electronics and spin for spintronics[1]. A fundamen-
tal step for exploiting the valley degrees of freedom is
the development of the method for lifting and monitor-
ing the degenerated energy of valleys at different posi-
tions in momentum space. Successful valley selection has
so far been demonstrated by various strategies: strain
for 2D electron-gas systems in AlAs heterostructure[2],
electric field for diamonds[3], polarized light for transi-
tion metal dichalcogenides[4–6], and magnetic field for
bismuth[7, 8]. In addition, direct assessments of val-
leys have been reported in sophisticated spectroscopy
measurements[4–6]. For the further development of po-
tential valleytronic applications, it requires simpler meth-
ods that serve as both a controller and a barometer of
valley degrees of freedom.

One of the practical approaches is to control and evalu-
ate valley degrees of freedom through electrical transport.
An appropriate material for this situation is a single-
element semimetal bismuth with three equivalent elec-
tron valleys and one hole valley[9–11]. A strong mag-
netic field (B > 40 T) can completely polarize their
electron valleys depending on the direction of the ap-
plied magnetic field. For example, under a magnetic field
along the binary direction, one electron valley survives,
whereas the other two electron valleys disappear; this is
completely opposite to the case for the field along the
bisectrix[12, 13]. Furthermore, bismuth exhibits charac-
teristic field-angle dependent orbital magnetoresistance

that can be captured by the classical transport the-
ory with assumed ellipsoid shape of mobility tensors for
one of the three equivalent electron valleys and hole
valley[14], respectively. Therefore, bismuth is a good
platform to describe the valley-dependent charge trans-
port. However, even a few Tesla of magnetic field that
is enough to induce finite valley polarization secondar-
ily causes prominent quantum oscillations, which makes
it complicated beyond the scope of this classical treat-
ment. Alternatively, our focused strain is expected to be
an effective tool to simply lift valley degeneracy[15].

The potential roles of strain in valley materials are not
only limited to produce valley polarization, but expand to
band engineering to acquire an ideal valley structure. As
mentioned above, symmetry-breaking anisotropic strain
can directly break the degeneracy of valleys. On the other
hand, in-plane symmetric strain does not induce valley
polarization but alternatively serves as tuning the band
gap that determines the capability of potential device
applications by shifting the energy level of the valleys.
In fact, an enormous effort mainly using epitaxial strain
has been directed to increasing the band gap for valley
materials: graphene[16], germanium[17], and transition
metal dichalcogenides[18]. Thus, utilizing each symme-
try channel of strain is expected to be useful for the pre-
cise design of the valley structure, but no such system-
atic experiments have been conducted. Here, we demon-
strate simultaneous control and evaluation of valleys in
bismuth via charge valley transport under the uniaxial
stress. In order to clarify the effective role of the in-
duced strain depending on each symmetry channel, we
performed symmetry-resolved elastoresistance measure-
ments of bismuth. Since the crystal structure of bismuth
has two bilayers within the hexagonal structure[19], the
demonstration of strain-engineerable valleys in bismuth
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can provide the significant insights for tuning valley pro-
files of promising valleytronics candidates via epitaxial
strain, such as graphene and atomically thin transition
metal dichalcogenides with a hexagonal crystal structure.

II. METHODS

Sample specimens were firstly spark-cut from the in-
got of single-crystal bismuth grown by the Czochoral-
ski method. Then, those specimens were cleaved and
cut to achieve suitable dimensions for elastoresistance
measurements: typically ∼1 mm (binary:x) × 400 µm
(bisectrix:y) × 60 µm (trigonal:z). Uniaxial stress
was applied to samples attached on the rigid plat-
form made of titanium to achieve large strain with-
out the destruction of the samples[20] using the home-
built piezo-driven apparatus based on the design origi-
nally reported in Ref.[21]. To elucidate the symmetry-
resolved strain response of bismuth, we have mea-
sured strain-induced changes in binary-direction resis-
tance ∆Rxx(εii) = Rxx(εii) − Rxx(εii = 0) (i repre-
sents x or y) under the two different experimental ge-
ometries: the applied strain along binary εxx in the lon-
gitudinal geometry (Fig. 1(a)) and that along bisectrix
εyy in the transverse geometry (Fig. 1(b)). The resistive
strain gauge was attached to the backside of the plat-
form to evaluate the amount of one main component of
the induced strain. The strain evaluated by the strain
gauge corresponds to the sample strain along binary εxx
in the longitudinal geometry and that along bisectrix εyy
in the transverse geometry, respectively. From these two
experiments, we can obtain two elastoresistance:

ER|| =
d∆Rxx(εxx)/Rxx(εxx = 0)

dεxx
, (1)

and

ER⊥ =
d∆Rxx(εyy)/Rxx(εyy = 0)

dεyy
. (2)

Following the differential elastoresistance analysis,
which was originally introduced in the iron-based
superconductors[22], the symmetry-resolved elastoresis-
tance can be decomposed into two parts:

ERsym =
1

(1− νp)
(ER|| + ER⊥), (3)

and

ERanti =
1

(1 + νp)
(ER|| − ER⊥), (4)

where νp is an effective Poisson ratio of the platform di-
rectly measured by the strain gauges(νp ∼ 0.197). ERsym

and ERanti represent elastoresistance response against
the isotropic symmetric strain εsym = (εxx + εyy)/2
and the anisotropic antisymmetric strain εanti = (εxx −

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 1. Two experimental geometry of elastoresistance mea-
surements in bismuth. (a-c) Strain εxx dependence of resis-
tance Rxx along binary (b) and temperature dependence of
elastoresistance ER|| (c) in the parallel geometry (a). Sample
is glued on the platform for applying strain. (d-f) Strain εyy
dependence of resistance (e) and temperature dependence of
elastoresistance ER⊥ (f) in the perpendicular geometry (d).
#A represents the badge number of the samples.

εyy)/2, respectively. For simplicity, we consider strain
components only in the xy plane.

For exploring the relationships between strain-
controlled valley density and elastoresistance results, we
developed the minimum classical framework that pro-
vides the phenomenological understanding of how the
strain-modified valley population affects charge trans-
port. In this model, we assume the rigid band approx-
imation that conductivity under strain only changes its
carrier density term. This model provides the quanti-
tative evaluation of the valley susceptibility χΓ, which
describe the controllability of the valley density against
each symmetry channel Γ of the applied strain: sym-
metric strain εsym and antisymmetric strain εanti. To
clarify the expected strain-modified valley density from
these obtained valley susceptibilities both experimentally
and theoretically, we have performed quantum oscilla-
tion measurements under strain and density functional
theory (DFT) calculations. Both results are successfully
explained by the valley susceptibilities evaluated by the
elastoresistance measurements.
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DFT calculations were performed using BAND soft-
ware of Amsterdam Modeling Suite [23, 24]. We em-
ployed the Generalized Gradient Approximation (GGA)
with the Perdew-Burke-Ernzerhof exchange-correlation
functional and triple-zeta-polarized basis sets. The
relativistic effects were considered by the noncolinear
method. It is well known that the GGA of DFT overesti-
mates the direct gap at the L-points [25, 26]. However, it
has also been shown that the GGA yields a result qualita-
tively consistent with the more accurate approximation,
such as the quasiparticle self-consistent GW calculation
[26]. Therefore, the present results should qualitatively
capture the band-structure change against the strain. We
modified the x-, and y-components of the basic transla-
tion vector a = (ax, ay, az) as a′x = ax(1 + εxx) and
a′y = ay(1 + εyy), keeping az unchanged. For the sym-
metric strain, we set εxx = εyy, while we set εxx = −εyy
for the antisymmetric strain.

Quantum oscillation measurements were performed
under the in-situ set-up for elastoresistance measure-
ments in order to directly evaluate valley density. To
align the magnetic field along binary direction in both
two experimental geometries, we used two superconduct-
ing magnets: vertical magnetic field up to 7 T by solenoid
magnet for the longitudinal geometry and the horizontal
field up to 4 T by split magnet for the transverse ge-
ometry. Although the available magnetic field window
is limited, two of the three electron pockets reaches the
quantum limit(QL) at 1.5 T under magnetic field along
binary owing to the smallness of the Fermi energy in bis-
muth, which enable us to study the strain-dependence
of valley density. We evaluated the valley susceptibili-
ties based on the strain-dependent QLs apart from the
elastoresistance analysis.

III. RESULTS

A. Elastoresistance measurements

Response in resistance of bismuth against the ap-
plied strain is summarized in Fig. 1. Elastoresistance
of bismuth exhibits contrasting results between two ex-
perimental geometries. First, we measured longitudi-
nal elastoresistance ER|| in the parallel geometry de-
picted in Fig. 1(a), where the applied current j and in-
duced strain εxx are along the binary (x) direction as
j || εxx || binary. ER|| changes its sign from negative to
positive on cooling with a broad minimum structure, as
shown in Figs. 1(b),(c). After the longitudinal geometry
experiment, we then measured transverse one ER⊥ in the
perpendicular geometry j ⊥ εyy || bisectirx (Fig. 1(d)).
In contrast to ER||, ER⊥ monotonically increases with
decreasing temperature, as shown in Figs. 1(e),(f). The
observed strain directional difference is consistent with
the previous comparable study above liquid nitrogen tem-
perature using thin film samples, including each sign and
amplitude[27, 28], although we note there are still other

Antisymmetric strain
 εAnti

e1

e2

Symmetric strain
 εsym

e1

e3e2

e3

(a)

(b)

FIG. 2. Symmetry-resolved elastoresistance response of bis-
muth. (a) Symmetric components of elastoresistance for left
axis. Right axis represents the symmetric valley susceptibility
based on the relation ERsym = −χsym. To ensure the repro-
ducibility, we shows the results of two samples, #A and #B.
Inset shows a schematic picture of changes in valley struc-
ture induced by tensile symmetric strain. Blue dashed and
solid lines depict original and strain-decreased Brillouin zones
(BZs), respectively. We note that the change in the shape of
BZ is opposite to the strain in the real space. Green ellip-
soids and red circles represents electron and hole valleys, re-
spectively. (b) Antisymmetric components of elastoresistance
represented by pink circles for left axis. Purple diamonds rep-
resent valley susceptibility evaluated by χanti = ERanti/γ(T ),
whose scale is shown in the right axis. Inset represents
schematics of valley polarizations induced by antisymmetric
strain. Blue dashed and solid lines depict original and strain-
deformed BZs, respectively.

previous studies that measured other elastoresistance co-
efficients in different experimental geometry[29, 30]. The
essential differences in temperature dependence between
ER|| and ER⊥ may reflect the mixing contributions from
two symmetry channels.

To elucidate the origin of these strain direction-
dependent behaviors, we resolved two components of ela-



4

storesistance by combing the results of both experimen-
tal geometries: symmetric component ERsym and anti-
symmetric component ERanti, as shown in Figs. 2(a),(b).
We have performed several samples to ensure the repro-
ducibility of the results(see also Appendix A1). In ad-
dition, our resolved ERsym well agrees with relevant ela-
storesistance coefficients directly measured in the early
study[29](See Appendix A1), supporting the validity of
our symmetry-resolved analysis. In high temperature re-
gions, ERanti dominates over ERsym. The magnitude
of both ERanti and ERsym exhibits the enhancement
on cooling with opposite signs, indicating the sensitiv-
ity of bismuth against multiple symmetry channel of the
strain. However, this ERanti is saturated roughly around
T ∼ 50K, while ERsym shows continuous enhancements.
This symmetry crossover from antisymmetric to symmet-
ric response reflects a broad minimum in ER|| with sign
change, as shown in Fig. 1(c). By contrast, in the perpen-
dicular geometry, both two channels of elastoresistance
give cooperative contributions, leading to the strong en-
hancements of ER⊥, as shown in Fig. 1(f).

B. Valley susceptibility analysis

We now address the microscopic mechanism behind
this strain-sensitive charge transport. The previous
magnetostriction results provide valuable insights into
the intimate relationships between strain and valley
density[8, 31–35]. Very large magnetostriction observed
in bismuth can be attributed to field-induced changes in
valley density, which can be enhanced by carrier-transfer
process between multivalleys[35]. This fact leads us to
expect its reverse case: the external strain can cause
significant changes in valley density. To elucidate the
pure effect of strain-induced changes in valley density on
transport, we start from the classical framework intro-
duced in Ref.[14], where the conductivity is described
by the summation of each valley contribution. Once
the mobility tensor of one electron valley and hole val-
ley is fixed, this basic and simple framework success-
fully captures transport properties of bismuth[36, 37],
including the even more puzzling field-angle dependence
of magnetoresistance[14]. However, when we extend the
scope of this model to transport under strain, the form
of conductivity under strain become generally compli-
cated because the application of strain alters both carrier
density and mobility. Here, for simplicity, we propose
the carrier-based model under strain ε for each valley
with only the strain-induced changes in carrier density
∆ni(ε) = ni(ε) − ni(ε = 0), where ni represents the
carrier density of each valley with index i. In fact, the
importance of this carrier density term for describing ela-
storesistance behaviors has also been acknowledged for
the WTe2[38], which is one of the well-known semimet-
als with a small carrier concentration, just like bismuth.
We also add the symmetry-dependent changes in valley
density to reflect the valley degree of freedom of bismuth,

which cannot be explored in WTe2 due to the low crystal
symmetry and the lack of valley degrees of freedom. Here,
to decribe ∆ni(ε), we introduce symmetry-decomposed
strain-valley susceptibility χi

Γ = (1/ni(ε = 0))dni/dεΓ.
As described below, this simplified model can essentially
capture the elastoresistance of bismuth.

The modification of valley structures is constrained by
the symmetry of the lattice deformation. Isotropic sym-
metric strain εsym preserves the rotational symmetry un-
derlying the crystal lattice, leading to the uniform change
of valley population without breaking the equivalence of
three electron valleys. Adding the charge neutrality con-
dition, the valley population varies with symmetric strain
as

∆ne1 = ∆ne2 = ∆ne3 = ∆nhole/3 = nχsymεsym, (5)

where n represents the valley density for one electron val-
ley at ambient stress. In this situation, εsym only changes
the total carrier number described as χsym, and hence
straightforwardly connects with elastoresistance within
the carrier-based model neglecting the strain-induced
modification of mobility(see Appendix A2) as below:

ERsym = −χsym. (6)

Based on this model, the observed positive sign of the
symmetric elastoresistance ERsym indicates that a ten-
sile strain, which reduces the size of the Brillouin zone,
decreases the carrier density of each valley, as shown in
the inset of Fig. 2(a). This behavior is consistent with the
previous first principle study reporting that the overlap
of the in-direct band gap between the hole and electron
becomes small by the expansion of the trigonal plane
crystal lattice[26] and our calculations discussed below
(see Figs. 3(a),(b)). This band modification reflects the
charge neutrality of semimetal and becomes significant
particularly at low temperatures, where only low energy
bands near the Fermi level become relevant. In fact,
the elastoresistance of WTe2 at low temperatures is also
attributed to the charge neutral band modification[38].
Thus, ERsym clearly visualizes the temperature evolu-
tions of uniform energy shifts of electron and hole valleys,
as shown in Fig. 2(a).

On the other hand, symmetry-breaking antisymmetric
strain εanti can make a difference in the valley polariza-
tion in one valley e1 and the other two valleys e2/e3:

∆ne1 = nχantiεanti, (7)
∆ne2/e3 = −nχantiεanti/2. (8)

Now, χanti represents the valley susceptibility that eval-
uates the sensitivity of the valley polarization against
applied symmetry-breaking antisymmetric strain, which
corresponds to so-called nematic susceptibility applied to
various iron-based superconductors[39–42]. In contrast
to the case of χsym, the relationships between χanti and
ERanti depend on the anisotropy of valley mobility γ:

ERanti = γχanti. (9)
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FIG. 3. DFT band calculation results under strain. (a),(c) (upper panel) The schematic images of the applied strain-induced
changes in the trigonal plane crystal lattice: symmetric strain (a) and antisymmetric strain (c). (lower panel) Band structure
near the the electron (L1, L2, L3) and hole (T) pockets under symmetric strain εxx = εyy = 0.01 (a) and antisymmetric strain
εxx = −εyy = 0.01 (c).The dashed lines indicate the band structures for zero strain εxx = εyy = 0.(b),(d) Energy of the bottom
of the electron and the top of the hole bands as a function of symmetric (b) and antisymmetric strains (d).

The detailed derivation of this relation is provided in the
Appendix A2. The relevant anisotropic factor in this ex-
perimental geometry is evaluated as γ ∼ −0.35 at low
temperatures based on the previous studies[14, 36]. The
negative sign of γ comes from the fact that valley e1 has
higher mobility along binary than the other electron val-
leys e2/e3, leading to the conductivity improvements by
positive antisymmetric strain-induced increases of the e1
valley density. Figure 2(b) depicts the overall temper-
ature dependence of χanti, which incorporates the tem-
perature dependence of γ[14, 36, 37] (see also Appendix
A2). The estimated χanti is comparable to or even larger
than χsym, suggesting the strain sensitivity in the val-
ley densities against both symmetric and antisymmetric
strains.

C. DFT calculation under strain

These strain-modified valley structures are successfully
visualized by our density functional theory (DFT) calcu-
lations under strain, as shown in Fig. 3. Three electron
valleys e1, e2, e3 and hole valley are located at three
equivalent L-points labeled as L1, L2, L3 and T-point, re-
spectively. Under a tensile symmetric strain, all electron
valleys equivalently shift upward while hole valley does
downward as shown in Fig. 3(a), leading to the uniform
reduction of each valley density. As shown in Fig. 3(b),
the symmetric strain linearly shifts each valley within the
calculated region εsym ± 1%, justifying the strain-linear
response analysis of valley density. On the other hand,
the antisymmetric strain induces electron valley polar-
ization as expected from χanti: for instance, the positive
antisymmetric strain increases e1 valley density but de-
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FIG. 4. Strain-dependent quantum oscillations of sample #B along B || binary under two experimental geometries. (a),(b)
Shubnikov-de Haas oscillations under the parallel (a) and perpendicular geometries (b). The black arrow indicates quantum
limit (QL) for electron valleys e2/e3 at zero strain point. (c) Schematic illustration of the Fermi surface area originating from
the quantum oscillations indicated by yellow lines on the valleys e2/e3. (d) Both εxx and εyy dependent shifts of QLs of electron
valleys e2/e3.

creases e2/e3 valley densities, as shown in Fig. 3(c). The
detailed strain dependence of valleys shown in Fig. 3(d)
clearly depicts the switch of the valley polarization across
εanti = 0. The carrier number of isotropic hole valley
should change equally under ±εanti, but anisotropic shifts
of electron valleys result in asymmetric even-functional
strain dependence of hole valley through the charge neu-
trality of semimetals. The hole valley changes little under
the perturbative small strain used in the elastoresistance
study, implying the transport under εanti dominated by
electron valleys. These strain-induced changes in val-
ley density are caused by the simple energy shifts of the
valleys with keeping their band shapes. This fact sug-
gests the validity of the rigid band approximation; thus,
charge transport under strain should be dominated by
strain-induced changes in valley density since the fermi
velocity is nearly unchanged. These DFT calculation re-
sults are essentially consistent with the changes in valley
density elucidated by the elastoresistance signal based on
the simple carrier-based classical transport analysis, sup-
porting the successful strain-tuning of valleys and evalu-

ation of its effect on transport.

D. Quantum oscillation measurements under strain

To further strengthen our discussions, we try to di-
rectly evaluate the strain-induced changes in valley pop-
ulations through strain-dependent quantum oscillations
of bismuth at the lowest temperature measured. A mag-
netic field is applied along the binary direction in both
strain geometries, as shown in Figs. 4(a)(b). Three clear
peaks are observed in the second field derivative of resis-
tivity derived from Shubnikov-de Haas(SdH) oscillations
of electron valleys e2/e3, determined by the well-defined
Landau spectrum of bismuth[11, 43](See also Fig. 4(c)).
These peaks exhibit strain sensitivity; for the parallel ge-
ometry, positive strain εxx shifts the peak position to
a lower field side, as shown in Fig. 4(a), evidencing the
shrink of the electron valleys e2/e3; by contrast, each
peak exhibits shifts toward higher field region under pos-
itive strain εyy for the perpendicular geometry, as shown
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in Fig. 4(b). Here, due to the small number of observ-
able peaks, we focus on the QLs to estimate the strain
dependence of the valley density instead of using the
conventional fast Fourier transformation (FFT) analy-
sis. Both strain εxx and εyy dependent QLs for valleys
e2/e3 are shown in Fig. 4(d). Combing these two results
of the strain-controlled QLs gives another evaluation of
valley susceptibility: χQO

sym ∼ −100 and χQO
anti ∼ 280(see

Appendix A3). These values are qualitatively consis-
tent with the evaluations by elastoresistance around the
same low temperatures, including each magnitude and
sign (see Figs. 2(a)(c)).

IV. DISCUSSION

As described above, quantum oscillation measurements
demonstrate that strain-induced valley density change
coincides with valley susceptibility described by elastore-
sistance, supporting the validity of our proposed sim-
ple carrier-based transport model under strain. Further-
more, it is worth noting that the evaluation of χ also
agrees with our analysis based on the deformation po-
tentials [44] within the framework introduced in the early
magetostriction study[35](see Appendix A4). These facts
strongly suggest that the sensitivity of valley density
against strain is very high enough for bismuth to jus-
tify the simple phenomenological treatments between val-
ley density and strain at least at low temperatures. Re-
turning to our original motivation, antisymmetric strain
successfully tunes electron valley degeneracy, which can
be evaluated by χanti. In addition, χanti develops with
cooling, suggesting the manipulation capability of valley
degrees of freedom especially at low temperatures. Fur-
thermore, large χsym suggests that a tensile symmetric
strain efficiently suppresses the indirect gap of bismuth,
which contributes to enhance another aspect of valley
capability.

Finally, we discuss the possibility of the nematic as-
pects of bismuth with three equivalent electron valleys.
The nematic state of bismuth are described as valley po-
larized states, which can be classified into the novel Z3

nematicity recently discussed in various materials such
as magnetism[45], charge density wave[46], and nematic
superconductivity[47]. In fact, the possibility of valley
nematic states in bismuth has been discussed in low-
temperature regions under magnetic field in both bulk
[7, 14] and surface states[48], although the former results
are recently attributed to the extrinsic effects due to the
boundary conductance[49]. In that sense, the direct eval-
uation of valley density in the present study may demon-
strate the effective role of strain in controlling these Z3

orders. Increasing χanti at low temperatures seems not to
deny the putative nematic state in bismuth. In fact, iron-
based superconductors are the representative metals that
exhibit such a large ERanti comparable to bismuth, owing
to the critical divergence of nematic susceptibilities[39–
42]. However, such an enhancement in iron-based super-

conductors generally occurs in only one symmetry chan-
nel since ordinary nematic materials are sensitive to only
the specific direction of strain that couples with the sym-
metry of their own nematicity. Therefore, the evolution
of χsym, which reaches a comparable magnitude to χanti,
clearly demarcates bismuth from simple nematic materi-
als. The observed χanti of bismuth does not necessarily
pinpoint rotational symmetry breaking field. Rather, si-
multaneous large χsym and χanti describe the sensitivity
to any external perturbative stress field; this strain sen-
sitivity over multiple symmetry channels possibly origi-
nates from the nature of semimetal with the smallness
of fermi energy and charge neutrality. The mixing ratio
of induced symmetric strain to antisymmetric strain by
applied uniaxial pressure can change through the aspect
ratio of the crystal, and as a result the fabrication of
sample dimension can be one tool to tune the desirable
valley profiles.
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APPENDIX

1. Reproducibility of elastoresistance

One of the difficulties in quantitative analysis is that
practically induced strain strongly depends on the ex-
perimental conditions; for example, sample dimension
greatly affects the strain transmission rate[20, 40]. So, we
have measured several samples to check the reproducibil-
ity. We measured five samples for the parallel geometry
j||εxx||binary (Fig. 5(a)) and three samples for the per-
pendicular geometry j ⊥ εyy||bisectrix (Fig. 5(b)). For
samples #A and #B, we first measured ER||. Next, we
took the samples #A and #B off the platform and re-
glued them on the platform for the ER⊥ measurements.
There are some quantitative variations in elastoresis-
tance, but all measured samples qualitatively reproduce
the essential properties; ER|| shows crossover behaviors
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(a) (b)

j || xx || Binary

Bisectrix

j ⊥ yy 

Binary

Bisectrix

(c) (d)

FIG. 5. Two experimental geometry of elastoresistance mea-
surements (A,B) and symmetry-decomposed elastoresistance
(C,D) in bismuth for several samples. As for a reference, an-
other type of symmetric elastoresistance −ERzz,zz [29] is also
plotted in (C).

with a broad minimum around 80 K, whereas ER⊥ ex-
hibits monotonic enhancements on cooling. The same
warranty can be provided for symmetry-decomposed ela-
storesistance, as shown in Figs. 5(c)(d).

In this study, we resolved the symmteric and antisym-
metric responses in elastoresistance by combing the re-
sults from two different experimental geometries. The
antisymmetric component cannot be directly measur-
able unless this combined analysis is performed, but
the symmetric component can be direcly evaluated by
the only one experimental geometry, where the changes
in resistivity along the trigonal (z) direction (∆ρ/ρ)zz
are measured under the longitudinal strain along the
trigonal direction εzz. Since in-plane symmetric strain
εsym = 1

2 (εxx + εyy) is compatible with out-of-plane
strain with the opposite sign −εzz, this elastoresistance
response ERzz,zz = d(∆ρ/ρ)zz

dεzz
is the essentially same with

our resolved symmetric elastoresistance −ERsym. For
comparision, the results of ERzz,zz reported by the ealy
study[29] are also plotted in Fig. 5(c). Both ERsym and
-ERzz,zz exhibit the essentially same enhancement with
decreasing temperatures, suggesting the validity of our
symmetry-resolved analysis.

2. Simple carrier model for transport under strain

The transport model for the valley material bismuth
has been established in the previous study describing the
field angle dependence of magnetoresistance[14, 50]. The
essential point of this theory is introducing mobility ten-
sors for each ellipsoidal valley of bismuth. For the elec-

tron valley e1, the mobility tensor is given as follows:

µ̂e1 =

µ1 0 0
0 µ2 µ4

0 µ4 µ3

 .

Off-diagonal component µ4 comes from the slight tilts
of the electron valley in the trigonal direction. We refer
each tensor component as µe1

ij (i, j = x, y, z): for exam-
ple, µe1

xx = µ1. Threefold rotational symmetry of bismuth
gives equivalence among each electron valley under 2π/3
rotation. Once the rotation matrix R̂θ for a rotation
around the trigonal axis is introduced, the mobility ten-
sors for the other two electron valleys can be expressed
as

µ̂e2 = R̂−1
2π/3 · µ̂e1 · R̂2π/3,

µ̂e3 = R̂−1
−2π/3 · µ̂e1 · R̂−2π/3.

On the other hand, the hole valley mobility tensor is given
as:

ν̂h =

ν1 0 0
0 ν1 0
0 0 ν3

 .

Since hole valley has an ellipsoidal shape with the ma-
jor axis precisely along the trigonal direction, there are
no off-diagonal components, in contrast to electron val-
leys. By using these mobility tensors, the conductivity
of bismuth is formalized as

σ̂ =
∑

i=1,2,3

neieµ̂ei + nheν̂h.

Here, e represents elementary charge. Threefold rota-
tional symmetry guarantees the equivalence among three
electron valleys as n = ne1 = ne2 = ne3. In addition,
the charge neutrality condition of semimetal set the con-
straints on the number of electrons and holes as 3n = nh.
In Ref.[14], a magnetic field tensor is incorporated as a
magnetic field effect to describe magnetoresistance in ac-
cordance with Aubrey’s work[50]. In contrast to this, the
strain effect forcused on here is generally introduced as
the change in both carrier numbers and mobility for each
valley. For the case of electron valley e1, the conductiv-
ity tensor component σe1

xx under strain is the following
first-order approximation:

σe1
xx(ε) = ne1(ε = 0) e µe1

xx(ε = 0)

×(1 + 1
µe1
xx(ε=0)

dµe1
xx

dε ε+ 1
ne1(ε=0)

dne1

dε ε).

Our DFT results reveal that strain shifts only the val-
leys with keeping their band shapes. This fact suggest
that the mobility of the each valley changes little under
strain, supporting this rigid band approximation. There-
fore, we adopted the carrier-based model without the
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strain-induced mobility changes, namely the rigid band
approximation against the applied strain.

Strain-induced changes in charge carrier number are
described by introducing the valley susceptibility defined
as χ = 1

ne1(ε=0)
dne1

dε . The conductivity tensor under
strain and valley susceptibility for other valleys can be
expressed in the same manner. As discussed in the main
text, strain responses of carrier density change depend-
ing on the symmetry of the introduced strain. There-
fore, two kinds of valley susceptibility can be introduced:
symmetric valley susceptibility χsym and antisymmetric
valley susceptibility χanti. In the following, we discuss
the relationships between elastoresistance and each val-
ley susceptibility.

Symmetric strain εsym = 1
2 (εxx + εyy) preserves the

symmetry underlying lattice and uniformly changes three
electron valleys: ∆ne1 = ∆ne2 = ∆ne3 = nχsymεsym,
where ∆nei represents strain-induced changes in each
valley density as ∆nei = nei(ε) − n and we introduce
common valley density n among electron valleys at am-
bient stress. Charge neutrality conditions constrain the
changes in hole valley density as ∆nh =

∑
i=1,2,3 ∆nei =

3nχsymεsym. Using these modifications of carrier density,
the conductivity tensor under symmetric strain is given
as:

σ̂(εsym) = ne(1 + χsymεsym)(µ̂e1 + µ̂e2 + µ̂e3 + 3ν̂).

By using this equation, the strain-induced changes in the
binary-direction resistivity ρxx is given as:

∆ρxx(εsym)/ρxx(εsym = 0)

= (σ−1
xx (εsym)− σ−1

xx (εsym = 0))/σ−1
xx (εsym = 0)

= − χsymεsym
χsymεsym + 1

.

At this time, the elastoresistivity is expressed as

ERsym = lim
εsym→0

∆ρxx(εsym)/ρxx(εsym = 0)

εsym

= − lim
εsym→0

χsym

χsymεsym + 1

= −χsym.

Thus, a very simple result is obtained: ERsym =
−χsym. Within the rigid band approximation, ERsym

purely reflects the strain-induced changes in carrier den-
sity.

Next, we discuss the case of antisymmetric strain
1
2 (εxx − εyy). The symmetry-breaking antisymmetric
strain lifts the valley degeneracy and distinguishes one
valley from the other two ones: ∆ne1 = nχantiεanti and
∆ne2/e3 = −nχantiεanti/2. This type of change in val-
ley density is derived from the threefold symmetry of
the system. This electron valley polarization does not
change the total carrier number of electron valleys, and
hence hole valley density is unaffected owing to the charge

0 50 100 150 200 250 300
Temperature (K)

0.42

0.40

0.38

0.36

0.34

0.32

Collaudin et al. (14).
Hartman (36).
Michenaud et al.  (37).
Extracted (T) for this study

FIG. 6. Temperature dependence of mobility tensor
anisotropy γ estimated from the previous studies[14, 36, 37].
In the main text, χanti are evaluated by using the extracted
temperature dependent γ values indicated by the red dashed
line.

neutral conditions. In this case, the conductivity tensor
under antisymmetric strain can be expressed as:

σ̂(εanti) = ne(µ̂e1 + µ̂e2 + µ̂e3 + 3ν̂

+ [µ̂e1 − µ̂e2/2− µ̂e3/2]χantiεanti).

Following the same procedure as the case of symmetric
susceptibility, the elastoresistivity in antisymmetric sym-
metry is given as:

ERanti = lim
εanti→0

∆ρxx(εanti)/ρxx(εanti = 0)

εanti

= − µe1
xx − µe2

xx/2− µe3
xx/2

µe1
xx + µe2

xx + µe3
xx + 3νxx

χanti

= γχanti.

Here, coefficient γ represents the anisotropy of mobil-
ity, and thus ERanti in the rigid band approximation is
determined by the multiplications of strain-induced val-
ley polarization with original valley anisotropy. Figure 6
represents the temperature dependence of γ evaluated
by several previous studies for elucidating mobility
tensors[14, 36, 37]. In the present experimental geom-
etry, we measured the resistivity along abinary direction;
therefore, the electron valley e1 has much larger mobility
along this direction than those of electron valleys e2/e3,
which results in a negative sign of γ. For the valley sus-
ceptibility analysis, we extracted the temperature depen-
dence of γ from the previous studies, as shown in Fig. 6.

3. Evaluations of valley susceptibilities through
quantum oscillation measurements

This simple carrier-based model allows us to evaluate
the valley susceptibilities χsym and χanti from elastore-
sistance as demonstrated in the main text. Quantum
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TABLE I. Approximate evaluations of valley susceptibilities
in low temperatures by two different methods for sample #A
and #B. χER is deduced from the value of elastoresistance
at 2.5 K, and χQO is evaluated from quantum oscillations at
around 2 K.

Sample χER
sym χQO

sym χER
anti χQO

anti

# A -70 -100 85 250
# B -95 -110 190 280

oscillation provides a direct method for the evaluation of
strain-induced changes in valley density. We have mea-
sured Shubnikov-de Haas oscillations under a magnetic
field along binary direction for two samples #A and #B.
Electron valleys e2/e3 reach the quantum limit at field
of ∼ 1.5T along the binary direction. Positive strain εxx
in the parallel geometry shifts oscillation peaks toward
the lower field side, while positive strain εyy does them
toward the opposite field side. This behavior is well re-
produced in both samples; the results of sample #A are
shown in Fig. 7 and those of #B are shown in the main
text.

In order to estimate the valley susceptibilities χsym and
χanti from quantum oscillation results, we use the rela-
tion between the magnetic field at quantum limit BQL

and carrier density n described as BQL ∝ n. Thus, the
strain derivatives of BQL for e2/e3 valleys give direct
evaluations of changes in carrier densities of e2/e3 val-
leys against εxx and εyy, respectively:

1

ne2/e3(εxx = 0)

dne2/e3

dεxx
=

1

B
e2/e3
QL (εxx = 0)

dB
e2/e3
QL

dεxx
,

1

ne2/e3(εyy = 0)

dne2/e3

dεyy
=

1

B
e2/e3
QL (εyy = 0)

dB
e2/e3
QL

dεyy
.

Here, we assume that the transverse strain direction is
determined by the Poisson ratio of the platform νp, which
determines the amount of induced symmetric and anti-
symmetric strains, respectively. In this case, the observed
changes in valley density of e2/e3 valleys are described
by valley susceptibilities as follows:

1

ne2/3(εxx = 0)

dne2/e3

dεxx

= (1− νp)χsymεsym/2− (1 + νp)(χanti/2)εanti/2,

1

ne2/e3(εyy = 0)

dne2/e3

dεyy

= (1− νp)χsymεsym/2 + (1 + νp)(χanti/2)εanti/2.

By using these relations, the valley susceptibilities χQO

estimated from qunatum oscillation are obtained (results
summarized in Table I). These values qualitatively agree
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FIG. 7. Strain dependent Shubnikov-de Haas measurements
under field along binary for sample #A. Quantum oscillation
measurements are conducted at the base temperature of each
cryostat we used: T ∼ 1.7 K for the parallel geometry under
εxx and T ∼ 2 K for the perpendicular geometry under εyy.

with χER evaluated by the simple carrier model, includ-
ing their signs and magnitudes, which suggests that our
proposed simple carrier transport model successfully cap-
tures the essential nature of transport under stain in bis-
muth.

4. Valley susceptibility evaluated by deformation
potentials

The relationships between valley density and strain
have been also discussed in magnetostriction study[35].
Here, we developed a different method for evaluating the
valley susceptibility as χMR in accordance with the de-
formation potential-based framework introduced for de-
scribing previous magnetostriction results[35]. Our an-
alyzed χMR gives consistent results with our elastore-
sistnace and quantum oscillation results. The detailed
derivation of χMR is described as follows.

The magnetostrictive strain can be described by the
field-induced change in the carrier densities[35]. To de-
scribe the proportional relations between strain εij and
energy shift of the band-edges We,h for electron and hole
valleys, the deformation potential constants are intro-
duced as below:

We = Lijεij ,
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Wh = Tijεij ,

where the Lij are the components of the deformation
potential tensor for the e1 electron valley and Tij are
those for the hole valley. The values of these defomation
potential constants determined by both experiment and
theoretical calculations were reported in Ref.[44, 51]. Ac-
cording to Ref.[35], we can calculate the band shifts for
electron valleys in general form:

We1 = L11ε11 + L22ε22 + L33ε33 + 2L23ε23,

We2/e3 =
1

4
(L11 + 3L22)ε11 +

1

4
(3L11 + L22)ε22 + L33ε33

±
√
3

2
(L11 − L22)ε12 ±

√
3L23ε13 − L23ε23,

where the upper/lower sign refers to e2/3 valley, respec-
tively. Once we apply static stress along bianry or bisec-
tix direction, 4 strain tensor components ε11, ε22, ε33, ε23
are active[52], and band shifts of electron valleys are given
by:

We1 = L11ε11 + L22ε22 + L33ε33 + 2L23ε23,

We2/e3 =
1

4
(L11 + 3L22)ε11 +

1

4
(3L11 + L22)ε22

+L33ε33 − L23ε23.

When stress is applied along the binary or bisectrix di-
recction just like in our study, there are no shear strain
components ε12 and ε13, and thus there are no differ-
ences in band energy shift between e2 and e3 valleys.
When longitudinal strain ε along binary are induced, we
can compute the energy shifts of bands:

W
σ||binary
e1 = L11ε− L22ν12ε− L33ν13ε+ 2L23ν14ε,

W
σ||binary
e2/e3 =

1

4
(L11 + 3L22)ε−

1

4
(3L11 + L22)ν12ε

−L33ν13ε− L23ν14ε.

Here, ν12, ν13, ν14 are the relevant poisson ratios of bim-
suth, respectively. On the other hand, these band shifts
can be described when the same amount of strain ε is
induced by the stress along bisectrix:

W
σ||bisectrix
e1 = −L11ν12ε+ L22ε− L33ν13ε− 2L23ν14ε,

W
σ||bisectrix
e2/e3 = −1

4
(L11 + 3L22)ν12ε+

1

4
(3L11 + L22)ε

− L33ν13ε+ L23ν14ε.
To compare with our quantum oscillation results of e2/e3
valleys, we calculate the valley susceptibililities from
W

σ||binary
e2/e3 and W

σ||bisectrix
e2/e3 :

χMR
sym = − 1

ϵe

dW
σ||binary
e2/e3 +W

σ||bisectrix
e2/e3

dε

= − 1

ϵe
[(L11 + L22)(1− ν12)− 2L33ν13],

χMR
anti = − 1

ϵe

dW
σ||binary
e2/e3 −W

σ||bisectrix
e2/e3

dε

= − 1

ϵe
[
−1

2
(L11 − L22)(1 + ν12)− 2L23ν14],

where ϵe represents the Fermi energy of the original elec-
tron valleys(typically ϵe ∼ 27 meV)[53]. Poisson ratios
ν12, ν13, ν14 can be caluclated from elastic constants Cij .
Combing deformation potential constants [44] and elastic
constants at 4 K [54], we can compute valley susceptibil-
ities as χMR

sym ∼ −155 and χMR
anti ∼ 280, which are again

consistent with our results shown in Table I. There facts
further strenghten our conclusion on the strain-controlled
valley density.

5. Consistency with DFT results

As discussed in the main text, the strain-induced en-
ergy shifts of each valleys with rigid band nature are qual-
itatively consistent with our evaluated valley suseptibil-
ities. In general, the GGA approximation is not enough
to reproduce quantitative band structure such as band
gap, as mentioned in the main text. Nevertheless, our re-
sults may quantitatively explain the results of χsym and
χanti. For example, antisymmetric strain χanti ∼ 0.5%
is enough to induce complete valley polization empty-
ing e1 or e2/e3 valleys, which is consistent with the ex-
perimental results χanti > 200. On the other hand, it
requires over εsym ∼ 1% to induce metal-insulator tran-
sition. This difference is consistent with the fact that the
χanti exceeds χsym by a factor of about 2.
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