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Odd-frequency pairing is an unconventional type of Cooper pairing in superconductors related to
the frequency dependence of the corresponding anomalous Green function. We show by a combi-
nation of analytical and numerical methods that odd-frequency pairing is ubiquitously present in
the current of Andreev-scattered particles across a junction formed by a normal metal (N) and a
superconductor (S), even if the superconducting pairing is of conventional s-wave, spin singlet type.
We carefully analyze the conductance of NS junctions with different pairing symmetries (s-wave,
p-wave, d-wave). In all cases, we identify a generic equal balance of even and odd frequency pair-
ing to the contributions related to Andreev reflection. This analysis shows in retrospect that the
presence of odd-frequency pairing in electric currents across NS junctions is rather the rule, not the
exception. This insight stems from an alternative approach of analyzing the transport problem of
hybrid structures. It is based on the Kubo-Greenwood formula with direct access to symmetries
of the anomalous Green functions characterizing the superconducting pairing. We expect that our
predictions substantially enrich the interpretation of transport data across NS junctions in many

material combinations.

Introduction.— The symmetry of the superconducting
pairing potential (SPP) has been the central topic since
its discovery. Omne important (but less investigated) as-
pect thereof is its frequency dependence. The frequency
dependence of the SPP is classified in two distinct ways:
even- and odd-frequency pairing. Even-frequency pair-
ing (EFP) applies to all known bulk superconductors
to date, no matter whether their pairing is of conven-
tional s-wave, spin singlet type or unconventional. Odd-
frequency pairing (OFP) is considered to be rather ex-
otic. It refers to the property that the anomalous Green
function (related to a particular type of pairing ampli-
tude) is odd under the exchange of time or frequency [I-
5]. Bulk OFP has not yet been discovered experimen-
tally. In fact, its stability is an interesting research topic
by itself [6HIO]. In hybrid structures, such as normal
metal (N) / superconductor (S) junctions or Josephson
junctions, translation symmetry is broken. It has been
soon realized that this broken symmetry gives rise to the
emergence of odd-frequency pairing in superconducting
hybrids [ITHI7]. In Josephson junctions, supplemented
with magnetic materials in the weak link, a long-range
proximity effect has been considered as an indirect ev-
idence of OFP [18]. More distinct features of OFP (as
compared to EFP) have also been predicted, for instance,
the paramagnetic Meissner effect, which should appear
under certain conditions [T9H23]. Indirect evidence of
this particular type of attraction of magnetic flux by su-
perconductivity has been reported in experiments based
on low-energy muon spectroscopy [24H26] and on scan-
ning tunneling spectroscopy (STS) [27, [28].

However, it is fair to say that the present-day under-
standing is that it is difficult to observe evidence for OFP
in any type of experiment involving superconductors or
hybrid junctions thereof. In this Letter, we argue that

the opposite is true for standard transport measurements
across NS junctions. In such junctions, it is impossible
to observe genuine fingerprints of conventional EFP. In
fact, we show below that the transport features related to
superconductivity, i. e. Andreev reflection in the context
of NS junctions, are always equally balanced by EFP and
OFP contributions. This observation is deeply connected
to the underlying symmetries of retarded and advanced
Green functions that enter into linear response expres-
sions for the conductance. It has been overlooked so far,
because common methods of calculating these transport
properties do not give insight on the impact of EFP or
OFP on the conductance. We benchmark our discovery
by a number of examples, where the N side is either a
one-dimensional (1D) system or a 1D ladder and the S
side is either a 1D or a 2D superconductor with different
pairing symmetries such as s-wave, p-wave, and d-wave.
We expect that our predictions substantially enrich the
interpretation of transport data across NS junctions in
many material combinations

Conductance across NS junction.— We evaluate the
conductance G by linear response theory employing

G = —/dE%fe(E), Co(x,2', E) = ’y(é, é), (1)
(g1, 92) = a'Tr [Pegl(a:,a:’,E)?V’gg(x’,x,E)} . (2)

The spatial average is depicted by using the symbol of the
L
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Here, « = =¢17™  f(FE) is the Fermi-Dirac distribu-
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tion function, ¢g(z) V h(z) = [O.g(x)]h(x) — g(x)0h(zx),
<
V' acts on 2/, P. = (7o + 73)/2 with Pauli matrices
Tj=0,1,2,3 in particle-hole space, m is an electron mass,
e is an elementary charge, and the trace is taken for
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FIG. 1. Schematic illustration of three types of junctions.
(a) Continuum 1D N/1D S junction, (b) 1D N/2D S lattice
model, and (c) 1D N ladder/2D S lattice model.

particle-hole and spin space. G is given by G(z, 2/, E) =
ﬁ[GA(:E,x’,E) — G®(x,2', E)] with the advanced (re-
tarded) Green function (GF) GA®). The symbol of the
over tilde is used in this way throughout this Letter.
Equation in combination with Eq. is known as the
Kubo-Greenwood formula [20H31]. We evaluate I'o(E) in
the N region, i.e., x and 2’ are chosen in the N region.

Dividing the GFs into normal and anomalous GFs
described by Gn and F, respectively, Andreev re-
flection is described by the anomalous part. Then,
the retarded GF can be expressed as G%(z,2/,E) =
(GE’H(,T,ZBI,E) FR’m(m,x’,E)) ith

FR2Y (g o' E) GE’zz(x,x’,E) b

GR(z,2' E) = —i / d(t — ) EHm =) g — ¢

y (<{‘1’a(w7t)7‘1’l/(w’7t’)}> <{‘1’o($,t),‘1’a'($’,t’)}>>
{h (), WL (2, )} ({Wh(a,t), Uor(a',1)}) (’)
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where O(t) is the Heaviside step function, and GR
and F® are normal and anomalous GFs: G} =

GRIL 3 0 FR12
( % GR22 and FR = FR2L g ) The ad-

vanced GF is defined similarly. Here, ¥, (x,t) is the
Heisenberg representation of an annihilation operator
with spin o, spatial position z, and time ¢. 7 is a positive
infinitesimal number. T'(E) can be divided into normal
transmission 'y (E) and Andreev reflection I'(E) terms,

Le(E) = Ix(E) +Tr(E), (4)

with T'x(z,2',E) = ~(Gn,Gx) and Tp(z,2/,E) =
y(F, F). There are no cross terms between normal and
anomalous GFs.

Even and odd-frequency pairing contributions.— In
NS junctions, OFP induced at the interface can pene-
trate into the N region and contribute to Andreev re-
flection. We decompose I'g(z,2’, E) into EFP and OFP
components. The advanced (retarded) GF can be writ-
ten as the sum of even and odd components FA®) =

S-wave

p-wave

E/A

E/A E/A

FIG. 2. T.(F) and its components are plotted as a function
of E for several values of Z = 2mU/(krh?). (a)—(c) s-wave
and (d)—(f) p-wave junctions. Z = 0 for (a) and (d), 1 for (b)
and (e), and 3 for (c) and (f). A/p =0.01 for all plots.
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We analyze the odd-frequency contribution to I'z(E) for
three distinct systems illustrated in Fig. [l Remarkably,
we demonstrate that T$¢(E) = T9(E) [32]. T(E) is
zero due to particle-hole symmetry [proof is given in the
Supplemental Material (SM) [33]]. Hence, we do not dis-
cuss it. Figure [I(a) shows the continuum 1D NS junc-
tion, where we analytically prove the equal contribution
of EFP and OFP to I'r(E). Figure b) shows the 1D
N/2D S junction inspired by scanning tunneling spec-
troscopy. In this setup, we analyze s-, p,-, and d-wave
SPPs. We demonstrate that only s-wave junctions ex-
hibit Andreev reflection since both EFP and OFP vanish
at the interface between 1D N and 2D S for p,- and d-
wave junctions. Hence, they cannot penetrate into the
1D N. These cancellations do not occur for the setup
shown in Fig. c)7 where the normal metal has more
spatial structure.

1D N/ID S continuum model— We now present
our analytical results for the 1D N/1D S continuum
model. The Bogoliubov-de Gennes (BdG) Hamiltonian
is H(z,2') = 6(z — 2")6o73e(x) + O(2)0(2")A(z, z')
with e(z) = —%% — p + Ud(z), p the chemi-
cal potential, U the barrier potential at the inter-
face, and Gj—¢,1,2,3 Pauli matrices in spin space. As
the SPP A(z,2’), we study s-wave and p-wave cases:

Az, z’) = Ad(x — x')ibaity for s-wave, A(z,z') =
ik(z—=x")
A6y [ dk ( _“9(7_36/) ¢ 0 ) sgn(k) for p-wave [see
—e A

also Fig. [I{a)]. We define the dimensionless parameter
7 = 2;’# with kg = 4/ 22’;“. We derive the GFs along the

lines of Ref. [34 B5]. Explicit expressions are given in the
SM [33]. Employing Egs. and , we reproduce the
differential conductance of Blonder, Tinkham, and Klap-
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wijk (BTK) theory mm: I'n(E) = S[1—[b(E)|] and
I'r(E) = ﬂhk b|a(E)|?, where the electron (hole) wave
32+ (-)E], and a(E)
and b(E) are hole (Andreev) and electron reflection co-

number is given by kemy =

efficients, respectively. We choose L; = —oo and Ly = 0.
The EFP and OFP contributions are
TR a0 ) = LB + (e B)
- (+)(k82;;:;)2Re [a(E)a*(—E)e—“ke—kh)(m’)]
+ (—)WRe [a(E)a(—E)e—i<ke+kh><w+ff>] . (7

After averaging over x and z’, the last two terms in
Eq. (7) vanish. Then, we obtain ['{¥(E) = I'%*(E) for
E # 0 [38] (see the SM [33] for further details). For the
s-wave junction with a fully transparent barrier [Z = 0
shown Fig. l(a perfect Andreev reflection occurs, and
2T (E) ~ 4 hOldb for |[E| < |A] [39]. As the value
of Z increases [Z =1 and Z = 3 shown in Figs. |2 I(b
and (c), respectively], the shape of T'.(F) approaches
the U-shaped density of states reflecting the s-wave SPP.
Accordingly, the amplitude of Andreev reflection is sup-
pressed. For any values of Z, I'n(E) = I'r(F) holds for
|E| < |A] due to the normalization of the coefficients:
’Z—}; a(BE)* + |b(E)|> = 1 for |E| < |A| [36]. The presence
of Andreev reflection [['r(E) # 0] is, thus, inherently
connected to the prebence of OFP ﬂﬂ]—lﬂ For p-wave
junctions [Figs. I(d , Toe(E = 0) takes a constant
value due to the presence of a Majorana state [46-48].
Half of it stems from Andreev reflection ['r(E = 0). Ex-
perimental conductance exhibiting a zero energy peak
larger than the value of the normal state signifies the ex-
istence of Andreev reflection, a distinct indicator of the
presence of OFP. Hence, in Refs. [49H53], signatures of
OFP have been observed in retrospect.

1D N/2D 8 lattice model.— Let us now consider the
model illustrated in Fig. b). The Hamiltonian is given
by

:_t Z (]oC]+1U+HC)_'U'N Z C;,JC]‘J

3>0,0 7>0,0

— i, (] b0 + Hee.) + Ha

tZ( i+ He.) - MSZ bos (8)

(1.

where ¢j, (bj,) is an annihilation operator in 1D N
(2D S) with the j-th (j)-th site and spin o. Here, £
is a hopping integral within 1D N and 2D S, #, is a
hopping integral between 1D N and 2D S, NN(S) is a
chemical potential in 1D N (2D S), and jo = (0,0).
We utilize A/ = 0.1, #,/f = 1, pux/f = —0.5, and
s /f = —1. We impose periodic boundary conditions in
the z-direction with L, sites and an infinite system in the
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FIG. 3. (a)—(c) Te(F) and its components are plotted as

a function of E. T$(E) = 0 numerically and is not plot-
ted. (d)—(f) The absolute value of onsite and NN retarded
GF in 1D N is plotted as a function of E. (a)—(f) Averaging
length L = 500, L, = 107, and n/f = 1077. (g)-(i) On-
site component of the anomalous GF in Matsubara frequency
representation in the 2D S close to the 1D N is plotted as func-
tions of j, and j, with Matsubara frequency w,/A = 0.1 and
L, =2000. (a), (d) and (g) s-wave, (b), (e) and (h) py-wave,
and (c), (f) and (i) d-wave S junctions. (g) tuReF;SfiStg ven - (h)
fReFQO]gfiSt;’Odd, and (i) fRng’SfiS“SC YR The imaginary part for
(g)—(1) is zero.

y-direction [54]. We consider s-, p,-, and d-wave SPPs
for Ha = Zkﬁ,o, bL7UAU7U/(k)bT_k7U, + H.c. with momen-
tum k, where AU,‘,/ (k) is given by Aido, Asink,63i6,
and £ (cosk, — cosk,)i6a, respectively. Without loss of
generality, we assume that A is real and positive.

For the lattice model, we use a discretized version of

Ea. @: Teljii' E) = Ty | Pod;Gyy0(E)Jy Gy ()|
. - _ . ’\_ _ O ‘]J,j+1 . _
with P, = diag(P., P.), J; = (Jjﬂj D ) Jjj+1 =

I P 5 _( Gii Gija )
ndofo, and Gig (Gj+1,j' Gjt1j41 155,
[56]. Here, the trace in T'c(j, 7', E) is taken for the spin,
particle-hole, and neighboring two spatial lattice sites
spanned from j to j + 1. The spatial average is defined
by T(E) = + iz Z“, 1 Te(4,7', E) with j andj chosen
in the 1D N region. As shown in Figs. l(a

*
JJ+LJ

), only



the s-wave junction has a non-zero Andreev reflection
[Cr(E) # 0]. For p-wave and d-wave junctions, ['(E)
exhibits a V-shaped structure reflecting the density of
states [57H59]. Numerical equivalence of IS¢ and T'%° is
shown in the SM [33]. The onsite (j = 1) and nearest
neighbor (NN) between j = 1 and j = 2 components [see
Fig. [[[b)] of the retarded anomalous GF in the 1D N are
plotted in Figs. 3(d)—(f) [60]. In Figs. B[(d) and (f), s-
and d-wave junctions, respectively, the spin-singlet (SS)
EFP and OFP components are shown, and in Figs. [3(e),
the p,-wave junction, and the spin-triplet (ST) EFP and
OFP components are shown [61]. In Fig. d)7 we con-
firm that EFP and OFP penetrate into 1D N [62]. For p,-
and d-wave cases, both EFP and OFP do not penetrate
into 1D N [Figs[3(e) and (f)] [63].

Let us explain why EFP and OFP can (cannot) pene-
trate into 1D N for the s-wave (p,- and d-wave) junction.
As an example, the onsite components of the anomalous
GF in 2D S close to 1D N are illustrated in Figs. [3|(g)-(i)
(NN pairings are shown in the SM [33]). We define the
onsite SS EFP (ST OFP) component of the anomalous
GF with Matsubara frequency (w;,) in 2D S as follows

onsite,even(odd) /s .
F2D,SS(ST) (3, iwn)

1 . .
=1 Y 9 [FF 1 (Ciwn) = (HFF 4 (Ciwn)] (9)

¢==+1

with g(£1) = 1 for SS EFP and g(£1) = %1 for ST

OFP [64]. When Fypssiar ©® (jo iwn) is non-zero, the
onsite pairing can penetrate into 1D N.

For the s-wave junction, the onsite anomalous GF (SS
EFP) does not exhibit a sign change due to the isotropy
of the s-wave SPP. Hence, this onsite pairing can pene-
trate into 1D N [Fig. B[g)]. There are no cancellations
for NN EFP and OFP. Thus, they can also penetrate
into 1D N [Fig. d)} For the p,-wave junction, the on-
site anomalous GF (ST OFP) [Fig. [(h)] exhibits a sign
change at j, = 0 since the p,-wave SPP changes its sign
in the £z direction. Then, OFPs cancel each other at
Jz = 0 and cannot penetrate into 1D N. For the d-
wave S junction [Fig. [B|i)], the onsite anomalous GF (SS
EFP) also exhibits a sign change at j, = %7, reflecting
d-wave symmetry. Then, the EFP contributions cancel
each other and cannot penetrate into 1D N. For p,-wave
and d-wave junctions, NN EFP contributions also cancel
each other and cannot penetrate into 1D N [33]. The
same argument applies to NN OFP contributions.

1D N ladder/2D S model.— From the results of the
1D N/2D S junctions, we expect that EFP and OFP can
penetrate into the N lead if we replace the 1D N lead with
a 1D N ladder [Fig. [Ifc)]. Note that this setup mimics
a double tip in STS experiments. The 1D N ladder is
connected to (jz,j,) = (0,0) and (1,0). We plot ['.(E)
and its components in Figs. [da)—(c) accompanied with
the onsite pairing of anomalous GFs in Figs. [4[(d)—(f) for
Dz Py-, and d-wave junctions. NN pairings are shown
in the SM [33]. The SPP for the p,-wave case is given

T(E) — Tn(E) -—— Tp(E) - 9(E) —
_(b) pywave () d-wave

FIG. 4. (a)—(c) Te(F) and its components are plotted as
a function of E with L = 500, L, = 2 x 10°, and n/{ =
107", T%(E) = 0 numerically and is not plotted. (d)-(f)
Onsite component of the anomalous GF close to the 1D N
ladder is plotted as functions of j, and j, at wn,/A = 0.1
with L, = 2000. (a) and (d) pz-wave, (b) and (e) p,-wave,
and (c) and (f) d-wave S junction. (d) and (e) fRnggfg;’Odd,
() fReFQSfiStS’even. The imaginary part for (d)—(f) is zero.

by A(k) = Asin k,63i62. For p-wave junctions, depend-
ing on the orientation of SPPs (p,- or p,-wave), EFP
and OFP can penetrate into the 1D N ladder. For the
ps-wave junction [Fig. [{a)], we observe that EFP and
OFP contribute to T'.(E) since onsite OFPs in the x-
direction do not cancel each other as shown in Fig. d).
However, for the p,-wave junction [Fig. b)], [(E) and
its components are qualitatively the same as the ones in
Fig.[3[(b). Then, the OFP contributions cancel each other
[Fig. 4|e)] (NN EFPs and NN OFPs also cancel and can-
not penetrate into the 1D N ladder [33]). For the d-wave
junction, shown in Fig.[d(c), EFP and OFP contribute to
[e(E), where the EFP contributions do not cancel each

other [Fig. [4f)].

Conclusions.— We have analyzed the impact of even-
and odd-frequency pairing on the conductance across
generic NS junctions based on linear response theory.
We have identified an equal balance of even- and odd-
frequency pairing contributions to the conductance re-
lated to Andreev reflection. The larger the transparency
across the junction, the more pronounced are these con-
tributions typically. Hence, we prove that the presence of
Andreev reflection in transport across NS junctions man-
ifests the existence of odd-frequency pairing in a variety
of hybrid structures.



ACKNOWLEDGMENTS of Excellence ct.qmat, EXC2147, project-id 390858490,
the DFG (SFB 1170), and the Bavarian Ministry of Eco-
nomic Affairs, Regional Development and Energy within
the High-Tech Agenda Project “Bausteine fiir das Quan-

ten Computing auf Basis topologischer Materialen”.

We thank Y. Tanaka for helpful discussions. This
work was supported by the Wiirzburg-Dresden Cluster

[1] V. L. Berezinskii, New model of the anisotropic phase of
superfluid He®, JETP Lett. 20, 287 (1974).

[2] Y. Tanaka, M. Sato, and N. Nagaosa, Symmetry and
Topology in Superconductors —Odd-Frequency Pairing
and Edge States—, Journal of the Physical Society of
Japan 81, 011013 (2012).

[3] J. Linder and A. V. Balatsky, Odd-frequency supercon-
ductivity, Rev. Mod. Phys. 91, 045005 (2019).

[4] J. Cayao, C. Triola, and A. M. Black-Schaffer, Odd-
frequency superconducting pairing in one-dimensional
systems, The FEuropean Physical Journal Special Topics
229, 545 (2020).

[5] C. Triola, J. Cayao, and A. M. Black-Schaffer, The role
of odd-frequency pairing in multiband superconductors,
Annalen der Physik 532, 1900298 (2020).

[6] T. R. Kirkpatrick and D. Belitz, Disorder-induced triplet
superconductivity, Phys. Rev. Lett. 66, 1533 (1991).

[7] A. Balatsky and E. Abrahams, New class of singlet su-
perconductors which break the time reversal and parity,
Phys. Rev. B 45, 13125 (1992).

[8] V. J. Emery and S. Kivelson, Mapping of the two-channel
Kondo problem to a resonant-level model, Phys. Rev. B
46, 10812 (1992).

[9] P. Coleman, A. Georges, and A. M. Tsvelik, Reflections
on the one-dimensional realization of odd-frequency pair-
ing, Journal of Physics: Condensed Matter 9, 345 (1997).

[10] S. Hoshino, J. Otsuki, and Y. Kuramoto, Diagonal Com-
posite Order in a Two-Channel Kondo Lattice, Phys.
Rev. Lett. 107, 247202 (2011).

[11] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Long-
Range Proximity Effects in Superconductor-Ferromagnet
Structures, [Phys. Rev. Lett. 86, 4096 (2001).

[12] Y. Tanaka and S. Kashiwaya, Anomalous charge trans-
port in triplet superconductor junctions, [Phys. Rev. B
70, 012507 (2004).

[13] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Odd
triplet superconductivity and related phenomena in
superconductor-ferromagnet structures, Rev. Mod. Phys.
77, 1321 (2005).

[14] Y. Tanaka, Y. Tanuma, and A. A. Golubov, Odd-
frequency pairing in normal-metal/superconductor junc-
tions, Phys. Rev. B 76, 054522 (2007).

[15] Y. Tanaka and A. A. Golubov, Theory of the proximity
effect in junctions with unconventional superconductors,
Phys. Rev. Lett. 98, 037003 (2007).

[16] Y. Asano and Y. Tanaka, Majorana fermions and odd-
frequency Cooper pairs in a normal-metal nanowire
proximity-coupled to a topological superconductor, Phys.
Rev. B 87, 104513 (2013).

[17] T. Lothman, C. Triola, J. Cayao, and A. M. Black-
Schaffer, Disorder-robust p-wave pairing with odd-
frequency dependence in normal metal-conventional su-
perconductor junctions, Phys. Rev. B 104, 094503
(2021).

[18] T. S. Khaire, M. A. Khasawneh, W. P. Pratt, and N. O.
Birge, Observation of Spin-Triplet Superconductivity in
Co-Based Josephson Junctions, Phys. Rev. Lett. 104,
137002 (2010).

[19] E. Abrahams, A. Balatsky, D. J. Scalapino, and J. R.
Schrieffer, Properties of odd-gap superconductors, Phys.
Rev. B 52, 1271 (1995).

[20] S. Higashitani, Mechanism of Paramagnetic Meissner Ef-
fect in High-Temperature Superconductors, Journal of]
the Physical Society of Japan 66, 2556 (1997).

[21] S.-I. Suzuki and Y. Asano, Paramagnetic instability of
small topological superconductors, Phys. Rev. B 89,
184508 (2014).

[22] S.-P. Lee, R. M. Lutchyn, and J. Maciejko, Odd-
frequency superconductivity in a nanowire coupled to
Majorana zero modes, Phys. Rev. B 95, 184506 (2017).

[23] F. Parhizgar and A. M. Black-Schaffer, Diamagnetic and
paramagnetic Meissner effect from odd-frequency pair-
ing in multiorbital superconductors, Phys. Rev. B 104,
054507 (2021).

[24] A. Di Bernardo, Z. Salman, X. L. Wang, M. Amado,
M. Egilmez, M. G. Flokstra, A. Suter, S. L. Lee, J. H.
Zhao, T. Prokscha, E. Morenzoni, M. G. Blamire, J. Lin-
der, and J. W. A. Robinson, Intrinsic Paramagnetic
Meissner Effect Due to s-Wave Odd-Frequency Super-
conductivity, Phys. Rev. X 5, 041021 (2015).

[25] J. A. Krieger, A. Pertsova, S. R. Giblin, M. Débeli,
T. Prokscha, C. W. Schneider, A. Suter, T. Hesjedal,
A. V. Balatsky, and Z. Salman, Proximity-Induced Odd-
Frequency Superconductivity in a Topological Insulator,
Phys. Rev. Lett. 125, 026802 (2020)!

[26] H. Alpern, M. Amundsen, R. Hartmann, N. Sukenik,
A. Spuri, S. Yochelis, T. Prokscha, V. Gutkin, Y. Ana-
hory, E. Scheer, J. Linder, Z. Salman, O. Millo, Y. Paltiel,
and A. Di Bernardo, Unconventional meissner screening
induced by chiral molecules in a conventional supercon-
ductor, [Phys. Rev. Mater. 5, 114801 (2021).

[27] V. Perrin, F. L. N. Santos, G. C. Ménard, C. Brun,
T. Cren, M. Civelli, and P. Simon, Unveiling odd-
frequency pairing around a magnetic impurity in a su-
perconductor, [Phys. Rev. Lett. 125, 117003 (2020).

[28] W. M. J. van Weerdenburg, A. Kamlapure, E. H. Fyhn,
X. Huang, N. P. E. van Mullekom, M. Steinbrecher,
P. Krogstrup, J. Linder, and A. A. Khajetoorians, Ex-
treme enhancement of superconductivity in epitaxial alu-
minum near the monolayer limit, Science Advances 9,
eadf5500 (2023).

[29] D. A. Greenwood, The Boltzmann Equation in the The-
ory of Electrical Conduction in Metals, Proceedings of]
the Physical Society 71, 585 (1958).

[30] C. Caroli, R. Combescot, P. Nozieres, and D. Saint-
James, Direct calculation of the tunneling current, Jour-
nal of Physics C: Solid State Physics 4, 916 (1971).

[31] H. U. Baranger and A. D. Stone, Electrical linear-


http://jetpletters.ru/ps/1792/article_27363.shtml
https://doi.org/10.1143/JPSJ.81.011013
https://doi.org/10.1143/JPSJ.81.011013
https://doi.org/10.1103/RevModPhys.91.045005
https://doi.org/10.1140/epjst/e2019-900168-0
https://doi.org/10.1140/epjst/e2019-900168-0
https://doi.org/https://doi.org/10.1002/andp.201900298
https://doi.org/10.1103/PhysRevLett.66.1533
https://doi.org/10.1103/PhysRevB.45.13125
https://doi.org/10.1103/PhysRevB.46.10812
https://doi.org/10.1103/PhysRevB.46.10812
https://doi.org/10.1088/0953-8984/9/2/002
https://doi.org/10.1103/PhysRevLett.107.247202
https://doi.org/10.1103/PhysRevLett.107.247202
https://doi.org/10.1103/PhysRevLett.86.4096
https://doi.org/10.1103/PhysRevB.70.012507
https://doi.org/10.1103/PhysRevB.70.012507
https://doi.org/10.1103/RevModPhys.77.1321
https://doi.org/10.1103/RevModPhys.77.1321
https://doi.org/10.1103/PhysRevB.76.054522
https://doi.org/10.1103/PhysRevLett.98.037003
https://doi.org/10.1103/PhysRevB.87.104513
https://doi.org/10.1103/PhysRevB.87.104513
https://doi.org/10.1103/PhysRevB.104.094503
https://doi.org/10.1103/PhysRevB.104.094503
https://doi.org/10.1103/PhysRevLett.104.137002
https://doi.org/10.1103/PhysRevLett.104.137002
https://doi.org/10.1103/PhysRevB.52.1271
https://doi.org/10.1103/PhysRevB.52.1271
https://doi.org/10.1143/JPSJ.66.2556
https://doi.org/10.1143/JPSJ.66.2556
https://doi.org/10.1103/PhysRevB.89.184508
https://doi.org/10.1103/PhysRevB.89.184508
https://doi.org/10.1103/PhysRevB.95.184506
https://doi.org/10.1103/PhysRevB.104.054507
https://doi.org/10.1103/PhysRevB.104.054507
https://doi.org/10.1103/PhysRevX.5.041021
https://doi.org/10.1103/PhysRevLett.125.026802
https://doi.org/10.1103/PhysRevMaterials.5.114801
https://doi.org/10.1103/PhysRevLett.125.117003
https://doi.org/10.1126/sciadv.adf5500
https://doi.org/10.1126/sciadv.adf5500
https://doi.org/10.1088/0370-1328/71/4/306
https://doi.org/10.1088/0370-1328/71/4/306
https://doi.org/10.1088/0022-3719/4/8/018
https://doi.org/10.1088/0022-3719/4/8/018

response theory in an arbitrary magnetic field: A new
Fermi-surface formation, |[Phys. Rev. B 40, 8169 (1989).

[32] Te(x, 2, E), I'n(z,2',E), and T'r(z,2’, E) do not de-
pend on z, and x’ due to current conservation. However,
I'%(z,2',E), and T'9(x,2’, E) depend on x and z’, and
spatial averaging is needed.

[33] See Supplemental Material.

[34] W. L. McMillan, Theory of Superconductor—Normal-
Metal Interfaces, Phys. Rev. 175, 559 (1968).

[35] C. Bruder, Andreev scattering in anisotropic supercon-
ductors, Phys. Rev. B 41, 4017 (1990).

[36] G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Tran-
sition from metallic to tunneling regimes in supercon-
ducting microconstrictions: Excess current, charge im-
balance, and supercurrent conversion, [Phys. Rev. B 25,
4515 (1982)

[37] Y. Takane and H. Ebisawa, Conductance formula for
mesoscopic systems with a superconducting segment,
Journal of the Physical Society of Japan 61, 1685 (1992).

[38] At E = 0, the particle and hole momentum coincide
(ke = kn = kr), and the decompositon into EFP and
OFP is not unique. On the other hand, for E # 0, the
decomposition is unique.

[39] With an approximation ke = kn = kr, 2eiff‘e(E) is ex-
actly 4 for |E| < |A|, but without this approximation, it
is not exactly 4, where 25T (E) — 4 for |[E| < |A| when
A/p— 0.

[40] S. Lee, V. Stanev, X. Zhang, D. Stasak, J. Flowers, J. S.
Higgins, S. Dai, T. Blum, X. Pan, V. M. Yakovenko,
J. Paglione, R. L. Greene, V. Galitski, and I. Takeuchi,
Perfect Andreev reflection due to the Klein paradox in
a topological superconducting state, Nature 570, 344
(2019).

[41] P. Parab, D. Singh, S. Haram, R. P. Singh, and S. Bose,
Point contact Andreev reflection studies of a non-centro
symmetric superconductor RegZr, Scientific Reports 9,
2498 (2019).

[42] R. J. Soulen, J. M. Byers, M. S. Osofsky, B. Nadgorny,
T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka,
J. Nowak, J. S. Moodera, A. Barry, and J. M. D. Coey,
Measuring the Spin Polarization of a Metal with a Su-
perconducting Point Contact, Science 282, 85 (1998).

[43] P. Zareapour, A. Hayat, S. Y. F. Zhao, M. Kreshchuk,
Z.Xu, T.S. Liu, G. D. Gu, S. Jia, R. J. Cava, H.-Y. Yang,
Y. Ran, and K. S. Burch, Andreev reflection without
Fermi surface alignment in high-T. van der Waals het-
erostructures, New Journal of Physics 19, 043026 (2017).

[44] J. A. Voerman, J. C. de Boer, T. Hashimoto, Y. Huang,
C. Li, and A. Brinkman, Dominant s-wave superconduct-
ing gap in PdTes observed by tunneling spectroscopy on
side junctions, Phys. Rev. B 99, 014510 (2019).

[45] 1. Hwang, K. Lee, H. Jin, S. Choi, E. Jung, B. H. Park,
and S. Lee, A new simple method for point contact
Andreev reflection (PCAR) using a self-aligned atomic
filament in transition-metal oxides, Nanoscale 7, 8531
(2015).

[46] A. Y. Kitaev, Unpaired Majorana fermions in quantum
wires, |[Physics-Uspekhi 44, 131 (2001).

[47] S. Tamura, S. Nakosai, A. M. Black-Schaffer, Y. Tanaka,
and J. Cayao, Bulk odd-frequency pairing in the super-
conducting su-schrieffer-heeger model, Phys. Rev. B 101,
214507 (2020).

[48] D. Kuzmanovski, A. M. Black-Schaffer, and J. Cayao,
Suppression of odd-frequency pairing by phase disorder

in a nanowire coupled to majorana zero modes, Phys.
Rev. B 101, 094506 (2020).

[49] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard,
E. P. A. M. Bakkers, and L. P. Kouwenhoven, Signa-
tures of Majorana Fermions in Hybrid Superconductor-
Semiconductor Nanowire Devices, Science 336, 1003
(2012).

[50] J.-P. Xu, M.-X. Wang, Z. L. Liu, J.-F. Ge, X. Yang,
C. Liu, Z. A. Xu, D. Guan, C. L. Gao, D. Qian, Y. Liu,
Q.-H. Wang, F.-C. Zhang, Q.-K. Xue, and J.-F. Jia, Ex-
perimental Detection of a Majorana Mode in the core
of a Magnetic Vortex inside a Topological Insulator-
Superconductor BisTesz/NbSe, Heterostructure, Phys.
Rev. Lett. 114, 017001 (2015).

[61] H.-H. Sun, K.-W. Zhang, L.-H. Hu, C. Li, G.-Y. Wang,
H.-Y. Ma, Z.-A. Xu, C.-L. Gao, D.-D. Guan, Y.-Y. Li,
C. Liu, D. Qian, Y. Zhou, L. Fu, S.-C. Li, F.-C. Zhang,
and J.-F. Jia, Majorana Zero Mode Detected with Spin
Selective Andreev Reflection in the Vortex of a Topologi-
cal Superconductor, Phys. Rev. Lett. 116, 257003 (2016).

[52] H-H. Sun and J.-F. Jia, Detection of Majorana zero
mode in the vortex, npj Quantum Materials 2, 34 (2017).

[63] S. Heedt, M. Quintero-Pérez, F. Borsoi, A. Fursina,
N. van Loo, G. P. Mazur, M. P. Nowak, M. Am-
merlaan, K. Li, S. Korneychuk, J. Shen, M. A. Y.
van de Poll, G. Badawy, S. Gazibegovic, N. de Jong,
P. Aseev, K. van Hoogdalem, E. P. A. M. Bakkers, and
L. P. Kouwenhoven, Shadow-wall lithography of ballistic
superconductor—semiconductor quantum devices, Nature
Communications 12, 4914 (2021).

[64] We utilize the recursive Green function method [65] to
calculate the Green function. Then, the system can be
infinite in one direction, but we must impose periodic or
open boundary conditions in other directions.

[65] D. S. Fisher and P. A. Lee, Relation between conductivity
and transmission matrix, Phys. Rev. B 23, 6851 (1981).

[56] P. A. Lee and D. S. Fisher, Anderson Localization in Two
Dimensions, Phys. Rev. Lett. 47, 882 (1981)!

[67] S. H. Pan, J. P. O'Neal, R. L. Badzey, C. Cha-
mon, H. Ding, J. R. Engelbrecht, Z. Wang, H. Eisaki,
S. Uchida, A. K. Gupta, K.-W. Ng, E. W. Hud-
son, K. M. Lang, and J. C. Davis, Microscopic elec-
tronic inhomogeneity in the high-7T. superconductor
BizSroCaCuzOs45, Nature 413, 282 (2001).

[68] O. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod,
and C. Renner, Scanning tunneling spectroscopy of high-
temperature superconductors, Rev. Mod. Phys. 79, 353
(2007).

[59] K. Fujita, A. R. Schmidt, E.-A. Kim, M. J. Lawler,
D. Hai Lee, J. C. Davis, H. Eisaki, and S.-i. Uchida,
Spectroscopic Imaging Scanning Tunneling Microscopy
Studies of Electronic Structure in the Superconducting
and Pseudogap Phases of Cuprate High-T, Superconduc-
tors, Journal of the Physical Society of Japan 81, 011005
(2012).

[60] In Figs. d)f(f), Fiuonsite ang prooevendd are de-
fined as follows. For s- and d-wave junctions, the onsite
component is SS s-wave EFP:

onsite 1 s s
PSR ®) = 5 [FYm) - R @], (o)

and the NN components are SS s-wave EFP and SS p-


https://doi.org/10.1103/PhysRevB.40.8169
https://doi.org/10.1103/PhysRev.175.559
https://doi.org/10.1103/PhysRevB.41.4017
https://doi.org/10.1103/PhysRevB.25.4515
https://doi.org/10.1103/PhysRevB.25.4515
https://doi.org/10.1143/JPSJ.61.1685
https://doi.org/10.1038/s41586-019-1305-1
https://doi.org/10.1038/s41586-019-1305-1
https://doi.org/10.1038/s41598-019-39160-y
https://doi.org/10.1038/s41598-019-39160-y
https://doi.org/10.1126/science.282.5386.85
https://doi.org/10.1088/1367-2630/aa6b8a
https://doi.org/10.1103/PhysRevB.99.014510
https://doi.org/10.1039/C4NR07262F
https://doi.org/10.1039/C4NR07262F
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevB.101.214507
https://doi.org/10.1103/PhysRevB.101.214507
https://doi.org/10.1103/PhysRevB.101.094506
https://doi.org/10.1103/PhysRevB.101.094506
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1103/PhysRevLett.114.017001
https://doi.org/10.1103/PhysRevLett.114.017001
https://doi.org/10.1103/PhysRevLett.116.257003
https://doi.org/10.1038/s41535-017-0037-4
https://doi.org/10.1038/s41467-021-25100-w
https://doi.org/10.1038/s41467-021-25100-w
https://doi.org/10.1103/PhysRevB.23.6851
https://doi.org/10.1103/PhysRevLett.47.882
https://doi.org/10.1038/35095012
https://doi.org/10.1103/RevModPhys.79.353
https://doi.org/10.1103/RevModPhys.79.353
https://doi.org/10.1143/JPSJ.81.011005
https://doi.org/10.1143/JPSJ.81.011005

(61]

(62]

wave OFP:

R,NN,even(odd) _ 1 R,12 R,12
PN " 0(E) =  [FlY7. () - Ay (B)]

1
+(2)7 A8, (=B - % (-B)]. (1)

For p—wave junctions, the onsite component is ST s-wave
OFP:

nsi 1 s s
PR = 5 [F. 0+ Ay ®)], ()

and the NN components are ST p-wave EFP and ST s-
wave OFP:

R,NN,even(odd 1 R,12 R,12
FlD N,ST ( )(E) = 1 [F1,2,T,L(E) + F1,2,¢,T(E)]
17,4, A,
+(2)7 A7 B+ BT (-B). (13)

Due to spin rotational symmetry, s-wave and d-wave
junctions can only have SS components, and p-wave S
junctions can only have ST components. For onsite pair-
ings, the SS OFP is forbidden by Fermi-Dirac statistics.
The EFP and OFP components of retarded GFs are not
even and odd function of F, respectively. EFP and OFP
satisfy FRoven(E) = FACen(_g) and FRed(E) =
—FA°dd(_E), respectively.

The numerical error for d-wave junctions is larger than
that for p,-wave junctions since EFP and OFP contribu-
tions between the x- and y-direction cancel each other for
d-wave junctions. We adopt periodic boundary conditions
in the z-direction and infinite length in the y-direction.
When the system size in the z-direction is finite, there is
no perfect cancelation in the  and y-direction [Fig. [B[f)].
However, for p;-wave junctions, EFP and OFP in the
+2- and —z-direction cancel. Hence, in this case, there
is almost no finite size effect [Fig. [3{(e)].

We use the Matsubara frequency representation to re-
duce finite-size effects. To calculate the GF in real space,
we cannot access large L, due to the limitation of nu-
merical resources. For finite L., the finite size effects of
the GF reduce when we adopt the Matsubara frequency
representation for not too small Matsubara frequency.
A. Umerski, Closed-form solutions to surface Green’s
functions, Phys. Rev. B 55, 5266 (1997).
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S1. CONTINUUM MODELS
A. Conductance in 1D continuum model

In linear response theory, the conductance G given between two points in space L1 and Ly is written in the form

G=- /dE%fe(EL (S1)

_ 1 Lz

I(F)=——"—— dzdz'Ty(z, 2, ), S2
- [ (2.2', E) 52)



with
—e*hir ~ i, ~

Pe(r, ', B) =1 5" T |[RGi(2,2', B)V V' Gola 2, ) (3)
9(2) V h(x) =g(2)0:h(z) — [0.9()h(2), s

od E) = = [GA(z,2',E) — GR(z,2', E)] c=a
Gl( , 7E) = { \/§7r [ mGGA(x ' E) _ COS@GR(x ! E)} 4 o (85)

) | [GA 2 B) - GMa, 2 B)] _—
Go(z, 2’ E) = { \/% [cos 0GA (z, 2/, E) — sin 0GR (z, 2/, E)], = # (S6)
Pe :%(%0+%3), s7)

for continuum systems with Pauli matrices 7;=01,2,3 acting on particle-hole space. Here, z and 2’ are chosen in the
normal metal region since the charge current is not conserved in the superconducting region. GA(R)(:C, a’, E) is the

advanced (retarded) Green function, GA®) (z, 2’ E) = G(x, 2, E — (4)in) with a positive infinitesimal number 7, v
acts on z’, Tr in Eq. is taken for inner degrees of freedom e.g., spin and orbital, and f(FE) is the Fermi-Dirac
dlstrlbutlon function. 9 € R is an inner degree of freedom. Any choice of § results in the same T'o(E) due to the
following relation:

0=Tr {PeéA(x,m’, E)??'GA(x’,x,E)] Tr {P GR(z, a2’ E) V'GR (x’,x,E)} (S8)
for x # x’. Equation (SI)) in comblnatlon Wlth Eqgs. (52), ., ., and with @ = 7/4 is called the Kubo-
Greenwood formula [29] 31] For x # o', Egs. and (S6) with 6 = nm/2 reduces to
253
/ —eh’m 1 A R

To(z,2", E) = 2 52 [PG (x,2' E)V v'a (', z E)} (S9)

which is called Caroli formula [30]. Due to the charge current conservation, Eq. can be recast into the form
To(E) =Te(x,2', E), (S10)

where the right hand side of Eq. (S10) does not depend on the positions z and 2’ [31], 55, (6]. We assume one
dimensional conductors in Eq. (S2]), but extensions to higher dimensions are straightforward.
We set 6 = /2 unless it is specified otherwise since numerical errors become smallest at § = n7/2 with n € Z.

B. 0Odd frequency pairing

Odd-frequency pairing is described by the anomalous Green function in superconductor junctions. The full Green
function is given by

G((x’ 7-)7 (xlv 0)) = —<’¢(.’L‘, T)'l/’T(x/’ 0)>7 (Sll)

where [ (z,7)]" = (1 (z,7), ¢, (2, 7), ¢}L(£C7T),w1($,7')) with T indicating the transpose of a vector, positive imagi-
nary time 7, and the expectation value taken at temperature 1/8. The Matsubara frequency representation of this
Green function is given by

Gz, 2’ iw,) =F(G((z,7), (a',0))), (512)
| on
FUf() =5 (1= o) [ dretn f(r). (S13)

Gy (@2 iwn) = — F((o (2, T)00L, (27,0))), (S14)
GR o (@, 2! i) = = F((§] (2, 7)o (2, 0))), (S15)
)2 (w2 iwn) = — F((the (@, )hor (27, 0))), (S16)
FZ (.2 iw,) = — F((0} (2, 7)ul, (', 0)). (S17)
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Equations (S16) and (S17) are called anomalous Green functions. Let Gn(x, 2/, iw,) and F(z,z’,iw,) be

< . Gt (2 iw,) 0
/ _ N,o,0\"r %> n
GN(va 7zwn) - ( 0 GQN o (337x’7iwn) ) (818)
- . 0 F2 (z,2',iw
F(z, 2’ iwn) = (F21 (w2 dwn) o 0 n)> ’ (519)

We define even (odd) frequency components thereof by

Fevented (g o/ iwy,) == [F(x, 2 iwn) + (=) F(x, 2", —iwn)] - (520)

N |

Evidently, Fever(edd) (g 4/ jw,) is an even (odd) function of w,.

Making use of an analytic continuation, iw, — 2z with 2z € C, we can extend the definition of the Green function
to the complex plain: G(z,2’,z). From Egs. (S18)) and (S19)), the Green function with complex frequency z can be
written as

Gz, 2, 2) =Gx(x, 2", 2) + F(x, 2, 2). (S21)
Then, advanced (retarded) Green function can be obtained by GAW)(z,2'.E) = G(x,2',F — (+)in) with pos-

itive infinitesimal number 7. Likewise, we obtain advanced even (odd) frequency anomalous Green function
FAeven(odd) (g 0/ F) and retarded one FReven(odd) (g o ).

C. Decomposition of T'.(F)

From Eq. (S21)), we can write the advanced (retarded) Green function as

GAB) (2,2 E) =GR (2,2 E) + FA®) (2, 2/ E), (S22)
) A(R),11 E
GS(R)(.%,(E/,E) _ (GN 0,0 (l‘ a! ) 0 ) 7 (823)
0 N o, o" ( )
A(R) 12 ,
- 0 (x x E)
FAR (z o/ B) = T , S24
R Ve 5

where GQ(R) (z,2', E) denotes the normal Green function and FAM®)(z 2/, E) the anomalous Green function. We
can also decompose Gi(z,2',E) and Gs(z,2’, E) given by Egs. and , respectively, as Gyoy(z,2', E) =
(N;NJ(Q)(:U, o, E)+ 1:"1(2)(96, 2/, E) in the same manner. Then, Eq. can be written as

f‘e<E’) :fN(E) + fF(E)7 (825)
—_e2p3 - -
I'n(z,2', E) = ZT:;WTr [PeGNJ(x,x',E)?v’GNQ(x’,x,E)] , (526)
213 B
Tp(z,a!,B) =—< LTy [Pby(a.a! BV By’ 2. )] (s27)

Next, we further decompose FA®) (z, 2/, E) into two parts FAMR) = pAR)even 1 pAR)0dd i)

FAevenod (g, of | B) =2 [F(e,o',E —in) + (=) F(z,', —E +in)] , (S28)

Frevenedl (g o | B) == [F(a,a', B+ in) + (-)F(z,a’, —E —in)] , (529)

N~ N~

and define Fleven(()dd)(x,m’ ,E) and ngen(()dd)(x x E) in a similar manner as Egs. (S5) and (S6)), respectively, by

using Egs. (S28) and (S29). Making use of Egs. (| and ( -, Eq. ( can be rewritten as
Tp(z,2',E) =I'y(v,2', E) + Ty (z,2", E) + ¥ (2, 2", E) (S30)
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with
_ 2h3 -
F;e(oo)(x,:n',E) ¢ Tr {P Feven(Odd) (x,2' E)V?’Ffven(Odd)(:c',x,E)] , (S31)
eo —€2h3 even o
L5 (e,a ) =—— {Tr [P Feven(z o/ EYV V' (x',x,E)}
+Tr [Peﬁfdd(%m’,E)V‘? ~eveﬂ(gc @ E)]} (S32)

Generally, each term on the right hand side of Eq. depends on x and x’ although the left hand side of Eq.
is independent of z and z’.

It is noted that there are two types current conservation in the N region: charge and particle current conservation.
Similar to Eq. , the differential conductance for the particle current is given by I'y(z,2', E) = I'n(z,2', E) —
Ip(z,2',E). Both I'e(z,2, E) and I'y(z, 2, E) do not depend on the positions = and «’. Therefore, I'n(z, z’, E') and
I'p(z,2', E) also do not depend on x and z’. However, I'°”(z, 2/, E) generally depends on z and a’.

The cross term between even and odd-frequency, ['®*(E), is zero due to particle-hole symmetry. The anomalous
Green function satisfies the following relations according to the definitions Eqgs. 7 , and .

(22, (a0, 2)]" =F2 (0, 2%, (533)
with z € C and Z = Tre ?H. Also, [F}? (w2 ,2)]" is given by
[Foo (@0’ 2)] = = FL (2,2, —2"). (S34)

Let us define }:71 (z,2', E) in the following equation.

Fy(z,2', E) (S35)
_ ( 0 F112(£L',£L'/,E)>
- \F(z, 2, E) 0 ’
1 0 sin@F'2(z,2', E — in) — cos OF 2 (x, ', E + in)
:m (siné)Fm(x, 2/, E —in) — cos 0F?(z,2', E + in) 0 ) . (836)

for x # 2/, and

1 0 F2(z, 2/ E —in) — F%(z,2', E +in)
Fl (2,2, E) = (le(w 2 E —in) — F*Y(z,2', E +in) 0 ’ (837)
for x = 2. 13"2 (z,2', E) is defined in the same way. 13"1 (z,2', E) satisfies
I~ T <
[Fl(x',x, E)} =FIy(z,2', F). (S38)

From Eq. (S38]), we obtain [Ff(\';)n(()dd) (x’,x,E)} er(vf)n(()dd)(x,a:’, E).

The component of the differential conductance for the cross term between even and odd-frequency pairing satisfies

. —e2n3 < - t
[Fi?(x,x’, E)] —%T}{Pe];’le"en(aj,x” E)V?/ngd(m/7 x, E)} + (even PN odd)
_ 2h3 . n . ;
:ZWLQWTI‘{Pe |:F20dd($(}’, x, E>:| vv/ {Fleven(l', Jj’, E)] } + (even — odd)
=I'®(z,2', E). (S39)

Particle-hole symmetry of the Hamiltonian gives
C 'H(z,2")C = — H(z,2), (S40)

n o 60,0'/(:5; Ij) Aa,a’ (1’, I/)
H(z,2") = <—A;,0/ (,7') —egro(a 2) )" (S41)
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where the charge conjugation operator is given by C' = 71K, K is a complex conjugation operator, €, . (x,2’) is a
normal part of the Hamiltonian, and A is a superconducting pair potential (A, o (z,2') = —Ay »(2',z)). The Green
function satisfies

C'G(z,2',2)C = — G(x, 2", —2"). (S42)

Then, I'S?(z, 2, E) satisfies

—e2p3 - .
I, B) = T [0 OO e, o!, BYCT TIOT B  2, B)YO] + (even o odd)
_ 2h3 . .
= Zm27rTr [P},FQGVen(z, x, E)?V/Flodd(aj/’ T, E)} + (even < odd)
= _T $/7.Z',E 7 s
F

where we used the relation C'~1[evenodd) (xz,2, E)C = —(—I—)J*Z’eve“((’dd)(a:,x’, E) and P, = (7o — 73)/2. Hence, after
averaging over x and z’, we obtain

PR (E)]" = -T'¥(E). (S44)

Equations (S39) and (S44) yield I'*(E) = 0.

D. Blonder-Tinkham-Klapwijk (BTK) approach

We can calculate the conductance for NS junctions by utilizing the Blonder, Tinkham, and Klapwijk (BTK)
approach [36]. In this subsection, we explain the BTK approach for the calculation of the conductance across NS
junctions. For the S side, we take two prominent examples: s-wave spin-singlet and p-wave spin-triplet. In general,
Bogoliubov-de Gennes (BdG) Hamiltonian is given by

H :%/dxdx’wT(x)H(x,x’)\y(x’), (S45)
n_ | Eoo(ma') Agg(x,a)
H(.T,l' ) = (—A;U,(x,x/) —ng’g(x/,$)> (846)

T
with ¥U(z) = (1/}T(I),1/Ji($),w$(x),1/}1(17)) . Let us consider a 1D normal metal (z < 0) superconductor (x > 0)

junction. As a normal part of the Hamiltonian, e, . (, '), we consider following function:
h2 2

AN _ Na ~ -
Eoor(T,2) =0(x — 2")6073 [ 5 da? K+ U5(96‘)] ; (547)

where m is a mass of electron, u is a chemical potential, and U is a barrier potential at the interface. As a pair
potential, we consider an s-wave spin-singlet and p-wave spin-triplet. For the s-wave spin-singlet case, the pair
potential is given by A, . (z,2') = AO(x)d(x — 2’)ide with the Heaviside step function O(z) and A € R. For the
p-wave spin-singlet case, we adopt A,/ (z,2') = AO(x)O(z') fdk‘eik(“‘_xl)sgn(k). In momentum space, the pair
potential for the p-wave S is given by A(k) = Asgn(k) with the signum function sgn(k). We can divide the BdG

. S . . . 1 T + T . .
Hamiltonian into two disconnected parts with basis (¢1(x),%|(z)) and (¢ (x),9{(z)) , respectively. Then, if we

T
choose the basis (¢ (), ’(/JI (x)) , the Hamiltonian can be reduced to a 2 x 2 matrix:

R 2 )
Hocalo ') =0l = o) | =520 = 0 UB(0)| 7+ O(0) Auale ), (548)
Ad(xz — ')y s—wave,
0 eik(xfm’)

A N =
2x2(z,x) AO(2') [ dk ( —ik(a—a') 0 ) sgn(k) p—wave
—e

(S49)

with Pauli matrices 7;—9,1,2,3 acting on particle-hole space.



In this approach, we first write down the scattering states in N and S regions at a given energy FE:

UN(z, B) =™ WY + ae™ O A+ bem PO,
US(x, E) =ce*r2 w8 4 de=hrogs

with

oN = (1,07, oN = (0,17,
TS = (ug,ve) ", T = (vn,un) ",

(£ ) () -5(3)
(o 2 () =2 ().

E? — A2(+k) E > |A(£k)],
Ey = (i/A%2(xk) — E?2  |E| < |A(Lk)],
—E? — A2(+k) FE <|A(£k),
2m

b=\

13

(S50)
(S51)

(S52)
(S53)

(S54)

(955)

(S56)

(S57)

with A(k) = A for the s-wave pair potential, and A(k) = Asgn(k) for the p-wave pair potential. We approximate
the Wave vector Wlth the Fermi momentum kr assuming that the Fermi energy satisfies > |A] and p > |E|. From

Eqgs. and ( , we obtain

A(k)
Ve E+Sgn(E)\/E2—A2(k;) |E| > |A(k)|a
I T V()
e E+i/A%(k)—E2 |E| < |A(K)],
A(—F) B
v7h — E+sgn(E)\/E2—A2(_k) |E| > |A( k)|7
| at— B < |A(=R).

Etiy/A2(—k)—E2
Next, we solve the boundary conditions at x = 0:

Nz = 0) = ¥5(z = 0),

These boundary conditions imply

a(E) = - ,
1422 (1- 2em)

Ue Uph
N Ve Uh
(2+iZ) (1— u—eulh)
4+ 72 (1— 17771) ’
2(2+iZ)L
4422 (1-mm)

—2iZ% L
d(E) = ol
1422 (1- tem)
~2mU
" kph?’

b(E) =iZ

(S58)

(S59)

(S60)
(S61)

(S62)

(S63)

(S64)

(S65)

(S66)
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Finally, the conductance is given by

e? 2 2
Lot (E) =5 |1+ a(E) - b(E)]. (S68)

When |E| < |Al, coefficients a(E) and b(E) satisfy |a(E)|* + |b(E)|* = 1, and Eq. (S68) can be recast as

2
(&
Pork(|E| < |Al) =5—2la(E) " (569)

T
We obtain the same results if we choose the basis (¢ (x), 1[4(33)) . The total differential conductance is given by the
sum of the two channels.

E. Green function in continuum system

We explain how to derive the Green function in the continuum NS junction (McMillan’s method [34]). The BdG

Hamiltonian is given by Eqgs. (S48) and (S49) with basis (14 (x),wj (x))T

) T
basis (¢ (x), @ZJ}L(:C))

Green function, we consider the following wave functions. The wave functions for z < 0 at complex energy E = E +in
(E € R) can be written as

. We can repeat the same procedure for the

and we obtain the same differential conductance. We suppose A € R. To calculate the retarded

U () =0Nehe? g UNethn® 4 g, e ther (S70)
Uy (x) =UNe Hn® 1 gauNe=ther 1 g pleikne, (S71)
U (x) =bsUNe ket 4 pGNeihne, (S72)
Ui () =br U en® 4 pg U eiker, (S73)
and likewise, for x > 0,
U () =by U5, e™+7 + by Uy _e™ -7, S74

with

Sl (F)EL ke =y Tl = (k)] (578)

B2 —|A(ky)]?  ReE > |A(ky),

Qkx) = ir/|AGkL)] — B2 |E| < |A(ky)], (S79)

—\/E?2 — |A(kL)|” ReE < —|A(kL)].



Here, UN = (1,0)", and ON = (0,1)". U5, = (uex,vex) " a
We,+ :l:]f+
A(:I:]{?Jr —We, £+ Ue +
—Wh,+ A +k_ Uh,+
A(:I:/C Wh,+ Uh,+
— |A(xky)?
Wet = { iy /|A(+ky)]? — E2

— [A(ER-)[
wh+ = 4 iy /|A(£k)|? — E2

Vot  A(Eky)

Ue,+ E + We,+ ’
vh_i - A(:I:k,)

Uh,+ E+ Wh,+

Here, for the spin-triplet p-wave, we used the approximation [ da’A(z, 2/ )uem), 4 (z) ~ ¢

for right going wave and ¢ = —1 for left going wave [35].

The coefficients aj—1,.. s, and bj—;, .. s are determined by the boundary conditions at x = 0:

\pjh(x =—0) = xlxjh(x =),

3‘11311(1’)
or

aq’fb (2)

with a positive infinitesimal number §. The solutions for a;—; ...

display the results for a; 2 3.4 below.

We also derive the eigenvectors: [dz¥T(z)H(z,2') = EVT ().

—\ B — |A (k)

—\/E?2 — |A(+k))?

=35 5‘:5 r=—0 o

nd U9, = (vhi,uhi) satisfy

Ue,+
Ve, + ’
Uh,+
up+ )’

ReE > |A(xk, )],
| < |A(£ky )],
ReE < —|A(%ky)],
ReE > |A(xk_)],
|E| < |A(£k-)],
ReE < —|A(+k_)|,

2mU
= h2 e,h (0) )

replacing te(n),+ and vVen),+ by Ue(n),+ and Ue(n),+, respectively, which are given by

(ﬂe,:t ﬁe,:l:) ( ok CA(:tk+)> :E (ﬂe,:lz 66,:|:)7

CA(Fky) —wex

(On,+ ﬂh,i)( ot CA(ik_)> =E (On,+ Un+),

CA(:‘:]{,) wh,i

with ¢ = 1 for the spin-singlet s-wave and ( = —1 for the spin-triplet p-wave.

The retarded Green function is given by

G®(x,2' | E) :{

In this equation, we take the limit  — 0. The arrows in Egs. (S70)—(S77) stand for asymptotic states ¥
Vi (z — —00) = 0. In the opposite limit, they diverge. Hence, Eq. (S90) converges in both limit (z,2’) —

W (@I (] + 0By (LT 2]+ as W ([T ()] + sy ()85 (@)]
B @ @) + B ¥ @)y (@] + B @[ @) + Ba ¥y (@) ()]

8 and bj—1, g are lengthy expressions.
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(S80)

(S81)

(S82)

(983)

(S84)

(S85)

(H)Aue(hxi(x) with C*} =1

(S86)

(S87)

We only

U is given from Eq. (S70) to Eq. (S77) with

(988)

(S89)

x>,

x> .

(S90)

Zh(x — 00) =
(OO’ _OO)

and (z,2') — (—00,00). It is noted that we assume that the S pair potential is real, and the Green function is given

by Eq. (590).

The retarded Green function GR(z, 2/, E) satisfies [E—H(k7 z)|GR(z, 2, E)=

The coefficients aj—1,... 4 and Bj=1,... 4 are determined by the boundary conditions

GRx+6,2,E) =GRz —6,z,F),

OGR(z,2', E)

ox r=x'+0 ox

B 0GR (x, 2, E) 2m

=3,
r=x'—§ h? 3

GR(z,2',E)[E—H (k,2')] = 6(z—2a').

(S91)

(S92)



16

The obtained results are

m aq by be bg
ol = — = (6% —_— oy = ——
1 ikh2’ (%) s b7041, 3= b7041, 4 b5042,
b
1 =ai, 2= a2, B3 = 527 Ba = —€ﬁ1 (593)

Then, the retarded Green function for x, 2’ < 0 can be written as

m (eikeax—;ﬂ/| + a26—ik: o(z+z") f(.’IJ, x/)ale—i(kew—khz/) >
’

:W f(z,2")a € i(kne—kez') a1 [e‘ikhkﬂ—wl‘ + a4eikh($+w')} (594)

G®(z,2', E)

as
where the coefficients a1, as, a3, and a4 are given by

2ke ot (ko + k)

N T likn Z (ke — Fn — bt k) + ko + ka2 + bk ] (T — 28 25) § (hhy + hnko) oo 2o - koh + hyky
(S95)
(kpZ(ke + kn + k— — ky) + ikEZ%] (1 — wet e ) —ilke — Ky ) (kn + ko) +iget o= (ke + ko) (b — k)
T ke Z (ke — Fn — bt k) — R 22 (1= et ) ik + by ) (R o+ o) e 2 (ke — ko) (k — k)
(S96)
as :alzm (S97)
[k Z (ke + hn — ko + ky) + k3 Z2] (1 — 2o 2my ik k) — ko) i 2 (h, — k) (b + k)
T ke Z (ke — h — bt k) — kR 22 (T — oo ) (ke + ) (h o+ Bo) + et o (g — b ) (k — ky)
(S98)

and f(z,z’) = 1 for the spin-singlet s-wave and f(z,z’) = sgn(x — ') for the spin-triplet p-wave. The advanced
Green function can be determined by G*(z, 2/, E) = [GR (2, x, E)]Jr
Eq. (S78) satisfies
ko) (—E) =ky(e) (E), (S99)
i (—E))” =k (). (5100)
From Eq. (S95), a; with positive and negative energy satisfy following relation:
ai(=FE) a1 (E)

=— . S101
k(CE) = k(D) (3100
The odd-frequency component of the retarded Green function is given by
R.odd . 7mf(x, .’El) (ll(E) 0 e—i[ke(E)x—kh(E)x’] F e—i[kh(E)x—ke(E)z’]
F2o% e, 2’ B) =—5 05— ko(E) \e—ilbn(B)o—ke(B)a')  g—ilke(B)a—kn(B)z'] 0 '
(S102)
Here, — sign is for the spin-singlet s-wave, and + sign is for the spin-triplet p-wave.
From Egs. and , we obtain
Fu(B) = 14 B0y ()~ foa(B)P ($10)
e - 7h ke 1 2 )
_ 62 2
In(B) =5 [1—laa(E)F] ($104)
Pr(E) = 10 )2 (S105)
P ok, T

Applying Andreev approximation, i.e., kp = ke = kyn, we obtain the differential conductance of the BTK approach
given by Eq. (S68|) with the BTK’s notation a1 (F) = a(E) and as(E) = b(E). It is noted that when we average over
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2 and 2’ according to Eq. (S2)), the contribution from x = z’ is not relevant for sufficiently large value of Ly — L1,
where the derivative of the Green function is not well defined at x = z’. Therefore, we can neglect the contribution
from z = 2’.

2 2
ee(0o) ! _ e 1) (et E) *(_ ; —i(ke—kn)(z+a")
% (z,2', F) =373 { (+) Tk 2Re [a (—FE)a1(E)sin 6 cos fe ]

(ke — kn)® —i(kethn) (z—a")
(o) e ) Re [al(—E)al(E)e et }
Kok
2k 2k,
+=lar(—B)* + a(B)* ¢, (S106)
ki ke
2 1 kh 2 k 2
T (2,2, E) == | “2|ay (B)|? — “%|ai(—E)|*] . 1
P B) =g | 0B - Ela B (s107)
After spatial averaging, we obtain
_ 1 /0
restooe) () =73 / dadz' TS (2, 2/ | E). (S108)
—L

Note that terms depending on x and 2z’ vanish for L — co. Then, the final result reads

Tee oo 62 11k ke

T¥(E) = TP(E) =g g [l () + Elan(-BP|. ($109)
eo e’ 1 kn 2 ke 2
#(E) =3 |l (B - -] (s110)

for E # 0. For E =0, ko = ki, = kp holds, and we obtain ['\°(E = 0) = 0 and

F?(OO)(E =0)=—r=|a (0)|2 [1 —(+)2sinfcosb)]. (S111)

Here, the angle 6 appears as introduced in Egs. (S5) and (S6). Equation (S111)) indicate that the decomposition
into even and odd-frequency contributions at £ = 0 is not unique. Note that this angle § does not affect the total
conductance measured in the laboratory.

T
Here, we show the differential conductance and its components for the basis (¢ (z), wI(m)) . By utilizing the basis

T
() (), 1/4(30)) , we obtain exactly the same differential conductance. Hence, the total differential conductance and

its components are given by the twice of Egs. (S103))-(S111)).

F. Approximation for momentum k. and ky

For |E| < p and |A| < p, we can approximate the wave numbers as kp = ko = k, = k4 = k_. a1, ag, a3, and ay
can be written as

4 Pt
a1(E) = “e+v — (S112)
4+ 72 <1 — Ci-*-L)

Ue+ Uh—
24iZ)(1 — Lot Ve
(2 +iZ)(1 — e o) s
4+Zz(1,”e7+£)7

G,Q( =1
Ue4 Uh—

4’0}]_
az(E) = e , (S114)
2 Vet Uh—
4422 (1- 2 om)
(=2 4iZ)(1 — Lot 2a)
ay(E) =iZ N (S115)
44+ 72 (1 — ﬁk)

Ue+ Uh—
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The coefficient a1 (F) for the s-wave junction is given by

22 |E| > [A],

2)sgn 2—|A2
a1(E) = { 2020 (BE)\/E2—|A B < 1A (S116)

2E+i(2+22)\/|A>—E?
and, for the p-wave junction, it becomes

24 |E] > [A],
E) — E(2422)+2sgn(E)\/E2—|A?
w{E) = 24 B < |A.

(S117)

E(2+72)+2iy/|A>—E?

For both s- and p-wave junctions, from Eqs. (S116]) and (S117)), we obtain

'Y (E) =0. (S118)
Then, the contribution of the anomalous Green function to I'r(E) for the s-wave case is

ZEE(E) =5 TR(E) = § la(B) + o (-B)P

2A%(E+sgn(E)VE*—A?)? |E| > |A|
_ ) (v ev 2 —sen(B) Efsen(B) BB 44 27) ) ; (S119)

2
A2(2+Z2)22—AE2Z2(4+Z2) |E| < |A|)

for E # 0. Likewise, for the p-wave case, the components of I'r(E) are

2mh 27h - 1 2 2

TTEE) =TFTRE) =  [[a(B) + [ar(-B)
2A2(E—i-sg;n(E’)\/E‘Q—AQ)2 . |E| > |A|

= ¢ {mm@aa7t ()P VET=AT 4470} ’ (S120)

[E| <]A],

IATTE2Z2(4+22)

2

for E # 0. For the p-wave case, the limit limpg_,o eff%o(E) = 1/2 irrespective of the value of Z due to the presence

of a Majorana state.

S2. LATTICE MODELS
A. 1D N/1D S junction on lattice

To compare our results between 1D continuum model and 1D lattice model, we first present the results about 1D
N/1D S junctions derived on the lattice. The mean-field Hamiltonian is given by

H =Hy + Ha, (S121)
Hoy=—1 Z (c;’acjﬂ,g + H.c.) — 1y Z (cT_Lgco,g + H.c.) — i Z c;[-’gcjm (S122)
j<—1,720,0 o j,o
Hy =AY (c}Tc;)l + H.c.) : (S123)
>0
p _A Pt ot S
HY =5 (Cmcjﬂ,l GG H'C-) ) (5124)
>0

with Ha = Hz(p) for the s(p)-wave junction. Here, { the hopping integral in 1D N and 1D S, #, the hopping integral
between 1D N and 1D S, p the chemical potential, and A € R the superconducting pair potential.
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B. Conductance in lattice model

T.(i,4, F) in the lattice model is given by

Lo(i, jy B) =mhTr [PdiGh,i (B); G5 (B)| (5125)
with the current operator on the 1D N side
e .. .
J :E[m7 HO] = Z C;(l,al Ji1,01,i2,02Cis 02 (8126)
1,12,01,02
. el
J :ﬁ((sil,iz—l - 5i17i2+1)601702’ (8127)
E=Y ricl e, (S128)
3,0
. 0 J..
Ji=|; N“) , S129
! (Jj+1,j 0 (5129)

where 7; is the spatial position of the j-th lattice site. GLM (E) and Ggﬂ"j (E) are given by

A Gl(2)i i(E) él(Q)i i+1(E) )

Gyoii(E)=| = 4d ~ b , 5130
12 J( ) <G1(2)7i+1,j(E) G1(2),i+1,j+1(E) ( )
a g - 7 [G(E) = G (E)] i=joi=j*1, S131

1 (E) = \/%m, [sin Héﬁj(E) — cos Qégj(E)] other cases, ( )
1 [A “R L
SN _J2m [Gi,j<E)_Gi,j(E)] i=yg,1=7%1,
G24(E) = { \/%m, [cos (‘)Gﬁj (E) —sin Hégj (E)] other cases. (5132)

Note that we introduce the same angle 6 as in Egs. and in the continuum case. In the main text, we use
0 = /2 for 1D N (ladder)/2D S junctions since the numerical convergence is the fastest.
We denote the spatial averaging of Eq. (S125)) as

_ 1
To(E) =— T.(i,j, E).
o(B) =13 _Lg%:g_l iy, ) (S133)

Here, let us show ['%?(E) = 0 for the lattice model. The BAG Hamiltonian H has particle-hole symmetry:

C™'HC = - H, (S134)
hoA

H= (N hT> , (S135)

C=hHK (S136)

with complex conjugation operator K. The Green function G(z) = (z — H) ™' (z € C) satisfies GT(2) = G(z*) and
C71G(2)C = -G(-=2").

Gl(E) =Gy (E), (S137)

2 Tz
|:Flcvcn(odd) (E)} :cmven(odd) (E), (8138)
C—1é1(2) (E)C :él(g)(—E)7 (8139)
Cflﬁleven(odd) (E)C _ (+)F2even(odd) (E), (8140)
C1JC = - %C*l[:ﬁ,ﬂo]cz —J (S141)

with HO = <g %T), T = (g _Om>, Tr = dlag( ey P17, T 41, T542, - - .), C*%C’ = —j, GA(E) = G(E - ZT}), and

GR(E) = G(E + in).
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[(E)

S-wave

2

27h

I'(E)

p-wave
h T
2

2
e

E/A E/A E/A

FIG. S1. T(E), I'n(E), Tr(E), and T%(E) are plotted as a function of E for £,/ = 1, 0.7, and 0.4 with A/f = 0.1,
p/t=—0.5, 1/t =10"7, and L = 500. (a)—(c) 1D N/1D s-wave junctions, and (d)-(f) 1D N/1D p-wave junctions.

The cross term between even and odd frequency pairing for the differential conductance satisfies

A 2 T
(024, j, E)]" =rhTr [PCJ FEven(B)J, 59 (E)] + (even < 0dd)

1,2,9 2,7,%
odd 7 even f
—nhTr { P.J; [ 999(B )} J; [F“] (E)} + (even < odd)
—nATr [PCJ Foid () even(E)} + (even < odd)

1,2,9
T, j, ). (S142)
Here, we use the relation P.J; = J; P.. Also, from particle-hole symmetry, IS0 (1, 4, E) satisfies
[ (i, §, B)]* =nhTr [c tpcotj,cot fo;( ycc—tj,cct §‘JidZ(E)C} + (even « odd)
—  7RTY {PhJ FEven(B)J; ﬁodd(E)} + (even < 0dd)

2,4, 1,5,%
- F%)(ja i, E) (8143)

with P, = (7o — 73)/2. After averaging over i and j of Eqs. (S142)) and (S143)), we obtain ['S°(E) = 0.

C. T.(E) and odd-frequency pairing

The components of ['o(E) for the s-wave junction are shown in Figs.[S1{a)—(c). The qualitative results are the same
as those in the continuum model. We attribute all differences to finite-size effects. In Fig. a), z’—ff‘e(E) at E=0
is almost 4 (the maximum value). At p = 0, we can analytically obtain the condition of 2Z*T'.(E = 0) = 4 for the
s-wave junction, which is given by & = At;f:y;iii:;?;ts. Figures S1}(d)—(f) show ['o(E) and its components for
the p-wave junction. At F = 0, %ﬁf‘e(E = 0) = 4 holds due to the presence of the Majorana state independent of
the value of f}, since the chemical potential resides in the topological regime.

In Fig. [S2] the anomalous Green function as a function of the Matsubara frequency in 1D N is shown. The onsite
and nearest neighbor (NN) spin-singlet (SS) and spin-triplet (ST) components are given by

onsite,even(odd . .
FSS(StT) ( ) 7 {[ i (wn) + CF23 | g (iwn)] + € [F23 1 (miwn) +CF2E g | 1 (=iwn)] }
(S144)
i even(odd) ¢; = {[ iwn) 4+ CF2 (iwn)] + € [F13 (—iwy,) + CF'2 (—iwn)]} (S145)
SS(ST) —2 =11, l n -2,—-1,1,7 n -2,-1,1,1 n -2,—-1,1,7 n

with ¢ = —1 for the SS case, ( = 1 for the ST case, £ = 1 for the even frequency pair, and £ = —1 for the odd
frequency pair.
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FIG. S2. The anomalous Green function on the 1D N side is plotted as a function of w,. (a)—(c) spin-singlet components of
s-wave junctions, (d)—(e) spin-triplet components of p-wave junctions. (a) Real part of onsite component, (b) real part of the
NN even-frequency component, (¢) imaginary part of the NN odd-frequency components. (d) Real part of onsite component, (e)
imaginary part of the NN even-frequency component, (f) real part of the NN odd-frequency components. ImFgg SIECCVOR () =
IMFLE " (iwn) = ReFgg * (iwy,) = 0 for the s-wave junction. TmFgp™ " (iw,) = ReFgp V" (iwn) = ImFgp °% (iw,) = 0
for the p-wave junction. A/f = 0.1 and p/f = —0.5.

In Figs. a)—(c), anomalous Green functions for s-wave junctions are shown. Figures. a) and (b) display
the even frequency components. Both of them have non-zero values. Fig. c¢) displays the NN component of
odd-frequency pairing. Note that ImFSNSN’Odd(iwn) has jump at w, = 0. This jump significantly contributes to
I'r(E = 0). Figures (d)f(f) show the anomalous Green functions for p-wave junctions. Figures. [S2(d) and (f) are
the corresponding odd-frequency components. These components (with w, — 0) contribute to I'r(E = 0). Due to
the presence of the Majorana state, the odd-frequency component of F(iw, — =+0) is independent of f,. Additionally,
the even-frequency component of the anomalous Green function [Fig. e)] with w,, — 0 is independent of w,,.

In Fig. we show @ and L dependence of T¢(E) — I'®(E) and I'°(E) for s-wave junctions. The numerical
convergence of ['$$(E) — ['99(E) is the fastest for # = 0 and 7/2. For the continuum model, in Eq. (S106), the first
term, which has longer spatial oscillation period compared with the second term, is zero for § = 0 and 7/2. This
indicates that at # = 0 or 7/2, the slowly varying term also vanishes in lattice models, which might be the reason
that the numerical convergence is the fastest. T$°(E) is zero within numerical errors. For p-wave junctions shown
in Figs. the numerical convergence of T$¢(E) — T'S?(E) is also the fastest for # = 0 and 7/2. T?(E) is also zero
within numerical error. We conclude that average values do not depend on € for a sufficiently large averaging length
L.

D. i and j dependence of I'% (4,7, F) and I'% (3, 5, F)

We discuss the positional dependence of T'%°”°(7, j, E) for the 1D N/1D S junction. In this section, we adopt
0 =m/4. We fix i = —1 and study the j dependence of the components of I'.(—1, j, E).

Figures and display T'c(i = —1,4, F) and its components for the 1D N/1D s-wave and 1D N/1D p-wave
junction, respectively. As discussed in Sec. To(i,j, F), I'x(4,4, E), and T'r(i, 4, E) are independent of ¢ and j.
In s-wave and p-wave junctions, I'S?(4, j, E) = 0 holds. We see that I'SS(—1, j, E) and I'¥*(—1, j, E) have a finite j
dependence. From Figs. [S5| and [S6, we observe that the spatial dependence of I'>°°(—1, j, E) is smaller for smaller A
(A/t =0.01). When A becomes larger (A/t = 0.5), I'%°°(—1, j, E) changes rapidly as a function of j. These results

indicate that the oscillation period is determined by the superconducting coherence length.
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FIG. S3. L and # dependence of |[T'%(E)

AfF=01,5/E=1, p/i=

Figures [S7] E and E show T’
respectively. In these figures,

Here, we show that ['$$(F) =T
types of disordered 1D junctions as shown in Fig.

—T%(E)| and [T (E)| are plotted as a function of E for 1D lattice s-wave junctions.
7

—0.5, and n/t =107".

(4,4, F) and its components for the 1D N/1D s-wave and 1D N/1D p-wave junction,
we can see that the qualitative behaviors are the same as Figs. [S5] and [S6] respectively.

E. Robustness of I'$S(E) = ['Y(E) against disorder

I'%(FE) holds in the presence of disorder by numerical calculation. We consider two
1) Normal metal/disordered S/S junction [Fig. [S9(a)]. 2)

Normal metal/disordered metal/S junction [Fig. [S9b)].
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FIG. S4.  Size and 6 dependence of |T$$(E) — I'%(E)| and |T$2(E)| are plotted as a function of E for 1D lattice p-wave
junctions. A/t =0.1, #,/f =1, u/t = —0.5, and n/f = 107",

The Hamiltonian for the normal metal/disordered S/S junction is given by

H =Hy, + Honsite + HA7 (8146)
Hkln:_tz<]O-C]+1U+HC)_th(C 1UCOU+HC> (S147)
Jj#lo
0r151te - — ,Ufz C] oCij,o + Z ‘/;'Cj7acj’gy (8148)
0<j<Limp,o

0mP &t
Ho - AY 0<icim (LT E5) (ez ICiaC +H.c.> TAY < ( i€ j ! +H c) s—wave,
= ;gimP T + +
AZoga‘dimp—l(l +ej) (el TGy T H'C~) FAY i< ( el rehin + H'C') p—wave.

In Fig. To( and its components are shown for the s-wave S junction given by Eq. (S146) with
(G;r‘f;l)’(/w,u/ ) ( 5, = 5) In Fig. b), I'S(E) and I'?(E) are plotted. We can confirm that I'SS(E) = T'%®(E)

(S149)
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FIG. S5. Te(-1,4,E), I'n(-1,4,E), I'r(-1,4,E), I'v(-1,4, E), I'¥(-1,5, E), and 'Y (-1, j, E) are plotted as functions of
E and j for 1D N/1D s-wave junction with p/t = —1, (&, /t, A/t) = (1,0.01), (1,0.1), (1,0.5), (0.7,0.01), (0.7,0.1), (0.7,0.5),
(0.4,0.01), (0.4,0.1), and (0.4, 0.5).

holds within numerical accuracy. Explicitly, we show the difference between I'S¢(FE) and ['%*(E) in Fig. c). The
difference is small when |E|/A is not small. When |E| is close to zero, the difference becomes larger, which we at-
tribute to a finite size effect. This behavior is the same as Fig. In Figs. (dff), we show impurity configuration
averaged values defined by

Nimp
= 1 _
To(B) = > To(EB). (S150)
mpy—q

Here, we imply the impurity configuration average by the double over bar. The components of f‘e(E) are defined in
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FIG. S6. Te(-1,4,E), I'n(-1,4,E), I'r(-1,4,E), I'v(-1,4, F), I'¥(-1,5, E), and 'Y (-1, j, E) are plotted as functions of
E and j for 1D N/1D p-wave junction with p/t = —1, (¢v/t,A/t) = (1,0.01), (1,0.1), (1,0.5), (0.7,0.01), (0.7,0.1), (0.7,0.5),
(0.4,0.01), (0.4,0.1), and (0.4, 0.5).

the same manner. The difference between I'¢(E) and T'9°(E) shown in Fig. f) is larger than in Fig. ¢) but
is still small.

[e(F) and its components for the normal metal/disordered S/S junction for the p-wave S is shown in Figs. a)
and (b) in the topologically nontrivial phase (0P /7, u/t) = (0.5,—0.5). The differential conductance at £ = 0 is

quantized to 42;25 since the disordered p-wave S has the same symmetry as the clean p-wave S, which is classified
in class D in topological classification. Figure c) shows the difference between I'S(E) and I'¢?(E). Evidently,
I'S(F) = I'Y(F) holds within numerical accuracy. The qualitative behavior of [I'S(E) — I'°(E)| is the same as for

the s-wave junction i.e., the difference between I's$(E) and T'9°(E) is small when |E|/A is large, and that is large
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FIG. S7. Te(4,5,E), In(4,4,E), Tr (4,5, E), T% (4,5, E), T% (4,5, E), and T'¥ (4, 4, E) are plotted as functions of E and j for
1D N/1D s-wave junction with u/t = —1, (t»/t, A/t) = (1,0.01 ), (0.7,0.01), (0.7,0.1), (0.7,0.5), (0.4,0.01),
(0.4,0.1), and (0.4,0.5).

—

when E is close to zero.

In addition to the normal metal/disordered S/S-junction, we consider the normal metal/disordered metal/S-junction
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FIG. S9. Schematic of junction with disorder in (a) the superconducting region and (b) the normal region.
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FIG. S10. The differential conductance and its components for the normal metal/disordered s-wave S/s-wave S junction.
(a) Te(E) and its components are plotted as a function of E. (b) T'%(E) and T%(E) are plotted as a function of E. (c) The
difference between T'%(E) and T'%°(E) is plotted as a function of E. A/f = 0.1, #,/ = 0.7, p/f = —0.5, n/f = 1078, 4P = 7/2,
Limp = 100, and the averaging area L defined in Eq. is L = 500. (d)—(f) Averaged results over Niyp = 100 impurity
configurations.

[Fig. [S9(b)]. The Hamiltonian is given by

H =Hyy + Hopsite + HA7 (8151)
Han=—1 Y (cj,acj%a n H.c.) _ (cT_McO,C, n H.c.> , (S152)
Jj#—l,0 c
Honsite = — HZ C;',ocjp + Z V}'C;r'ﬁcj,g, (8153)
J,o —Limp<j<0,0

A o<; (:;’Tc}’l + H.c.) s—wave,

Hp =
A o< C;‘,TC;HJ + H.c.) p—wave.

(S154)

with the random potential V; in the disordered metal region with \Vj|/f <0.1.
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The differential conductance and its components for the normal metal/disordered p-wave S/p-wave S junction.

(a) Te(E) and its components are plotted as a function of E. (b) T'$(E) and T%(E) are plotted as a function of E. (c) The
difference between I'%S(E) and T'%°(E) is plotted as a function of E. A/t = 0.1, &,/t = 0.7, u/t = —0.5, n/t = 1078, 9k = 7/2,
Limp = 100, and the averaging area L defined in Eq. is L = 500. (d)—(f) Averaged results over Nimp = 100 impurity
configurations.

Figures a) and (b) show the differential conductance and its components for the s-wave S junction. The
difference between T'%¢(E) and ' (E) is larger than in Fig. c). The impurity configuration averaged values are
plotted in Figs. dff). The order of the magnitude the difference between T'%¢(E) and T'9°(E) [Fig. f)] is
the same as the unaveraged one [Fig. c)] To confirm that the difference reduces with increasing system size, we
calculate ['¢(E), its components, and |T¢(E) —['9°(E)| for several values of L as shown in Fig. From Fig. d),
we can see that the difference decreases as L increases. We expect that the difference approaches zero as L — oo.

Figures a) and (b) show ['o(E) and its components for the normal metal/disordered metal/p-wave S junction.
The differential conductance at E = 0 exhibits a quantized value, T'o(E = 0) = 4%, since the chemical potential
is in the topologically nontrivial phase (u/f = —0.5). As for the s-wave S junction, I'S$(F) and T9°(E) are almost
the same when |E| is not too small. As |E| becomes smaller, the difference becomes larger [Figs. [S14(b) and (c)].
We show the disorder configuration averaged values in Figs. dff). The order of the magnitude of the difference
between ['%¢(E) and T (E) [Fig. f)] is the same as the unaveraged one [Fig. |S14{c)]. As shown in Fig. m the
difference becomes smaller as L increases. We expect that the difference between I'$(E) and f‘%o(E) approaches zero
as L — oo.
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FIG. S12. The differential conductance and its components for the normal metal/disordered metal/s-wave S junction. (a)
T'e(E) and its components are plotted as a function of E. (b) I'*(E) and I'%°(E) are plotted as a function of E. (c) The
difference between I'4(E) and T'%°(E) is plotted as a function of E. A/f = 0.1, &,/ = 1, u/t = —0.5, n/f = 1078, and
Limp = 10, and the averaging area L defined in Eq. is L = 900. (d)—(f) Averaged results over Nimp = 100 impurity
configurations.

F. Hamiltonian for 1D N/2D S lattice model

The Hamiltonian for the 1D N (ladder)/2D S junction based on lattice models (Fig. [S16)) is given by

H =H39) 4 gy g4 (S155)
HlD = — 1? Z (C;’gcj-ﬁ-l,o’ + HC) — UN ana (8156)
j>0,0 7>0
Hi%ddef =_1{ Z (E;7y7géj+1,V,U + H.C.) — grung Z (E;[,A,géj,B,U + H.C.) — UN Z nj, (8157)
j>0v,0 j>0,0 j>0
Hap =1 3 (b bio +He) = s Db b0+ Ha, (S158)
(1,j),0 Jjo
Hipoap =—1 > (c}gbjw + H.c.) : (S159)
H% = — 15> (e a obine + ] obigte,.o + He) (5160)

with n; = > _ c;’acj,o, Nj = 6, —AB E;,V,Uéjw,g and jo in Eq. (S159) is jo = (0,0) in 2D S. Here, ¢; (c;f"a) is an

annihilation (creation) operator in 1D N with site j and spin o, bj » (b}ﬁ) is an annihilation (creation) operator in 2D

S, and & u.0 (6;r o) is an annihilation (creation) operator in 1D N ladder with the rung degrees of freedom v = A, B.
f is a hopping integral in 1D N and 2D S, #}, is a hopping integral between 1D N and 2D S, and pux (us) is a chemical

potential in 1D N and 1D N ladder (2D S). For simplicity we choose frung = {. We consider s-, p, (py)-, and d-wave
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FIG. S13. The impurity configuration averaged differential conductance and its components for the normal metal/disordered

metal/s-wave S junction with several values of L. (a—c) f‘e(E_) and its components are plotted as a function of F for (a) L = 300,
(b) L =600, and (c) L = 900. (d) The difference between I'ss(E) and I'9*(E) for L = 300, 600, and 900. A/ = 0.1, &,/ = 1,
p/t=—0.5 1/t =10"% Limp = 10%, and Nimp = 100.

pair potentials, where Ha is given by H3}, HZ’ (py), and Hg, respectively:
Hi =AY (], + 1), (S161)
J
P S (e el +é +He (S162)
A 9 3,178yl 31 Tiea(yy T o
J
gd _A ot ot ot St ot u 9163
ATT > (@18 hent = B8t — G181e,1 8184, THE), (5163)

J

with é; = (1,0) and é, = (0,1). To calculate the Green function, we utilize the recursive Green function method [65].
For 2D S, we impose periodic boundary conditions in a-direction with L, sites. We adopt 6§ = /2 in the following.
The spatial averaging is taken in 1D N (ladder) as

= 1 .
Fe(E) _ﬁ 1S§SL Fe(lvjv E) (8164)

G. Size dependence of I'.(F) and its components and anomalous Green function in 1D N for 1D N/2D S
junction

In Figs. a)—(f), we show I'o(E) and its components for s-, p,- and d-wave junctions. Figures a), (c), and
(e) are also shown in the main text. For the s-wave junction, we show I'c(E) and its components with #,/f = 0.5
in Fig. b). Similar to continuum and lattice 1D N/1D S s-wave SC junctions, as f,/f decreases, the shape of
['.(E) approaches the U-shaped density of states. For p,-wave and d-wave junctions, independent of the value of iv,
Andreev reflection is zero: I'r(E) = 0. The difference between T'S¢(E) and ['9°(E) are plotted in Figs. (g)f(l).
This difference for s-wave junctions [Figs. g) and (h)] becomes smaller for increasing L. For p,- and d-wave
junctions, T'S¢(E) — ['%°(E) is zero within numerical errors [Figs. [S17(i)-(1)]. T (E) is plotted in Figs. [S17(m)-(r). It
is zero for all cases. The penetrated anomalous even and odd-frequency pairings are shown in Figs. s)—(x) (see
also Fig. [S18)). The onsite and nearest neighbor (NN) pairings in 1D N are defined as

nsi ven . 1 . . . .
Fipnssen  (iwn) =7 {FLLn (wn) + CFLL L (iw0)] + € [P (=iwn) + CFLL (—iwa)]} (S165)

NN, even(odd) ;- 1 . ) . )
Fip s wn) =7 B2, (wn) + CFr2, 1 (wn)] + & [P, (iwn) + CFz, i (—iwn)l} (5166)
with ¢ = —1 for the SS case, ¢ = 1 for the ST case, £ = 1(—1) for even (odd) frequency pairing. By analytic

continuation, iw, — FE + in, we obtain the retarded anomalous Green function shown in Figs. s)—(x). As
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FIG. S14. The differential conductance and its components for the normal metal/disordered metal/p-wave S junction. (a)
T'e(E) and its components are plotted as a function of E. (b) I'®(E) and I'%°(E) are plotted as a function of E. (c) The
difference between I'4(E) and T'%°(E) is plotted as a function of E. A/f = 0.1, &,/ = 1, u/t = —0.5, n/f = 1078, and
Limp = 10, and the averaging area L defined in Eq. is L = 900. (d)—(f) Averaged results over Nimp = 100 impurity
configurations.

discussed in the main text, even and odd-frequency pairings only penetrate into 1D N for s-wave junctions. For p,-
and d-wave junctions, even and odd-frequency pairings do not penetrate into 1D N within numerical errors.

H. NN anomalous Green function in 2D S for 1D N/2D S junction on lattice

We calculate the nearest neighbor (NN) component of the anomalous Green function in 2D S shown in Fig. It
can be written as

8.0y, NN,even(odd) ,, . 1 . .
FZD(,yS)S(ST) (3 iwn ) =1 {[Fi—e,pd11 (iwn) + CFy—e, ) 301 (iwn)]
€ [Fieyiyy i1l (—10n) + CFymg, ) ,0,1 (—iwn)] } (S167)

with ¢ = —1 for the SS case, ( = 1 for the ST case, £ = 1(—1) for the even (odd) frequency pairing. The NN

components of the anomalous Green function in 2D S are shown in Fig. Let us define F' SN g’even(‘)dd) for s and

d-wave junctions as

NN,even(odd) _ +é,,NN,even(odd) /s . éz,NN,even(odd) /. A
Fgg *me),ss (Jos twn) + (*)Fzﬁ,ss (Jo + €z, iwn)

T Fpss ™ (o, ion) + (2 Pyt s M (o -8y o), (3168)
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FIG. S15. The impurity configuration averaged differential conductance and its components for the normal metal/disordered

metal/p-wave S junction with several values of L. (a—c) T'e(E) and its components are plotted as a function of E for (a)
L =300, (b) L =600, and (c) L = 900. (d) The difference between I'sS(E) and T'%(E) for L = 300, 600, and 900. A/f = 0.1,
th/t =1, p/t = —0.5, 0/t = 1078, Limp = 10, and Nimp = 100.

() (b)

—f
. ) S
y . _ {b } - trung
—t

/KV/ 7~/ /

/ /
7/ 7/

FIG. S16. Schematic picture of 1D N/2D § junctions. (a) 1D N/2D S junction and (b) 1D N ladder/2D S junction. The 1D
N is connected to jo = (0,0) of the 2D S, and the 1D N ladder is connected to jo and jo + é.

and Fp o) for the p,-wave junction as

T

NN,even(odd) _ 1+é,,NN,even(odd)
FST 7F2D ST

)

. é2,NN,even(odd) /. .
(_]07 an) — (+)F2€D,ST even(o )(.]0 + &y, an)
+ Fy s M (o i) — (1) e s M (o + &y ). (5169)

If Fsl\j 11)\1 edv en(edd) 4 1ot zero, then, the NN component of the even (odd) frequency pairing can penetrate into 1D N.

. . &,,NN, . &, NN, . .
For s-wave junctions, Fyi'as " (j,iwy,) and Fol e ™ (j,iwy,) have s-wave spatial structure. Hence, they have

the same sign for any j §inceN§Ihe§§ pairings exist in bulk. Then, FSI‘\;N’EVEH # 0 holds, and Nl\lf\I Svir;—frequency pairing
penetrates into 1D N. F;E)“é)s 3, iwy, ) has p,(,)-wave spatial structure. The sign of F;B(,%)é ° (j, iwy,) is opposite

for ju(yy <0 and jy(,) > 1 since this pairing is induced by 1D N. Consequently, FSI\ISl\LOdd # 0 holds [see Fig,. Ma)].

For p,-wave junctions, F§5g¥ YER(J, iwy,) is related to the bulk pair potential. Thus, it has a large amplitude.
Fyy sy " (j, iwy) has a uniform sign and F§5§¥ V(5 dw,) is zero at j, = 0. Consequently, Fap " = 0 holds.
Fffsgg‘Odd (j, iwn) and Ff%’g?’()dd(j,iwn) are induced by 1D N. In z-direction, ng’gg’()dd (j, iwn) changes its sign as
shown in Fig. b) and the NN odd-frequency components cancel each other. In y-direction, F%I;};I ’Odd(j, iwy) 18
zero at j, = 0 and cannot penetrate into 1D N. Totally, Fsl\ITl\I’Odd = 0 holds.

For d-wave junctions, ;ng YER(5, dwy) and F;Blgg Y*"(§,iw,) have the opposite sign due to d-wave symme-
try. The a-direction and y-direction components cancel each other and F%N’even = 0 holds. erf,gg 445 iw,) and

F;%gg ’Odd(j7 iwy) are induced by 1D N. As illustrated in Fig. ¢), x- and y-directional components cancel each

other, and FSNSN’Odd = 0 holds.
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FIG. S17. (a)-(f) Te(F) and its components are plotted as a function of E with L = 500. (g)—(1) |T$$(E) — T'%(E)| is plotted

as a function of E for several values of L. (m)—(r) |T$°(E)] is plotted as a function of E for several values of L. (s)—(x) absolute

value of anomalous retarded Green function is plotted as a function of E.
(C), (d)> (1)’ (J)7 (0)7 (p)7 (u)7 and (V) px—wave Junctlon

junction.

(a), (b), (g), (h), (m), (n), (s), and (t) s-wave
(e), (), k), (), (q), (r), (W), and (x) d-wave junction.

(a), (), (e), (), (i), (K), (m), (0), (a), (s), (w), and (w) £u/f = 1 and (b), (d), (£), (h), (3), (1, (n), (b), (), (1), (v), and (x)

tn/T = 0.5.

We_now illustrate the f, dependence of To(E = 0) for 1D N/2D s-wave junctions in Fig. [S21
the maximum value of I'o(E = 0) is obtained at approximately #,/t = 0.9 for A/t = 1077 and #,,/t = 0.8
), and (d), respectively], the maximum value of I'c(E

Fig. B21f)],

for A/t = 1073, For ug =

is obtained at approx1mately iy /t = 1.1, 1.4, and 1.5, respectlvely fp that gives the maximum value of T (E

—0.1,

FIG. S18. Schematic picture of F}

L, =107, A/i=0.1,and n/t =10"".
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—1, and —2 [Fig.[S21]b), (
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of To(E = 0)

almost the same for A/f = 102 and 103 for us = —0.1, —1, and —2,

and FROY.

For pug = 0
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=0) is
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FIG. S19. NN components of the anomalous Green function in 2D S are plotted as functions of j, and j, at w,/A = 0.1 for
the 1D N/2D S junction. Here, un/f = —0.5, us/f = —1, #,/t = 1, A/t = 0.1, and jo = (0,0) is connected to the 1D N side.
For s-wave and d-wave junctions, the spin-singlet component is plotted. For p,-wave S junctions, the spin-triplet component is
plotted. For s-wave and d-wave junctions with even-frequency components, the real part is plotted. For the corresponding odd-
frequency components, the imaginary part is plotted. For p,-wave junctions with even-frequency components, the imaginary
part is plotted. For the corresponding odd-frequency components, the real part is plotted. The counterparts are numerically
Z€ro.

.. . éz(y),NN,odd , . . . &z (y) NN,odd , . . .
FIG. $20. Schematic illustration of (a) FyrLy™ " (j, iwn) for s-wave junction, (b) Fyn@W *“(j, iwy) for p.-wave junction,
& (y) NNyodd ,, . o ,
and (c) Fyp &g (j, wn) for d-wave junction.

J. Te(E) for 1D N ladder/d-wave S junction close to u =0

We show pg and #}, dependence of T'o(E) for the 1D N ladder/2D d-wave junction in Fig. We calculate T'o(E)
for us/t = —0.5, —0.1, and 0. In Figs.e)—(i)7 ['(E) shows zero energy peaks. These peaks originate from the
peak structure of I'(E). The 2D square lattice model has a von Hove singularity at ug = 0. Hence, the zero energy
peak of T'o(E) might come from the von Hove singularity.
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FIG. S21. T.(E = 0) is plotted as a function of #, for the 1D N/2D s-wave S junction with L, = 2 x 105, and /f = 107" for
several values of punx and A. (a) pus/t =0, (b) us/t = —0.1, (¢) ps/t = —1, and (d) ps/t = —2.
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FIG. 522. The components of I_“e(E)ufor the 1D N ladder/d-wave S junction is plotted as a function of E for several values
of ug and ¢, with A/t = 0.1 and u~/t = —0.5. (us/t,tn/t) is (—0.5,0.5) for (a), (—0.1,0.5) for (b), (0,0.5) for (c), (—0.5,1)
for (d), (—0.1,1) for (e), (0,1) for (f), (—0.5,1.4) for (g), (—0.1,1.4) for (h), and (0,1.4) for (i). L = 500, L, = 2 x 10° and
n/t=10"".

K. Size dependence of T.(E) and its components and anomalous Green function in 1D N for 1D N
ladder/2D S junctions

In Figs. a)—(d), Te(E) and its components for 1D N ladder/2D S junctions are plotted [Figs. [S23|b)—(d) are
also shown in the main text]. The maximum value of T'(E) is eight since there are two conducting channels in 1D N
ladder. The s-wave result [Fig. [S23{a)] is qualitatively the same as that for 1D N/2D S junction.

We show the difference between I'S*(E) and ['%(E) in Figs. e)—(h). For s-, p,-, and d-wave junctions
[Figs. e), (f), and (h), respectively|, the difference becomes smaller as L increases. For p,-wave junctions, the
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FIG. S23. (a)-(d) I'e(E) and its components are plotted as a function of E. (e)-(h) |[['%(E) — '%°(E)| is plotted as a function

of E for several values of L. (i)—(1) |[I'% (F)] is plotted as a function of E for several values of L. (a), (e), and (i) s-wave, (b),

(f), and (j) pz-wave, (c), (g), and (k) py-wave, and (d), (h), and (1) d-wave junction. #,/f =1, A/{ = 0.1, L, = 2 x 10°, and
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difference is zero within numerical errors [Fig. g)] [ (E) is shown in Figs. i)f(l). In all cases, it is zero
within numerical errors.

In Fig. [S24] the odd-frequency pairing in the 1D N ladder for the s-, p,-, p,- and d-wave junctions are shown. For
s-, Po-, and d-wave junctions, even and odd-frequency pairings penetrate into the 1D N ladder. However, for p,-wave
junction, they do not penetrate like for 1D N/2D p,-wave junctions.

L. Even and odd-frequency pairings in 2D S for 1D N ladder/2D S junctions

In Fig. [S25 NN components of anomalous Green functions in 2D S are plotted. We can employ Eq. for
s-wave and d-wave junctions, and Eq. for p,-wave and p,-wave junctions for j = jo. For s-wave junctions,
we confirm FSI,\ISI\I’even # 0 and FSI\ISI\I’Odd # 0. Hence, NN even and odd-frequency pairing penetrate into the 1D N
ladder. We can discuss the same properties for another 1D N ladder point (j = jo + &,). For p,-wave junctions,
NN even-frequency components in y-direction do not cancel each other and penetrate into 1D N ladder. Likewise,
NN odd-frequency pairings do not cancel each other and penetrate into the 1D N ladder. For p,-wave junction,
NN even and odd-frequency pairings are qualitatively the same as 1D N/2D p,-wave junction. Then, NN even and
odd-frequency contributions cancel each other and do not penetrate into the 1D N ladder. For d-wave junctions,
although even and odd-frequency pairings cancel each other in « and y-direction in 1D N/2D d-wave junction, this
symmetry is broken by the 1D N ladder. Hence, these two directional components do not cancel each other. Then,
NN even and odd-frequency pairings penetrate into the 1D N ladder.

S3. RECURSIVE GREEN FUNCTION METHOD

We now explain the recursive Green function method for 1D N/2D S junctions. The extension to 1D N ladder/2D
S junctions is straightforward. To derive the Green function in 2D S, we consider periodic boundary conditions in
z-direction and infinite system size in y-direction. The bulk Green function with momentum £k, is obtained by the
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FIG. S24. (a) Schematic picture of anomalous Green functions. (b)—(q) The anomalous Green function is plotted as a function
of wy, with #,/f =1, A/ = 0.1, ux/t = —0.5, s/t = —1, and L, = 10°. F[2"&° is zero for all cases and is not plotted.

surface Green function of left [G’i]:jy ;,(?)] and right [GZ?Z: , (?)] semi-infinite systems:

-1

52D 42D, -1 v XoD /. \F

G, 5, () ={ [P — B G ()i} (S170)
with fop = —t6¢73 for the s-wave and py-wave superconductors, top = —i6073 + Ad175 /2 for the p,-wave case, and
fop = —16073 + Adats /4 for the d-wave case. Here, z € C is a complex frequency, where z = iw,, for the Matsubara

frequency representation, and z = E — (+)in for the advanced (retarded) Green function. Then, the real space
representation of the Green function is

. 1 . . . .
G (2) =7 D Gl g, (27 (S171)
L

The Green function in 1D N is obtained by the surface Green function in the 1D N G*P(z) and G32; (2):

Josdo

G = ([0 ) - BGD, (R) (s172)
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FIG. S25. The NN components of the anomalous Green function is plotted as functions of j, and jy at w,/A = 0.1 for
the 1D N ladder/2D S junction. Here, (jz,jy) = (0,0) and (1,0) are connected to the 1D N ladder. For the s-wave, p,-wave
and d-wave S junctions with even-frequency components, the real part is plotted, and for the odd-frequency components, the

imaginary part is plotted. For the py-wave S junction with even-frequency components, the imaginary part is plotted, and for
the odd-frequency components, the real part is plotted. The counterparts are numerically zero.

with #, = —#,73. To calculate the differential conductance, Green functions in 1D N are needed. For instance, G %Dl (2),
G13(2), GiB(z), and G35 (2) are given by

CIB(2) = (= + i) — G, (] (5173)

G%%(z) :G’ID’*(z)leGiH(z), (S174)

G3h(2) =GIR ()G (2) (S175)

with #1p = —{#3. In the same manner, we can obtain the matrix components of the Green function in 1D N ladder
and 2D S. To calculate the Green function in the 2D S, we calculate G2, . (2) [Eq. (ST70)] by the form

[1 — GO () GO ()il | GIP, 1 (2) =GP (2). (S176)

Then, we do not have to calculate the inverse of matrices.
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