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Instabilities in Convnets for Raw Audio
Daniel Haider, Vincent Lostanlen, Martin Ehler, and Peter Balazs

Abstract—What makes waveform-based deep learning so hard?
Despite numerous attempts at training convolutional neural
networks (convnets) for filterbank design, they often fail to
outperform hand-crafted baselines. These baselines are linear
time-invariant systems: as such, they can be approximated by
convnets with wide receptive fields. Yet, in practice, gradient-
based optimization leads to suboptimal results. In our article,
we approach this problem from the perspective of initialization.
We present a theory of large deviations for the energy response
of FIR filterbanks with random Gaussian weights. We find that
deviations worsen for large filters and locally periodic input signals,
which are both typical for audio signal processing applications.
Numerical simulations align with our theory and suggest that the
condition number of a convolutional layer follows a logarithmic
scaling law between the number and length of the filters, which
is reminiscent of discrete wavelet bases.

Index Terms—Convolutional neural networks, digital filters,
audio processing, statistical learning, frame theory.

I. INTRODUCTION

F ILTERBANKS are linear time-invariant systems which
decompose a signal x into J > 1 subbands. By convolution

with filters (w j) j=1,...,J the output of a filterbank Φ is given by
(Φx) [n, j] = (x∗w j)[n]. Filterbanks play a key role in speech
and music processing: constant-Q-transforms, third-octave
spectrograms, and Gammatone filterbanks are some well-known
examples [1]–[3]. Beyond the case of audio, filterbanks are also
used in other domains such as seismology [4], astrophysics
[5], and neuroscience [6].

In deep learning, filterbanks serve as a preprocessing step to
signal classification and generation. In this context, filterbank
design is a form of feature engineering. Yet, in recent years,
several authors have proposed to replace feature engineering
with feature learning: i.e., to optimize filterbank parameters
jointly with the rest of the pipeline [7]–[9].

So far, prior work on filterbank learning has led to mixed
results. For example, on the TIMIT dataset, using a convolu-
tional neural network (convnet) with 1-D filters on the “raw
waveform” was found to fare poorly (29.2% phone error rate
or PER) compared to the mel–spectrogram baseline (17.8%
PER) [10]. Interestingly, fixing the convnet weights to form a
filterbank on the mel–scale brings the PER to 18.3.%, and fine-
tuning them by gradient descent, to 17.8%. Similar findings
have been reported with Gammatone filterbanks [11].

Arguably, such a careful initialization procedure defeats
the purpose of deep learning; i.e., sparing the effort of
feature engineering. Furthermore, in some emerging topics of
machine listening such as bioacoustics, it would be practically
useful to train a filterbank with random initialization to learn

D. Haider and P. Balazs are with the Acoustics Research Institute, Austrian
Academy of Sciences, Vienna, Austria. V. Lostanlen is with Nantes Université,
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Fig. 1. Autocorrelation in the input signal x increases the variance of the
filterbank response energy ∥Φx∥2 across random initializations. We compare
audio signals with different autocorrelation profiles. Left to right: Snare (low),
speech (medium), and flute (high). Top: Spectrograms of the signals. Bottom:
Empirical histogram of ∥Φx∥2 for 1000 independent realizations of Φ.

something about acoustic events of interest with minimal
domain-specific knowledge [12], [13]. Yet, filterbank learning
has been outperformed by filterbank design, particularly from
a random initialization [14]–[16]. Recently, multiresolution
neural networks (MuReNN) [17] have circumvented this issue
in practice. In general, however, there are no theoretical results
dedicated to filterbank learning specifically.

Prior publications have shown that Lipschitz stability in
neural nets is crucial for robustness against adversarial examples
[18], [19]. In this article, we allocate this paradigm to the
setting of filterbank learning, where we focus on the stability
of convnets with 1-D filters at the stage of random Gaussian
initialization, interpreted as random filterbanks. We hope
that this provides valuable insights for understanding their
general learning behavior. While there are methods to compute
Lipschitz constants of neural nets deterministically [20], [21],
the originality of our work lies in regarding a random filterbank
Φ as a non-i.i.d. random matrix to study the behavior of the
bounds A,B in the inequality A∥x∥2 ≤ ∥Φx∥2 ≤ B∥x∥2 in a
probabilistic setting. If A and B are close to each other, this can
be interpreted as Φ satisfying an energy preservation property
with high probability. With this perspective, we show that
natural autocorrelation characteristics of audio signals trigger
instabilities in Φ with high probability. We also find that the
bounds A,B are highly sensitive to the design of the random
filterbank, i.e., the number and length of the filters.

In Section II, we prove explicit formulas for the expected
value and variance of the random variable ∥Φx∥2 for given
input signal x, and derive upper bounds for the probability
of large deviations. In Section III, we bound the expected
values and variances of the optimal stability bounds of Φ, i.e.,
A = min∥x∥=1 ∥Φx∥2 and B = max∥x∥=1 ∥Φx∥2. We conclude
with an asymptotic analysis of the stability of Φ by means of
its condition number κ = B/A.
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II. FIR FILTERBANK WITH RANDOM GAUSSIAN WEIGHTS

Throughout this article, we use finite circulant convolution
of signals x ∈ RN with filters w ∈ RT , T ≤ N, given by

(x∗w)[n] =
T−1

∑
k=0

w[k]x[(n− k) mod N]. (1)

We denote the circular autocorrelation of x for 0 ≤ t < T by

Rxx(t) =
N−1

∑
k=0

x[k]x[(k− t) mod N]. (2)

A. Moments of the squared Euclidean norm

Proposition II.1. Let x ∈RN and Φ a random filterbank with J
i.i.d. filters wj ∼N (0,σ2I) of length T ≤ N. Then expectation
and variance of ∥Φx∥2 satisfy

E
[
∥Φx∥2]= JT σ

2∥x∥2, (3)

V
[
∥Φx∥2]= 2Jσ

4
T

∑
τ=−T

(
T −|τ|

)
Rxx(τ)

2. (4)

We note that (3) is known for J = 1 and T = N [22]. Setting
σ2 = (JT )−1 implies E

[
∥Φx∥2

]
= ∥x∥2. In other words, if the

variance of each parameter w j scales in inverse proportion
with the total number of parameters (i.e., JT ), then Φ satisfies
energy preservation on average. However, it is important to see
that the variance of the random variable ∥Φx∥2 depends also on
the content of the input x: specifically, its autocorrelation Rxx.
This is a peculiar property of convnets that does not happen
in fully connected layers with random Gaussian initialization
[22]. A discussion on this can be found in the appendix.

We note that natural audio signals are often locally periodic
and thus highly autocorrelated. Hence, we interpret Proposition
II.1 as follows: untrained convnets are particularly unstable in
the presence of vowels in speech or pitched notes in music.
Figure 1 shows this phenomenon for three real-world signals.

Lemma II.2. Let x ∈ RN and w ∈ RT , T ≤ N. The circular
convolution of x and w satisfies ∥x∗w∥2 = w⊤QT (x)w, where
the entries of the matrix QT (x) are given by QT (x)[n, t] =
Rxx((t − n) mod N) for each 0 ≤ n, t < T . In particular, all
diagonal entries of QT (x) are equal to ∥x∥2.

The result gets obvious when writing x ∗w = CT (x)w and
noting that QT (x) = CT (x)⊤CT (x). A detailed proof can be
found in the appendix. With this we prove Proposition II.1.

Proof of Proposition II.1. Given a filter wj for 1 ≤ j ≤ J, we
apply Lemma II.2 and use the cyclic property of the trace

∥x∗wj∥2 = Tr
(

w⊤
j QT (x)wj

)
= Tr

(
QT (x)wjw⊤

j

)
. (5)

We take the expected value on both sides and recognize the
term E[wjw⊤

j ] as the covariance matrix of wj, i.e., σ2I. Hence:

E
[
∥x∗wj∥2]= Tr

(
QT (x)E

[
wjw⊤

j

])
= σ

2 Tr(QT (x)) . (6)

By Lemma II.2, Tr(QT (x)) = T∥x∥2, hence E[∥x ∗ wj∥2] =
σ2T∥x∥2. For the variance, we recall Theorem 5.2 from [23],
which states that if v ∼ N (µ,Σ), then for any matrix M

V
[
v⊤Mv

]
= 2Tr

(
MΣMΣ

)
+4µ

⊤MΣMµ (7)
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Fig. 2. Large deviations of filterbank response energy (∥Φx∥2 −∥x∥2) for
three synthetic signals of length N = 1024 (top) and three natural signals of
length N = 22050 (bottom). Blue: empirical mean and 95th percentile across
1000 realizations of Φ. We show two theoretical bounds from Proposition
II.3: Cantelli (Equation (9), orange) and Chernoff (Equation 10, green). Each
filterbank contains J = 10 filters of length T = 2k where 3 ≤ k ≤ 10.

We set v = wj, µ = 0, Σ = σ2I, and M = QT (x). We obtain:

V
[
∥x∗wj∥2]= 2σ

4 Tr
(
QT (x)2)

= 2σ
4

T−1

∑
t=0

T−1

∑
t ′=0

Rxx(t ′− t)Rxx(t − t ′)

= 2σ
4

T−1

∑
t=0

T−1−t

∑
τ=−t

Rxx(τ)
2. (8)

By a combinatorial argument, the double sum above rewrites as
∑

T
τ=−T

(
T −|τ|

)
Rxx(τ)

2. The proof concludes by linearity of
the variance, given the independence of the J filters in Φ. ■

After scaling Φ such that it preserves energy on average,
i.e. E

[
∥Φx∥2

]
= ∥x∥2, we now derive upper bounds on the

probability of large deviations of ∥Φx∥2 given x ̸= 0.

Proposition II.3 (Cantelli bound). Let Φ be a random
filterbank with J i.i.d. filters wj ∼ N (0,σ2I) of length T and
σ2 = (JT )−1. Given a deviation α ≥ 0, the probability of
∥Φx∥2 exceeding (1+α)∥x∥2 is bounded from above as

P
[
∥Φx∥2 ≥ (1+α)∥x∥2]≤ V

[
∥Φx∥2

]

V [∥Φx∥2]+α2Rxx(0)2 . (9)

Proposition II.4 (Chernoff bound). Let λ denote the vector
of eigenvalues of QT (x). Under the same assumptions as
Proposition II.3, and given a deviation α ≥ 0, the probability
of ∥Φx∥2 exceeding (1+α)∥x∥2 is bounded from above as

P
[
∥Φx∥2 ≥ (1+α)∥x∥2]≤ exp

(
− α2JT 2∥x∥4

2αT∥λ∥∞∥x∥2 +2∥λ∥2
2

)
.

(10)
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The two propositions above have their own merits. Propo-
sition II.3 as direct consequence of Cantelli’s inequality
[24] is straightforward and interpretable in terms of the
autocorrelation of x. Meanwhile, Proposition II.4, based on
Chernoff’s inequality [25], is closer to the empirical percentiles,
yet is expressed in terms of the eigenvalues of QT (x), for which
there is no general formula. The proof is more technical and
involves ideas from [26] and [27]. Note that in the particular
case of full-length filters (T = N), QT (x) is a circulant matrix:
hence, we interpret these eigenvalues as the energy spectral
density of the input signal, i.e., λ = |x̂|2 where x̂ is the discrete
Fourier transform of x. Detailed proofs for both propositions
can be found in the appendix.

B. Numerical simulation

We compute empirical probabilities of relative energy
deviations between ∥Φx∥2 and ∥x∥2 for different signals x and
filter lengths T . Specifically, for each x and each T , we simulate
1000 independent realizations of ∥Φx∥2 for each value of T
and retain the closest 95% displayed as shaded area in Figure
2. Additionally, we set the right-hand side of Propositions II.3
and II.4 to 5% and solve for α , yielding upper bounds for this
area.

The upper part of Figure 2 illustrates our findings for
three synthetic signals: (i) a single impulse, which has low
autocorrelation, (ii) a realization of Brownian noise, which has
medium autocorrelation and (iii) a sine wave with frequency
ω = π , which has high autocorrelation. In the lower part of
the same figure, we use real-world sounds: a snare drum hit, a
spoken utterance, and a sustained note on the concert flute.

As predicted by the theory, large deviations of ∥Φx∥2 become
less probable as the filters grow in length T if the input x has
little autocorrelation (e.g., snare). The rate of decay is slower
for highly autocorrelated signals (e.g., flute). These findings
explain the observations we already made in Figure 1.

III. EXTREME VALUE THEORY MEETS FRAME THEORY

In the previous section, we have described the probability
distribution of ∥Φx∥2 for a known input signal x. We now
turn to inquire about the properties of Φ as a linear operator;
i.e., independently of x. If there exist two positive numbers A
and B such that the double inequality A∥x∥2 ≤ ∥Φx∥2 ≤ B∥x∥2

holds for any x ∈ RN , Φ is said to be a frame for RN with
frame bounds A and B. The optimal frame bounds are given
by A = min∥x∥2=1 ∥Φx∥2 and B = max∥x∥2=1 ∥Φx∥2.

A. From quadratic forms to chi-squared distributions

Although the expected frame bounds E[A] and E[B] do
not have closed-form expressions, we can relate them to the
expected order statistics of the chi-squared distribution with J
degrees of freedom, denoted by χ2(J).

Theorem III.1. Let Φ be a random filterbank with J i.i.d.
filters wj ∼ N (0,σ2I) with σ2 = (JT )−1. The expectations of
the optimal frame bounds A,B of Φ are bounded by the order
statistics of Y0, . . . ,YT−1 ∼ χ2(J) i.i.d., as follows

J−1E[Y min
T ]≤ E [A]≤ 1 ≤ E [B]≤ J−1E [Y max

T ] , (11)
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Fig. 3. Empirical means A and B (solid lines) and 95th percentiles (shaded
area) of frame bounds A and B for 1000 instances of Φ with σ2 = (T J)−1,
J = 40 and different values of T . Dashed lines denote the bounds of E[A] and
E[B] from Theorem III.1. Dotted lines denote the asymptotic bounds in (20).

where Y min
T = min0≤k<T Yk and Y max

T = max0≤k<T Yk.

Proof. The inner inequalities (E [A]≤ 1 ≤ E [B]) are a direct
consequence of Proposition II.1. Regarding the outer inequal-
ities, we perform an eigenvalue decomposition of QT (x) =
UΛU⊤, where the columns of U contain the eigenvectors of
QT (x) as columns and the diagonal matrix Λ contains the
spectrum of eigenvalues, λ . For each filter wj with 1 ≤ j ≤ J,
let us use the shorthand y j =U⊤wj. By Lemma II.2 we obtain

∥x∗wj∥2 = w⊤
j U⊤

ΛUwj =
T−1

∑
k=0

λky j[k]2. (12)

We define Yk = ∑
J
j=1(y

2
j [k]/σ2). Equation (12) yields

∥Φx∥2 = σ
2

N−1

∑
k=0

λk

J

∑
j=1

y2
j,k

σ2 = σ
2

N−1

∑
k=0

λkYk. (13)

Since QT (x) is a real symmetric matrix, U is an orthogonal
matrix. Thus, y j follows the same distribution as wj

U⊤wj ∼ N (0,σ2UIU⊤) = N (0,σ2I). (14)

For all k with 0 ≤ k < T , y j[k]/σ2 are i.i.d. standard Gaussian
random variables. Thus, the Yk’s are also i.i.d. and follow a
χ2(J) distribution. Let us define the associated order statistics

Y min
T = min

0≤k<T
Yk and Y max

T = max
0≤k<T

Yk. (15)

Lemma II.2 implies ∑
T−1
k=0 λk = Tr(QT (x)) = T∥x∥2. Hence

min
∥x∥2=1

∥Φx∥2 −σ
2TY min

T ≥ 0,

max
∥x∥2=1

∥Φx∥2 −σ
2TY max

T ≤ 0,
(16)

where the inequalities are understood as almost sure. Taking
the expectation and setting σ2 = (JT )−1 yields the claim. ■

The numerical simulations in Figure 3 align well with the
statement of Theorem III.1. We observe that optimal frame
bounds A and B typically diverge away from one as T grows up
to 210, a common value in audio applications. This phenomenon
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is evidence of instabilities of a convnet at initialization. Our
preliminary experiments showed that these instabilities are
not compensated during training. Yet, further examination is
needed to formulate a rigorous statement here.

To bound the variances of A and B, we use that the extreme
values in (4) are attained for an impulse and a constant signal,
respectively. A proof can be found in the appendix.

Proposition III.2. Let Φ be a random filterbank with J i.i.d.
filters wj ∼ N (0,σ2 I) with σ2 = (JT )−1. The variances of
the optimal frame bounds A and B can be bounded as

2(T J)−1 ≤ V [A] ,V [B]≤ 2J−1. (17)

B. Asymptotics of the condition number

The ratio κ =B/A, known as condition number, characterizes
the numerical stability of Φ. In particular, κ equals one if and
only if there exists C > 0 such that ∥Φx∥2 =C∥x∥2. However,
its expected value, E [κ], may be strictly greater than one
even so E

[
∥Φx∥2

]
= C∥x∥2 holds for every x. Since A and

B are dependent random variables, E [κ] is difficult to study
analytically [28]. We conjecture that E[κ]≤ (E[B]/E[A]), which
is equivalent to cov(κ,A)≥ 0.

Unfortunately, the expected values of Y min
T and Y max

T that
are used for the bounds of E [A] and E [B] in Theorem III.1
are not available in closed form for finite values of T [29].
Nevertheless, for a large number of degrees of freedom J, χ2(J)
resembles a normal distribution with mean J and variance 2J,
such that we propose to replace Y min

T and Y max
T by

Ỹ min
T = min

0≤k<T
Ỹk and Ỹ max

T = max
0≤k<T

Ỹk, (18)

where the Ỹk’s are i.i.d. drawn from N (J,2J) [30]. From the
extreme value theorem for the standard normal distribution
(see e.g. Theorem 1.5.3. in [31]) we know that for large T , we
can asymptotically approximate the expectations of (18) by

E
[
Ỹ min

T

]
∝ J−2

√
J logT and E

[
Ỹ max

T
]

∝ J+2
√

J logT .
(19)

The equations above suggest approximate bounds for E[A] and
E[B]. We draw inspiration from them to propose the value

κ̃(J,T ) =

(
1+2

√
logT

J

)/(
1−2

√
logT

J

)
, (20)

as asymptotic error bound for E[κ], subject to T → ∞ and
J > 4logT . Interestingly, the level sets of κ̃ satisfy J ∝ logT ,
a scaling law which is reminiscent of the theory underlying
the construction of discrete wavelet bases [32].

C. Numerical simulation

Figure 4 (top) shows empirical means of κ for 1000
independent realizations of Φ and various settings of J and
T . Qualitatively speaking we observe that convnets with few
long filters (small J, large T ) suffer from ill-conditioning, as
measured by a large κ . Figure 4 (bottom) shows the result of
the same simulation with J on the horizontal axis, together
with our proposed scaling law J ∝ logT . We observe that
filterbanks that follow this scaling law have approximately the
same condition number κ on average.
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Fig. 4. We denote by A,B, and κ the empirical means of the respective
quantities over 1000 instances of Φ with σ2 = (T J)−1. Top: Comparison of κ

(solid) and B/A (dashed) for increasing filter length T and different values of
J. Bottom: Empirical mean κ for increasing numbers of filters J and different
values T . For J = log2 T (solid black), κ remains approximately constant.

IV. CONCLUSION

This article presents large deviation formulas of energy
dissipation in random filterbanks. We have found that the
variance of output energy ∥Φx∥2 grows with the autocorrelation
of the input x. Thus, natural audio signals, which typically
have high short-term autocorrelation, are adversarial examples
to 1-D convnets and trigger numerical instabilities with
high probability. Furthermore, we have shown that numerical
stability depends strongly on the number of filters J and their
lengths T , and that convnets are most stable with many short
filters. For large convnets, we have identified a scaling law
(J ∝ logT ) which roughly preserves the condition number of
Φ. Characterizing the probability distribution of the condition
number for non-asymptotic values of J and T remains an open
problem. In practice, our findings motivate the use of regular-
ization mechanisms that compensate for large autocorrelation
of audio data, e.g., by adding adaptive noise. To be able to draw
conclusions from the instabilities at initialization to instabilities
during training, further investigations of the effects of gradient
descent in this setting are necessary.1

ACKNOWLEDGMENT

D. Haider is recipient of a DOC Fellowship of the Austrian
Academy of Sciences at the Acoustics Research Institute (A
26355). V. Lostanlen is supported by ANR MuReNN. The work
of M. Ehler was supported by the WWTF project CHARMED
(VRG12-009) and P. Balazs was supported by the FWF projects
LoFT (P 34624) and NoMASP (P 34922).

1The source code for reproducing all numerical simulations can be found
under https://github.com/danedane-haider/Random-Filterbanks.

https://github.com/danedane-haider/Random-Filterbanks


IEEE SIGNAL PROCESSING LETTERS, VOL. 31, PP. 1084-1088, 2024 5

REFERENCES

[1] T. Necciari, N. Holighaus, P. Balazs, Z. Průša, P. Majdak, and O. Derrien,
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[14] I. López-Espejo, Z.-H. Tan, and J. Jensen, “Exploring filterbank learning
for keyword spotting,” in Proc. EUSIPCO, 2021, pp. 331–335.
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V. APPENDIX

As a complement to what we derived for convnets in
Proposition II.1, we show that the variance of the energy
of a fully–connected layer with Gaussian initialization does
not depend on the characteristics of the input signal. To
see this, we use that any Gaussian matrix W ∈ RM×N with
M ≥ N is associated to a random tight frame of any order
p, i.e., there is Cp > 0 such that E

[
∥Wx∥2p

]
= Cp∥x∥2p for

any p > 1 [22]. For mean zero and variance σ2 we have that
Cp = M(M+2) · · ·(M+2p−2)σ2p, see Example 4.4 in [22].

Proposition V.1. Let x ∈ RN and W ∈ RM×N , M ≥ N be a
random matrix with entries sampled i.i.d. from N (0,σ2). Then

E
[
∥Wx∥2]= Mσ

2∥x∥2, (21)

V
[
∥Wx∥2]= 2Mσ

4∥x∥4. (22)

Proof. For p = 1, we have that C1 = Mσ2, showing (21). For
the variance, we use that C2 = M(M+2)σ4 and deduce

V
[
∥Wx∥2]= E

[(
∥Wx∥2 −Mσ

2∥x∥2)2
]

= E
[
∥Wx∥4]−M2

σ
4∥x∥4 = 2Mσ

4∥x∥4.

■

By Proposition II.1, a random filterbank Φ is a random tight
frame of order one. For p > 1, this is in general not the case.

Proof of Lemma II.2. Given x ∈ RN and w ∈ RT , we write the
circulant convolution x∗w in Equation (1) as the matrix-vector
multiplication CT (x)w where

CT (x) =




x[0] x[N −1] · · · x[N −T +1]
x[1] x[0] · · · x[N −T +2]

...
...

...
x[N −2] x[N −3] · · · x[N −T −1]
x[N −1] x[N −2] · · · x[N −T ]




contains the first T columns of the circulant matrix generated
by a reversed version of x. The entries are given by

CT (x)[n, t] = x[(n− t) mod N]

for 0 ≤ n < N and 0 ≤ t < T . We write down its squared
Euclidean norm as a quadratic form

∥x∗w∥2 = ⟨CT (x)w,CT (x)w⟩= ⟨w,QT (x)w⟩

where QT (x) = CT (x)⊤CT (x). Recalling the definition of
circular autocorrelation (2), we conclude with

QT (x)[t, t ′] =
N−1

∑
n=0

x[(n− t) mod N] x[(n− t ′) mod N]

= Rxx((t ′− t) mod N).

The moreover part is easily seen by 0 ≤ t < T ,

QT (x)[t, t] = Rxx(0) =
N−1

∑
n=0

x[n]2 = ∥x∥2. (23)

■

Proof of Proposition II.3. We recall Cantelli’s inequality [24]:

P
[
Z −E [Z]≥ β

]
≤ V [Z]

V [Z]+β 2 . (24)

where β > 0 and Z has finite mean and variance. Given α and
x, we set Z = ∥Φx∥2 and β = α∥x∥2. With Proposition II.1,
we replace E[Z] by JT σ2∥x∥2. With Lemma II.2, we replace
∥x∥4 by Rxx[0]2. Setting σ2 = (JT )−1 concludes the proof. ■

Our proof of Proposition II.4 hinges on the following lemma.

Lemma V.2 (Lemma 8 in Birgé et al. [26]). For any v,c,β > 0,

inf
µ>0

µ2v2

1−2µc
−µβ ≤− β 2

2cβ +2v2 .

Proof of Proposition II.4. We show (10) via the generic Cher-
noff bounds for any random variable Z

P [Z ≥ β ]≤ inf
µ>0

E
[
eµZ]e−µβ . (25)

We set Z = ∥Φx∥2 −∥x∥2 and use (13), together with Lemma
II.2 to see that Z = ∑

T−1
k=0 ∑

J
j=1 σ2λk(y j[k]2 −1). A straightfor-

ward computation gives

logE
[
eµZ]=

T−1

∑
k=0

J

∑
j=1

logE
[
exp
(
µσ

2
λk(y j[k]2 −1)

)]
.

Recall that y j [k]
σ2 ∼ N (0,1). Analog to the proof of

Lemma 1 in [27], we use that the mapping ψ : u 7→
logE

[
exp
(
uσ2(X2 −1)

)]
satisfies ψ(u) ≤ u2σ4

1−2uσ2 for any
X ∼ N (0,1) and 0 < u < 1

2σ2 . Since CT (x) is a principal sub-
matrix of a positive definite matrix (autocorrelation matrix),
λk > 0 for all k = 0, . . . ,T −1. Therefore, for µ < 1

2σ2 maxk λk
,

logE
[
eµZ]≤

T−1

∑
k=0

J

∑
j=1

(µλk)
2

σ4

1−2µσ2λk
≤ µ2σ4J∥λ∥2

2
1−2µσ2∥λ∥∞

. (26)

Finally, using (26) and Lemma V.2 with v2 = σ4J∥λ∥2
2 and

c = σ2∥λ∥∞, we obtain

inf
µ>0

E
[
eµZ]e−µβ = exp

(
inf
µ>0

logE
[
eµZ]−µβ

)

≤ exp
(

inf
µ>0

µ2σ4J∥λ∥2
2

1−2µσ2∥λ∥∞

−µβ

)

≤ exp
(
− β 2

2βσ2∥λ∥∞ +2σ4J∥λ∥2
2

)
.

Setting β = α∥x∥2 and σ2 = (JT )−1 yields the claim. ■

Proof of Proposition III.2. Observe that

min
∥x∥2=1

Rxx(t)2 =

{
1 if t = 0
0 otherwise.

and max
∥x∥2=1

Rxx(t)2 = 1

for 0 ≤ t < T . These extreme values are attained for an impulse
and a constant signal respectively. Using these signals in
Equation (4) of Proposition II.1 and setting σ2 = (T J)−1 yields
the result. ■
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