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We theoretically study propagating correlation fronts in non-interacting fermions on a one-
dimensional lattice starting from an alternating state, where the fermions occupy every other site.
We find that, in the long-time asymptotic regime, all the moments of dynamical fluctuations around
the correlation fronts are described by the universal correlation functions of Gaussian orthogonal and
symplectic random matrices at the soft edge. Our finding here sheds light on a hitherto unknown
connection between random matrix theory and correlation propagation in quantum dynamics.

Introduction.- Propagation of correlation has been one
of the central topics in quantum many-particle systems
[1–3]. It is often associated with emergence of propa-
gating correlation fronts, forming light-cone structures
[4–12]. A fundamental result on the subject is the ex-
istence of a universal bound for a two-point correlator,
known as the Lieb-Robinson bound found in 1972 [13].
Since then, correlation-front dynamics has attracted con-
siderable attention, and the universal aspects have been
extensively explored from various viewpoints such as en-
tanglement entropy [14–17] and operator spreading [18–
21]. Currently, the state-of-the-art experiments of cold
atoms have observed the light-cone structures [5–7].

Appearance of propagating fronts is not necessarily
restricted to correlation dynamics. For instance, par-
ticle distribution can develop into propagating particle-
density fronts when the particles are initially distributed
in a spatially restricted region. One of the typical sit-
uations is a one-dimensional system with a domain-
wall initial condition, for which previous works [22–
44] have investigated the fundamental properties, e.g.,
the propagating speed of the front and the variance of
the integrated particle current. In particular, Eisler
and Rácz theoretically studied dynamical fluctuation of
the particle-density around the front of non-interacting
fermions [29], finding that the dynamical fluctuation is
characterized by universal eigenvalue distributions of the
Gaussian Unitary Ensemble (GUE) [45, 46] of random
matrix theory. Subsequent works [31, 36–38] have stud-
ied the details from various perspectives, such as depen-
dence of initial states and effects of interactions.

Such dynamical fluctuation, however, has yet to be
explored well in correlation-front dynamics. So far, pre-
vious literature on propagating correlation fronts has fo-
cused mainly on two-point or four-point correlators and
has studied the fundamental aspects in terms of the Lieb-
Robinson bound and the light-cone structures [1–13, 47–
50]. With this background, it is intriguing to explore
universal nature of correlation dynamics beyond the con-
ventional light-cone structures captured by low order cor-
relators, by focusing on the dynamical higher-order fluc-
tuation of correlation.

In this Letter, we study the dynamical fluctuations
around propagating correlation fronts in one-dimensional

non-interacting fermions starting from an alternating ini-
tial state, where the particles occupy every other site.
Figures 1 (a) and (b) display the time evolution of a two-
point correlator Cm,n(t) (precisely defined after Eq. (1)),
from which one can clearly see the propagating correla-
tion fronts. To explore universal aspects of the dynam-
ical fluctuations, we introduce a cumulative correlation
operator, which can capture the fluctuations around the
fronts. Then, exactly solving the Schrödinger equation,
we analytically show that, in the long-time dynamics,
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(a) |Cm,n(t) | at t = 0 (b) |Cm,n(t) | at t = 5

Initial state Quantity of interest Random matrix

 Domain-wall state Particle number   GUE (Ref. [29])

 Alternating state Spatial correlation GOE and GSE 

(This work)

correlation front

(c) Comparison between the previous and our results

n = − m

FIG. 1. (a,b) Spatial distributions for modulus of a two-
point correlator Cm,n(t) ∶= ⟨ψ(t)∣ â

†
mân ∣ψ(t)⟩ with a quantum

state ∣ψ(t)⟩ at time (a) t = 0 and (b) t = 5. â†
m and âm denote

fermionic creation and annihilation operators at a sitem. The
initial state satisfies Cm,n(0) = δm,n(1+ (−1)

n
)/2; no correla-

tions exist for different sites. As time goes by, the correlator
grows along a direction parallel to the dashed line correspond-
ing to n = −m in (b), and then the propagating correlation
fronts emerge. (c) Table for the previous result [29] (sec-
ond row) and ours (third row). The first, second, and third
columns are initial states with the corresponding schematics,
quantities of interest, and classes of random matrices asso-
ciated with fermionic dynamics in Ref. [29] and this work.
GUE, GOE, and GSE represent the Gaussian Unitary En-
semble, the Gaussian Orthogonal Ensemble, and the Gaus-
sian Symplectic Ensemble, respectively [45, 46].
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all the moments of the cumulative correlation operator
are determined by universal correlation functions of the
Gaussian Orthogonal Ensemble (GOE) and the Gaussian
Symplectic Ensemble (GSE) at the soft edge in random
matrix theory. Our main result is summarized in Ta-
ble of Fig. 1(c), where we emphasize differences between
our findings and the previous results of Ref. [29]. The
major contribution of this work to the research field of
correlation dynamics is to uncover that the dynamical
higher-order fluctuation around the correlation front can
exhibit the universal behaviors featuring random matrix
theory.

Setup.- We consider non-interacting fermions on a one-
dimensional lattice, and denote the fermionic annihi-
lation and creation operators at a site m ∈ Z by âm
and â†

m. Then, the Hamiltonian is defined by Ĥ ∶=
−∑∞m=−∞ (â

†
m+1âm + â†

mâm+1). Under this setup, we can
compute a quantum state ∣ψ(t)⟩ at time t by solving the

Schrödinger equation id ∣ψ(t)⟩ /dt = Ĥ ∣ψ(t)⟩ with a given
initial state ∣ψ(0)⟩. Here we set h̵ = 1. The initial state
used in this work is the alternating state ∣ψalt⟩, where the
fermions occupy only the even sites (see the third row of
Fig. 1(c)):

∣ψalt⟩ ∶=
∞
∏

m=−∞
â†
2m ∣0⟩ (1)

with a vacuum ∣0⟩.

The quantity of our interest is the dynamical fluctu-
ations around the propagating correlation fronts. Fig-
ures 1(a) and (b) show the time evolution for the mod-
ulus of the two-point correlator Cm,n(t) ∶= ⟨â†

mân⟩t with
⟨●⟩t ∶= ⟨ψ(t)∣ ● ∣ψ(t)⟩. One can see that the correlation
fronts propagate along a direction parallel to the line
n = −m (see the dashed line in Fig. 1(b)). To investigate
the dynamical fluctuations around the fronts, we focus
on the 2N -point correlator on the line n = −m defined by

⟨
N

∏
j=1

â†
mj
â−mj⟩

t

(2)

with an integer mj (j ∈ {1,⋯,N}). This quantity cap-
tures the dynamical fluctuation around the correlation
front when we appropriately choose {m1,⋯,mN} corre-
sponding to the propagating front. As we will see shortly,
the fluctuation of the correlation front is related to ran-
dom matrix theory. To show this, it is convenient to
consider a cumulative correlation operator F̂l defined by

F̂l ∶=
∞
∑
m=l

â†
mâ−m, (3)

where l > 0 is a positive integer. The moments of F̂l

capture the dynamical fluctuation around the front by
appropriately choosing l. For the following calculations,

we define a generating function for the moments by

Q(λ, t, l) ∶= ⟨eλF̂l⟩t (4)

with a real number λ. As shown in the following, the gen-
erating function includes the multipoint correlator (2).

Appearance of the GOE Tracy-Widom distribution.-
Focusing on the propagating correlation front, we shall
analytically show that Q(λ, t, l) is related to the universal
eigenvalue distribution function of random matrix theory,
namely the GOE Tracy-Widom distribution [46, 51].

First, we derive a determinantal formula for Q(λ, t, l).
A straightforward calculation leads to

Q(λ, t, l) = 1 +
∞
∑
n=1

∑
m1<m2<⋯<mn

mk∈[l,∞)

λn ⟨
n

∏
j=1

â†
mj
â−mj⟩

t

. (5)

The Wick theorem enables us to decompose the 2n-point
correlator of Eq. (5) into products of Cm,n(t):

⟨
n

∏
j=1

â†
mj
â−mj⟩

t

= det [Cj,−k(t)]j,k∈{m1,⋯,mn} . (6)

Substituting Eq. (6) into Eq. (5), we obtain

Q(λ, t, l) = det [δm,n + λCm,−n(t)]ℓ2[l,∞) (7)

with the Kronecker delta δm,n and ℓ2[l,∞), the square-
summable sequence space on [l,∞). The correlator
Cm,n(t) in Eq. (7) is written as

Cm,n(t) =
1

2
δm,n +

1

2
in+mJn−m(4t) (8)

with the n-th order Bessel function of the first kind
Jn(x). The expression of the two-point correlator
Cm,n(t) in Eq. (8) already appeared in Ref. [52] for non-
interacting bosons. For completeness, we give its deriva-
tion in Sec. I of Supplemental Material (SM) [53]. Com-
bining Eqs. (7) and (8), we obtain

Q(λ, t, l) = det [δm,n +
λ

2
Jn+m(4t)]

ℓ2[l,∞)
, (9)

where we use J−n(x) = (−1)nJn(x) and then eliminate
the trivial factor im−n(−1)n+m by expanding the deter-
minant.

Second, we derive the spatial form of the propagat-
ing correlation front by applying asymptotic analysis to
Eq. (8) for studying the dynamical fluctuation around
the front. We here focus on the front along the line
n = −m < 0, namely Cm,−m(t). Introducing a variable

x by m = ⌊2t+x(2t)1/3/2⌋ with the floor function ⌊●⌋, we
can show, for t≫ 1,

Cm,−m(t) ≃
1

2(2t)1/3
Ai(x), (10)
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where we use the asymptotic formula J⌊4t+(2t)1/3x⌋(4t) ≃
Ai(x)/(2t)1/3 (t ≫ 1) with the Airy function Ai(x) [54]
(see Sec. II of [53] for the derivation). This shows that
the peak of Cm,−m(t) (m > 0) is approximately given by
(m,n) ≃ (2t,−2t), consistent with the fact that the front
ballistically propagates with the maximal group velocity
max

k
{dϵ(k)/dk} = 2, as shown in Fig. 1(b). Here, ϵ(k) =

−2 cos(k) is the energy eigenvalue of our model.

Finally, we study the generating function Q(λ, t, l)
around the propagating correlation front. Taking into
account the fact that the front moves with the velocity
2, we choose l = lt,s ∶= ⌊2t + s(2t)1/3/2⌋ with a rescaled
coordinate s and introduce two rescaled coordinates x
and y by n = ⌊2t + x(2t)1/3/2⌋ and m = ⌊2t + y(2t)1/3/2⌋
in Eq. (9). Then, the moments of F̂lt,s characterize the
fluctuation around the front. Under this setup, we take
λ = −2 and use the asymptotic formula employed in the
derivation of Eq. (10), getting

Q(−2, t, lt,s) ≃ det [1 −
1

2
Ai(x + y

2
)]

L2(s,∞)
(11)

for t ≫ 1. This form is identical to a determinantal for-
mula for the GOE Tracy-Widom distribution [55, 56],
which is a universal cumulative distribution function for
the largest eigenvalue for GOE.

Our result of Eq. (11) strongly suggests that the dy-
namical fluctuation around the propagating correlation
front is related to universal eigenvalue distributions of
random matrix theory. In the rest of the paper, we fur-
ther explore the detailed connection of the fluctuation to
random matrix theory, by focusing on the n-th moment

Mn(t, lt,s) ∶= ⟨(F̂lt,s)
n
⟩
t
.

Connection of random matrix theory to the moments.-
Employing the analytical method used in the derivation
of Eq. (11), we shall show that universal correlation func-
tions of GOE and GSE asymptotically determine all the
n-th moments Mn(t, lt,s).

We first introduce notations of random matrix the-
ory before the detailed analysis. Let us denote n-point
eigenvalue correlation functions for GOE and GSE by
RGOE

n (x1,⋯, xn) and RGSE
n (x1,⋯, xn). We suppose that

GGOE(λ, s) and GGSE(λ, s) represents the generating
functions of gap probabilities in the region (s,∞). By
definition, they satisfy

dnGα(λ, s)
dλn

∣
λ=0
= (−1)n ∫

∞

s
dx1⋯∫

∞

s
dxnR

α
n(x1,⋯, xn)

(12)

with α taking GOE or GSE [45, 46]. We summarize their
detailed definitions and properties in Sec. III of SM [53].
In Ref. [57], Bornemann showed that, under the soft-edge
scaling limit, the generating functions have determinan-

tal formulas,

GGSE(λ, s) =
1

2
H (
√
λ, s) + 1

2
H (−

√
λ, s) , (13)

GGOE(λ, s) =
1

2

⎛
⎝
1 +
√

λ

2 − λ
⎞
⎠
H (
√
λ(2 − λ), s)

+1
2

⎛
⎝
1 −
√

λ

2 − λ
⎞
⎠
H (−

√
λ(2 − λ), s) (14)

with H(z, s) ∶= det [1 − z
2
Ai (x+y

2
)]

L2(s,∞) and real vari-

ables λ and s.

To see the connection between our correlation-front
dynamics and random matrix theory, let us define two
functions for the cumulative correlation operator F̂l as

G1(λ, t, l) ∶= ⟨cosh (2
√
λF̂l)⟩

t
, (15)

G2(λ, t, l) ∶= ⟨cosh (2
√
λ(2 − λ)F̂l)⟩

t

−
√

λ

2 − λ
⟨sinh (2

√
λ(2 − λ)F̂l)⟩

t
. (16)

Expanding them with λ, we find that G1(λ, t, l) consists
of the even-order momentsM2n(t, l) whileG2(λ, t, l) does
of all the moments M2n(t, l) and M2n+1(t, l). Note that
G1(λ, t, l) and G2(λ, t, l) are the power series with λ and
thus we can differentiate them at λ = 0. Using the same
asymptotic analysis used in the derivation of Eq. (11),
we can show, for t≫ 1,

G1(λ, t, lt,s) ≃ GGSE(λ, s), (17)

G2(λ, t, lt,s) ≃ GGOE(λ, s). (18)

These are the fundamental relations, establishing that
the dynamical fluctuation of the propagating correlation
front in the long-time regime is described by the universal
correlation functions of GOE and GSE at the soft edge,
as shown in the subsequent paragraphs. The detailed
derivation of Eqs. (17) and (18) is given in Secs. IV and
V of SM [53].

We next differentiate G1(λ, t, lt,s) with respect to λ,
getting

dnG1(λ, t, lt,s)
dλn

∣
λ=0
= 4nn!

(2n)!
M2n(t, lt,s) (19)

as derived in Sec. VI of SM [53]. Using Eqs. (12), (17),
and (19), we obtain

M2n(t, lt,s)

≃ (−1)
n(2n)!

4nn!
∫
∞

s
dx1⋯∫

∞

s
dxnR

GSE
n (x1,⋯, xn)

(20)

for t≫ 1. Thus we elucidate that all the even-order mo-
ments M2n(t, lt,s) are asymptotically determined by the
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FIG. 2. Numerical vertification of Eqs. (22) and (23). The
circle, square, and pentagon markers denote (a) M1(t, lt,s)
and (b) M2(t, lt,s) at t = 10,100, and 1000, respectively. The

rescaled coordinate s is defined through lt,s = ⌊2t+s(2t)
1/3
/2⌋.

The dashed lines in (a) and (b) represent the right-hand sides
(RHSs) of Eqs. (22) and (23), respectively.

universal correlation function RGSE
n (x1,⋯, xn) for GSE.

Following the same procedure just above, we differen-
tiate G2(λ, t, lt,s) with respect to λ and then obtain

⌊n2 ⌋
∑
k=0

(−1)k+n23n−4k(n − k)!n!
(2n − 2k)!(n − 2k)!k!

M2n−2k(t, lt,s)

−
⌊n−12 ⌋
∑
k=0

(−1)k+n23n−4k−2(n − k − 1)!n!
(2n − 2k − 1)!(n − 2k − 1)!k!

M2n−2k−1(t, lt,s)

≃ ∫
∞

s
dx1⋯∫

∞

s
dxnR

GOE
n (x1,⋯, xn) (21)

for t ≫ 1 (see Sec. VII of SM [53] for the detailed
derivation). Using Eqs. (20) and (21), we can re-
cursively demonstrate that all the odd-order moments
M2n+1(t, lt,s) are expressed by the universal correlation
functions RGOE

n (x1,⋯, xn) and RGSE
n (x1,⋯, xn) for GOE

and GSE. For example, putting n = 1 into Eqs. (20) and
(21), we obtain

M1(t, lt,s) ≃
1

2
∫
∞

s
dx (RGOE

1 (x) − 2RGSE
1 (x)) ,(22)

M2(t, lt,s) ≃ −
1

2
∫
∞

s
dxRGSE

1 (x). (23)

We numerically verify Eqs. (22) and (23) by solving the
Schrödinger equation. Figure 2 displays the time evolu-
tion of M1(t, lt,s) and M2(t, lt,s). We find that Eqs. (22)
and (23) hold well for t≫ 1.

Discussion.- We discuss (i) dependence on initial
states, (ii) experimental possibility, and (iii) interaction
effect for our results.

Let us first consider the topic (i). As described in

Sec. VIII of SM [53], we analytically and numerically in-
vestigate the dependence on initial states, showing that
GOE and GSE can characterize all the moments under
appropriate rescaling even when using a modified alter-
nating state with a filling factor different from 1/2. We
also find several exceptional initial states, spatial config-
urations of which are similar to the alternating state but
the GOE and GSE behaviors do not appear. We identify
a condition for this absence of the GOE and GSE behav-
iors, which is given by Eq. (S-69) in SM [53]. We find
that the number of such exceptional states is smaller than
that of the initial states exhibiting the GOE and GSE be-
haviors (see the details of Sec. VIII C of SM [53]).

As to the topic (ii), we need to observe the multipoint
correlator (2) to verify our theoretical prediction, but its
observation is generally difficult. To our knowledge, in
Ref. [12], Takasu et al. experimentally obtained the two-
point correlator of bosonic dynamics in optical lattices by
observing the momentum distribution via time-of-flight
images, while there are no such works for fermions. In
the future, it may be possible to observe the fermionic
correlator in cold atom experiments, which will enable
us to explore our theoretical prediction.

We discuss the topic (iii). In the previous work [36],
Collura et al. theoretically studied the interaction effect
on the result of Ref. [29] where Eisler and Rácz reported
that GUE characterizes the propagating particle-density
front in non-interacting fermions. Using the density-
matrix-renormalization-group method, they numerically
found that the GUE behavior disappeared in the interact-
ing system. Thus, it is interesting to discuss our results
in interacting systems. We, however, will leave it as a
future work since it will be pretty demanding to numer-
ically access the long-time dynamics starting from the
alternating state.

Conclusions and prospects.- We theoretically consid-
ered the non-interacting fermions on the one-dimensional
lattice, studying the dynamics starting from the alter-
nating initial state, where the particles are on every
other site. In this case, the two-point correlator Cm,n(t)
formed the propagating correlation front, as shown in
Fig. 1(b). Focusing on the dynamical fluctuation around
the front in the late stage of the dynamics, we analyti-
cally showed that the universal correlation functions of
GOE and GSE asymptotically determine all the moments
Mn(t, lt,s) for the cumulative correlation operators cap-
turing the fluctuation around the propagating correlation
front. We further studied the dependence of our results
on initial states, finding that the GOE and GSE behav-
iors can survive for the modified alternating states. Thus
our result is universal in that the behaviors emerge when
systems are mapped into the non-interacting fermions
with initial states similar to the alternating state.

As a prospect, it will be intriguing to study dynamical
fluctuations around propagating fronts for other phys-
ical quantities. Thanks to the light-cone propagation,
propagating fronts often emerge even for spins, particle
numbers, and local energy. Connections of random ma-
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trix theory to such unexplored dynamical fluctuations
around the fronts are of great interest.

Another interesting direction is to explore relations be-
tween classical stochastic processes and our results. Uni-
versal distributions of random matrix theory have been
intensively investigated in classical stochastic processes,
examples of which include the Kardar-Parisi-Zhang equa-
tion, asymmetric simple exclusion processes, and polynu-
clear growth models [58–64]. For example, in a totally
asymmetric exclusion process starting from the alternat-
ing state, the particle transport features the GOE Tracy-
Widom distribution. This classical dynamics may be re-
lated to our result. Thus, it is fundamentally interesting

to pursue relations between classical stochastic processes
and correlation dynamics in quantum systems from the
unified perspective of random matrix theory.
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This Supplemental Material describes the following:

(I) Derivation of Eq. (8),

(II) Asymptotic analysis for the Bessel function of the first kind,

(III) Generating functions in random matrix theory,

(IV) Derivation of Eq. (17),

(V) Derivation of Eq. (18),

(VI) Derivation of Eq. (19),

(VII) Derivation of Eq. (21),

(VIII) Dependence on initial states.

I. DERIVATION OF EQ. (8)

We explain how to derive Eq. (8) in the main text. Suppose that we have non-interacting fermions on a finite
one-dimensional lattice labeled by Λ = {−L,−L + 1,⋯, L} with a positive even integer L. The fermionic annihilation
and creation operators at a site m ∈ Λ are denoted by âm and â†

m. Then, we define the Hamiltonian as

Ĥ ∶= −
L−1
∑

m=−L
(â†

m+1âm + â
†
mâm+1) , (S-1)

where the boundary condition is assumed to be periodic (âL = â−L). The initial state ∣ψ(0)⟩ is the alternating state
given by

∣ψ(0)⟩ ∶=
L/2−1
∏

m=−L/2
â†
2m ∣0⟩ (S-2)

with a vacuum ∣0⟩. Under this setup, the quantum state ∣ψ(t)⟩ at time t obeys the Schrödinger equation id ∣ψ(t)⟩ /dt =
Ĥ ∣ψ(t)⟩ where we set h̵ = 1.
We solve the Heisenberg equation for the annihilation operator, obtaining an explicit form of the two-point correlator

Cm,n(t) ∶= ⟨â†
mân⟩t in the thermodynamic limit (L → ∞). Here, we introduce the notation ⟨●⟩t ∶= ⟨ψ(t)∣ ● ∣ψ(t)⟩.

Applying the discrete Fourier transformation to the annihilation operator âm(t) ∶= eiĤtâme
−iĤt in the Heisenberg

picture, we can obtain

âm(t) =
1√
2L

L−1
∑

α=−L
Âα exp(i2t cos(δkα) + iδkαm) (S-3)

with the wavenumber unit δk ∶= π/L and the initial annihilation operator Âα in the wavenumber space, defined as

Âα ∶=
1√
2L

L−1
∑

m=−L
âm exp(−iδkαm). (S-4)
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Substituting Eq. (S-3) into the definition of Cm,n(t), we get

Cm,n(t) =
1

2L

L−1
∑

α=−L

L−1
∑

β=−L
⟨ψ(0)∣ Â†

αÂβ ∣ψ(0)⟩ exp(i2t(cos(δkβ) − cos(δkα))+iδk(βn − αm)). (S-5)

The quantum average of the creation and annihilation operators in the wavenumber space becomes

⟨ψ(0)∣ Â†
αÂβ ∣ψ(0)⟩ =

1

2
δα,β−L +

1

2
δα,β +

1

2
δα,β+L, (S-6)

which can be derived using the Eq. (S-2) of the alternating initial state. We use Eqs. (S-5) and (S-6), obtaining

Cm,n(t) =
1

2
δm,n +

(−1)n

4L

L−1
∑

α=−L
exp [−i4t cos(δkα) + iδkα(n −m)] . (S-7)

Taking the thermodynamic limit (L→∞) for Eq. (S-7), we derive

Cm,n(t) =
1

2
δm,n +

1

2
in+mJn−m(4t) (S-8)

with the n-th order Bessel function of the first kind Jn(x) [52]. In this derivation, we use the following integral formula
given by

Jn(x) =
1

2πin
∫

2π

0
dθ exp(ix cos(θ) + inθ). (S-9)

Note that an origin of the Bessel function of the first kind is the contribution coming from α = β ± L in Eq. (S-6).
This fact becomes important when discussing dependence of our results on initial states as described in Sec. VIII.

II. ASYMPTOTIC ANALYSIS FOR THE BESSEL FUNCTION OF THE FIRST KIND

We shall show that the Bessel function of the first kind Jn(4t) with n = ⌊4t + (2t)1/3x⌋ asymptotically approaches
the Airy function for t≫ 1 [54]. Here, ⌊●⌋ denotes the floor function. The integral representation of Eq. (S-9) leads to

J⌊4t+(2t)1/3x⌋(4t) ≃
1

2πi4t+(2t)1/3x ∫
2π

0
dθ exp(i4t(cos θ + θ)+i(2t)1/3xθ), (S-10)

where we neglect the difference ⌊4t+(2t)1/3x⌋−4t−(2t)1/3x since it becomes very small compared with 4t+(2t)1/3x for
t≫ 1. The integrand in Eq. (S-10) can rapidly oscillate for t≫ 1 since the term with f(θ) ∶= cos θ + θ is proportional
to time t. Then, employing the conventional stationary phase method, we investigate f(θ) and then find that it has
an extremum at θ0 ∶= π/2. Thus, the contribution around θ0 to the integral of Eq. (S-10) becomes dominant for t≫ 1.
Using the expansion f(θ) = π/2 + (θ − θ0)3/6 +O((θ − θ0)5), we can approximate the Bessel function of the first kind
as

J⌊4t+(2t)1/3x⌋(4t) ≃
1

π
∫
∞

0
dθ cos((2t)1/3xθ + 2t

3
θ3) . (S-11)

Then, this gives

J⌊4t+(2t)1/3x⌋(4t) ≃
1

(2t)1/3
Ai(x), (S-12)

where we use the following formula for the Airy function [65]:

Ai(x) = 1

π
∫
∞

0
dθ cos(xθ + θ

3

3
) . (S-13)
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III. GENERATING FUNCTIONS IN RANDOM MATRIX THEORY

We briefly review generating functions in random matrix theory [45, 46]. The definitions of random matrices used
in our work are based on Ref. [57].

Suppose that we have M ×M random matrices sampled by the Gaussian Orthogonal Ensemble (GOE) or the
Gaussian Symplectic Ensemble (GSE), and denote probability density functions for the eigenvalues (x1, x2,⋯, xM)
by PGOE(x1, x2,⋯, xM) and PGSE(x1, x2,⋯, xM), respectively. Then, the generating function with a real parameter
λ is defined by

Gα(λ, s) ∶= ∫
∞

−∞
dx1⋯∫

∞

−∞
dxMP

α(x1, x2,⋯, xM)
M

∏
n=1
(1 − λχD(xn)), (S-14)

where χD(x) is an indication function with D ∶= [s,∞) and a real number s. The label α takes GOE or GSE hereafter
in this section.

We next introduce an n-point eigenvalue correlation function and an n-point gap probability denoted by
Rα

n(x1, x2,⋯, xn) and Eα
n(s,∞), respectively. These quantities are defined as

Rα
n(x1, x2,⋯, xn) ∶=

M !

(M − n)! ∫
∞

−∞
(

M

∏
k=n+1

dxk)Pα(x1, x2,⋯, xM), (S-15)

Eα
n(s,∞) ∶=

M !

(M − n)!n! ∫
∞

s
dx1⋯∫

∞

s
dxn ∫

s

−∞
dxn+1⋯∫

s

−∞
dxMP

α(x1, x2,⋯, xM). (S-16)

Then, the generating function of Eq. (S-14) satisfies

Gα(λ, s) = 1 +
M

∑
n=1

(−λ)n

n!
∫
∞

s
dx1 ∫

∞

s
dx2⋯∫

∞

s
dxnR

α
n(x1, x2,⋯, xn) (S-17)

=
M

∑
n=0
(1 − λ)nEα

n(s,∞). (S-18)

Differentiating Eq. (S-17) with respect to λ, we obtain

dn

dλn
Gα(λ, s)∣

λ=0
= (−1)n ∫

∞

s
dx1⋯∫

∞

s
dxnR

α
n(x1,⋯, xn), (S-19)

which is Eq. (12) in the main text.
Explicit expressions of RGOE

1 (x) and RGSE
1 (x) under the soft-edge scaling limit are given by

RGSE
1 (x) =

1

2
(
d

dx
Ai(x))

2

−
Ai(x)
2

d2

dx2
Ai(x) −

Ai(x)
4
∫
∞

x
Ai(y)dy, (S-20)

RGOE
1 (x) = (

d

dx
Ai(x))

2

−Ai(x)
d2

dx2
Ai(x) −

Ai(x)
2
∫
∞

x
Ai(y)dy +

1

2
Ai(x). (S-21)

We use these expressions in Fig. 2 of the main text.

IV. DERIVATION OF EQ. (17)

We derive Eq. (17) of the main text by employing the analytical technique used in deriving the GOE Tracy-Widom
distribution in the correlation dynamics. We can rewrite Eq. (15) of the main text as

G1(λ, t, l) = ⟨cosh (2
√
λF̂l)⟩

t
(S-22)

= 1

2
⟨e2
√
λF̂l⟩

t
+ 1

2
⟨e−2

√
λF̂l⟩

t
(S-23)

= 1

2
Q (2
√
λ, t, l) + 1

2
Q (−2

√
λ, t, l) , (S-24)
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where we introduce the notation Q(λ, t, l) ∶= ⟨eλF̂l⟩t. From Eq. (9) of the main text, the expression of Q (±2
√
λ, t, l)

becomes

Q (±2
√
λ, t, l) = det [δm,n ±

√
λJn+m(4t)]

ℓ2[l,∞)
. (S-25)

Introducing a rescaled coordinate s as l = lt,s ∶= ⌊2t + s(2t)1/3/2⌋ used in the main text, we get

Q (±2
√
λ, t, lt,s) ≃ det [1 ±

√
λ

2
Ai(x + y

2
)]

L2(s,∞)
(t≫ 1). (S-26)

Substituting Eq. (S-26) into Eq. (S-24), we obtain

G1 (λ, t, lt,s) ≃
1

2
det [1 +

√
λ

2
Ai(x + y

2
)]

L2(s,∞)
+ 1

2
det [1 −

√
λ

2
Ai(x + y

2
)]

L2(s,∞)
(S-27)

for t≫ 1. The right-hand side is identical to the generating function for GSE (see Eq. (6.10) in Ref. [57]).

V. DERIVATION OF EQ. (18)

We derive Eq. (18) of the main text by following the almost same procedure in the derivation of Eq. (S-27).
Equation (16) of the main text can be written as

G2(λ, t, l) = ⟨cosh (2
√
λ(2 − λ)F̂l)⟩

t
−
√

λ

2 − λ
⟨sinh (2

√
λ(2 − λ)F̂l)⟩

t

= 1

2
⟨exp (2

√
λ(2 − λ)F̂l)⟩

t
+ 1

2
⟨exp (−2

√
λ(2 − λ)F̂l)⟩

t

− 1

2

√
λ

2 − λ
⟨exp (2

√
λ(2 − λ)F̂l)⟩

t
+ 1

2

√
λ

2 − λ
⟨exp (−2

√
λ(2 − λ)F̂l)⟩

t
(S-28)

= 1

2

⎛
⎝
1 +
√

λ

2 − λ
⎞
⎠
Q(−2

√
λ(2 − λ), t, l) + 1

2

⎛
⎝
1 −
√

λ

2 − λ
⎞
⎠
Q(2
√
λ(2 − λ), t, l). (S-29)

Using Eq. (S-26), we obtain

G2(λ, t, lt,s) ≃
1

2

⎛
⎝
1 +
√

λ

2 − λ
⎞
⎠
det
⎡⎢⎢⎢⎣
1 −
√
λ(2 − λ)

2
Ai(x + y

2
)
⎤⎥⎥⎥⎦L2(s,∞)

+ 1

2

⎛
⎝
1 −
√

λ

2 − λ
⎞
⎠
det
⎡⎢⎢⎢⎣
1 +
√
λ(2 − λ)

2
Ai(x + y

2
)
⎤⎥⎥⎥⎦L2(s,∞)

(S-30)

for t≫ 1. The right-hand side is identical to the generating function for GOE (see Eq. (6.27) in Ref. [57]).

VI. DERIVATION OF EQ. (19)

The derivation for Eq. (19) of the main text is based on the Taylor expansion for cosh(2
√
λF̂⌊2t+s(2t)1/3/2⌋). For

brevity, in the following, we use a notation Â(t, s) ∶= 2F̂⌊2t+s(2t)1/3/2⌋. Then, we can show

cosh (
√
λÂ(t, s)) =

∞
∑
n=0

1

(2n)!
(
√
λÂ(t, s))

2n

=
∞
∑
n=0

λn

(2n)!
(Â(t, s))

2n
. (S-31)
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Thus, we get

dn

dλn
cosh (

√
λÂ(t, s))∣

λ=0
= n!

(2n)!
(Â(t, s))

2n
(S-32)

= 4nn!

(2n)!
(F̂⌊2t+s(2t)1/3/2⌋)

2n
. (S-33)

Equation (S-33) immediately leads to Eq. (19) of the main text.

VII. DERIVATION OF EQ. (21)

Following the same procedure in the derivation of Eq. (S-33), we can derive Eq. (21) of the main text. What we need

is explicit expressions for the Taylor expansion of cosh (
√
λ(2 − λ)Â(t, s)) and

√
λ/(2 − λ) sinh (

√
λ(2 − λ)Â(t, s)).

First, we expand cosh (
√
λ(2 − λ)Â(t, s)) with respect to λ:

cosh (
√
λ(2 − λ)Â(t, s)) =

∞
∑
n=0

(Â(t, s))
2n

(2n)!
λn(2 − λ)n

=
∞
∑
n=0

n

∑
k=0

(Â(t, s))
2n

(2n)! nCk2
n−k(−1)kλn+k

=
∞
∑
m=0

⌊m2 ⌋
∑
k=0

(−1)k2m−2km−kCk

(2m − 2k)!
(Â(t, s))

2m−2k
λm. (S-34)

Second, expanding sinh (
√
λ(2 − λ)Â(t, s)) in the same way, we obtain

√
λ

2 − λ
sinh (

√
λ(2 − λ)Â(t, s)) =

√
λ

2 − λ

∞
∑
n=0

(Â(t, s))
2n+1

(2n + 1)!
λn(2 − λ)n

√
λ(2 − λ)

=
∞
∑
n=0

(Â(t, s))
2n+1

(2n + 1)!
λn+1

n

∑
k=0

nCk2
n−k(−λ)k

=
∞
∑
n=0

n

∑
k=0

(Â(t, s))
2n+1

(2n + 1)! nCk2
n−k(−1)kλn+k+1

=
∞
∑
m=1

⌊m−12 ⌋
∑
k=0

(−1)k2m−2k−1m−k−1Ck

(2m − 2k − 1)!
(Â(t, s))

2m−2k−1
λm. (S-35)

Finally, differentiating Eqs. (S-34) and (S-35) with respect to λ for n times, we can straightforwardly derive Eq. (21)
of the main text.
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VIII. DEPENDENCE ON INITIAL STATES

We numerically and analytically investigate dependence of Eqs. (20) and (21) in the main text on initial states. First,
we show numerical results for the first and second moments M1(t, lt,s) and M2(t, lt,s) for the cumulative correlation
operator, which are obtained by using three different initial periodic product states being similar to the alternating
state. Then, we heuristically find that our results shown in the main text survive in two of these initial states while
those disappear in the remaining initial state. Second, we give analytical explanation for this numerical findings by
employing the stationary phase method. Finally, we identify a general condition ensuring the emergence of the GOE
and GSE behaviors for the initial periodic product states.

A. Numerical investigation

We numerically study how our result is affected by choices of initial states. For this purpose, we consider the
following initial product state defined by

∣ψ(0)⟩ ∶=
∞
∏

p=−∞
(â†

p)
Sp ∣0⟩ , (S-36)

where Sp (p ∈ Z) is an integer taking 0 or 1 and determines the initial particle distribution over the lattice. Here, we

define (â†
p)

0 = 1. Following the almost same calculation to derive Eq. (S-8), we can obtain the two-point correlator
with Eq. (S-36):

Cm,n(t) = in−m
∞
∑

p=−∞
SpJm−p(2t)Jn−p(2t). (S-37)

We numerically investigate the first and second moments M1(t, lt,s) and M2(t, lt,s) for Eq. (S-37) by changing Sp.
The initial distribution Sp addressed here is the following three cases:

(A) (S4p, S4p+1, S4p+2, S4p+3) = (1,1,0,0) (p ∈ Z),

(B) (S6p, S6p+1, S6p+2, S6p+3, S6p+4, S6p+5) = (1,1,1,0,0,0) (p ∈ Z),

(C) (S6p, S6p+1, S6p+2, S6p+3, S6p+4, S6p+5) = (1,1,0,1,0,0) (p ∈ Z).

The unit cells corresponding to the above are schematically illustrated in Fig. S-1.
We numerically compute the momentsM1(t, lt,s) andM2(t, lt,s) for these initial product states. Figure S-2 displays

the numerical results, from which we find that the initial states (B) and (C) exhibit excellent agreement with the
results for the alternating state by adapting appropriate rescaling while the initial state (A) does not.

B. Analytical investigation for the numerical findings

We shall give analytical explanation for our numerical results just above. First, we note that the Wick theorem is
valid for the initial product state of Eq. (S-36). Then, the generating function for the cumulative correlation operator

(A) (B) (C)

FIG. S-1. Schematics for the unit cells corresponding to (A), (B), and (C). The label number of the leftmost site is 4p for (A)
and 6p for (B) and (C) with an integer p (see the details of the paragraph just after Eq. (S-37)).
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in the current case is given by Eq. (7) of the main text with the two-point correlator Cm,−n(t) of Eq. (S-37). Thus, the
form of Cm,−n(t) determines all the moments of the cumulative correlation operator. In other words, it is sufficient to
focus only on Cm,−n(t) for studying the dependence of our results reported in the main text on initial states. In the
following, we investigate the scaling limit of Cm,−n(t) in order to investigate the dependence of the first and second
moments M1(t, lt,s) and M2(t, lt,s) on the initial states.

Our starting point is the expression of Cm,n(t) in the finite system, which is given by Eq. (S-5). For the readability,
we again display it:

Cm,n(t) =
1

2L

L−1
∑

α=−L

L−1
∑

β=−L
⟨ψ(0)∣ Â†

αÂβ ∣ψ(0)⟩ exp(i2t(cos(δkβ) − cos(δkα))+iδk(βn − αm)). (S-38)

For our initial state of Eq. (S-36), the explicit expression of ⟨ψ(0)∣ Â†
αÂβ ∣ψ(0)⟩ is given by

⟨ψ(0)∣ Â†
αÂβ ∣ψ(0)⟩ =

1

2L

L−1
∑

m=−L

L−1
∑

n=−L
⟨ψ(0)∣ â†

mân ∣ψ(0)⟩ exp(iδk(αm − βn)) (S-39)

= 1

2L

L−1
∑

m=−L
Sm exp(iδkm(α − β)). (S-40)

In what follows, we analytically derive the concrete expression of Cm,n(t) for the initial states (A), (B), and (C) using

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0
rescaled coordinate s

−0.1

0.0

0.1

0.2

0.3

M
1(
t,
l t
,s

)

(a) alternating state

(A)

(B)

(C)

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0
rescaled coordinate s

−0.1

0.0

0.1

0.2

0.3
A

1M
1(
t,
l t
,s

)
(c) alternating state

(A) (A1 = 1)

(B) (A1 = 3)

(C) (A1 = −3)

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0
rescaled coordinate s

−1.5

−1.0

−0.5

0.0

M
2(
t,
l t
,s

) (b)

alternating state

(A)

(B)

(C)

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0
rescaled coordinate s

−1.5

−1.0

−0.5

0.0

A
2M

2(
t,
l t
,s

)

(d)

alternating state

(A) (A2 = 1)

(B) (A2 = 9)

(C) (A2 = 9)

FIG. S-2. Numerical investigation for the dependence of the first and second moments M1(t, lt,s) and M2(t, lt,s) on the initial
states (A), (B), and (C). (a,b) M1(t, lt,s) and M2(t, lt,s) at t = 200 as a function of a rescaled coordinate s defined through

lt,s = ⌊2t + s(2t)
1/3
/2⌋. The cross mark, circle, square, and pentagon represent the numerical results with the alternating state,

state (A), state (B), and state (C), respectively (see the details of these states just after Eq. (S-37)). (c,d) Rescaled figures
corresponding to (a,b). In the initial state (B), we multiply the y-axes of (c) and (d) by A1 = 3 and A2 = 9, respectively, while
in the initial state (C) we multiply the y-axes of (c) and (d) by A1 = −3 and A2 = 9, respectively. One can see that the results
for the initial states (B) and (C) clearly show excellent agreement with the results for the alternating state after these rescaling
of the y-axes. On the other hand, the results for the initial state (A) do not match the results for the alternating state as far
as we try rescaling.
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Eqs. (S-38) and (S-40).

1. Initial state (A)

We first evaluate ⟨ψ(0)∣ Â†
αÂβ ∣ψ(0)⟩. We assume L = 2N with an even integer N . Using Eq. (S-40) and Sj

corresponding to the initial state (A), we obtain

⟨ψ(0)∣ Â†
αÂβ ∣ψ(0)⟩ (S-41)

= 1

4N

N/2−1
∑

m=−N/2

⎛
⎝
exp[iδk(4m)(α − β)]+ exp[iδk(4m + 1)(α − β)]

⎞
⎠

(S-42)

= 1

4N

⎛
⎝
1 + exp[iδk(α − β)]

⎞
⎠

N/2−1
∑

m=−N/2
exp[i 2π

N
m(α − β)] (S-43)

= 1

4

⎛
⎝
1 + exp[i π

2N
(α − β)]

⎞
⎠
(δα,β−3N + δα,β−2N + δα,β−N + δα,β + δα,β+N + δα,β+2N + δα,β+3N) (S-44)

= 1 + i
4
δα,β−3L/2 +

1 − i
4
δα,β−L/2 +

1

2
δα,β +

1 + i
4
δα,β+L/2 +

1 − i
4
δα,β+3L/2. (S-45)

Substituting Eq. (S-45) into Eq. (S-38), we get

Cm,n(t) =
1

2
δm,n +

1 − i
8L

L−1
∑

α=−L
exp[i2t(cos(δkα + π/2)− cos(δkα))+iδkα(n −m)+iπn/2]

+ 1 + i
8L

L−1
∑

α=−L
exp[i2t(cos(δkα − π/2)− cos(δkα))+iδkα(n −m)−iπn/2]. (S-46)

In the thermodynamic limit, this becomes

Cm,n(t) =
1

2
δm,n +

1

8π
(1 − i)in ∫

π

−π
dθ exp[i2t(cos(θ + π/2)− cos(θ))+iθ(n −m)]

+ 1

8π
(1 + i)(−i)n ∫

π

−π
dθ exp[i2t(cos(θ − π/2)− cos(θ))+iθ(n −m)] (S-47)

= 1

2
δm,n +

1

8π
(1 − i)in ∫

π

−π
dθ exp[−i2

√
2t sin(θ + π/4)+iθ(n −m)]

+ 1

8π
(1 + i)(−i)n ∫

π

−π
dθ exp[i2

√
2t sin(θ − π/4)+iθ(n −m)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶Im−n(t)

. (S-48)

The important ingredient for the emergence of the GOE and GSE behaviors is the expression of Cm,−n(t) under
the scaling limit which is taken with n = ⌊2t + (2t)1/3x/2⌋ and m = ⌊2t + (2t)1/3y/2⌋. Using the same stationary phase
method used in Sec. II of this supplemental material, we can find that the integrals for the second and third terms
on the right-hand side of Eq. (S-48) do not asymptotically approach the Airy function under the scaling limit of the
main text. We now show this fact by considering Im−n(t) defined in Eq. (S-48). In order to consider Cm,−n(t), we
focus on the behavior of Im+n(t) with n = ⌊2t + (2t)1/3x/2⌋ and m = ⌊2t + (2t)1/3y/2⌋. Then, we obtain

Im+n(t) ≃ ∫
π

−π
dθ exp[it(2

√
2 sin(θ − π/4)−4θ)−iθ(2t)1/3x + y

2
], (S-49)

from which it follows that the function g(θ) ∶= 2
√
2 sin(θ − π/4) − 4θ can induce rapid oscillation of the integrand for

t ≫ 1. One, however, can easily show that g(θ) does not have an extremum. Hence, the value of Im+n(t) under the
scaling limit cannot be large. The same thing holds for the second term on the right-hand side of Eq. (S-48). Our
finding here implies that Cm,−n(t) under the scaling limit becomes very small. This explains our numerical results in
Figs. S-2 (a) and (b), where the values of the first and second moments are almost zero.
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The mathematical mechanism for the absence of the Airy function under the scaling limit stems from the fact that
the contribution from the terms with δα,β±2N = δα,β±L in Eq. (S-44) vanishes because of eiπ = −1. As noted just after
Eq. (S-9), these terms are responsible for the emergence of the Bessel function of the first kind leading to the Airy
function, and thus the absence of such terms explains the disappearance of the GOE and GSE behaviors in Fig. S-2.

2. Initial state (B)

We evaluate ⟨ψ(0)∣ Â†
αÂβ ∣ψ(0)⟩. We assume L = 3N with an even integer N . Using Eq. (S-40) and Sj corresponding

to the initial state (B), we obtain

⟨ψ(0)∣ Â†
αÂβ ∣ψ(0)⟩ (S-50)

= 1

6N

N/2−1
∑

m=−N/2

⎛
⎝
exp[iδk(6m)(α − β)]+ exp[iδk(6m + 1)(α − β)]+ exp[iδk(6m + 2)(α − β)]

⎞
⎠

(S-51)

= 1

6N

⎛
⎝
1 + exp[iδk(α − β)]+ exp[i2δk(α − β)]

⎞
⎠

N/2−1
∑

m=−N/2
exp[i 2π

N
m(α − β)] (S-52)

= 1

6

⎛
⎝
1 + exp[i π

3N
(α − β)]+ exp[i 2π

3N
(α − β)]

⎞
⎠

× (δα,β−5N + δα,β−4N + δα,β−3N + δα,β−2N + δα,β−N + δα,β + δα,β+N + δα,β+2N + δα,β+3N + δα,β+4N + δα,β+5N) (S-53)

= 1

6
δα,β−L +

1

2
δα,β +

1

6
δα,β+L + (other terms). (S-54)

The terms with δα,β±L in Eq. (S-54) play the same role in the first and third terms of Eq. (S-6), and we can derive

Cm,n(t) =
1

2
δm,n +

1

6
in+mJn−m(4t) + (other terms) (S-55)

in the thermodynamic limit. The other terms become small under the scaling limit because of the absence of extremum
mentioned just after Eq. (S-49). The two-point correlator Cm,n(t) of Eq. (S-55) is similar to that of Eq. (S-8), but
the factors for the Bessel functions of the first kind are different. This is the reason why we need to multiply the
y-axes by 3 and 9 in Figs. S-2(c) and (d), respectively.

3. Initial state (C)

We evaluate ⟨ψ(0)∣ Â†
αÂβ ∣ψ(0)⟩. We assume L = 3N with an even integer N . Using Eq. (S-40) and Sj corresponding

to the initial state (C), we obtain

⟨ψ(0)∣ Â†
αÂβ ∣ψ(0)⟩ (S-56)

= 1

6N

N/2−1
∑

m=−N/2

⎛
⎝
exp[iδk(6m)(α − β)]+ exp[iδk(6m + 1)(α − β)]+ exp[iδk(6m + 3)(α − β)]

⎞
⎠

(S-57)

= 1

6N

⎛
⎝
1 + exp[iδk(α − β)]+ exp[i3δk(α − β)]

⎞
⎠

N/2−1
∑

m=−N/2
exp[i 2π

N
m(α − β)] (S-58)

= 1

6

⎛
⎝
1 + exp[i π

3N
(α − β)]+ exp[i π

N
(α − β)]

⎞
⎠

× (δα,β−5N + δα,β−4N + δα,β−3N + δα,β−2N + δα,β−N + δα,β + δα,β+N + δα,β+2N + δα,β+3N + δα,β+4N + δα,β+5N) (S-59)

= −1
6
δα,β−L +

1

2
δα,β −

1

6
δα,β+L + (other terms). (S-60)



17

In the same way as the initial state (B), the terms with δα,β±L in Eq. (S-60) leads to the Bessel function of the first
kind, and we eventually obtain

Cm,n(t) =
1

2
δm,n −

1

6
in+mJn−m(4t) + (other terms) (S-61)

in the thermodynamic limit. The other terms become small under the scaling limit because of the same reason for
the initial state (B). Note that the factor for the Bessel function of the first kind is different from that of Eq. (S-8).
This explains the reason why we need to multiply the y-axes by −3 and 9 in Figs. S-2(c) and (d), respectively.

C. Condition for the emergence of the GOE and GSE behaviors in the initial periodic product state (S-36)

We derive a condition for the emergence of the GOE and GSE behaviors in dynamics starting from the l/ν-periodic
product state defined by Eq. (S-36) with Sj = Sj+l/ν and an integer l. Here, we consider a filling factor ν for which
1/ν is an integer. Figure S-3 schematically illustrates the initial state, where a lattice-point number in a unit cell is
l/ν. We suppose that the total lattice number is given by 2L = Nl/ν with an even integer N and the fermions occupy
l sites in each unit cell. Under this setup, a site is labeled by Jl/ν + j for −N/2 ≤ J ≤ N/2−1 and 0 ≤ j ≤ l/ν −1. Here,
the integers J and j are labels for the unit cells and the sites in each unit cell, respectively (see Fig. S-3).

We compute ⟨ψ(0)∣ Â†
αÂβ ∣ψ(0)⟩ with Eq. (S-36) using the site labels introduced just above. Employing Eq. (S-40),

we obtain

⟨ψ(0)∣ Â†
αÂβ ∣ψ(0)⟩ =

ν

lN

L−1
∑

m=−L
Sm exp[iδkm(α − β)] (S-62)

= ν

lN

N/2−1
∑

J=−N/2

l/ν−1
∑
j=0

SJl/ν+j
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
=Sj

exp[iδk (Jl
ν
+ j) (α − β)] (S-63)

= ν

lN

⎛
⎝

l/ν−1
∑
j=0

Sj exp[iδkj(α − β)]
⎞
⎠
⎛
⎝

N/2−1
∑

J=−N/2
exp[iδk (Jl

ν
)(α − β)]

⎞
⎠

(S-64)

= ν
l

⎛
⎝

l/ν−1
∑
j=0

Sj exp[iδkj(α − β)]
⎞
⎠
⎛
⎝

l/ν−1
∑

m=−l/ν+1
δα,β+mN

⎞
⎠

(S-65)

= ν
l

⎛
⎝

l/ν−1
∑
j=0

Sj exp[iδkj(α − β)]
⎞
⎠

⎛
⎜⎜⎜
⎝
δα,β−L + δα,β+L +

l/ν−1
∑

m=−l/ν+1
(m≠±l/(2ν))

δα,β+mN

⎞
⎟⎟⎟
⎠
, (S-66)

where we use the site label m = Jl/ν + j in the second line and the l/ν-periodicity of Sj is used in the third line. As
shown in Sec. VIII B, the terms with δα,β±L of Eq. (S-66) give rise to the Bessel function of the first kind leading to

−L −L + l /ν Jl /ν L − l /ν L − 1

J = − N/2 J = − N/2 + 1 J = N/2 − 1J

Jl /ν + j
(0 ≤ j ≤ l /ν − 1)

l /ν

FIG. S-3. Schematic configuration of the initial state used in Sec. VIII C. The size of the unit cell is l/ν with an integer l
and the total number of the lattice points is 2L = Nl/ν with an even number N . The vertical dashed lines display boundaries
between the unit cells, and the filled circles denote the fermions. The integers J and j in the figure are labels for the unit cells
and the sites inside each unit cell. Using them, we can specify all the sites by Jl/ν + j for −N/2 ≤ J ≤ N/2−1 and 0 ≤ j ≤ l/ν −1,
as depicted in the figure.
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the Airy function. Hence, we identify a condition for the emergence of the GOE and GSE behaviors as

l/ν−1
∑
j=0

Sj exp[iδkj(α − β)]δα,β±L ≠ 0 (S-67)

⇐⇒
l/ν−1
∑
j=0

Sj exp[±iLδkj]≠ 0 (S-68)

⇐⇒
l/ν−1
∑
j=0

Sj(−1)j ≠ 0, (S-69)

where we use δkL = π in the third line. The condition (S-69) always holds for odd l, while it is not necessarily satisfied
for even l. Thus, the number of the initial state exhibiting the GOE and GSE behaviors is larger than that of states
not exhibiting them.
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