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The existence of zero-dimensional superradiant quantum phase transitions seems inconsistent with conven-
tional statistical physics. This work clarifies this apparent inconsistency. We demonstrate the corresponding
effective field theories and finite-temperature properties of light-matter interacting systems, and show how this
zero-dimensional quantum phase transition occurs. We first focus on the Rabi model, which is a minimum model
that hosts a superradiant quantum phase transition. With the path integral method, we derive the imaginary-time
action of the photon degrees of freedom. We also define a dynamical critical exponent as the rescaling between
the temperature and the photon frequency, and perform dimensional analysis to the effective action. The dy-
namical critical exponent shows that the effective theory of the Rabi model is a free scalar field, where a true
second-order quantum phase transition emerges. These results are also verified by numerical simulations of
imaginary-time correlation functions of the order parameter. Furthermore, we also generalize this method to the
Dicke model. Our results make the zero-dimensional superradiant quantum phase transition compatible with
conventional statistical physics, and pave the way to understand it in the perspective of effective field theories.

I. INTRODUCTION

Quantum phase transitions (QPTs) and quantum criti-
cal phenomena are two fundamental concepts in modern
physics [1–4], and have been extensively studied in condensed
matter physics [3, 4], high-energy physics [5], and quantum
information sciences [6]. Recently, it is shown that there
exists a novel second-order QPT from a normal phase to a
superradiant phase in light-matter interacting systems [7, 8],
such as the Dicke model [9–17] and the Rabi model [18–31].
The uniqueness of this superradiant QPT manifests in the “di-
mension” of these quantum optical systems, where there is no
spatial dimension. Meanwhile, special “thermodynamic lim-
its” are also required for the true superradiant QPT. For in-
stance, the “thermodynamic limit” in the Rabi model is the
photon frequency tending to zero [23], while it is the large
atom limit in the Dicke model [10, 11]. The superradiant QPT
can also be described by the language of spontaneous symme-
try breaking, where the corresponding superradiant phase is
a Z2 symmetry-breaking phase. Moreover, like conventional
QPTs, the system can also host universal scaling laws near
the superradiant critical point [25], which is a strong evidence
of a true second-order QPT. This superradiant QPT has at-
tracted considerable interests due to recent achievements of
ultrastrong and even deep strong coupling regimes in light-
matter interacting systems [32–53].

In statistical physics, thermodynamic phase transitions are
forbidden in 1D classical systems (or QPTs in 0D quan-
tum systems), due to strong thermal (or quantum) fluctua-
tions [3, 54]. For instance, there is no ordered phase in the
1D classical Ising model at finite temperatures. From this
viewpoint, the existence of the superradiant QPT in 0D quan-

tum systems seems inconsistent with conventional statistical
physics. The general practice to understand the superradiant
QPT is using perturbation theories to obtain a Gaussian-type
effective Hamiltonian [23], and the superradiant QPT can be
identified by the spectrum of this solvable effective Hamil-
tonian. This perturbation theory is equivalent to the mean-
field approximation, where the high-order terms correspond
to the quantum fluctuations. According to statistical physics,
the fluctuations in 0D quantum systems (or 1D classical sys-
tems) cannot be neglected. Therefore, it is still unclear why
the mean-field approximation is valid in these 0D quantum
systems, and this is significant for understanding the super-
radiant QPT [3, 54]. The conventional Hamiltonian-based
methods seem insufficient to explain why superradiant QPTs
can occur. A natural question is whether we can use quan-
tum field theories to describe the superradiant QPT, making
it more compatible with conventional statistical physics. In
addition, finite-temperature physics is also a significant as-
pect to understand QPTs [3]. Hence, another open question
is how superradiant QPTs affect finite-temperature behaviors
in light-matter interacting systems.

In this paper, we demonstrate how superradiant QPTs oc-
cur in 0D quantum-optical systems based on effective field
theories. We first investigate the Rabi model, which is a min-
imum model to host a superradiant QPT. The imaginary-time
action of the photon degrees of freedom is obtained by the
path-integral method. In addition, we define a dynamical crit-
ical exponent as the rescaling between the temperature and the
photon frequency. By dimensional analysis, we find that, for a
small dynamical critical exponent, the system is described by
a massless free scalar field, and is critical for an arbitrary cou-
pling strength. For a marginal dynamical critical exponent, the
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effective theory becomes a free scalar field or ϕ4-theory with
mass term, and a true second-order QPT indeed emerges. For
a large dynamical critical exponent, higher-order interaction
terms become relevant, and the true QPT is absent. We also
perform numerical simulations of imaginary-time correlation
functions of the order parameter. Our numerical results show
that the correlation function increases when increasing the
imaginary-time distance, which is a unique property of a 0D
quantum phase. Meanwhile, the scaling of correlation func-
tions is consistent with the effective field theory. By identify-
ing the dynamical critical exponent with the gap at the critical
point, we can map this imaginary-time action to the ground
state. We show that the effective theory is a free scalar field
with a marginal 4th-order term. Thus, the mean-field approxi-
mation is indeed valid to describe the superradiant QPT in the
Rabi model. Moreover, we also generalize this quantum-field
method to the Dicke model.

The remainder of the paper is organized as follows. In
Sec. II, we take the Rabi model as an example to show how
a superradiant QPT occurs in a 0D quantum-optical system.
We first review previous results of the superradiant QPT in
the Rabi model, then we derive the effective theory and use
dimensional analysis to show how the superradiant QPT oc-
curs. We also perform numerical simulations to support these
analytical results. In Sec. III, we generalize this quantum-
field method to the Dicke model. We present a discussion of
our main results in Sec. IV. We conclude in Sec. V. In the
Appendix, we present more derivation details.

II. RABI MODEL

Here we first consider the Rabi model, which is a mini-
mum model to describe light-matter interacting systems [18].
Meanwhile, the Rabi model is also a minimum model to host a
0D superradiant QPT. In this section, we take the Rabi model
as an example to show how the superradiant QPT occurs in
a 0D quantum system. We mainly apply quantum field theo-
ries, and use numerical simulations to support our analytical
results.

A. Review of the Rabi model

The Hamiltonian reads

ĤRabi = ωâ†â +Ωσ̂z + gσ̂x(â† + â), (1)

where â† (â) is the creation (annihilation) operator of pho-
tons, σ̂α(α = x, y, z) are the Pauli matrices describing the
two-level atom, ω is the frequency of the photon, Ω is the gap
of the atom, and g is the strength of the dipole interaction. The
Hamiltonian Ĥ possesses parity symmetry

[P̂ , ĤRabi] = 0, P̂ = (−1)n̂σ̂z, (2)

where n̂ = â†â is the number operator. In addition, we can
define a dimensionless parameter

λ ∶= 2g√
2ωΩ

, (3)

which describes the characteristic light-matter coupling
strength.

Previous works [23] show that, under the special thermody-
namic limit

Ω

ω0
→ 0, (4)

there exists a second-order QPT in this 0D quantum system
when varying λ. The critical point is exact at gc = 1, and this
QPT can be described by the spontaneous breaking of the par-
ity symmetry. In the regime g < gc, the system is in its normal
phase with no symmetry breaking. However, when g > gc,
the system is in the superradiant phase, where the parity sym-
metry is spontaneously broken. Moreover, like conventional
critical phenomena, this system also hosts universal scaling
laws near the critical point [25]. Hereafter, we derive the ef-
fective field theory of the Rabi model to show how this 0D
QPT occurs.

B. The effective action

For simplicity, we use a harmonic oscillator to describe the
photon degrees of freedom, and represent the spin operator by
a spinor [55, 56]. Hence, the Hamiltonian can be rewritten as
(choosing oscillator mass m = 1)

ĤRabi =
1

2
p̂2 + 1

2
ω2x̂2 +Ωψ̂†σzψ̂ + 1

2
λω
√
2Ωx̂ψ̂†σxψ̂, (5)

where ψ̂† = [ĉ†
↑
, ĉ†
↓
] is a spinor with ĉ†

↑,↓ being a spin- 1
2

fermion
creation operator, x̂ = (â† + â)/

√
ω is the displacement oper-

ator of the harmonic oscillator, and p̂ = i
√
ω(â† − â) is the

momentum operator. Here, we apply the path integral method
to obtain the effective field theory of the photon [54]. The
partition function of the system takes the form

Z = ∫ Dx Dψ̄ Dψ exp [ − S(x, ψ̄, ψ)]. (6)

According to Eq. (5), the imaginary-time action can be ob-
tained as

S(x, ψ̄, ψ) = S0(x) + S1(x, ψ̄, ψ), (7)

where S0 is the free term, and S1 is the interacting term, with
the detailed forms

S0(x) = ∫
β

0
dτ[1

2
(∂τx)2 +

1

2
ω2x2], (8a)

S1(x, ψ̄, ψ) = ∫
β

0
dτ ψ̄(∂τ +Ωσz +

1

2
λω
√
2Ωxσx)ψ, (8b)
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FIG. 1. Imaginary-time correlation function of displacement operator Cx(β/2). (a) λ = 0.8. When z′ ≤ 1, Cx(β/2) shows a power-law
increase. Two black dashed lines are linear fits. (b) λ = λc = 1. In this case, Cx(β/2) has a power-law increase when z′ ≤ 1.5. The black
dashed line is a linear fit. (c) λ = 1.2. Here, Cx(β/2) has a power-law increase for all cases.

where β = 1/T is the inverse of the temperature (kb = 1), x is
a real scalar field representing the coordinate of the oscillator,
and ψ̄(ψ) is a spinor field.

When β → ∞, the action S describes the ground-state
physics of the Rabi model. Integrating out the spinor field,
we can obtain the effective action of the oscillator as

Seff(x) = ∫
β

0
dτ[1

2
(1 + λ

2ω2

4Ω2
)(∂τx)2 +

1

2
(1 − λ2)ω2x2

+ a4ω4x4 + a6ω6x6 + ....], (9)

where the factor a2n is a function of Ω and λ, and the explicit
form is unimportant. The detailed derivations of Seff(x) are
presented in Appendix A. There exists a parity symmetry in
Eq. (9), i.e., Seff is invariant under the transformation x→ −x,
which corresponds to the original parity P̂ in ĤRabi.

C. Dimensional analysis and the phase transition

Now we perform the dimensional analysis [54] of the ef-
fective action Seff. As usual, the kinetic term is set to be
unity: [ ∫ dτ(∂τx)2] = 1, where [F (x)] ∼ βdF implies that
the canonical dimension of the term F (x) is dF . Thus, the
canonical dimension of the scalar field x and other terms sat-
isfy

[x] = β1/2, [∫ dτx2n] = βn+1. (10)

Therefore, if the frequency ω is finite (i.e., dimensionless),
then an arbitrary order of the interaction term is relevant,
which cannot be neglected in the renormalization group (RG)
flow. In this case, the mean-field theory and ϕ4-theory are
both invalid, and there should not exist any true second-order

QPT. This is also the reason why second-order QPTs are gen-
erally absent in 0D quantum systems (or thermodynamical
phase transitions in 1D classical systems).

However, in the “thermodynamic limit” ω → 0, a contin-
ues QPT indeed exists in the Rabi model at the critical point
λc = 1. Now we understand this special QPT from the view-
point of the effective action in Eq. (9). A conventional d-
dimensional (d ≥ 1) quantum critical phenomenon can be
described by the (d + 1)-dimensional imaginary-time action
under the condition of β ∼ Lz [3], where L is the system size
and z is the dynamical critical exponent. Meanwhile, the finite
size in critical systems corresponds to an infrared (IR) cutoff
ξ ∼ L ∼ β1/z [3], where ξ is the maximal wavelength. There-
fore, in the Rabi model, if we regard the finite photon fre-
quency as an IR cutoff, then considering the condition ω → 0
as a “thermodynamic limit” is reasonable in this picture.

To describe the quantum critical phenomenon of the Rabi
model by Seff, we need to define an analogous “dynamical
critical exponent” z′. Here, the maximal wavelength is ξ ∼
1/ω, so this dynamical critical exponent can be defined as the
rescaling between ω and β,

ω ∼ β−1/z
′

. (11)

Thus, z′ can also be understood as giving ω a non-zero dimen-
sion, i.e., [ω] = β−1/z

′

. Since β →∞ for the ground state, the
photon frequency also satisfies ω ∼ β−1/z

′

→ ∞, which re-
covers the thermodynamic limit of the Rabi model. The mass
term and interaction terms now have the dimension

[ω2n∫ dτx2n] = βn−2n/z
′
+1. (12)

Therefore, these terms are now not necessarily relevant when
the dynamical critical exponent z′ is small enough, and the
effective theory can be truncated to finite order. Note that z′

is a constant in a specific model. In the following, we first
consider z′ as a tunable parameter at finite temperatures, and
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discuss the corresponding effective theory. We will confirm z′

in the Rabi model when discussing ground state properties in
Sec. II. E.

According to Eq. (12), we can find that different z′ may
lead to different effective theories of the Rabi model. When
0 < z′ < 1, i.e., (n − 2n/z′ + 1) < 0 for n ≥ 1, the mass term
and all interaction terms become irrelevant. In this case, the
system is described by a massless free scalar field, leading to
a critical phase for an arbitrary λ.

When 1 < z′ < 4/3, the mass term is relevant, while all
interaction terms are irrelevant. Thus, the effective theory is a
free scalar field with relevant mass term, and the system hosts
a critical point at λ = 1, where the mass of the scalar field
vanishes.

For 4/3 < z′ < 3/2, the ω4x4 term becomes relevant with
higher-order interaction terms irrelevant, so the effective ac-
tion is a ϕ4-theory, which also hosts a critical point at λ = 1.

When z′ > 3/2, higher-order interaction terms are also rel-
evant, and the true second-order QPT is absent.

D. Numerical simulations

We have presented an effective field theory and the dimen-
sional analysis of the Rabi model to show how superradi-
ant QPTs occur in this 0D quantum system. To support the
above discussions and further understand superradiant QPTs,
we perform numerical simulations of the finite-temperature
system. Here we mainly calculate correlation functions of the
order parameter x̂ in the imaginary-time coordinate, defined
as

Cx(τ) ∶= ⟨x̂(τ)x̂(0)⟩β . (13)

Here, Ô(τ) = eτĤÔe−τĤ is the operator in the Heisenberg
picture at imaginary time τ , and ⟨⋅⟩β ∶= Tr(⋅e−βĤ)/Tr(e−βĤ)
is the thermodynamic average at temperature 1/β. Mean-
while, we also fix the relation between the temperature and
photon frequency as β = ω−z

′

. During the numerical calcu-
lation, the parity symmetry is preserved in the density ma-
trix, so we have ⟨x̂(τ)⟩β = 0. Thus, in the ordered phase,
Cx(τ → ∞) = x̄2, where x̄ is the susceptibility, i.e., the ex-
pectation value of x̂ in either parity symmetry broken state. If
the system is critical, then the correlation function Cx(τ) ex-
hibits a power-law decay/increase as τ increases due to scale
invariance

Cx(τ) ∼ τ2∆x , (14)

where ∆x is the observed dimension of the operator x̂. To
reduce the finite-size (finite-β) effect, we calculate the “half-
chain” correlation functionCx(β/2) for different β, and study
the relation between Cx(β/2) and β. In addition, we enlarge
the Fock space of the photon until the result converges.

The “half-chain” correlation functionCx(β/2) versus β for
different λ and z′ is presented in Fig. 1. We can find that
Cx(β/2) exhibits an increase when increasing β for all cases,
which is distinct to conventional high-dimensional systems,
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FIG. 2. The observed dimension of the displacement operator. (a)
∆x versus λ for z′ ≤ 1. There is a sudden change for ∆x at λ = 1.
When λ < 1, ∆x ≈ 1/z′ − 1/2; when λ = 1, ∆x ≈ 1/z′ − 1/4;
and ∆x ≈ 1/z′ for λ > 1. (b) ∆x versus z′ for λ ≥ 1. The orange
dashed curve is the function ∆x = 1/z′, while the magenta one is
∆x = 1/z

′
− 1/4.

where the correlation function should decay for increasing
distance. Equation (10) shows that the canonical dimension
of the operator x̂ is positive. Thus, generally, the correlation
function Cx(β/2) tends to increase when increasing the size
β. However, for higher dimensional quantum systems (d ≥ 1),
the corresponding order parameter has the canonical dimen-
sion (1 − d)/2 ≤ 0, so the correlation function tends to decay
for increasing β. Therefore, this result, i.e., the correlation
function of the order parameter increases as β increases, is a
unique property of 0D quantum phases.

Now we discuss the correlation function Cx(β/2) in detail.
When λ < 1, Fig. 1(a) shows that Cx(β/2) hosts a power-
law increase only when z′ ≤ 1, with the observed dimension
∆x = 1/z′ − 1/2 [see Fig. 2(a)]. This demonstrates that, when
z′ ≤ 1, the system is described by a massless scalar field even
for λ < 1, i.e., the mass term in Eq. (9) is indeed irrelevant in
this case.

In the case of λ = 1, Cx(β/2) can exhibit a power-law in-
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TABLE I. The observed dimension of the displacement operator ∆x.
Here, “NSI” means “no scale invariance” in the corresponding case.

0 < z′ ≤ 1 1 < z′ ≤ 3/2 z′ > 3/2

λ < 1 1/z′ − 1/2 NSI NSI
λ = 1 1/z′ − 1/4 1/z′ − 1/4 NSI
λ > 1 1/z′ 1/z′ 1/z′

crease when z′ ≤ 3/2, see Fig 1(b). This is a strong evidence
that there is no true second-order QPT at λ = 1 when z′ > 3/2,
i.e, the superradiant criticality is absent in this case. More-
over, we also fit the dimension of x̂ at the critical point as
∆x = 1/z′ − 1/4 [Fig. 2(b)].

When λ > 1, Cx(β/2) shows a power-law increase for an
arbitrary z′, see Fig. 1(c). In addition, the dimension of x̂ is
∆x = 1/z′ in this case, see Fig. 2(b).

The observed dimension of x̂ versus z′ and λ is summarized
in Table I. Now we understand numerical results of Cx(β/2)
in terms of the dynamical critical exponent z′, where the sys-
tem can be divided into three regions. When 0 < z′ ≤ 1, the
system is critical for an arbitrary λ, and there is no second-
order QPT at λ = 1, though ∆x is not continuous at λ = 1.
Here, the sudden change of ∆x originates from the exact zero
of the mass term at λ = 1. For 1 < z′ ≤ 3/2, there is a true
second-order QPT at λ = 1, where the susceptibility in the
ordered phase is x̄ ∼ β1/z′ ∼ ω−1. When z′ > 3/2, the true
superradiant QPT is absent, since there is no scale invariance
at λ = 1. Therefore, the numerical results are consistent with
the effective theory and dimensional analysis.

E. Mapping to the ground state

We have studied the effective theory of the Rabi model at
finite temperatures. Now we apply the above results to the
ground state. Here, the key is to confirm the dynamical critical
exponent z′ in the Rabi model. According to conventional
QPTs, the definition of dynamical critical exponent can also
be expressed as the scaling between the gap and the length
scale, i.e., ∆ ∼ ξ−z . Similarly, in the Rabi model, the length
scale at the critical point is ξ ∼ 1/ω, and z′ can be confirmed
by the relation

∆ ∼ ωz
′

. (15)

Now we numerically obtain the dynamical critical exponent
as

z′ = 4/3, (16)

which is consistent with Ref. [23], see also our Fig. 3(a).
According to Eq. (12), when z′ = 4/3, the mass term is

relevant, the ω4x4 term is marginal, and other higher-order
terms are irrelevant. Thus, the system can be described by
a 1D real free scalar field. Since the fluctuation terms are
all negligible, the mean-field approximation is indeed valid to
understand the superradiant QPT.

To further uncover the phase transition by the effective ac-
tion, we can apply the principle of least action. For simplicity,
we use the following simplified effective action of the free
scalar field

Seff = ∫
β

0
dτ[1

2
(∂τx)2 +

1

2
(1 − λ2)ω2x2]. (17)

(i) For positive mass, i.e., ∣λ∣ < 1, to minimize the action
we have x = 0. Thus, in this case, the parity symmetry is
unbroken, corresponding a normal phase.

(ii) For negative mass, i.e., ∣λ∣ > 1, to minimize the ac-
tion we have x = ∞. This shows that there exists an insta-
bility leading to a condensation of x, which corresponds to
a symmetry-breaking phase. When mapping to the original
Hamiltonian, we can know this symmetry-breaking phase is
indeed a superradiant phase.

We can also obtain the scaling of the order parameter x̂ at
the critical point

⟨x̂⟩ ∼ β1/2 ∼ ω−2/3, (18)

which is consistent with the result in Ref. [23].

III. DICKE MODEL

Now we consider the Dicke model, which describes light
interacting with a large ensemble of two-level atoms [9]. The
Hamiltonian reads

ĤDicke = ωâ†â +Ω
N

∑
j=1

σ̂zj +
2J√
N
(â† + â)

N

∑
j=1

σ̂xj . (19)

where σ̂αj (α = x, y, z) describe the j-th two-level atom, and
N is the number of atoms. Parity symmetry implies

[P̂ , ĤDicke] = 0, P̂ = (−1)n̂
N

∏
j=1

σ̂zj . (20)

In the thermodynamic limit N → ∞, there also exists a
second-order QPT in this 0D system from the normal phase
to the superradiant phase when increasing λ [10, 11]. The
critical point is exact at

λ = λc =
√
ωΩ/2, (21)

and this QPT can also be described by the spontaneous break-
ing of the parity symmetry.

Now we apply the above method in the Rabi model to dis-
cuss how the superradiant QPT occurs in the Dicke model.
Here, the effective imaginary-time action can be obtained as

Seff(x) = ∫
β

0
dτ[1

2
(∂τ x̃)2 +

2ω

Ω
(λ2c − λ2)x̃2

+ α4

N
x̃4 + α6

N2
x̃6 + ....], (22)
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where x̃ is also a real scalar field, and α2n is a finite factor
with the explicit form unimportant. The detailed derivations
are presented in Appendix B. Similar to the Rabi model, the
canonical dimension of the field x is also [x̃] = β1/2. Since
ω and Ω are both finite in the Dicke model, the mass term is
always relevant, i.e., [∫ dτx̃2] = β2. In the case of finite size,
i.e., finite N , each interaction term is relevant, so there should
be no true second-order QPT.

In the “thermodynamic limit” N → ∞, analogous to the
Rabi model, we can define a dynamical critical exponent as
N ∼ β1/z′ . Thus the dimension of the interaction terms are
now

[Nn−1∫ dτx̃2n] = βn+1−(n−1)/z
′

. (23)

When z′ < 1/3, all interaction terms become irrelevant, and
the system can be effectively described by the free real scalar
field with a mass term.

For 1/3 < z′ < 1/2, the x4 term is relevant, while higher-
order interaction terms are irrelevant, and the effective theory

is a ϕ4-theory. In the above two cases, there exists a QPT at
the critical point λ = λc.

However, when z′ > 1/2, the higher-order interaction terms
are relevant, leading to the absence of a true QPT. There-
fore, the superradiant QPT of the Dicke model can also be
described by the effective field theory in Eq. (22).

Here, we discuss the ground-state properties of the Dicke
model, where we need to know the dynamical critical expo-
nent z′. Similar to the Rabi model, z′ can be calculated by the
relation

∆ ∼ N−z
′

, (24)

where ∆ is the gap. Via numerical simulations, we obtain
z′ = 1/3, see Fig. 3(b). Thus, the x̃4 term is marginal, and
other higher-order terms are irrelevant. Therefore, similar to
the Rabi model, the effective theory of the Dicke model can be
described by the mean-field approximation, and there indeed
exists a QPT when tuning the mass from positive to negative.

IV. DISCUSSION

The correlation length is divergent at the critical point, so
the long-wavelength physics is a significant aspect to under-
stand QPTs [3]. However, the original Hamiltonian generally
contains too many microscopic details, which are not use-
ful for analyzing long-wavelength physics. Thus, to further
understand the QPT, we can integrate out all of the micro-
scopic details to obtain an effective field theory. This long-
wavelength-limit effective field theory can be used to provide
insight on the QPT. Specifically, it can tell us which symmetry
dominates the QPT, and how the quantum fluctuations impact
the phases. This is common practice in many conventional
QPTs. Here, to understand how superradiant QPTs occur in
0D systems, we also introduce effective field theories in the
long-wavelength limit.

According to Eq. (9), we can find that the high-order term
ω2nx2n (the quantum fluctuations) contains a prefactor ω2n.
In the thermodynamic limit ω → 0, it seems that ω2nx2n also
tends to zero, i.e., the mean-field approximation is convergent.
However, for this 0D system, the expectation value of the field
x is divergent, i.e., x2n → ∞, see Fig. 1. Thus, the fluctua-
tion term ω2nx2n is not necessarily convergent. From this
viewpoint, the validity of the mean-field approximation for the
Rabi model is not obvious. To address this puzzle, we study
its effective field theory to analyze whether the quantum fluc-
tuations are relevant. Here, the core idea is introducing the
dynamical critical exponent z′ to relate two divergent quanti-
ties, i.e., 1/ω and x2n. By dimensional analysis, we find that
the ω4x4 term is marginal, while the higher-order terms are
irrelevant. Therefore, the quantum fluctuation is indeed neg-
ligible, and the mean-field approximation is valid to describe
this 0D superradiant QPT.
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V. SUMMARY

In conclusion, we have investigated the effective theories
and finite-temperature properties of the superradiant QPT, and
shown how these occur in 0D light-matter interacting systems.
Using the path integral method, we first derive the effective
imaginary-time action of the photon in the Rabi model. We
also define the dynamical critical exponent as the rescaling be-
tween the temperature and the photon frequency. We perform
a dimensional analysis to discuss whether high-order terms
are relevant, and the results show:

(i) When the dynamical critical exponent is small enough,
the system is described by a massless free scalar field, leading
to a critical phase for an arbitrary coupling strength.

(ii) The effective theory can be a free scalar field or ϕ4-
theory with mass term for a marginal dynamical critical expo-
nent, and a true second-order QPT indeed emerges.

(iii) For a large dynamical critical exponent, higher-order
interaction terms become relevant, and the true QPT is absent.
These results were also verified by numerical simulations.

We also numerically obtain the dynamical critical expo-
nent, and our results show that the superradiant QPT in the
Rabi model can indeed be described by a mean-field approx-
imation. We also generalize this quantum-field method to the
Dicke model.

Our results make the 0D superradiant QPT compatible with
conventional statistical physics, and pave the way to under-
stand the superradiant criticality from the view point of effec-
tive field theories. There also remain several interesting topics
that deserve further study: We find that the 4th-order terms
are marginal for both the Rabi model and Dicke model, and it
would be an interesting issue to explore whether it is univer-
sal in 0D or systems with all-to-all connectivity. In addition,
it will also be relevant to obtain the universal scaling law of
0D superradiant QPTs by effective field theories. Other mean-
ingful topics include whether our field-theory methods can be
generalized to dispersive QPTs in light-matter interacting sys-
tems [57–60], and what will be happen to the effective theory
when adding the spatial dimension, i.e., considering the Rabi
lattice [61, 62].
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Appendix A: Effective action of the Rabi model

Here we derive the effective action of the Rabi model. For
simplicity, we rewrite the effective Hamiltonian in terms of
the harmonic oscillator

Ĥ = 1

2
p̂2 + 1

2
ω2x̂2 +Ωσ̂z + g

√
ωx̂σ̂x. (A1)

We can also define the spinor ψ̂† = [ĉ†
↑
, ĉ†
↓
], where ĉ†

α is the
fermion operator. Thus, the spin operator can be obtained as

σ̂αγ = ψ̂†σαγψ̂. (A2)

Expressed in the form of path integral, the partition function
of the system takes the form

Z = ∫ Dx Dψ̄ Dψ exp [−S(x, ψ̄, ψ)], (A3)

where the action S(x, ψ̄, ψ) has the form

S(x, ψ̄, ψ) = S0(x) + S1(x, ψ̄, ψ) (A4a)

S0(x) = ∫
β

0
dτ[1

2
(∂τx)2 +

1

2
ω2x2] (A4b)

S1(x, ψ̄, ψ) = ∫
β

0
dτψ̄(∂τ +Ωσz + g

√
ωxσx)ψ. (A4c)

We rewrite the partition function as

Z = ∫ Dx e−S0(x) ∫ Dψ̄Dψ e−S1(x,ψ̄,ψ)

∶= ∫ Dx e−S0(x)Z1(x). (A5)

Applying the Fourier transformation

ψn =
1√
β
∫

β

0
dτψ(τ)eiνnτ , (A6a)

ψ̄n =
1√
β
∫

β

0
dτψ̄(τ)e−iνnτ , (A6b)

νn = (2n + 1)π/β, (A6c)

we can obtain

Z1(x) =∫ Dψ̄Dψ exp{ ∑
νm,νn

ψ̄m[ − iνnδm,n +Ωσzδm,n

+ tx(νm − νn)σx]ψn}, (A7)

where

t = λω
√
Ω/2β, x(pn) =

1√
β
∫

β

0
dτx(τ)e−ipnτ . (A8)

According to the Gaussian integral, we have

Z1(x) = det [G−10 + tV ]

= det [G−10 + tx(νm − νn)σx] ∶= exp(−S̃). (A9)
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where G0 = (−iνn +Ωσz)−1 is the Green function of the free
spinor field, and the matrix V satisfies Vm,n = x(νm − νn)σx.
The corrected action S̃ can be obtained as

S̃ = − ln det [G−10 + tV ] = −Tr ln [G−10 + tV ]. (A10)

Here the factor t is small, so we can use the Taylor expansion

S̃ = − Tr ln [G−10 + tV ] = −Tr lnG−10 − Tr ln [1 + tG0V ]

= − Tr lnG−10 +∑
n

t2n

2n
Tr[G0V ]

2n
, (A11)

where the first term Tr lnG−10 is a constant.
First, we calculate the second-order contribution of

Eq. (A11), i.e.,

S̃2 =
t2

2
Tr[G0V ]

2 = t
2

2
∑

νn,νm

Tr[G0(νn)Vn,mG0(νm)Vm,n]

= t2 ∑
νn,pn

∣x(pn)∣2Tr
1

−iνn +Ωσz
σx

1

−iνn − ipn +Ωσz
σx

∶= t2∑
pn

π(pn)∣x(pn)∣2. (A12)

Now we calculate π(pn) as

π(pn) =∑
νn

Tr
1

−iνn +Ωσz
σx

1

−iνn − ipn +Ωσz
σx

=∑
νn

Tr
1

−iνn +Ωσz
1

−iνn − ipn −Ωσz

=∑
νn

( 1

−iνn +Ω
1

−iνn − ipn −Ω

+ 1

−iνn −Ω
1

−iνn − ipn +Ω
) (A13)

Here we apply the common method of Matsubara frequency
summation. Let

π1(pn) =∑
νn

h(νn) =∑
nn

1

−iνn +Ω
1

−iνn − ipn −Ω
, (A14a)

g(z) = β

eβz + 1
. (A14b)

Then we can introduce a contour integration

I ∶ = lim
R→∞

∮
dz

2πi
g(z)h(−iz)

= lim
R→∞

∮
dz

2πi

1

−z +Ω
1

−z − ipn −Ω
β

eβz + 1
=∑
zk

Res[g(z)h(−iz), zk], (A15)

where Res[f(z), zk] is the residue of f(z) at zk. We can find
that iνn = 2iπn/β is the singularity of g(z)h(−iz), and the
corresponding residue is

Res[g(z)h(−iz), iνn] = h(νn). (A16)
In addition to iνn, another two singularities of g(z)h(−iz) are
z1 = Ω and z2 = −Ω − ipn, and the corresponding residues are

Res[g(z)h(−iz), z1] =
1

ipn + 2Ω
β

eβΩ + 1
, (A17a)

Res[g(z)h(−iz), z2] =
1

ipn + 2Ω
βeβΩ

1 − eβΩ
(A17b)

Therefore, we have

I ∶=∑
νn

h(νn) +Res[g(z)h(−iz),Ω]

+Res[g(z)h(−iz),−Ω − ipn]. (A18)

Meanwhile, since we consider the infinite radius of the con-
tour, we have I = 0. Thus,

π1(pn) =∑
νn

h(νn)

= −Res[g(z)h(−iz),Ω] −Res[g(z)h(−iz),−Ω − ipn]

= − β

ipn + 2Ω
e2βΩ + 1
e2βΩ − 1

. (A19)

Similarly, we also have

π2(pn) =∑
νn

1

−iνn −Ω
1

−iνn − ipn +Ω

= β

ipn − 2Ω
e2βΩ + 1
e2βΩ − 1

. (A20)

Hence, we can obtain π(pn) as

π(pn) = π1(pn) + π2(pn) = (
β

ipn − 2Ω
− β

ipn + 2Ω
)e

2βΩ + 1
e2βΩ − 1

= − 4βΩ

p2n + 4Ω2
coth(βΩ). (A21)

Since β →∞, we have coth(βΩ) = 1. In addition, we mainly
concern the infrared limit, i.e., pn ≪ Ω, thus π(pn) can be
approximated as

π2(pn) ≈
βp2n
4Ω3
− β
Ω
. (A22)

Therefore, the second-order contribution of Eq. (A11) is

S̃2 = t2∑
pn

(βp
2
n

4Ω3
− β
Ω
)∣x(pn)∣2

= 1

2
∑
pn

(λ
2ω2p2n
4Ω2

− λ2ω2)∣x(pn)∣2. (A23)

Next, we calculate the 4th-order contribution of Eq. (A11)
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S̃4 =
t4

4
Tr[G0V ]

4 = t
4

4
∑

νn,νm,νℓ,νk

Tr[G0(νn)Vn,mG0(νm)Vm,ℓG0(νℓ)Vℓ,kG0(νk)Vk,n]

= t
4

4
∑

νn,pn,qn,rn

x(pn)x(qn)x(rn)x(−pn − qn − rn)

Tr
1

−iνn +Ωσz
σx

1

−iνn − ipn +Ωσz
σx

1

−iνn − ipn − iqn +Ωσz
σx

1

−iνn − ipn − iqn − irn +Ωσz
σx. (A24)

Here, S̃4 can also be obtained by Matsubara frequency sum-
mation. However, we only consider the long-wavelength limit
rather than the explicit form of S̃4. Thus, we can neglect the
microscopic details, where S̃4 can be described by a simple
form

S̃4 = a4ω4 ∫
β

0
dτx4, (A25)

where a4 is a function of λ and Ω. Similarly, we can also give
estimations of higher-order contributions as

S̃2n = a2nω2n ∫
β

0
dτx2n. (A26)

Therefore, the effective action of the harmonic oscillation can
be obtained as

Seff =S0 + S̃2 + S̃4 + S̃6 + ...

=∫
β

0
dτ[1

2
(1 + λ

2ω2

4Ω2
)(∂τx)2

+ 1

2
(1 − λ2)ω2x2 + a4ω4x4 + a6ω6x6 + ...]. (A27)

Appendix B: Effective action of the Dicke model

In this section, we consider the Dicke model, which de-
scribes light interacting with a large ensemble of two-level
atoms. The Hamiltonian reads

ĤDicke = ωâ†â +Ω
N

∑
j=1

σ̂zj +
2J√
N
(â† + â)

N

∑
j=1

σ̂xj . (B1)

where σ̂αj (α = x, y, z) are the Pauli matrices describing the j-
th two-level atom, andN is the number of atoms. There is also
a parity symmetry [P̂ , ĤDicke] = 0 with P̂ = (−1)n̂∏Nj=1 σ̂zj .
In the thermodynamic limit N → ∞, there also exists a
second-order QPT in this zero-dimensional system from the
normal phase to the superradiant phase when increasing λ.
The critical point is exact at λ = λc =

√
ωΩ/2, and this QPT

can also be described by the spontaneous breaking of the par-
ity symmetry.

Here, to obtain the effective action of the Dicke model, we
need to apply the Holstein-Primakoff transformation. We first

introduce the angular momentum representation

Ŝα ∶= 1

2

N

∑
j=1

σ̂αj , (B2)

where Ŝα is the spin-N/2 angular-momentum operator. Ac-
cording to the Holstein-Primakoff transformation, we have

Ŝ+ = (
√
N − b̂†b̂)b̂, (B3a)

Ŝ− = b̂†(
√
N − b̂†b̂), (B3b)

Ŝz = N/2 − b̂†b̂, (B3c)

where b̂†(b̂) is the bosonic creation (annihilation) operator.
Thus, the Hamiltonian in Eq. (B1) can be written as

ĤDicke =ωâ†â + 2Ωb̂†b̂

+ 4J√
N
(â† + â)(

√
N − b̂†b̂ b̂ + b̂†

√
N − b̂†b̂). (B4)

Here, we can use the Taylor expansion to expand the square
root term as

√
N − b̂†b̂ =

√
N(1 − b̂

†b̂

2N
+ (b̂

†b̂)2

4N2
+ ...). (B5)

Thus we have

ĤDicke = ωâ†â + 2Ωb̂†b̂ + 4J(â† + â)(b̂† + b̂)

+ 4J(â† + â)( − b̂
†b̂b̂ + b̂†b̂†b̂

2N
+ (b̂

†b̂)2b̂ + b̂†(b̂†b̂)2

4N2
+ ....).

(B6)

Therefore, according to the interaction between the bosons â
and b̂, we can write a general effective imaginary-time action
of the Dicke model as

Seff(x) =∫
β

0
dτ[1

2
(∂τ x̃)2 +

2ω

Ω
(λ2c − λ2)x̃2

+ α4

N
x̃4 + α6

N2
x̃6 + ....], (B7)

where x̃ is also a real scalar field, and α2n is a finite factor
with its explicit form unimportant. We note that the x̃ here is
not the coordinate of the bare oscillator â, while it is a linear
combination of â and b̂.
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