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The nonlinear Hall effect has recently attracted significant interest due to its potential as a promis-
ing spectral tool and device applications. A theory of the nonlinear Hall effect on a disordered lattice
is a crucial step towards explorations in realistic devices, but has not been addressed. We study the
nonlinear Hall response on a lattice, which allows us to introduce strong disorder numerically. We
reveal a disorder-induced fluctuation of the Berry curvature that was not discovered in the previous
perturbation theories. The fluctuating Berry curvature induces a fluctuation of the nonlinear Hall
conductivity, which anomalously increases as the Fermi energy moves from the band edges to higher
energies. More importantly, the fluctuation may explain those observations in the recent experi-
ments. We also discover an “Anderson localization” of the nonlinear Hall effect. This work shows a
territory of the nonlinear Hall effect yet to be explored.

Introduction.– The nonlinear Hall effect behaves as a
transverse Hall voltage nonlinearly responding to a lon-
gitudinal driving current [1–8]. It has attracted much
attention, as a new experimental tool to reveal a num-
ber of emergent physics, such as the Berry curvature
dipole [3–5], Berry-connection polarizability, and quan-
tum metric [6–10]. A theory of the nonlinear Hall effect
on a disordered lattice is a crucial step towards explo-
rations in realistic devices, but has not been addressed.

In this Letter, we study the nonlinear Hall effect on
a disordered lattice [Fig. 1(a)]. With the lattice treat-
ment, we can introduce strong disorder, allowing us to
explore essential topics of quantum transport, e.g., fluc-
tuation and localization [11–15]. Our calculations reveal
two findings in the nonlinear Hall response. (i) A fluctu-
ation of the nonlinear Hall conductivity, which increases
anomalously as the Fermi energy moves from the band
edges to higher energies [the blue data in Fig. 1(b)]. It
arises from a different mechanism of the nonlinear Hall ef-
fect, as a result of a disorder-induced fluctuation of Berry
curvature [Fig. 2], thus it can neither be revealed in the
perturbation theories nor measured in the linear Hall con-
ductivity. This fluctuation may explain the recent exper-
iments [Figs. 1(c) and 1(d)], where larger nonlinear Hall
conductivity fluctuations were observed at higher ener-
gies [3, 4], but cannot be understood by the universal
conductance fluctuation [12, 16, 17] or the perturbation
theories. (ii) The second feature is an “Anderson local-
ization”, but in the nonlinear response thus is different
from the previous scenarios [13–15]. Our findings reveal
a large territory of the nonlinear Hall effect yet to be
explored.

FIG. 1. (a) In the nonlinear Hall effect, a double-frequency
transverse current J2ω is induced by an electric field Eω. Su-
percells (dashed boxes, L for side length) allow introducing
strong disorder numerically on a lattice (the lattice-site col-
ors here show a single disorder configuration). The supercell
can converge to an infinite disordered lattice within a rea-
sonable computational power, while maintaining the lattice
translational symmetry (i.e., kx and ky are still good quan-
tum numbers). (b) The calculated nonlinear Hall effect in
terms of the Berry curvature dipole ⟨Dyxx⟩ [calculated using
Eq. (2)] exhibits stronger fluctuations at higher Fermi energy
EF when disorderW ̸= 0, indicated by the standard deviation
bars after averaging over 5000 disorder configurations. The
calculated fluctuation in (b) gives an explanation to the unex-
pected higher-energy stronger fluctuations of Dyxx observed
in experiments [(c) and (d), adopted from Refs. [3] and [4]].
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FIG. 2. (a) The Berry curvature after averaging over 5000
disorder configurations ⟨Ω̄⟩ [calculated using Eq. (3)] as a
function of energy E for W = 0 and W = 20 meV. The in-
sets show the fluctuation of the Berry curvature dipole δDyxx

as functions of the Fermi energy EF and disorder strength
W . (b) The energy spectra E(kx, ky) and Berry curvature
Ωxy(kx, ky) of the supercell system for a single disorder con-
figuration (W = 20 meV). The color scheme shows that the
fluctuation of Ωxy is more intense at higher energies (e.g.,
near ±200 meV) than at low energies (e.g., near ±50 meV),
explaining the increasing fluctuation at higher energies in (a)
and Fig. 1(b). (c) Schematic of the energy dispersion of the
2D Dirac model, with a density of states (DOS) linearly pro-
portional to E in (d), which explains the stronger fluctuation
of the Berry curvature at higher energies in (b). [(e)-(g)]
In the supercell picture, the degenerate states at given ener-
gies [red and blue circles in (c) and dots in (d)] turn to the
band crossings in (g), which carry no Berry curvature because
of violating the adiabatic conditions. Disorder can open the
random gaps [e.g., positive in (e) or negative in (f)] at the
crossings and generate fluctuating Berry curvature. The su-
percell size L = 60 nm in (a) and L = 8 nm in (b).

Model and the supercell method.– We adopt the mini-
mal model for the nonlinear Hall effect, i.e., the tilted 2D
massive Dirac model [18],

H = tkx +
(
m− αk2

)
σz + v(kyσx − kxσy), (1)

The previous perturbation theories reveal that disorder
plays an important role in the nonlinear Hall effect, but
the exploration was limited to weak disorder [19–27]. To
deal with stronger disorder, we project the model on a
2D square lattice and introduce the Anderson disorder
[13–15, 28–41], in terms of the on-site energies uniformly
distributed within [−W,W ], where W measures the dis-
order strength. The parameters lattice constant a = 1
nm, t = 50 meV nm, v = 100 meV nm, α = 100 meV
nm2, m = 40 meV, and the temperature kBT = 0.12m,
are of the same orders of those in typical massive Dirac
systems [4, 42, 43]. Moreover, we adopt the supercell
method to save computational power [see Fig. 1(a) and
Sec. SI of Supplemental Material [44] for more details].
The area of the supercell is V = L2, with the side lengths
L = na, and the number of lattice sites n2.
Nonlinear Hall conductivity–Berry curvature dipole.–

One of the major contributions to the nonlinear Hall
conductivity (defined as a current density ja = σabcEbEc

induced by two electric fields Eb and Ec, with a, b, c ∈
{x, y, z}) is from the Berry curvature dipole σBCD

abc =
(e3/ℏ2)τDabc [1, 45], where τ is the relaxation time and
the Berry curvature dipole Dabc can be found as

Dabc =

∫
d2k

Em ̸=Ep∑
m,p

vcmmΩab
mpf

′
Em

, (2)

where the Berry curvature Ωab
mp = 2 Im

[
Ra

pmRb
mp

]
,

Ra
mp = ivamp/Emp, Emp = Em − Ep, vamp =

⟨m| ∂H/∂ka |p⟩, f ′
Em

= ∂fEm
/∂Em, and f is the Fermi

function. Em is the eigenvalue of the m-th state and
|m⟩ is the corresponding eigenstate. This integration is
over the folded Brillouin zone, with kx/y ∈ [−π/L, π/L].
The nonlinear Hall conductivity depends also on the re-
laxation time τ , which is irrelevant to the Berry physics
and is subtracted in the experiments using the Drude
conductivity [3, 4], so we focus only on Dabc.
Figure 1(b) shows the Berry curvature dipole Dyxx of

the tilted Dirac model as a function of the Fermi energy
EF . In the absence of disorder (W = 0), the results
are in accordance with the previous studies [1, 2]. In
the presence of disorder (W ̸= 0), we find two features
in Dyxx, i.e., the localization and fluctuation effects, as
manifested by the disordered-averaged Berry curvature
dipole ⟨Dyxx⟩ and the corresponding fluctuation δDyxx.
In the numerical calculations, ⟨Dyxx⟩ is obtained after
an ensemble averaging over 5000 configurations of the
same disorder strength W . The fluctuation is defined
as the standard deviation of these configurations, i.e.,

δDyxx =
√
⟨D2

yxx⟩ − ⟨Dyxx⟩2.
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Fluctuation.– As shown by the standard deviation bars
in Fig. 1(b), the fluctuation of δDyxx increases as EF

moves away from the band edges (at EF = ±40 meV)
to higher energies (e.g., EF = ±200 meV). This can be
observed more clearly in the insets of Fig. 2(a), where
we show δDyxx as a function of the Fermi energy EF

and disorder strength W . The fluctuation is a surprise
because the Berry curvature dipole reaches the maximum
near the band edges and decays at higher energies, but
its fluctuation shows an opposite behavior [the left inset
of Fig. 2(a)]. The fluctuation δDyxx can be even several
times larger than the average value of ⟨Dyxx⟩ at EF =
200 meV.

The fluctuation of the Berry curvature dipole is at-
tributed to the disorder-induced fluctuation of the Berry
curvature. Figure 2(a) shows the disorder-averaged Berry
curvature ⟨Ω̄⟩ as a function of energy E, where ⟨...⟩means
disorder average,

Ω̄(E) =

∫
d2k

Em ̸=Ep∑
m,p

Ωxy
mpf

′
Em

, (3)

and the integral is for all k of the same energy E. Fig-
ure 2(a) shows that the averaged Berry curvature is sta-
ble in the absence (red data) and presence (blue data)
of disorder. By contrast, its fluctuation is significantly
enhanced by disorder and becomes more pronounced at
higher energies. As illustrated in Figs. 2(b)-2(g), the fluc-
tuation of the Berry curvature is attributed to the mixing
of the degenerate states of different k. The fluctuation
is more significant at higher energies [Fig. 2(b)] because
there are more states [Figs. 2(c) and 2(d)]. Our supercell
treatment also helps reveal this picture of mixed degener-
ate states. Within the supercell picture, the degenerate
states turn to band crossings due to the Brillouin zone
folding [Fig. 2(g)]. The crossings violate the adiabatic
condition [46], so at the crossings the Berry curvature
from two bands is supposed to be compensated. Dis-
order opens random mini-gaps in these band crossings,
inducing significant random fluctuations of the Berry cur-
vature [Figs. 2(e)-2(f)]. After averaging over numerous
disorder configurations, these random fluctuations in the
Berry curvature lead to the fluctuation in the Berry cur-
vature dipole [see Secs. SII and SIII of Supplemental Ma-
terial [44] for more details].

Figures 1(c) and 1(d) illustrate the experimentally
measured Berry curvature dipole in two distinct systems.
One is the bilayer graphene [3] and the other is the bilayer
WTe2 [4]. In both experiments, a fluctuation of the Berry
curvature dipole is observed. Remarkably, the fluctua-
tion increases as the Fermi energy moves away from the
Dirac points to higher energies [i.e., EF = 0 in Fig. 1(d)
and Vg − VNP = 0 in Fig. 1(e)]. Our theory provides
a potential mechanism to understand the experimental
results.

Moreover, the right inset of Fig. 2(a) shows that the

FIG. 3. (a) The disorder-averaged Berry curvature dipole
⟨Dyxx⟩ [calculated using Eq. (2)] as a function of EF for dif-
ferent disorder strengths W . (b) ln⟨Dyxx⟩ as a function of L
for different W at E = −50 meV. [(c) and (d)] The disorder-
averaged velocity v̄x [calculated using Eq. (4)] as functions of
W and E. Here, each point is obtained averaging over 5000
disorder configurations. To better demonstrate the fluctua-
tion of the velocity, the standard deviation bars in (c) and
(d) are magnified by 10 times.

fluctuation increases with the disorder strength when
W < 40 meV (which is comparable to the gap of the
massive Dirac model 2m) roughly, then decreases and
vanishes with further increasing disorder strength. This
non-monotonic behavior can be understood by the prop-
erty of the Berry curvature dipole, which first increases
with the gap then drops and vanishes [18]. The disorder-
induced random mini-gaps increases with increasing dis-
order strength, giving rise to the non-monotonic behavior
of the fluctuation with the disorder strength [Sec. SIII B
of Supplemental Material [44] for more details]. There-
fore, the right inset of Fig. 2(a) also verifies our explana-
tion to the fluctuation of the Berry curvature dipole as
a result of the disorder-induced fluctuation of the Berry
curvature.

When W > 50 meV, we also find that L3δDyxx re-
mains invariant as the system size L changes [see Sec. SIV
of Supplemental Material [44] for more details]. This be-
havior differs significantly from the linear conductance
fluctuations and suggests a unique scaling law in the non-
linear Hall response.

Localization.– As shown in Fig. 1(b), the disorder-
averaged Berry curvature dipole ⟨Dyxx⟩ drops as the An-
derson disorder is turned on (W ̸= 0), which can be
observed more clearly in Figs. 3(a). Figure 3(b) also
shows that ⟨Dyxx⟩ exhibits a nearly exponential decay
with increasing supercell size L. This drop of the non-
linear Hall conductivity is reminiscent of the Anderson
localization [47, 48], but the difference is that the previ-
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FIG. 4. (a) The Berry connection polarizability ⟨σBCP
xyy /Γ⟩

[calculated using Eq. (5)] as a function of the Fermi energy
EF , in the absence (W = 0) and presence (W = 10 meV) of
disorder. (b) The fluctuation δσBCP

xyy /Γ as a function of EF for
different disorder strength W , where Γ ≡ e3/2ℏπ2. (c) The
disorder-averaged ⟨σBCP

xyy /Γ⟩ and (d) the fluctuation δσBCP
xyy /Γ

as functions of W for different EF . Here, the disordered data
is obtained after averaging over 5000 disorder configurations.
The parameters are the same as those in Figs. 1, 2, and 3.

ous Anderson localization is about the linear longitudinal
conductivity. This finding of the localization of the non-
linear Hall effect has not been addressed theoretically and
may be observed in future experiments.

We further show that the drop of ⟨Dyxx⟩ has an ori-
gin similar to the Anderson localization. According to
Eq. (2), the Berry curvature dipole is determined by
the electron velocity v and Berry curvature Ω near the
Fermi surface. With increasing disorder strength, the
Berry curvature protected by the bulk topology is robust
against disorder [Fig. 2(a)]. In contrast, the disorder-
averaged velocity

v̄x =

∫
d2k

∑
m

|vxmm| f ′
Em

, (4)

decreases with increasing disorder strength [Figs. 3(c)
and 3(d)], indicating that the drop of the Berry curva-
ture dipole has an origin similar to that of the Anderson
localization.

Moreover, the fluctuation of the velocity is much
smaller than that of the Berry curvature. We need
to magnify the standard deviation bars by 10 times in
Figs. 3(c) and 3(d) to show the fluctuation of the ve-
locity. Additionally, the fluctuation of the velocity does
not increase with the energy E, which further indicates
that the fluctuation of the Berry curvature dipole in Fig.
1(b) is mainly contributed by the fluctuation of the Berry
curvature in Fig. 2(a).

Nonlinear Hall conductivity—Berry connection polar-

izability.– In a PT -symmetric metal (P for spatial inver-
sion and T for time-reversal), the nonlinear Hall effect
can also emerge as a result of the Berry connection po-
larizability [9, 10], which measures the distance between
quantum states and deflects electronic carriers to the per-
pendicular direction. We show that the fluctuation and
localization also present in the Berry connection polariz-
ability under strong disorder.
The Berry connection polarizability can be found as

σBCP
abc =

∫
d2kΓ

Em ̸=Ep∑
m,p

(
Gbc
mpv

a
mm − Gac

mpv
b
mm

Emp

)
f ′
Em

,

(5)
where Γ = e3/2ℏπ2 and Gbc

mp = ReRb
pmRc

mp. To have
the PT -symmetry, we consider a four-band tilted Dirac
model [9, 10, 49]

H ′ = tkx +
(
m− αk2

)
τz + vkxτx + vkyτyσx, (6)

which obeys PTH ′ (k) (PT )−1 = H ′ (k), where the PT -
symmetry operator PT = −iσyK and K means the com-
plex conjugate. The parameters are the same as those in
Eq. (1).
Figure 4 shows the results for the Berry connection

polarizability σBCP
xyy . In the presence of disorder, the

Berry connection polarizability also shows the similar
fluctuation and localization, i.e., the exponential decay
with increasing system size and significant Fermi-energy-
dependent fluctuations. In Sec. SV of Supplemental Ma-
terial [44], we provide more numerical results for the
Berry connection polarizability.
This similarity also verifies our explanation to the fluc-

tuation and localization of the Berry curvature dipole,
because the Berry connection polarizability and Berry
curvature are related as the real and imaginary parts of
the quantum geometry tensor [50],

T ab = Gab + iΩab/2, (7)

where Ωab
mp = 2 Im

[
Ra

pmRb
mp

]
is the Berry curvature in

Eq. (3), Gab
mp = ReRa

pmRb
mp is the quantum metric in Eq.

(5), and Ra
mp = i ⟨m| ∂H/∂ka |p⟩ /(Em−Ep). Therefore,

both the Berry curvature dipole and Berry connection
polarizability are supposed to show the similar fluctua-
tion and localization.
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