
Classifying fermionic states via many-body correlation measures

Mykola Semenyakin,1, 2 Yevheniia Cheipesh,2 and Yaroslav Herasymenko3, 4, 5, ∗

1Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada
2Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands

3QuSoft and CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands
4QuTech, TU Delft, P.O. Box 5046, 2600 GA Delft, The Netherlands

5Delft Institute of Applied Mathematics, TU Delft, 2628 CD Delft, The Netherlands

Understanding the structure of quantum correlations in a many-body system is key to its com-
putational treatment. For fermionic systems, correlations can be defined as deviations from Slater
determinant states. The link between fermionic correlations and efficient computational physics
methods is actively studied but remains ambiguous. We make progress in establishing this connec-
tion mathematically. In particular, we find a rigorous classification of states relative to k-fermion
correlations, which admits a computational physics interpretation. Correlations are captured by a
measure ωk, a function of k-fermion reduced density matrix that we call twisted purity. Vanishing
of ωk for a given k puts the state in a class Gk of correlated states. Sets Gk are nested in k, Slater
determinants correspond to k = 1. Various physically relevant states are in or close to Gk=O(1), in-
cluding truncated configuration-interaction states, perturbation series around Slater determinants,
and some nonperturbative eigenstates of the 1D Hubbard model. For each k = O(1), we give an
explicit ansatz with a polynomial number of parameters that covers all states in Gk. Potential
applications of this ansatz and its connections to the coupled-cluster wavefunction are discussed.

Introduction. Quantum correlations are central to
many-body quantum problems, their computational
treatment and complexity. For fermionic systems with
a fixed particle number, a natural definition of uncor-
related states are Slater determinants [1]. These states
arise in noninteracting systems and admit efficient com-
putations. To characterize the correlations, or devia-
tions of a state from a Slater determinant, quantitative
measures are employed. Some measures were proposed
in terms of one- and two-fermion reduced density ma-
trices [2–6], minimal distance to the manifold of Slater
states [7, 8] and so-called Slater rank [1]. Fermionic
magic [9–11], measuring the deviation of a quantum
circuit from fermionic linear optics [12–16], can also be
considered a quantifier of correlations. Correlation mea-
sures were applied to characterize physical systems, as
well as to guide computational physics and chemistry
methods [3, 17–25]. Such methods are often based on
approximate ansatzes, such as configuration-interaction
states [30, 31], coupled-cluster ansatzes [32–36], Jas-
trow and Gutzwiller wavefunctions [37–39], tensor net-
works [27, 40–42], and generalized Gaussian ansatzes
[6, 43, 44]. It is a widespread heuristic, that a state with
bounded correlations should admit a representation by a
compact ansatz [26–29]. The mathematical understand-
ing of this connection, however, remains limited.
In this work, we give a classification of k-fermion cor-

relations with a direct link to computational physics.
The key new object is the twisted purity ωk, a correla-
tion measure which is a function of the k-body reduced
density matrix, invariant under single-particle rotations.
Twisted purity is also a Hermitian observable on two
copies of a state. If a state yields ωk = 0, its ampli-
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tudes obey a generalization of so-called Plücker rela-
tions [45]. We denote the set of such states Gk. Con-
dition ωk1 = 0 implies ωk2 = 0 for all k2 > k1, so
the sets Gk are nested in k and define a classification
of fermionic states (G1 are Slater). We prove that each
Gk=O(1) is covered by a poly-sized ansatz. This ansatz
is similar to the coupled-cluster wavefunction but has
a different functional form. We partially uncover the
physical meaning of classes Gk, finding that some (ap-
proximate) 1D Hubbard model eigenstates, general per-
turbative series around Slater determinants, and trun-
cated configuration-interaction states belong to Gk. By
implication, twisted purity diagnoses reducibility of a
state to configuration-interaction form.

Our results complement the categorization of states
via entanglement scaling [42, 46–48]. On one hand, akin
to twisted purity, entanglement can be viewed as a cor-
relation measure, and its classification underlies compu-
tational physics methods that employ tensor networks.
On the other hand, a major qualitative difference is that
we focus on correlations insensitive to single-particle ba-
sis rotations, while these, in general, produce volume-
law entanglement [49]. Furthermore, compared to the
highly developed studies of bipartite entanglement, the
type of correlations encoded in the k-fermion reduced
density matrix is much less understood.

This paper is organized as follows. First, we intro-
duce some notations and basic concepts used in the
manuscript. We then define twisted purity ωk and the
classes Gk. Next, we examine various states in Gk and
analyze the meaning of these classes. In the last part of
the text, we show that states in Gk admit a generalized
Wick’s rule for the amplitudes. It implies the advertised
representation by a compact non-Slater ansatz.

Notations. We focus on the fermionic Hilbert space H
on l modes with n particles. Using a set of creation op-
erators {ψ†

r | r ∈ [l]} and the Fock vacuum |∅⟩, we define
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in H a basis of states |S⟩ = Ψ†
S |∅⟩ = ψ†

sn ..ψ
†
s1 |∅⟩. Here

S is an ordered integer sequence (s1, .., sn) ⊂ [l]; unless
specified otherwise, we use capital Latin letters for such
sequences. Any state |v⟩ ∈ H can be decomposed into
amplitudes v(S) as |v⟩ =

∑
v(S) |S⟩. For convenience,

we treat ordered sequences as sets, and use operations
such as S1\S2 and S1 ∪S3 for S1,2,3 ⊂ [l]. Unions ∪ are
always disjoint. We denote with σ(S1, S2) the sign of
the permutation which sorts a concatenation of S1 and
S2. For more details on fermionic algebra and sequence
manipulations, the reader may refer to AppendixA.

Plücker relations. A general Slater determinant (or
free-fermion) state |v⟩ is given as

|v⟩ = U |S0⟩ , U = exp
(
i
∑

(θpqψ
†
pψq + θ∗pqψ

†
qψp)

)
,

(1)

for some fixed reference |S0⟩ = Ψ†
S0

|∅⟩ and complex
numbers θpq. Unitary U in Eq. 1 is referred to as a
single-particle transformation — since it can be used
to change the basis of single-particle fermionic modes
{ψr | r ∈ [l]}. Defining conditions for state |v⟩ to be
Slater can be phrased using the operator [50]

Ω ≡
∑l

r=1 ψr ⊗ ψ†
r, (2)

which acts on H⊗H. These conditions, dubbed Plücker
relations, are the components of equation [51]

Ω |v⟩ ⊗ |v⟩ = 0. (3)

Although Eqs. 2-3 are given in a particular basis of
fermionic modes {ψr}, Ω does not depend on such a ba-
sis (is single-particle invariant). Namely, [Ω, U⊗U ] = 0
for any single-particle transformation U . This fact is
at the core of Plücker relations being a necessary and
sufficient indicator of a Slater state.
The Plücker relations are usually formulated as al-

gebraic equations in amplitudes [45, 52, 53], and the
phrasing in terms of Ω [50, 51] is less traditional. Let
us demonstrate their equivalence for the simplest case,
(l, n) = (4, 2). Projecting Eq. 3 onto ⟨1| ⊗ ⟨2, 3, 4| yields

v(1, 2)v(3, 4)− v(1, 3)v(2, 4) + v(1, 4)v(2, 3) = 0, (4)

which in this case is the only independent relation com-
ing from Equation 3. Equation 4 is indeed the standard
Plücker relation for 2 fermions on 4 modes [52, 54].
Plücker relations can be connected to a scalar corre-

lation measure. Equation 3 amounts to the vanishing
of purity ω1 of the one-body reduced density matrix ρ1,

0 = |Ω |v⟩ ⊗ |v⟩ |2 = Tr(ρ1 − ρ21) ≡ ω1, (5)

ρpq1 ≡ ⟨v|ψ†
qψp |v⟩ , (6)

which is another known criterion for |v⟩ to be Slater
[3, 55]. We will momentarily generalize these ideas to
correlated (non-Slater) states.

Generalized Plücker relations and twisted purity. In
the non-Slater part of the Hilbert space, states can con-
tain differing degrees of correlation. This work is cen-
tered around states |v⟩ with limited correlations, as de-
fined by our generalization of Plücker relations:

Ωk |v⟩ ⊗ |v⟩ = 0, (7)

where k is a positive integer. We denote Gk ⊂ H as
the set of states satisfying Eq. 7 — in particular, Gk=1

are Slater (cf. Eq. 3). From the structure of Eq. 7, we
have Gk1 ⊂ Gk2 if k1 < k2, inducing a nested pattern
of Gk (Fig. 1). Because Ωn+1 |v⟩ ⊗ |v⟩ vanishes for any
n-fermion state, Gk=n+1 ≡ H.

We now introduce twisted purity ωk, defined as

ωk (|v⟩) ≡
∣∣∣∣Ωk |v⟩ ⊗ |v⟩

k!

∣∣∣∣2 , (8)

Equation 7 is manifestly equivalent to ωk being zero.
The twisted purity is single-particle invariant and can
be expressed as

ωk = Tr[ρkρ̃k], (9)

where ρk is an order k-body reduced density matrix (k-
RDM) with matrix elements

ρQ,P
k = ⟨v|Ψ†

PΨQ |v⟩ (10)

for sets P and Q (|P | = |Q| = k) and ρ̃k its twisted
version, which we define as

ρ̃Q,P
k = ⟨v|ΨQΨ

†
P |v⟩ . (11)

The term ‘twisted’ is a reference to ‘twist product’ [56],

implying a flipped multiplication order of ΨQ and Ψ†
P

compared to ρQ,P
k . Twisted k-RDM ρ̃k can be expressed

in ordinary k′-RDMs for k′ ≤ k by commuting Ψ†
Q

through ΨP (see Appendix B). Because such k′-RDMs
are marginals of the k-RDM, we have that ρ̃k and ωk

are functions of ρk.
Twisted purity ωk generalizes the single-body purity

ω1 (Eq. 5) to k ∈ N. Note that ωk is different from the
reduced purity Tr[ρ2k] of Ref. [57]. Most importantly for
us, twisted purity yields a meaningful classification of
fermionic states, while interpreting Tr[ρ2k] is problem-
atic. (To clarify, eigenvalues of ρk for k ̸= 1 are not
bounded by 1 [58].) Twisted purity is also distinct from
k-RDM cumulants [59, 60]. The cumulants enjoy the
property of additive separability, which twisted purities
are lacking. On the other hand, our main result – classes
Gk and their connection to computational physics – do
not have a known analogue for k-RDM cumulants.

Twisted purities are in principle observable experi-
mentally, if two copies of the studied state |v⟩ can be
produced at will. Indeed, ωk is an expectation value
of a 4k-body Hermitian operator (Ω†)kΩk on a state
|v⟩ ⊗ |v⟩ (cf. Eq. 8). Extracting ρk by tomography pro-
vides another route to obtaining ωk from experiment.
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FIG. 1. Mathematical structure of our results. Highlighted in red are the main contributions: the twisted purity ωk, the
set of correlated states Gk defined by ωk = 0, and the ansatz for states |v⟩ ∈ Gk. (a) The nested pattern of sets Gk. States
in G1 are the familiar Slater determinants. The entire Hilbert space of n fermions on l modes coincides with Gk=n+1. (b)
ωk generalizes the 1-RDM purity ω1 to the k-body case via ‘twisted’ k-RDM ρ̃k (see Eq. 11). Vanishing of twisted purity is
equivalent to a generalization of Plücker relations Ω |v⟩ |v⟩ = 0. (c) As a key technical step, we find that states in Gk obey
a generalization of the Wick’s rule (Theorem2) for the amplitudes v(S), although not for observables ⟨O⟩. Unlike in the
Slater case, there may be states outside Gk which follow this generalized Wick’s rule — hence the ‘⇒’ sign. (d) Generalized
Wick’s rule is equivalent to the ansatz representation for state |v⟩. The explicit form of the ansatz is written in Eqs. 19-21.
The diagram displays how sets of modes Q and P relate to the set of modes G occupied in the reference Slater state. The
polynomial number of parameters θP,Q follows from the condition |Q| = |P | ≤ k. For the Slater states |v⟩ ∈ G1, the ansatz
reduces to a known parameterization using an exponential of a weight-2 operator.

Meaning of Gk classification. To understand the type
of correlations captured by twisted purity ωk, we study
various examples of states in Gk. A broad class of ex-
amples is given by states |v⟩ which obey the condition

∀S1, S2, v(S1,2) ̸= 0 :
1

2
|S1△S2| < k, (12)

where △ means symmetric difference. In other words,
occupation numbers in basis states |S⟩ in the support
of such |v⟩ are close to each other in Hamming distance.
Any |v⟩ satisfying Eq. 12 belongs to Gk,

Ωk |v⟩ ⊗ |v⟩ =
∑

R⊂[l],|R|=k

ΨR ⊗Ψ†
R |v⟩ ⊗ |v⟩

=
∑

S1,S2⊂[l]
R⊂S1\S2,

|R|=k

v(S1)v(S2)ΨR |S1⟩Ψ†
R |S2⟩ = 0. (13)

The condition R ⊂ S1\S2 appeared in the sum due to

ΨR |S1⟩ (Ψ†
R |S2⟩) vanishing unless R ⊂ S1 (R ∩ S2 =

∅). For such S1,2 that v(S1,2) ̸= 0 we have |S1\S2| =
1
2 |S1△S2| < k. Therefore, the sum over R ⊂ S1\S2 for
|R| = k only contains zero elements, yielding Eq. 13.

Information-theoretically, the condition in Eq. 12 cap-
tures the locality of correlations, discriminating between
Bell-like correlated states and GHZ-like. For (l, n) =
(8, 4), state |v1⟩ = 1√

2
(|1, 2, 3, 4⟩ + |1, 2, 5, 6⟩) obeys

Eq. 12 for k = 3, while |v2⟩ = 1√
2
(|1, 2, 3, 4⟩+ |5, 6, 7, 8⟩)

only for k = 5. Moreover, one can prove that the state
|v2⟩ will not obey Eq. 12 for k = 3 in any single-particle
mode basis. This follows from |v2⟩ /∈ G3, which can be
checked by a direct computation: ω3(|v2⟩) ̸= 0. From
the single-particle invariance of Gk, if |v⟩ obeys Eq. 12
in at least some single-particle basis, then |v⟩ ∈ Gk.

Counting the degrees of freedom remaining under
Eq. 12 for a given k is a difficult task. Let us instead
bound it from below. Consider a subset of such states,
obeying a condition relative to a fixed basis state |S0⟩:

∀S, v(S) ̸= 0 : |S△S0| < k. (14)

Eq. 14 implies Eq. 12: from |S1△S0| < k and |S2△S0| <
k one recovers 1

2 |S1△S2| < k. States obeying Eq. 14
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form a linear subspace of H of poly-sized dimension

⌊k/2⌋∑
r=0

(
n
r

)(
l − n
r

)
∼ n⌊k/2⌋(l − n)⌊k/2⌋ (15)

for n, l ≫ k. This lower bounds the number of degrees of
freedom in the set defined by Eq. 12, and therefore also
in Gk. Later we upper bound the size of Gk by counting
the degrees of freedom in our non-Slater ansatz.
States which obey Eq. 12 (and thus belong to Gk) nat-

urally arise in perturbation theory truncated at finite or-
der. Consider the Dyson series for a ground state |v⟩ of
H = H0+

∑
V . Here H0 is free-fermionic with a unique

ground state |S0⟩, and V are 4-fermion Coulomb inter-
actions. The perturbation theory is converging if H0 is
gapped (e.g., for a band insulator) and V is sufficiently

weak. The rth order truncation |v⟩(r) of |v⟩ consists of
terms proportional to V r′ |S0⟩ for r′ ≤ r. Since V r has
up-to-4r-fermion terms, basis states |S⟩ contributing to

|v⟩(r) differ from |S0⟩ in at most |S△S0| = 4r. This
implies Eq. 14 and therefore also Eq. 12 with k = 4r+1.

More broadly than truncated perturbation series,
Eq. 14 defines precisely the family of states known
in computational quantum chemistry as configuration-
interaction (CI) states [30, 31]. For instance, k = 5
corresponds to the CISD family, where SD stands for
‘singles and doubles’. From quantum chemistry stand-
point, our classes Gk can be viewed as a single-particle
invariant (orbital-invariant) generalization of CI trun-
cations. Conversely, nonzero ωk signals irreducibility of
a state to truncated configuration-interaction form.
To probe the relevance of Gk for strongly interact-

ing physics, we studied numerically the twisted puri-
ties for eigenstates of 1D Hubbard model [62] at half-
filling, as well as the complex SYK model [63, 64]. More
information on these models and details of numerical
simulations is given in Appendix C. The main results
for l = 12, n = 6 are shown in Fig. 2. For com-
parison, we include the twisted purities of two model
states. These are the Haar-random state (here we
plot the average ωk) and the product of three Bell-like
states |φ⟩ = 1√

2
(|1, 2⟩+ |3, 4⟩). The twisted purities for

these two cases can be computed analytically, see de-
tails in Appendices D and E. Also we plot a basic upper
bound on the values of ωk, derived in Appendix F using
Cauchy-Schwarz inequality and properties of ρk, ρ̃k.
Using the magnitude of twisted purity as a criterion,

we find various physical states close to Gk for k = 1,
k = 3 and k = 5 (see Fig. 2). States where ωk expo-
nentially decays after k = 1 we interpret as perturba-
tive. The more interesting states are those with non-
monotonous twisted purity, e.g., when finite ω1,2 > 1 is
followed by an exponential decay in k. Such states are
close to Gk=3, but also non-perturbatively correlated.
The ground state of the Hubbard model at large cou-
pling constant is far from any Gk. At the same time, we
find that its twisted purities are in a perfect matching
with those of a product of Bell-like states. This suggests
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k

102

100

10 2

10 4

Tw
is

te
d 

pu
ri

ty
 

k

Upper bound
Hubbard GS, U=50t
Product of Bell-like states
Haar random state
SYK4 GS
Hubbard GS, U=3t
Hubbard excited, U=1t
Hubbard GS, U=1t

FIG. 2. Twisted purity ωk for various n = 6-fermionic
states on l = 12 modes; note the log scale. It is natural
to include ω0 (equal to 1 by Eq. 8) into the picture. For
the Hubbard model eigenstates, the change of ωk over k
depends on the relative coupling strength U/t (cf. Eq.C1)
and excitation energy. For the ground state as a function of
U , the state changes from being perturbatively close to G1

(U = t) to being close to G3 (U = 3t) to being far from any Gk

(U = 50t). For U = 50t, the curve is remarkably similar to
the one of a product of Bell-like states. The pink curve shows
an example excited state of the Hubbard model (of energy ϵ
s.t. (ϵ− ϵmin)/(ϵmax− ϵmin)) ∼ 0.23), which is close to G3. The
ground state of a typical SYK model realization is highly
correlated but close to G5, similarly to a Haar random state.
Note the even-odd fluctutation in multiple plots. These come
from the stucture of ωk itself; we hypothesize that Eq. 7 for
pairs k = 2r − 1 and k = 2r is in fact equivalent [61].

that this ground state might secretly have a product
structure upon a global single-particle rotation.

A further characterization of states in Gk, especially
those not falling under the condition of Eq. 12, is an
interesting open question.

Extended Wick’s rule and Gk parameterization. To
show that states |v⟩ ∈ Gk admit an explicit non-Slater
ansatz, the crucial step is showing a version of Wick’s
rule [65, 66] for amplitudes of |v⟩. It is a generalization
of the Wick’s rule for amplitudes that holds for Slater
states |v⟩ ∈ G1. To spell out both the Slater and non-
Slater versions, organize basis states |S⟩ as ‘excitations’
with respect to a reference |G⟩, namely |S⟩ = |G ∪Q\P ⟩
for sets P ⊂ G and Q ⊂ ([l]\G), |P | = |Q| [67]. In a
Slater state |v⟩, the amplitudes of ‘multi-particle excita-
tions’ (i.e., |P | = |Q| > 1) partition into single-particle
excitations (assuming v(G) ̸= 0),

v(G ∪Q\P )
v(G)

= (−1)|P |(|P |−1)/2det

[
v(G ∪ q\p)
v(G)

]
,

(16)

where the bracketed expression is a |P |-dimensional ma-
trix over single modes p ∈ P and q ∈ Q. Equation 16
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means that the state |v⟩ is fully determined by its one-
excitation amplitudes v(G ∪ q\p). This parallels the
usual Wick’s rule, which says that all observables on
a Slater state are determined by single-particle correla-
tors. Equation 16 can be derived from the Wick’s rule of
Ref. [68] (see Theorem 2.7; amplitude v(G∪Q\P ) is pro-
portional to ⟨G|ΨQΨ

†
P |v⟩, and in particular, v(G∪q\p)

are 2-point correlators). Furthermore, Eq. 16 is a special
case of the extended Wick’s rule that we lay out below.
To show an extension of Eq. 16 to states in Gk, we ex-

amine the components of Eq. 7 of type ⟨A|⊗⟨B|Ωk |v⟩⊗
|v⟩ for sets A and B. These take the form:

0 =
∑

R⊂(B\A),|R|=k v(A ∪R) v(B\R)
× σ(A,R)σ(B\R,R). (17)

Combining Eq. 17 with appropriately chosen A and B,
one arrives at the following relation, which holds for
|P | = |Q| > k (see Theorem1 in AppendixG)

v(G ∪Q\P )
v(G)

=
∑

P ′⊊P, Q′⊊Q

v(G ∪Q′\P ′)

v(G)

v(G ∪ Q̄′\P̄ ′)

v(G)

× (−1)|P̄
′|+1 |P ′|

|P |
σ(P̄ ′, P ′)σ(Q′, Q̄′),

(18)

where P̄ ′ ≡ P\P ′ and Q̄′ ≡ Q\Q′. One observes that
a multi-excitation amplitude v(G ∪ Q\P ) is broken up
into fewer-excitation amplitudes, as under the sum we
have |P ′|, |P̄ ′| < |P | and |Q′|, |Q̄′| < |Q|.
For all terms on the right hand side of Eq. 18, the

factors v(G∪Q′\P ′)
v(G) with |P ′| = |Q′| > k can be further

decomposed using Eq. 18 again. This process can be

continued iteratively, before one breaks v(G∪Q\P )
v(G) into

v(G∪Q′\P ′)
v(G) with |P ′| = |Q′| ≤ k alone. The result is an

extended version of the amplitude Wick’s rule for Slater
states |v⟩ ∈ Gk=1 (Eq. 16). In particular, it implies that
v(G ∪Q′\P ′) for |P ′| = |Q′| ≤ k fully characterize any
|v⟩ in the Gk class! The explicit formula for the extended
Wick’s rule is complicated; we spell it out in Appendix H
(see Theorem2). For a reminiscent extension of Wick’s
theorem in the context of matrix product states, see
Ref. [69].
Although the extended Wick’s rule is a condition on

an exponential number of amplitudes, we encode it en-
tirely in a polynomially-sized ansatz for the whole state
|v⟩. This can be achieved via careful bookkeeping with
the use of the generating function method (see Theo-
rem 3 in Appendix I). The result is that relative to a
basis state |G⟩ any state |v⟩ ∈ Gk with v(G) ̸= 0 takes
the form

|v⟩ = v(G)F (T1, ..Tk) |G⟩ , (19)

for commuting nilpotent operators

Tk′ =
∑

P⊂G,Q⊂[l]\G,
|P |=|Q|=k′

θP,QΨ
†
QΨP , (20)

and the function

F (x1, x2, ...) =
√

1 + 2(x2 + x4 + ..)

× exp

 1∫
0

x1 + 3x3µ
2 + 5x5µ

4 + ..

1 + 2(x2µ2 + x4µ4 + ..)
dµ

 . (21)

Complex numbers θP,Q quantify the violations of Eq. 18
for |P | = |Q| ≤ k (see Appendix I). On the other hand,
Eq. 19 can be considered as an ansatz for the state |v⟩ ∈
Gk, in which case θP,Q are its unknown free parameters
and amplitude v(G) is coming from normalization. This
ansatz has polynomial size in the sense that the number
of parameters is polynomial, growing asymptotically as
O(nk(l−n)k) (via counting similar to Eq. 15). As Eq. 19
entirely covers Gk, this scaling upper bounds the number
of degrees of freedom in Gk itself.
Discussion. An interesting open direction is to apply

the ansatz of Eq. 19 in a practical computation, such as
the search for a ground state energy of a given model.
One may employ the structure of Eq. 19, which is similar
to the coupled-cluster ansatz — except the latter uses
F (T1, ..Tk) = exp(T1+..+Tk). Because of this similarity,
the numerical methods for coupled-cluster which don’t
rely on the exponential form of F (T1, ..Tk), can be used
with our ansatz (e.g., see Refs. [70–72]).

Using the formalism developed here, one may study
the structure of states coming from a system with weak
and sparse interactions. For such states one expects
that for any k, all but a few components in Ωk |v⟩ ⊗ |v⟩
are extremely small. One may define a class of states
where these small components are set to vanish exactly.
For states in this class, the ansatz of the type given in
Eq. 19 may be compact due to many vanishing parame-
ters θP,Q. Unlike Gk, such a class would depend on the
choice of the single-particle basis. Pinning down this
structure is an interesting research direction.

An object worth further study is the generating func-
tion of twisted purities, Z(β) =

∑
k ωkβ

2k. In this work
we found Z(β) to be a useful analytical tool, owing to
its multiplicativity for products of independent subsys-
tems (see Appendices D, E). However, the structure of
this generating function could also have useful interpre-
tations. For instance, its factorization gives a necessary
condition that a state is a single-particle transformed
product of small subsystems. Developing such criteria
further could be viewed as a ‘size-consistent’ [73] exten-
sion of the present work.

Other open research directions include extending our
formalism to states which are mixed or whose particle
number is not fixed. Here it may prove useful that oper-
ator Λ of Refs. [16, 74] equals Ω+Ω† up to normalization.
Finally, an intriguing question is whether the structure
of k-RDMs identified in this work can be used in the
context of N -representability problem [58, 75–77].
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Appendix A: Fermionic algebra and sequence manipulations

Let H be the Hilbert space of n-fermion states on l modes. Consider any fixed single-particle basis for the
fermionic modes, defined by annihilation operators {ψj |j ∈ [l]}. Operators ψj and their Hermitian conjugate

creation operators ψ†
j obey the algebra

ψj1ψj2 = −ψj2ψj1 , ψj1ψ
†
j2
+ ψj2ψ

†
j1

= δj1j2 , (A1)

where δj1j2 is the Kronecker delta. For an ordered sequence S = (s1, ..sn) (0 ≤ s1 < .. < sn ≤ l), we define

annihilation operator monomial ΨS = ψs1 ..ψsn . Notation Ψ†
S is defined as Ψ†

S = (ΨS)
†
= ψ†

sn ..ψ
†
s1 (note the change

in multiplication order). The basis {|S⟩} of H is defined as |S⟩ = ψ†
sn ..ψ

†
s1 |∅⟩ = (ΨS)

† |∅⟩. Here |∅⟩ is the Fock
space vacuum.
For more convenient fermionic algebra manipulations, we introduce some formalities involving sequences of in-

tegers. We will only consider finite sequences; the length of a sequence A = (a1, .., a|A|) is denoted as |A|. If all
elements in A are smaller than all elements in B (a < b, ∀a ∈ A, b ∈ B), we say A < B. The ordered version
of a sequence A without repeating elements is denoted ord(A), i.e., ord(A) = (aπ(1), aπ(2)..aπ(|A|)) for the ordering
permutation π : [|A|] → [|A|], aπ(1) < aπ(2) < .. < aπ(|A|). A signature function σ(A) = ±1 for A without re-
peating elements is equal to the sign of a permutation π required to order A. We also define σ(A,B) for a pair of
sequences A = (a1, a2, ..a|A|) and B = (b1, ..b|B|) without shared or repeating elements, as a signature for a single

concatenated sequence σ
(
(a1, a2, ..a|A|, b1, ..b|B|)

)
. Through sequence concatenation we also define σ(A,B,C) for

three arguments, as well as σ for more arguments.
An ordered sequence A = (a1, ..a|A|) without repeating elements naturally maps to a set, namely set(A) ≡

{a1, ..a|A|}. Vice-versa, a set of integers Aset = {a1, ..a|A|} can be mapped to an ordered sequence seq(Aset) ≡
ord

(
(a1, ..a|A|)

)
. This one-to-one mapping allows to use set-theoretic notions for ordered sequences without re-

peating elements. An intersection of two sequences is defined as A ∩ B = seq(set(A) ∩ set(B)), same for union ∪,
difference \ and symmetric difference △. A is a subsequence of B, or A ⊂ B, if set(A) ⊂ set(B). For an integer
l with [l] we denote the sequence (1, 2, ..l), rather than a set {1, 2, .., l} as per usual. Thus adapting set-theoretic
notation to sequences allows to give a simpler form to many technical parts of this work.
A few useful properties of the signature function σ can be stated with help of set-theoretic notation. For ordered

sequences without repeating or shared elements A, B and C, we have (note A ∪B = ord
(
(a1, .., a|A|, b1, .., b|B|)

)
)

σ(A,B,C) = σ(A,B)σ(A ∪B,C), (A2)

σ(A ∪B,C) = σ(A,C)σ(B,C), (A3)

σ(A,B) = σ(B,A)(−1)|A|·|B|, (A4)

σ(A,B) = 1 if A < B. (A5)

As announced, the introduced formalities are convenient in dealing with fermionic algebra. For example

ΨAΨB = σ(A,B)ΨA∪B forA ∩B = ∅, (A6)

Ψ†
B |A⟩ = σ(A,B) |A ∪B⟩ forA ∩B = ∅, (A7)

ΨB |A⟩ = σ(A\B,B) |A\B⟩ forB ⊂ A. (A8)

Appendix B: Twisted RDM

Here we obtain the decomposition of twisted k-RDM ρ̃k (Eq. 11) into k′-RDM’s ρk′ with k′ ≤ k. The key step

is using relation ψqψ
†
p = −ψ†

pψq + δpq in ΨQΨ
†
P to permute all ψ†

p operators to the left. This will give rise to

contractions Ψ†
P̄ ′ΨQ̄′δQ′P ′ of all possible subsets Q′ ⊂ Q and P ′ ⊂ P (denote Q̄′ = Q\Q′, same for P ). To

determine the sign in front of any such contraction, it is sufficient to consider an ad-hoc permutation

ΨQΨ
†
P = σ(Q̄′, Q′)σ(P̄ ′, P ′)ΨQ̄′ΨQ′Ψ†

P ′Ψ
†
P̄ ′
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= (−1)|P
′|σ(Q̄′, Q′)σ(P̄ ′, P ′)δQ′P ′ΨQ̄′Ψ

†
P̄ ′ + (..)

= (−1)|P
′|+|P̄ ′|σ(Q̄′, Q′)σ(P̄ ′, P ′)δQ′P ′Ψ†

P̄ ′ΨQ̄′ + (..) (B1)

where (..) contains other contractions. By definitions of the matrix elements ρ̃Q,P
k = ⟨v|ΨQΨ

†
P |v⟩ (Eq. 11) and

ρQ,P
k = ⟨v|Ψ†

PΨQ |v⟩ we then obtain (|P | = |Q| = k):

ρ̃Q,P
k =

∑
P ′⊂P,Q′⊂Q

(−1)|P
′|+|P̄ ′|σ(Q̄′, Q′)σ(P̄ ′, P ′)δQ′P ′Tr[Ψ†

P̄′ΨQ̄′ |v⟩ ⟨v|]

=
∑

P ′⊂P,Q′⊂Q
|P ′|=|Q′|

(−1)|P |σ(Q̄′, Q′)σ(P̄ ′, P ′)δQ′P ′ρQ̄
′P̄ ′

k=|P̄ ′|. (B2)

When sets P̄ ′, Q̄′ are empty, we define ρQ̄
′P̄ ′

k=|P̄ ′| ≡ Tr[|v⟩ ⟨v|] = 1 .

Appendix C: Numerical studies of Hubbard and SYK models

To construct the plots given in Fig. 2, we consider the Hubbard model for spinful fermions on a chain with periodic
boundary conditions. The single-particle operators are denoted ψx,σ and ψ†

x,σ where σ ∈ {↑, ↓}, x = 1, ..., l/2 and

ψl/2+1,σ ≡ ψ1,σ, ψ
†
l/2+1,σ ≡ ψ†

1,σ. Parameter l is always even, so there are l modes in total. For our simulations we

used l = 12. The Hamiltonian of the model is

H =
l/2∑
x=1

∑
σ∈{↑,↓}

(
−tψ†

x,σψx+1,σ − tψ†
x+1,σψx,σ

)
+

l/2∑
x=1

Unx,↑nx,↓ , (C1)

where nx,σ = ψ†
x,σψx,σ. We consider the model to be at half-filling n = l/2.

We have also studied the complex SYK model. The Hamiltonian of the model on l sites is

H =

l∑
a>b>c>d=1

(tabcdψ
†
aψ

†
bψcψd + h.c.) (C2)

with the random couplings, normally distributed according to

⟨tabcd t∗abcd⟩ =
1

(2l)3
, ⟨(tabcd)2⟩ = ⟨(t∗abcd)2⟩ = 0. (C3)

The data for the ground state of the SYK model given in Fig. 2 was produced for l = 12 at half-filling n = 6.

We have used the QuSpin Python package to run the numerics. More about the library can be found on the
web-page http : //quspin.github.io/QuSpin/. The eigenstates of Hamiltonians have been found using the exact
diagonalization method. We have tried several methods to compute twisted purities ωk. The most efficient method
which we found for small values of k was by calculating the matrix elements of RDMs. For large values of k it
proved more efficient to sum over the squared generalized Plücker relations.
There is an alternative method to compute the whole set of twisted purities directly, using the definition given in

Eq. 8. Once the operator Ω and the tensor square of the state are constructed, one can act multiple times with Ω
on the tensor square. Each subsequent action takes the same time to compute, and each iteration allows to extract
the new ωk by taking the norm squared of the result. However, since one has to construct and store a tensor square
of the state, the method requires extensive memory resources. Therefore, we opted for the methods described in
the previous paragraph.
The Python code written in the course of this numerical investigation, as well as the generated datasets, are

available from the corresponding author on request.

Appendix D: Products of Bell-like states and their thermodynamic limits

We call the state

|φ⟩ = 1√
2
(|1, 2⟩+ |3, 4⟩) (D1)
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a Bell-like fermionic state. It is one of the simplest states for which ω1 ̸= 0. In this Appendix we compute twisted
purities of a state which is a high tensor power of |φ⟩. It proves convenient to use the generating function

Z(|v⟩ , β) =
l∑

k=0

ωk(|v⟩)β2k (D2)

because of its multiplicative properties. Let |v⟩ = |v1⟩ ∧ |v2⟩ be the product state of fermionic system containing
two subsystems. In this case Ω = Ω1 +Ω2, [Ω1,Ω2] = 0. Noting that∑

k

ωkβ
2k = |eβΩ |v⟩ ⊗ |v⟩ |2. (D3)

one can deduce

Z(|v1⟩ ∧ |v2⟩ , β) = |eβΩ |v⟩ ⊗ |v⟩ |2 = |eβ(Ω1+Ω2)(|v1⟩ ∧ |v2⟩)⊗ (|v1⟩ ∧ |v2⟩)|2 =

= |(eβΩ1 |v1⟩ ⊗ |v1⟩)⊗ (eβΩ2 |v2⟩ ⊗ |v2⟩)|2 = Z(|v1⟩ , β)Z(|v2⟩ , β). (D4)

Now consider a state (|φ⟩)∧p on l = 4p sites and with n = 2p particles. A direct computation shows that Z(|φ⟩ , β) =
1 + β2 + β4, so

Z(|φ⟩∧l/4
, β) = (1 + β2 + β4)l/4. (D5)

For example, for l = 12 this equation gives Z = 1 + 3β2 + 6β4 + 7β6 + 6β8 + 3β10 + β12.

We use the multiplicativity of Z to identify the properties of ωk for locally-correlated systems in the thermo-
dynamic limit. In the process, we will obtain a version of central limit theorem. By ‘locally-correlated’ we mean
that the system can be broken into a set of subsystems, whose sizes are small compared to the whole, while the
correlations between subsystems can be neglected. Let Z0(β

2) =
∑r

k=1 β
2kω0,k be the generating function of twisted

purities for the state of one small subsystem. Generically, it will be a polynomial in β2 of degree r = ρd, where
d ≪ l is the number of fermionic sites in the subsystem and ρ = n/l is the filling factor of the system. We assume
ρ < 1/2. The generating function for the whole system would be

Z(β2) = (Z0(β
2))

l
d =

r∏
i=1

(1 + piβ
2)

l
d . (D6)

for some coefficients pi, coming from factorization of the polynomial Z0(β
2) =

∏r
i=1(1 + piβ

2) with the property
Z0(0) = 1. Using the binomial and Stirling formulas one can find that each term behaves in l → ∞ limit as

(1 + piβ
2)

l
d ∼

∑
k

β2kai exp
(
lbi − lci(k/l − κi)

2
)
, (D7)

ai =
1 + pi√
2πl

√
d

pi
, bi =

log[1 + pi]

d
, ci =

d(1 + pi)
2

2pi
, κi =

pi
d(1 + pi)

. (D8)

Now, multiplying the expressions with the different pi, one finds total generating function to be

Z(β2) ∼
∑
k

β2kã exp
(
lb̃− lc̃(k/l − κ̃)2

)
, where b̃ =

r∑
i=1

bi,
1

c̃
=

r∑
i=1

1

ci
, κ̃ =

r∑
i=1

κi. (D9)

Taking logarithmic derivatives of Z0(β
2), the parameters can be expressed in terms of the purities of subsystems

elb̃ =

(
r∑

k=1

ω0,k

)l/d

, κ̃ =
1

d

∑r
k=1 kω0,k∑r
k=1 ω0,k

,
1

c̃
=

2

d

∑r
k=1 k

2ω0,k∑r
k=1 ω0,k

− 2

d

(∑r
k=1 kω0,k∑r
k=1 ω0,k

)2

. (D10)

Thus we find that in thermodynamic limit, only a few parameters control the dominating contributions to ωk.
It is interesting to note that a tensor power of Bell states does not belong to a class Gk for a finite k, despite

consisting of disentangled finite blocks. This example demonstrates that strong fermionic correlations signalled
by nonzero ωk=O(n), similarly to extensive fermionic magic [9–11], are compatible with an absence of system-wide
entanglement. It is an intriguing open question, whether entanglement and k-body fermionic correlations can be
simultaneously captured with a single measure in a useful way. In our view, the answer to this question may well be
negative. It also connects to the problem of constructing size-consistent fermionic correlation measures, discussed
in the main text.
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Appendix E: Purities of Haar random states

In this section we will compute average twisted purities of the real random states |v⟩ =
∑

A∈[l]k vA |A⟩, vA ∈ R,
in a Hilbert space of n fermions on l sites. We consider the states to be distributed uniformly, i.e. the states are
given by a random points on Sd, d =

(
l
n

)
, with the SO(d) invariant distribution. We will refer to these states as to

(real) Haar states, and denote the average over this measure by ⟨ ⟩|v|2=1. The averaged purity is

⟨ωk⟩ =
1

(k!)2
〈
⟨v| ⊗ ⟨v| (Ω†)kΩk |v⟩ ⊗ |v⟩

〉
|v|2=1

. (E1)

Because of SO(d) invariance, the four-point correlation function ⟨vAvBvCvD⟩|v|2=1 should be some quadratic com-
bination of Kronecker δ-symbols. Since it is symmetric under permutation of indices, up to overall factor it should
be equal to δABδCD+δACδBD+δADδBC . The normalization factor can be fixed contracting the correlation function
with δABδCD, and using that ⟨1⟩|v|2=1 = 1. This results in

⟨vAvBvCvD⟩|v|2=1 =
1

d(d+ 2)
(δABδCD + δACδBD + δADδBC). (E2)

which gives for the averaged twisted purities

⟨ωk⟩ =
1

d(d+ 2)

∑
|I|,|J|=k

∑
|A|,|B|=n

(
⟨A|ΨIΨ

†
J |A⟩⟨B|Ψ†

IΨJ |B⟩+ (E3)

+⟨A|ΨIΨ
†
J |B⟩⟨B|Ψ†

IΨJ |A⟩+ ⟨A|ΨIΨ
†
J |B⟩⟨A|Ψ†

IΨJ |B⟩
)
. (E4)

Three terms in the sum can be computed as∑
|I|,|J|=k

∑
|A|,|B|=n

⟨A|ΨIΨ
†
J |A⟩⟨B|Ψ†

IΨJ |B⟩ =
∑

|I|,|J|=n

∑
|A|,|B|=K

δI=JδI∩A=∅δJ⊂B , (E5)

∑
|I|,|J|=k

∑
|A|,|B|=n

⟨A|ΨIΨ
†
J |B⟩⟨B|Ψ†

IΨJ |A⟩ =
∑

|I|,|J|=k

∑
|A|,|B|=n

δA∪I=B∪JδJ∩B=∅δI∩A=∅δA\J=B\IδJ⊂AδI⊂B , (E6)

∑
|I|,|J|=k

∑
|A|,|B|=n

⟨A|ΨIΨ
†
J |B⟩⟨A|Ψ†

IΨJ |B⟩ = 0, (E7)

which gives after summation

⟨ωk⟩ =
(
l
k

)(
l−k
n

)(
l−k
n−k

)
+
(

l
n−k

)(
l−n
k

)(
l−n+k

k

)(
l
n

) ((
l
n

)
+ 2
) =

1(
l
n

)
+ 2

k!(l − k)! + n!(l − n)!

(k!)2(n− k)!(l − n− k)!
. (E8)

Since this formula is exact, we can see explicitly how ⟨ωk⟩ gets concentrated around its thermodynamically
preferred value at l, n≫ 1. Using the Stirling formula p! ∼

√
2πp(p/e)p one can estimate the relation of contributions

of the first and second terms in Eq. E8 as

k!(l − k)!

n!(l − n)!
∼ el(s(κ)−s(ρ)), s(x) = Λ(x) + Λ(1− x), Λ(x) = x log(x) (E9)

where k = κl, n = ρl. For half-filled system one has 0 < κ < ρ < 1/2 and s(x) is monotonically decreasing, so
s(κ) > s(ρ). Thus the second term in (E8) is exponentially suppressed. Now the dominating value of k can be
found by extremizing the function

log⟨ωk⟩
l

∼ Λ(ρ) + Λ(1− ρ) + Λ(1− κ)− Λ(ρ− κ)− Λ(κ)− Λ(1− ρ− κ) (E10)

with respect to κ. This gives:

⟨ωk⟩ ∼ a exp
(
lb− lc(k/l − κ∗)

2
)

(E11)
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where

2κ∗(1− κ∗) = ρ(1− ρ) ⇒ κ∗ =
1

2
(1− κ), κ =

√
1− 2ρ(1− ρ), (E12)

a =
1√
πl

√
1 + κ

1− κ
, c =

2
√
1− 2ρ(1− ρ)

ρ(1− ρ)
, (E13)

b = Λ(1− ρ) + Λ(ρ) +
1

2
Λ(1 + κ)− 1

2
Λ(1− κ)− 1

2
Λ(κ− 2ρ+ 1)− 1

2
Λ(κ+ 2ρ− 1). (E14)

It is curious to note the simple behaviour of ⟨ωk⟩ at k ≪ n < l

⟨ωk⟩ ∼
(ρ(1− ρ))klk

k!
=

(⟨ω1⟩)k

k!
. (E15)

In this case the generating function from Eq.D2 behaves as

⟨Z(β)⟩ ∼ eβ
2⟨ω1⟩ (E16)

which is consistent with multiplicativity under the disjoint union of the systems because ⟨ω1⟩ is additive.

Appendix F: Upper bound on the twisted purities

The values of the twisted purities can be bounded applying the Cauchy-Schwarz inequality for the operators

Tr[A†B] ≤
√
Tr[A†A]Tr[B†B]. (F1)

Using that both k-RDM and twisted k-RDM are Hermitian operators (ρP,Q
k )∗ = ρQ,P

k , (ρ̃P,Q
k )∗ = ρ̃Q,P

k one finds

ωk = Tr[ρ̃kρk] ≤
√

Tr[ρ̃k
†ρ̃k]Tr[ρ

†
kρk] =

√
Tr[ρ̃2k]Tr[ρ

2
k]. (F2)

The operator ρk is positive, i.e. all of its eigenvalues are ≥ 0, which gives for its trace Tr[ρ2k] ≤ (Tr[ρk])
2. To

compute the traces of k-RDM

Tr[ρk] =
∑

P⊂[l], |P |=k

ρP,P
k =

∑
0≤ik<...<i1≤l

⟨v|ψ†
ik
...ψ†

i1
ψi1 ...ψik |v⟩ =

1

k!

∑
ik ̸=...̸=i1

⟨v|nik ...ni1 |v⟩ (F3)

note that the boundary terms in a sum can be resolved as∑
ik ̸=...̸=i1

=
∑
ik

∑
ik−1 ̸=...̸=i1

−
∑

1≤α≤k

∑
ik−1=iα ̸=... ̸=i1

. (F4)

Together with
∑

0≤i≤l ni = n and (ni)
2 = ni this gives a recursive formula

∑
ik ̸=... ̸=i1

⟨v|nik ...ni1 |v⟩ = (n− k + 1)
∑

ik−1 ̸=... ̸=i1

⟨v|nik−1
...ni1 |v⟩ = ... =

n!

(n− k)!
. (F5)

Similar consideration is applicable to ρ̃k with ni being replaced by 1− ni and n being replaced by l−n. Collecting
all the formulas together one gets a bound

ωk ≤
(
n

k

)(
l − n

k

)
. (F6)
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Appendix G: Derivation of extended Wick’s rule (recursive form)

Theorem 1. Let |v⟩ =
∑

S⊂[l],|S|=n v(S) |S⟩ be a state in H such that Ωk |v⟩ |v⟩ = 0. Consider three ordered

sequences G = (1, ..n), P ⊂ G and Q ⊂ [l]\G. If |Q| = |P | > k,

v(G ∪Q\P )
v(G)

=
∑

P ′⊊P, Q′⊊Q

(−1)|P̄
′|+1 |P ′|

|P |
σ(P̄ ′, P ′)σ(Q′, Q̄′)

v(G ∪Q′\P ′)

v(G)

v(G ∪ Q̄′\P̄ ′)

v(G)
. (G1)

Proof. Since Ωk |v⟩⊗2
= 0 implies Ωk′ |v⟩⊗2

= 0 for all k′ > k, it is sufficient to prove Eq.G1 for P and Q such that
|P | = |Q| = k + 1. Consider the component ⟨A| ⟨B|Ωk |v⟩ ⊗ |v⟩ = 0 (Eq. 17):∑

R⊂(B\A),|R|=k σ(A,R)σ(B\R,R) v(A ∪R) v(B\R) = 0, (G2)

choosing A = (G\P ) ∪ p̃ and B = G ∪Q\p̃ for some fixed p̃ ∈ P . Observe that R is a subset of (B\A) = Q ∪ P\p̃
with length |R| = k, while |Q| = |P | = k + 1. This implies that R can be represented as R = (P ′ ∪ (Q \Q′)) \p̃ for
certain P ′ ⊂ P and Q′ ⊂ Q such that p̃ ∈ P ′ and |Q′| = |P ′|. We also introduce simplified notations Q̄′ = Q\Q′

and P̄ ′ = P\P ′. The goal of these substitutions is to give the amplitude product v(A ∪ R) v(B\R) the form
v(G ∪Q′\P ′) v(G ∪ Q̄′\P̄ ′), bringing Eq.G2 closer to the desired structure of Eq.G1.
With the above definitions for A, B, R and noting that Q > G and Q > P by assumptions of Theorem1, let us

restructure the sign factor σ(A,R)σ(B\R,R):

σ((G\P ) ∪ p̃, R) σ((G ∪Q \ p̃ \R), R) = σ((G\P ) ∪ p̃, P ′\p̃, Q̄′) σ((G ∪Q \ P ′\Q̄′), P ′\p̃, Q̄′)

= σ((G\P ) ∪ p̃, P ′\p̃) σ(G\P ′, Q′, P ′\p̃, Q̄′)

= σ((G\P ) ∪ p̃, P ′\p̃) σ(G\P ′, P ′\p̃, Q′, Q̄′) (−1)|Q
′|(|P ′|−1)

= σ((G\P ) ∪ p̃, P ′\p̃) σ(G\P ′, P ′\p̃) σ(Q′, Q̄′)

= σ(G\P ′, P ′\p̃) σ(P̄ ′, P ′\p̃) σ(p̃, P ′\p̃) σ(G\P ′, P ′\p̃) σ(Q′, Q̄′)

= σ(P̄ ′, P ′\p̃) σ(p̃, P ′\p̃) σ(Q′, Q̄′)

= σ(P̄ ′, P ′\p̃) σ(p̃, P̄ ′) σ(p̃, P\p̃) σ(Q′, Q̄′)

= (−1)|P̄
′| σ(P̄ ′, P ′\p̃) σ(P̄ ′, p̃) σ(p̃, P\p̃) σ(Q′, Q̄′)

= (−1)|P̄
′| σ(p̃, P\p̃) σ(P̄ ′, P ′) σ(Q′, Q̄′) (G3)

The strategy in this derivation was to (i) separate σ’s involving Q on the one hand and G and P on the other
hand, then to (ii) eliminate the dependency of the expression on G, and finally to (iii) separate σ’s involving P ′

and p̃. Since the factor σ(p̃, P\p̃) does not depend on the choice of P ′ or Q′, it can be eliminated from Eq.G2
altogether, yielding (recall substitutions A = (G\P ) ∪ p̃, B = G ∪Q\p̃, and R = (P ′ ∪ Q̄′)\p̃):

∑
P ′⊂P, Q′⊂Q

: p̃∈P′&|P′|=|Q′|

v(G ∪ Q̄′\P̄ ′) v(G ∪Q′\P ′) (−1)|P̄
′| σ(P̄ ′, P ′) σ(Q′, Q̄′) = 0. (G4)

Moving the terms corresponding to P ′ ̸= P , Q′ ̸= Q to the right-hand side, we obtain

v(G) v(G ∪Q \ P ) =
∑

P ′⊊P, Q′⊊Q
: p̃∈P′&|P′|=|Q′|

v(G ∪ Q̄′\P̄ ′) v(G ∪Q′\P ′) (−1)|P̄
′|+1 σ(P̄ ′, P ′) σ(Q′, Q̄′). (G5)

Dividing both sides by v(G)2 yields

v(G ∪Q\P )
v(G)

=
∑

P ′⊊P, Q′⊊Q
: p̃∈P′&|P′|=|Q′|

v(G ∪Q′\P ′)

v(G)

v(G ∪ Q̄′\P̄ ′)

v(G)
(−1)|P̄

′|+1 σ(P̄ ′, P ′) σ(Q′, Q̄′). (G6)

The theorem statement (Eq.G1) is then obtained by summing up Eq.G6 for all p̃ ∈ P :
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|P | v(G ∪Q\P )
v(G)

=
∑
p̃∈P

∑
P ′⊊P, Q′⊊Q

: p̃∈P′

v(G ∪Q′\P ′)

v(G)

v(G ∪ Q̄′\P̄ ′)

v(G)
(−1)|P̄

′|+1 σ(P̄ ′, P ′) σ(Q′, Q̄′)

=
∑

P ′⊊P, Q′⊊Q

v(G ∪Q′\P ′)

v(G)

v(G ∪ Q̄′\P̄ ′)

v(G)
|P ′| (−1)|P̄

′|+1 σ(P̄ ′, P ′) σ(Q′, Q̄′). (G7)

Appendix H: Generalized Wick’s rule

Consider a state |v⟩ =
∑
v(S) that lies in Gk ⊂ H and three ordered sequences G = (1, ..n), P ⊂ G, Q ⊂ [l]\G.

We are concerned with decomposing multi-excitation amplitudes v(G ∪Q\P )/v(G) into few-excitation v(G∪Q′\P ′)
v(G)

(|P ′| = |Q′| ≤ k). As was mentioned in the main text, giving an explicit formula for such a decomposition is

difficult. The key simplifying step is to use ‘connected amplitudes’ v
(c)
P,Q:

v
(c)
P,Q ≡ v(G ∪Q\P )

v(G)
−

∑
P ′⊊P, Q′⊊Q

v(G ∪Q′\P ′)

v(G)

v(G ∪ Q̄′\P̄ ′)

v(G)
(−1)|P̄

′|+1 |P ′|
|P |

σ(P̄ ′, P ′) σ(Q′, Q̄′). (H1)

which capture the deviation of |v⟩ from recursive Wick’s rule (Eq.G1) — if |v⟩ ∈ Gk and |P | = |Q| > k, v
(c)
P,Q = 0.

For |P | = |Q| = 1, we define simply v
(c)
P,Q = v(G∪Q\P )

v(G) . Theorem2 below will expresses amplitudes v(G∪Q\P )
v(G) of

|v⟩ ∈ Gk in terms of v
(c)
P ′,Q′ for |P ′| = |Q′| ≤ k alone. One can think of this statement as an amplitude version of a

cumulant expansion. Via Eq.H1, this implies a decomposition of v(G∪Q\P )
v(G) into v(G∪Q′\P ′)

v(G) for |P ′| = |Q′| < k.

To formally state the theorem, further terminology needs to be introduced. We denote Part(P,Q) the set of
‘partitions of (P,Q)’. Namely, Part(P,Q) consists of all sets R of type R = {(P ′

1, Q
′
1), ..(P

′
|R|, Q

′
|R|)} such that

|P ′
a| = |Q′

a|, and for (disjoint!) unions P (R) ≡
⋃|R|

a=1 P
′
a = P and Q(R) ≡

⋃|R|
a=1Q

′
a = Q. A more refined set

Partk(P,Q) ⊂ Part(P,Q) is given by applying another constraint |P ′
a|, |Q′

a| ≤ k to all (P ′
a, Q

′
a) ∈ R ∈ Part(P,Q).

The signature function for R is defined as

σ (R) = σ
(
P ′
|R|, P

′
|R|−1, .., P

′
1

)
σ
(
Q′

1, Q
′
2, .., Q

′
|R|

)
. (H2)

Next, we introduce a vector m(R) = (m1,m2, ..,mk), where each mk′ ∈ N+ gives the number of tuples (P ′, Q′)
in R such that |P | = |Q| = k′. In other words, m encodes an integer partition of |P | = |Q| that is defined by R
(which itself is a ‘partition of (P,Q)’). For a general vector m, we denote one-norm

∑
k′ mk′ as |m|, and also will

make use of the expression k ·m ≡
∑

k′ k′mk′ . If m = m(R) for R ∈ Partk(P,Q), we have simply |m| = |R| and
k ·m = |P |. We say m′ <m if for all k′ holds m′

k′ ≤ mk′ and at least for one k′ one has strictly m′
k′ < mk′ .

Theorem 2. For any state |v⟩ ∈ Gk, the decomposition holds:

v(G ∪Q\P )
v(G)

=
∑

R∈Partk(P,Q)

ν(m(R)) σ(R)
∏

(P ′,Q′)∈R

v
(c)
P ′,Q′ . (H3)

Here the function ν(m) is equal to 1 if |m| = 0 or |m| = 1, and otherwise is defined by the recursive relation

ν(m) =
∑

m′<m

(−1)k·(m−m′)+1k ·m′

k ·m
ν(m′) ν(m−m′)

(
m′

1

m1

)
· .. ·

(
m′

k
mk

)
. (H4)

Proof. We will show Eq.H3 for |v⟩ ∈ Gk by first proving a general statement for all |v⟩ ∈ H:

v(G ∪Q\P )
v(G)

=
∑

R∈Part(P,Q)

ν(m(R)) σ(R)
∏

(P ′,Q′)∈R

v
(c)
P ′,Q′ . (H5)
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Note that coefficients v
(c)
P ′,Q′ are zero for |P ′|, |Q′| > k if |v⟩ ∈ Gk. Since the contributions of R ∈

Part(P,Q)\Partk(P,Q) to Eq.H5 are proportional to at least one such coefficient, these contributions vanish;
therefore, Eq.H5 yields Eq.H3.
We now prove Eq.H5 by induction in |P |. For the base of induction |P | = |Q| = 1, by definition we have

v(G∪Q\P )
v(G) = v

(c)
P,Q. Since Part(P,Q) in this case only consists of the trivial R = {(P,Q)}, for which σ(R) = 1 and

ν(m(R)) = 1, we recover Eq.H5 directly. We now assume the validity of Eq.H5 for |P | = |Q| = kind and prove it
for |P | = |Q| = kind+1. By definition in Eq.H1 and induction step, we have (denoting Q̄′ = Q\Q′ and P̄ ′ = P\P ′):

v(G ∪Q\P )
v(G)

= v
(c)
P,Q +

∑
P ′⊊P, Q′⊊Q

|P ′|=|Q′|

∑
R′∈Part(P ′,Q′)
R̄′∈Part(P̄ ′,Q̄′)

 ∏
(P ′′,Q′′)∈R′

v
(c)
P ′,Q′

∏
(P̄ ′′,Q̄′′)∈R̄′

v
(c)

P̄ ′,Q̄′


× (−1)|P̄

′|+1 |P ′|
|P |

ν(m(R′))ν(m(R̄′)) σ(R′)σ(R̄′)σ(P̄ ′, P ′)σ(Q̄′, Q′) (H6)

Using the property of the sign function σ(A)σ(B)σ(A,B) = σ(A ∪ B) and the definition of σ(R) (Eq.H2), one
finds a simplification σ(R′)σ(R̄′)σ(P̄ ′, P ′)σ(Q′, Q̄′) = σ(R′ ∪ R̄′).
Let us show that expression Eq.H6 reproduces the desired sum in Eq.H5. The term for R = {(P,Q)} of this sum

is given directly by v
(c)
P,Q in Eq.H6, since for such R the coefficient ν(m(R)) σ(R) is equal to 1. To reproduce the

rest of the sum in Eq.H5, consider the products
(
σ(R′ ∪ R̄′)

∏
(P ′′,Q′′)∈R′ v

(c)
P ′′,Q′′

∏
(P̄ ′′,Q̄′′)∈R̄′′ v

(c)

P̄ ′′,Q̄′′

)
in Eq.H6.

These have the form σ(R)
∏

(P ′′,Q′′)∈R v
(c)
P ′′,Q′′ for R ≡ R′ ∪ R̄′. Such R is a nontrivial (R ≠ {(P,Q)}) partition of

(P,Q). Let us now determine the coefficient in front of such a product for any R, examining the terms in Eq.H6
coming from all pairs R′, R̄′ which yield R′ ∪ R̄′ = R. We observe that for any nontrivial R every possible
splitting into R′, R̄′ appears in the sum in Eq.H6 exactly once — in the component of the sum where P ′ = P (R′),

Q′ = Q(R′). Collecting the factor in front of σ(R)
∏

(P ′′,Q′′)∈R v
(c)
P ′′,Q′′ in Eq.H6, we find

∑
R′⊊R

(−1)|P (R′)|−|P (R)|+1 |P (R′)|
|P (R)|

ν(m(R′))ν(m(R\R′))

=
∑

m′<m(R)

(−1)k·(m(R)−m′)+1 k ·m′

k ·m(R)
ν(m′)ν(m(R)−m′) ·

(
m′

1

m1(R)

)
· .. ·

(
m′

k
mk(R)

)
=ν(m(R)) (H7)

Thus restoring the coefficient in Eq.H5, we show that the sum in Eq.H6 gives the part of the sum over R in Eq.H5
over nontrivial R ≠ {(P,Q)}.

Appendix I: Non-Slater ansatz derivation

In this section we prove that Theorem2 directly implies an ansatz for states |v⟩ ∈ Gk:

Theorem 3. Any state |v⟩ ∈ Gk can be represented as:

|v⟩ = v(G)F (T1, ..Tk) |G⟩ , (I1)

Tk′ =
∑

P⊂G,Q⊂[l]\G,
|P |=|Q|=k′

θP,QΨ
†
QΨP . (I2)

for parameters θP,Q chosen as v
(c)
P,Q σ(G\P, P ) (v

(c)
P,Q defined in AppendixH). The function F (x1, ..xk) is defined as

F (x1, x2, ...) =
√
1 + 2(x2 + x4 + ..) exp

 1∫
0

x1 + 3x3µ
2 + 5x5µ

4 + ..

1 + 2(x2µ2 + x4µ4 + ..)
dµ

 . (I3)
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Proof. The proof consists of two parts. First we show from Theorem2 that for |v⟩ ∈ Gk one has

|v⟩ = v(G)
∑
m

ν(m)

m1!m2!..mk!
Tm1
1 Tm2

2 ..Tmk

k |G⟩ (I4)

for coefficient ν(m) defined in Theorem2 and parameters in Tk′ chosen as θP,Q = v
(c)
P,Qσ(G\P, P ) for v

(c)
P,Q defined

in AppendixH. Subsequently, we show that the generating function of ν(m), defined as

F (x1, .., xk) =
∑
m

ν(m)

m1!m2!..mk!
xm1
1 ..xmk

k , (I5)

has the functional form of Eq. I3. This will conclude the proof, showing that Eq. I4 reproduces Eq. I1 from Theorem3.

Here we use the fact that Tk′ operators mutually commute, as all operators of form Ψ†
QΨP for |Q| = |P | and P ⊂ G,

Q ⊂ [l]\G mutually commute.
To the reader comparing Theorems 2 and 3, the formulas in Eqs. I3 and I5 might come as a surprise. There is an

apparent contradiction: the function F (x1, ..xk) has an infinite Taylor series, while the sum over m in Theorem2
is finite. Indeed, m come from partitions of potentially large but bounded-size excitations. This confusion can be

clarified by observing that the operators Tk are nilpotent; this is because operators Ψ†
QΨP for P ⊂ G, Q ⊂ [l] \G

square to zero.
Let us now show that Eq. I4 is indeed equivalent to the established Theorem2. For this, we expand Tk′ in Eq. I4

noting the mutual commutation of Ψ†
QΨP operators. This yields

|v⟩ = v(G)
∑
R
ν(m(R))

 ∏
(P,Q)∈R

θP,QΨ
†
QΨP

 |G⟩ (I6)

where the sum runs over all sets of type R = {(P1, Q1), .., (P|R|, Q|R|)} for |Pa| = |Qa| ≤ k; function m(R)
is defined as in AppendixH. Factorials in the denominator are cancelled due to the term corresponding to R
represented m1!..mk! times. We further observe: ∏

(P,Q)∈R

Ψ†
QΨP

 = Ψ†
Q1

ΨP1
Ψ†

Q2
ΨP2

..Ψ†
Q|R|

ΨP|R|

= Ψ†
Q1

Ψ†
Q2
..Ψ†

Q|R|
ΨP|R|

..ΨP2
ΨP1

= Ψ†
∪aQa

Ψ∪aPa
σ(Q|R|, ..Q2, Q1) σ(P|R|, ..P2, P1) (I7)

Substituting into Eq. I6 and observing Ψ†
QΨP |G⟩ = σ(G\P, P ) |G ∪Q\P ⟩ yields

|v⟩ = v(G)
∑
R

ν(m(R)) σ(G\P (R), P (R)) σ(Q|R|, ..Q2, Q1) σ(P|R|, ..P2, P1)

×

 ∏
(P ′,Q′)∈R

θP ′,Q′

 |G ∪Q(R)\P (R)⟩ (I8)

for P (R) = ∪aPa, Q(R) = ∪aQa (as in AppendixH). We now claim

σ(G\P (R), P (R)) = σ(P|R|, ..P2, P1) σ(P1, P2, ..P|R|)
∏
a

σ(G\Pa, Pa) (I9)

by induction. Indeed, for |R| = 1 this holds trivially. Induction step from (|R| − 1) to |R| reads (we use properties
from Eqs.A2-A5 for transformations)

∪|R|
a=1σ(G\Pa, Pa) =σ(G\P|R|, P|R|)σ(G\(∪

|R|−1
a=1 Pa),∪|R|−1

a=1 Pa)

× σ(P|R|−1, ..P2, P1) σ(P1, P2, ..P|R|−1)

=σ(G\P|R|, P|R|) σ(G\(∪
|R|
a=1Pa),∪|R|−1

a=1 Pa) σ(P|R|,∪
|R|−1
a=1 Pa)

× σ(P|R|−1, ..P2, P1) σ(P1, P2, ..P|R|−1)
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=σ(G\(∪|R|
a=1Pa),∪|R|

a=1Pa) σ(∪|R|−1
a=1 Pa, P|R|)σ(P|R|,∪

|R|−1
a=1 Pa)

× σ(P|R|−1, ..P2, P1) σ(P1, P2, ..P|R|−1)

=σ(G\(∪|R|
a=1Pa),∪|R|

a=1Pa) σ(P|R|, ..P2, P1) σ(P1, P2, ..P|R|)

Employing Eq. I9 and substituting θP ′,Q′ = v
(c)
P ′,Q′σ(G\P ′, P ′) in Eq. I8, we obtain

|v⟩ = v(G)
∑
R

ν(m(R)) σ(Q|R|, .., Q2, Q1) σ(P1, P2, .., P|R|)

×

 ∏
(P ′,Q′)∈R

v
(c)
P ′,Q′

 |G ∪Q(R)\P (R)⟩ (I10)

Grouping terms proportional to identical basis states |G ∪Q(R)\P (R)⟩ yields

|v⟩ = v(G)
∑

P⊂G,Q⊂[l]\G

|G ∪Q\P ⟩
∑

R∈Partk(P,Q)

ν(m(R)) σ(R)

 ∏
(P ′,Q′)∈R

v
(c)
P ′,Q′

 (I11)

with the set of partitions Partk(P,Q) and sign σ(R) defined in AppendixH. Comparing Eq. I11 to Theorem2, we
observe that these statements are identical. As the transformations from Eq. I4 to Eq. I11 were all equivalences,
Theorem2 implies validity of Eq. I4.
We now show that function F (x1, .., xk) from Eq. I5 satisfies the definition from Eq. I3. By definition of ν(m)

(see Theorem2), ν(m) = 1 if |m| = 1 or |m| = 0 and for |m| > 1 is defined by the relation

(k ·m) ν(m) =
∑

m′<m

(−1)k·(m−m′)+1(k ·m′) ν(m′) ν(m−m′)

(
m′

1

m1

)
· .. ·

(
m′

k
mk

)
. (I12)

Multiplying both sides by
x
m1
1 ..x

mk
k

m1!..mk!
and summing up the equations for all |m| > 1, we obtain

∑
m,|m|>1

(k ·m) ν(m)

m1!..mk!
xm1
1 ..xmk

k =
∑

m,|m|>1

∑
m′<m

(−1)k·(m−m′)+1k ·m′ ν(m′)

m1!..mk!

ν(m−m′) xm1
1 ..xmk

k

(m1 −m′
1)!..(mk −m′

k)!
. (I13)

Changing the summation variables on the right hand side from m to m′′ = m−m′ yields

∑
m,|m|>1

(k ·m) ν(m)

m1!..mk!
xm1
1 ..xmk

k =
∑
m′

(k ·m′) ν(m′)

m1!..mk!
x
m′

1
1 ..x

m′
k

k

∑
m′′,|m′′|>0

(−1)k·m
′′+1ν(m′′)

m′′
1 !..m

′′
k !

x
m′′

1
1 ..x

m′′
k

k ,

−(x1 + 2x2 + ..+ kxk) =
∑
m′

(k ·m′) ν(m′)

m1!..mk!
x
m′

1
1 ..x

m′
k

k

−1 +
∑

m′′,|m′′|>0

(−1)k·m
′′+1ν(m′′)

m′′
1 !..m

′′
k !

x
m′′

1
1 ..x

m′′
k

k

 .

In the second line we used the fact that ν(m) = 1 for |m| = 1. Flipping the sign on both sides and using F (x1, .., xk)
from Eq. I5, we obtain

k∑
k′=1

k′xk′ =

(
k∑

k′=1

k′xk′
∂

∂xk′
F (x1, ..xk)

)
F (−x1, x2,−x3, ..(−1)kxk) (I14)

We now solve for F (x1, ..xk) with initial condition F (0, 0, ...) = 1 (as ν(m) = 1 for m = 0). Rewrite Eq. I14 as

f(−λ)df(λ)
dλ

= p′(λ) (I15)

where

f(λ) = F (x1λ, x2λ
2, x3λ

3, ...), p(λ) =

k∑
k′=1

λk
′
xk′ (I16)
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with the rescaling xk′ 7→ xk′λ−k′
. Decomposing p into symmetric and anti-symmetric parts

a(λ) = x1λ+ x3λ
3 + ..., s(λ) =

1

2
+ x2λ

2 + x4λ
4 + ... (I17)

and combining Eq. I15 with the one with λ 7→ −λ, one obtains

d

dλ
(f(λ)f(−λ)) = 2s′(λ) (I18)

This gives f(λ)f(−λ) = 2s(λ), which satisfies initial conditions at λ = 0. Now one can solve Eq. I15 by

2s

f

df

dλ
= (s′ + a′) ⇒ f(λ) = exp

(∫
s′ + a′

2s
dλ

)
=
√
2s(λ) exp

 λ∫
0

a′(µ)

2s(µ)
dµ

 (I19)

so the generating function is

F (x1, x2, ...) =
√
2s(1) exp

 1∫
0

a′(µ)

2s(µ)
dµ

 . (I20)

This coincides with Eq. I3, as desired.
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