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Abstract—Within the framework of the T-matrix method, we 

present a modeling tool that predicts the optical response from 
the Nanosphere-on-Mirror (NSoM) construct. The nonclassical 
effects in metals are accounted for by the nonlocal hydrodynamic 
Drude model (NLHDM) or the surface response model (SRM). 
Two essential elements in the T-matrix method, i.e., the T-matrix 
of the sphere and the R matrix accounting for the effects of the 
mirror, have been fully upgraded to include longitudinal waves 
for the NLHDM and the augmented interface conditions for the 
SRM. The proposed tool is quantitatively validated both in the 
near and the far field by an in-house developed BEM solver for 
the NLHDM where the gap between the sphere and the mirror is 
as small as 1 nm. Two physical checks are performed, where the 
results from the classical local response model are compared with 
the ones from the NLHDM and the SRM. The observed shifts in 
resonances and reduced field enhancements in the gap region 
agree well with previous physical findings. The proposed tool 
may not only serve as a reference tool for other numerical 
methods, but also provides an ideal platform for investigating 
nonclassical optical processes in the NSoM, hence paving a semi-
analytical way to understand the extreme optics at very small 
scales. 
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Hydrodynamic Model (NLHDM), Surface Response Model 
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I. INTRODUCTION 
HE Nanoparticle-on-Mirror (NPoM) structure [1] consists 
of a metal nanoparticle (NP) positioned on top of a mirror 

with, e.g., a self-assembled molecular monolayer (a gap layer) 
in between. The thickness of the monolayer fixes the cavity 
gap size at the deep-nanometric scales, i.e., from a fraction of 
one nanometer (nm) to a few nms. As a result, a strong field 
enhancement (exceeding hundred-fold with respect to the 
magnitude of the incident field) is formed in the gap region of 
the NPoM, which makes the NPoM an ideal platform for 
many ground-breaking applications, e.g., perfect absorbing 
artificial medium [2], rapid nanoscopic imaging [3], up-
converting mid-IR light to the optical band [4], [5], to name a 
few. 

Modelling the interaction of light with the NPoM plays an 
important role in theoretically understanding how the light is 
molded by the nanocavity. This is often done within the scope 
of the local response model (LRM) where the optical response 
of the metals constituting the NP and the mirror is described 
by a frequency dependent dielectric function of the bulk 
material, so that many computational electromagnetics (CEM) 
techniques, e.g., the Finite Difference Time Domain (FDTD) 
method [6], the Finite Element Method (FEM) [7], the 
Discontinuous Galerkin (DG) Method [8], the Boundary 
Element Method (BEM) [9], and the Volumetric Method of 
Moments (MoM) [10], can be (re-)employed. Empowered by 
many post-processing techniques, e.g., mode [11]–[13] and 
symmetry analysis [14], [15], the mode structure, the near 
field and the far field [4], [16] of the NPoM have been 
thoroughly investigated. 

However, due to the deep-nanometric nature of the cavity, 
the non-classical effects in metals, which transcend the LRM, 
play a non-negligible role in shaping the optical response of 
the NPoM [17]–[19]. For these effects, many semiclassical 
models are proposed. Amongst these models, two important 
categories are: the nonlocal hydrodynamic Drude model 
(NLHDM) [20]–[25] which employs a fluidic picture to 
account for the finite compressibility of electron gas, and its 
extensions to include diffusion [22], i.e., the generalized 
nonlocal optical response (GNOR), and to include the electron 
spill-out, i.e., the self-consistent hydrodynamic model (SC-
HDM) [23]; and, most recently, the surface response model 
(SRM) [26]–[29] which lumps the complicated light-matter 
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interaction in the transition region around, e.g., a metal-
vacuum interface, by a set of quantum corrected boundary 
conditions. These models successfully predict, e.g., spectral 
shifts [22], [26], [30]–[32], reduced near field enhancement 
[33], to name a few. 

As a result, conventional CEM algorithms for classical 
electrodynamics must be systematically upgraded to cope with 
the challenges posed by these new physical models. Firstly, 
for canonical geometries, planar layers, cylinders, and spheres, 
can be (semi-)analytically analyzed within the framework of 
the T-matrix (or the S-matrix) algorithm for the NHDLM [31], 
[34]–[41] and the SRM [42]. Further, the differential equation 
(DE-) based methods, e.g., FDTD, FEM, DG-FEM, have been 
readily applied to study the non-classical effects for arbitrary 
nanotopologies, for the NLHDM [22], [39], [43]–[45], and for 
the SRM [27]. Lastly, the integral equation (IE-) based 
methods, e.g., BEM and V-MoM, have been tailored to study 
NPs both in homogeneous space (for the NLHDM [46]–[50] 
and for the SRM [51]) and on layers (for the NLHDM [52]). 

Since the (semi-)analytical approach does not only provides 
an efficient way for solving the problem, but also always 
carries a vast amount of physical information, it is deemed as 
an essential element in physics and holds an irreplaceable 
position among the three aforesaid computational approaches. 
Motivated by this, in this work, we intend to extend the T-
matrix algorithm for a single nanosphere (NS) to include the 
effects of the underneath mirror, so that the optical response of 
the NSoM structure can be computed by the T-matrix 
algorithm. We note that this has already been done for the 
LRM [53], and, for the NLHDM, has been done for a nonlocal 
particle on a dielectric substrate [54], [55]. Also, for the 
NLHDM, in [56], although a NSoM structure is considered, 
the mirror is treated as a perfect conductor, implying that the 
nonclassical effects are ignored in the mirror. 

In this work, we propose a computational tool that considers 
the nonclassical effects (which can be either described by the 
NLHDM or the SRM) in both the NS and the mirror. In more 
details, the NS can be a concentric shell whose layers can be 
nonclassical metals and (isotropic) dielectrics, and the mirror 
can be a planarly stratified structure whose layers can be 
nonclassical metals and (isotropic and uniaxial) dielectrics. 
This work is organized as follows. Section II briefly reviews 
the NLHDM and the SRM where the main equations of the 
two models are summarized. Then, the main equation behind 
the computation is discussed. It is pointed out that the T-
matrix (that describes the input – output relation for the NS) 
and the R-matrix (that covers the effects of the mirror) in the 
equation are the two elements to be upgraded. In Section III, 
we expand the spherical waves (SWs) radiated by the NS (in 
the top layer) in terms of plane waves (PWs), trace the 
multiple reflection of the PWs through the layers, collect 
reflected, scattered, and transmitted PWs in the layers, and 
expand the reflected PWs in the top layer by SWs. By such a 
four-step procedure, not only the R-matrix is constructed, but 
also the reflected, scattered, and transmitted SWs in all layers 
are obtained. Then, similar to the approach in our previous 

work [41], we find the S-matrix for a planar or a spherical 
interface. Since the NLHDM has been well covered in [41], 
the procedures for the SRM are deliberated. Lastly, in Section 
IV, we compare the results from the proposed tool with the 
ones from an in-house developed BEM solver [47], [52]. A 
good agreement is demonstrated. Besides, two physical checks 
are done for the NLHDM and the SRM where the observed 
physics are well in line with previously reported results [26], 
[33]. 

II. THEORY 
In this section, we first give a quick overview on the key 
elements of the NLHDM including GNOR [20], [22], [24] and 
the SRM [26], [27]. For more information on the models, we 
refer the readers to two most recent reviews [57], [58]. To 
conclude the section, we illustrate the main equation behind 
the proposed tool, and discuss the impact of the two models on 
the implementation of the tool. 

In the work, we assume the 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖  time dependency with 
𝜔𝜔  being the angular frequency (accordingly 𝑘𝑘0  being the 
vacuum wavenumber). For the sake of conciseness, 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖  will 
be suppressed. To be complete, we list the Maxwell equations, 
 ( ) ( )0, , ,iω ωµ ω∇× =E r H r   (1) 

 ( ) ( ) ( ), , , .iω ω ω ω∇× = −H r J r D r   (2) 
In the above two equations, 𝐄𝐄, 𝐇𝐇, 𝐉𝐉 and 𝐃𝐃 are the electric, the 
magnetic, the source current, and the electric displacement 
fields. 𝐫𝐫 is a spatial point and 𝜇𝜇0 is the vacuum permeability. 
Also, we assume that the material is non-magnetic (as shown 
by the vacuum permeability 𝜇𝜇0  in Eq. (1)). Lastly, the SI units 
are used in the work. 

A. Nonlocal Hydrodynamic Drude Model (NLHDM) 
The NLHDM and its extension, that is, GNOR, treat the free 
electron gas in a metal as an electron fluid, trace the motion 
and the force-balance of a fluid particle, i.e., a volume being 
locally seen as a uniform electron gas, and describes the 
dynamics, i.e., convection and diffusion, of the particle by an 
additional partial differential equation (PDE) to the Maxwell 
equations, 

 ( )( ) ( ) ( ) ( )
2

2
0 .p

f f i
ω

ξ ε
ω ω γ

∇ ∇ ⋅ + = −
+

P r P r E r   (3) 

In Eq. (3), 𝜔𝜔𝑝𝑝 is the plasma frequency. 𝛾𝛾 is the damping rate. 
𝐏𝐏𝑓𝑓(𝐫𝐫) and 𝐄𝐄(𝐫𝐫) are the free-electron polarization current and 
the electric field at a spatial point 𝐫𝐫. 𝐏𝐏𝑓𝑓(𝐫𝐫) enters the Maxwell 
equations in Eq. (1) and Eq. (2) via the electric displacement 
field, 
 ( ) ( ) ( )0 .bd fε ε= +D r E r P r   (4) 
Here, 𝜀𝜀𝑏𝑏𝑏𝑏 is the bound-electron permittivity (see the definition 
in, e.g., [47]). Lastly, 𝜉𝜉 is, when only considering convection, 

 ( ) ( )
2

2 ,
i

βξ ω
ω ω γ

=
+

  (5) 

when considering both convection and diffusion [22], [45], 
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 ( ) ( )
2

2 .D
i i

βξ ω
ω ω γ ω

= +
+

  (6) 

In the above, 𝛽𝛽 is a quantity which is related with the Fermi 
velocity, i.e., 𝛽𝛽2 = 3/5 𝑣𝑣𝐹𝐹2 , in the high-frequency limit, and is 
closely related with the finite compressibility of the electron 
gas [58]. 𝐷𝐷 is the diffusion constant, i.e., a phenomenological 
parameter, which lumps possible microscopic processes, e.g., 
non-specular scattering at metal surfaces, surface enhanced 
Landau damping, to name a few. The physical model in Eq. 
(3) underlines the demolition of the concept of the surface 
charge in macroscopic EM. The charge induced by an external 
optical perturbation cannot stay on the boundary of the metal, 
must be “broadened” and occupy a finite volume. Its impact 
on the optical response of the NSoM will be seen in Section 
VI.B. 

The extra PDE (besides the Maxwell equations) in Eq. (3) 
requires additional boundary conditions (ABCs) beyond the 
conventional BCs at material interfaces, 
 ( )2 1 ,× − =n E E 0   (7) 

 ( )2 1 .× − =n H H 0   (8) 
For a metal – dielectric interface, we assume the ABC as, 
 0.f⋅ =n P   (9) 
Eq. (9) marks the termination of the free electron polarization 
current at the metal boundary, by saying that no electrons can 
escape from the metal. For a metal – metal interface, we say, 
 1, 2, ,f f⋅ = ⋅n P n P   (10) 

 
2 2

1 2
1, 1 2, 22 2

1, 2,

.bd bd
p p

β β
ε ε

ω ω
∇ ⋅ = ∇ ⋅E E   (11) 

Eq. (10) and Eq. (11) stem from the requirement of continuous 
normal component of the energy current density (see chapter 2 
in [20]). It is underlined that Eq. (9) – Eq. (11) are selected in 
an ad-hoc manner. In the above, 𝐧𝐧 is the boundary normal. 

B. Surface Response Model (SRM) 
The SRM focuses on a “transition” (selvedge) region [59] 
between a metal and, e.g., vacuum. Instead of treating the 
charge in the region induced by an external EM wave as a 
“strict” surface one, the SRM considers the polarizable dipole 
moments of the induced charge distribution at the metal – 
vacuum interface as well. This leads to the quantum-corrected 
boundary conditions (QC-BCs) [26], [27], [58]. Related to the 
proposed scheme are the two BCs regarding the tangential 
components of the E- and H- fields, 
 ( )2 1 2 1 ,d E E⊥ ⊥

⊥− = − ⋅∇ −E E 



  (12) 

 ( )2 1 2 1 .i dω− = − ⋅ × −H H n D D   



  (13) 

In the above, 𝑑𝑑⊥ and 𝑑𝑑∥ are Feibelman parameters [60]. They 
are very related to the dipole moments of the induced charge 
distribution normal to and along the boundary of the metal and 
can be determined from a Time-Dependent Density Functional 
Theory (TD-DFT) calculation [42], or even from LRM and 
spatially varying equilibrium electron density [29]. Clearly, 
when 𝑑𝑑⊥ and 𝑑𝑑∥ are set to zero, the conditions in Eq. (12) and 

Eq. (13) reduce to the conventional BCs. Here, the subscripts 
“1” and “2” mark the physical quantities related to the inner 
region and the outer region of the boundary. The superscripts 
“⊥” and “∥” refer the directions normal to and in parallel with 
the boundary. 𝐧𝐧 is the boundary normal. 

C. Problem Statement and Main Equation 
 

 
Fig. 1. Illustration of the NSoM structure. In the figure, the “sphere” is a core-
shell structure where the core and the shell are made of dielectrics and metals; 
and the “mirror” composes of three layers, i.e., a thin gap marked by the blue 
color, a thin metal film marked by the yellow color and a dielectric substrate 
marked by the green color, which have an infinite extension in the x-y plane. 
A coordinate system is attached to the structure (see the bottom-left) and the 
origin of the coordinate system is fixed at the center of the “sphere”. 
 
The proposed tool is dedicated to modelling the interaction of 
light with the NSoM. From a computational point of view, the 
following abstraction has been made (see Fig. 1). First of all, 
the NS is not necessary to be a homogeneous sphere but can 
be in a concentric shell topology, and the materials filling the 
NS can be (isotropic) dielectrics and metals. Second, the NS is 
placed in the top layer (which is always assumed to be filled 
by an isotropic dielectric) of a planar multilayer structure. And 
here after, we refer to the layers underneath the NS as the 
“mirror”. The layers can be filled by (isotropic and/or uniaxial 
which models, for example, graphene) dielectrics and metals. 
Lastly, the external excitations are PWs coming in from the 
top layer or the bottom layer, which is in line with what is 
commonly used in experimental setups. As a remark, the 
origin of the coordinate system is set at the center of the NS. 

The key relation behind the modelling is known from the 
T-matrix algorithm [53], 

 .
s e

s e

   
= ⋅   

   

a a
T

b b
  (14) 

In Eq. (14), 𝐓𝐓 is the transition matrix. The T-matrix links the 
expansion coefficients of the total incident field with the ones 
of the direct scattered field, and only depends on the geometry 
of the NS and materials filling the NS but is independent of 
the underneath layers. In detail, the expansions of the total 
incident field and the direct scattered field are, 
 ( ) ( ) ( ) ,e e e e e

nm nm nm nm
nm

a b = ⋅ + ⋅ ∑E r M r N r   (15) 

 ( ) ( ) ( ) .s s s s s
nm nm nm nm

nm
a b = ⋅ + ⋅ ∑E r M r N r   (16) 

In Eq. (15) and Eq. (16), the superscripts “e” and “s” refer to 
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the expansions of the total incident field and the direct 
scattered field by the so-called standing and radiating SWs. 
This corresponds to the use of spherical Bessel or Hankel 
function in the 𝐌𝐌 and 𝐍𝐍 functions in Eq. (16) and Eq. (15) (see 
the detailed forms of the 𝐌𝐌 and 𝐍𝐍 functions in the Chapter 7 in 
[61]). The subscripts 𝑛𝑛𝑛𝑛 refer to the azimuthal and magnetic 
quantum number, and they constrain the angular variations of 
the 𝐌𝐌 and the 𝐍𝐍 functions. Further, 𝑛𝑛 is a positive integer and, 
for a given 𝑛𝑛, 𝑛𝑛 is an integer between −𝑛𝑛 and 𝑛𝑛. In this work, 
we always consider column vectors whose elements are 𝑎𝑎𝑛𝑛𝑛𝑛

𝑗𝑗  
and 𝑏𝑏𝑛𝑛𝑛𝑛

𝑗𝑗 , i.e., 

 { } { }1, 1 , 1, 1 ,, , ,  , , .
T Tj j j j j j

l l l la a b b− −= =a b    (17) 

In Eq. (17), the number of elements in each column vector is 
𝑁𝑁 = 𝑙𝑙2 and “T” marks the matrix transpose. 

Further, the total incident field includes two contributions 
one from an external excitation, i.e., 𝐄𝐄𝑖𝑖 , the other from the 
reflected scattered field, i.e., 𝐄𝐄𝑟𝑟 , as the result of the 
interaction of the direct scattered field with the “mirror”. Both 
fields must be expanded in terms of standing SWs, 
 ( ) ( ) ( ) ,i e i e i

nm nm nm nm
nm

a b = ⋅ + ⋅ ∑E r M r N r   (18) 

 ( ) ( ) ( ) .r e r e r
nm nm nm nm

nm
a b = ⋅ + ⋅ ∑E r M r N r   (19) 

The sum of the expansion coefficients in Eq. (18) and the ones 
in Eq. (19) gives the ones of the total incident field, 

 .
e i r

e i r

     
= +     

     

a a a
b b b

  (20) 

In the above equation, 𝐚𝐚𝑖𝑖, 𝐛𝐛𝑖𝑖 and 𝐚𝐚𝑟𝑟, 𝐛𝐛𝑟𝑟  are column vectors of 
the expansion coefficients in Eq. (18) and Eq. (19).  

We assume that the expansion coefficients of the reflected 
scattered field are able to be linked with the ones of the direct 
scattered field, 

 .
r s

r s

   
= ⋅   

   

a a
R

b b
  (21) 

The steps towards the R-matrix are explained later in Section 
III.A. By combining Eq. (20), Eq. (21) with Eq. (14), we reach 
the main equation behind the proposed tool, 

 ( ) 1 .
s i

s i

−   
= − ⋅ ⋅ ⋅   

   

a a
1 T R T

b b
  (22) 

In Eq. (22), it is seen that, given that the external excitations 
are assumed to be known, the expansion coefficients of the 
direct scattered field are the main unknown of the equation. 
Once solved, they serve as the starting point to recover the 
total field everywhere in space (see Section III.A). 

Although Eq. (22) looks like the one for the local response 
case (e.g., Eq. (2.203) on Page 168 in [53]), the use of the two 
non-classical material response models, i.e., the NLHDM or 
the SRM, has a significant impact on the evaluation of the T- 
and the R-matrix. For the NLHDM, the longitudinal waves 
(being curl-free) must be included in addition to the transverse 
waves (being divergence-free). Together with the associated 
ABC(s), this definitely affects the evaluation of the T-matrix 

for the NS and the reflection and transmission of PWs through 
the layers [34], [41]. Likewise, for the SRM, a systematic 
adaptation must be done according to the quantum corrected 
BCs in Eq. (12) and Eq. (13) for both the T- and the R- 
matrix. The needed adaptations are deliberated in Section III. 

III. IMPLEMENTATION 
In this section, bearing the NLHDM and the SRM in mind, we 
focus on (1) the derivation of the R matrix and (2) with the 
emphasis on the SRM, an S-matrix formalism which deals 
with the reflection and transmission of waves through multiple 
spherical and planar interfaces. 
 

 
Fig. 2. Illustration of (a) a plane wave expansion of spherical waves and (b) 
the k space. In (a), the dashed circles mark the spherical waves; the center of 
the spherical waves is set as the origin of the coordinate system; and the 
spherical waves interact with the N-layer substrate. At a spatial point r, the 
spherical waves can be expanded in terms of a spectrum of plane waves as in 
Eq. (23). In (a), two plane wave components, i.e., an up-propagating, i.e., 𝐤𝐤1+, 
and a down-propagating, i.e., 𝐤𝐤1−, plane wave, are highlighted. In (b), the k 
space where a wave-vector lives is demonstrated. 
 

A. The R-Matrix 

A.1. Expansion in terms of Plane Waves 
The first step begins with the expansion of radiating SWs 
which are the bases of the direct scattered field, as in Eq. (16), 
in terms of PWs [62], 

 

( )
( )

( ) ( ) ( ) ( ) 1

1

1

2

1 1 1 10 0
1 1

, 1
, 2

ˆ ˆ .

s
nm
s n
nm

i

z

k
k i

k dk d
e

k k
π ρ ρ

π

ϕ
θ ϕ

±+∞ ⋅± ± ± ±

 
= ⋅  

 

 ⋅ + ⋅ ∫ ∫ k r

M r
N r

a k k b k k

 (23) 

In Eq. (23), 𝐤𝐤1
± is a wave vector in the top layer (see Fig. 2(a) 

and (b)), 
 1 1 ,  ,z x yk k k± = ± = +k k z k x y

 

  (24) 

 2 2 2 2
1 1,  .x y zk k k k k kρ ρ= + = −   (25) 

Since in Eq. (23) the integration with respect to 𝑘𝑘𝜌𝜌 extends to 
infinity, both the propagating (where 𝑘𝑘1𝑧𝑧 is a real number) and 
the evanescent (where 𝑘𝑘1𝑧𝑧 is an imaginary number) spectrum 
are considered. To ensure the Sommerfeld radiation condition 
(e.g., chapter 2 in [61]), the square root takes the branch in 
which the imaginary part of 𝑘𝑘1𝑧𝑧 is always positive. Also, the ± 
sign corresponds to a wave traveling along the positive or the 
negative z direction. The 𝜃𝜃�  and 𝜑𝜑�  are unit vectors (see Fig. 
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2(b)) transverse to 𝐤𝐤 and correspond to the TM (p-polarized) 
and the TE (s-polarized) waves, respectively. The amplitudes 
of the TM and TE waves are summarized in two 2  by 1 
column vectors, 

 ( )
( )
( )

( )1
1

1

1

,
m
n im

m
n

e
i

ϕ
π θ

τ θ

±
±

±

±

    =      

k
k

a k
k





  (26) 

 ( )
( )
( )

( )1
1

1

1

.
m
n im

m
n

e
i

ϕ
τ θ

π θ

±
±

±

±

  −   =      

k
k

b k
k





  (27) 

In Eq. (26) and Eq. (27), 𝜃𝜃  and 𝜑𝜑  (see Fig. 2(b)) are the 
elevation and the azimuthal angles in the 𝐤𝐤 space. The 𝜋𝜋�  and �̃�𝜏 
functions are defined as, 

 ( ) ( )cos
,

sin

m
nm nm

n

N P
im

θ
π θ

θ
= ⋅   (28) 

 ( ) ( )cos ,m m
n nm n

dN P
d

τ θ θ
θ

=   (29) 

 ( ) ( )cos .m m
n nm nP N Pθ θ=   (30) 

Here, 𝑃𝑃𝑛𝑛𝑛𝑛 is the associated Legendre polynomial [63] and 𝑁𝑁𝑛𝑛𝑛𝑛 
are normalized constants, 

 
( )
( )

! 2 1.
! 4nm

n m nN
n m π

− +
=

+
  (31) 

A.2. Reflection and Transmission of Plane Waves 
In the second step, we trace the reflection and transmission of 
each PW in the expansion of Eq. (23). In the top layer 
(assumed to be local and isotropic), the reflected waves are, 
 ( ) ( ) ( ) ( )1 12

1 1
ˆ ,zi ik z z

pr k e eρ θ ⋅ + −− +⋅ ⋅ k ra k k     (32) 

 ( ) ( ) ( ) ( )1 12
1 1ˆ .zi ik z z

sr k e eρ ϕ ⋅ + −− +⋅ ⋅ k rb k k     (33) 

Here, 𝐫𝐫∥ = (𝑥𝑥,𝑦𝑦)  and 𝑧𝑧1  is the position of the first interface 
(see Fig. 2(a)). In the bottom layer, the transmitted waves are, 
 ( ) ( ) ( ) ( )11 1

1
ˆ ,nz nz i ip z zik z

p Nt k e e eρ θ −⋅ − −−− −⋅ ⋅ k ra k k     (34) 

 ( ) ( ) ( ) ( )11 1
1 ˆ .nz nz i ik z zik z

s Nt k e e eρ ϕ −⋅ − −−− −⋅ ⋅ k rb k k     (35) 

Here, 𝑧𝑧𝑛𝑛−1  is the position of the last interface (see Fig. 2(a)). 
In Eq. (35), it is noted that we distinguish 𝑝𝑝𝑛𝑛𝑧𝑧 and 𝑘𝑘𝑛𝑛𝑧𝑧 as the z 
component of the wave vector. This is for the case where the 
bottom layer is filled by a uniaxial medium. In detail, 𝑝𝑝𝑛𝑛𝑧𝑧 and 
𝑘𝑘𝑛𝑛𝑧𝑧 are, 

 ( )2 2 2 2 2 2
, , , 0,  ,  .nz n n t n z nz n n n tp k k k k k k kρ ρε ε ε= − = − =  (36) 

In Eq. (36), 𝜀𝜀𝑛𝑛,𝑖𝑖  and 𝜀𝜀𝑛𝑛,𝑧𝑧  are the in-plane and out-of-plane 
permittivity of the 𝑛𝑛𝑖𝑖ℎ layer (the bottom layer). In a mid-layer, 
i.e., the 𝑛𝑛𝑖𝑖ℎ layer, the scattered PWs are, 
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  (37) 
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  (38) 

Here, 𝑧𝑧𝑛𝑛−1  and 𝑧𝑧𝑛𝑛  are the positions of the upper and the 

lower interfaces of the 𝑛𝑛𝑖𝑖ℎ layer (see Fig. 2(b)). Again, 𝑝𝑝𝑛𝑛𝑧𝑧 
and 𝑘𝑘𝑛𝑛𝑧𝑧 are distinguished, for the case the medium filling the 
𝑛𝑛𝑖𝑖ℎ layer is uniaxial.  

Also, if the 𝑛𝑛𝑖𝑖ℎ  layer is modelled by the NLHDM, an 
additional longitudinal wave should be taken into account, 
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  (39) 

In Eq. (39), �̂�𝜅 marks a unit vector along the wave vector 𝜿𝜿𝑛𝑛, 

 2 2
1 ,  .m z mz mk l kρκ± = ± = −κ k z



  (40) 

Here, 𝑙𝑙 is known as the longitudinal wave number, 

 ( )
21 .p

bd

l i
ω

ω ω γ
β ε

 
= + − 

  
  (41) 

We note that, when the 𝑛𝑛𝑖𝑖ℎ layer is the bottom layer, the first 
term, i.e., for a PW propagating along the positive z direction, 
in Eq. (39) should be removed. Also, the evaluation for the 
coefficients 𝑟𝑟𝑠𝑠 , 𝑟𝑟𝑝𝑝 , 𝑡𝑡𝑠𝑠 , 𝑡𝑡𝑝𝑝 , 𝑐𝑐𝑝𝑝 , 𝑐𝑐𝑠𝑠  and 𝑐𝑐𝑙𝑙  will be discussed in 
Section III.B. 

A.3. Integration 
The third step collects the effects of all reflected, scattered and 
transmitted PWs. Based on Eq. (32), Eq. (33) and Eq. (23), the 
reflected SWs in the top layer are, 
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  (42) 

Based on Eq. (34), Eq. (35) and Eq. (23), the transmitted 
SWs in the bottom layer are, 
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Based on Eq. (37), Eq. (38) and Eq. (23), the scattered SWs 
in a mid-layer, e.g., in the 𝑛𝑛𝑖𝑖ℎ layer, are, 
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In Eq. (44), the summation is to sum up the PWs propagating 
along the positive and the negative z direction in the 𝑛𝑛𝑖𝑖ℎ 
layer. 

When the 𝑛𝑛𝑖𝑖ℎ layer is modelled by the NLHDM, besides 



6 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 
the transverse SWs in Eq. (44), based on Eqs. (39) and (23), a 
longitudinal scattered spherical wave should be considered, 
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In Eq. (45), the summation is the same as Eq. (44). 
As a remark, since the origin is set at the center of the NS, 

𝑧𝑧1 is a negative real number. The phase term 𝑒𝑒−𝑖𝑖𝑘𝑘1𝑧𝑧𝑧𝑧1 in Eq. 
(42) - Eq. (45) decays exponentially as 𝑘𝑘𝜌𝜌 approaches infinity. 
Thus, the numerical convergence of the integrals in these 
equations is always guaranteed. 

Once the expansion coefficients in Eq. (22) are solved, the 
reflected, the transmitted and the scattered SWs in Eq. (42) – 
Eq. (45) serve as the bases to reconstruct the scattered fields in 
all layers. As an example, the reflected scattered field in the 
top layer can be written as, 
 ( ) ( ) ( ) .r r s r s

nm nm nm nm
nm

a b = ⋅ + ⋅ ∑E r M r N r   (46) 

To be complete, in our implementation, the integration with 
respect to 𝜑𝜑 is done analytically. This is explained in detail in 
Appendix I. 

A.4. The R Matrix 
To obtain the R matrix, the reflected scattered field in the top 
layer (see Eq. (46)) must be expanded in terms of standing 
SWs, which is seen by comparing Eq. (19) with Eq. (46). The 
desired expansion is done by noting that the TM and the TE 
waves in the integral kernel of Eq. (42) can be expanded in 
terms of standing SWs (see e.g., [53] and in our previous work 
[41]), 
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By substituting Eq. (47) in Eq. (42), the R matrix is reached, 
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In Eq. (48), 𝐑𝐑𝑛𝑛𝑛𝑛,𝑛𝑛′𝑛𝑛′  is 
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As a comment, the convergence of the semi-infinite integral in 
Eq. (49) is guaranteed, by noting the phase term 𝑒𝑒−2𝑖𝑖𝑘𝑘1𝑧𝑧𝑧𝑧1 in 

Eq. (49) and the fact that: (I) the branch of the square root in 
Eq. (25) has been picked in such a way that the imaginary part 
of 𝑘𝑘1𝑧𝑧 is always a positive real number; and (II) 𝑧𝑧1  is a real 
negative number. 

B. Reflection and Transmission of Waves through Spherical 
and Planar Layers 
By using S-matrices, a unified framework can be developed 
for both the NS, i.e., a spherically layered system, and the 
“mirror”, i.e., a planarly layered system. The key to the 
framework is to find the S-matrix for each spherical or planar 
interface. Then, the T-matrix for the NS in Eq. (22), and the 
amplitudes of the reflected, the transmitted and the scattered 
waves in spherical and planar layers (used in Eqs. (32) – (39)) 
can be retrieved by concatenating the S-matrices. The 
concatenation is known as the Redheffer star operation [64] 
and is well-archived in literature (e.g., [36], [38], [41]) and 
thus will not be repeated here. Also, it is noted that the case in 
which the layers are modelled by the NLHDM is well-covered 
in our previous work [41]. Thus, in the following, we will 
focus on the S-matrix for a single interface within the SRM. 
 

 
Fig. 3. Illustration of (a) a spherical and (b) a planar interface. The interfaces 
separate an inner region filled by medium 1 from an outer medium filled by 
medium 2. In both figures, the outgoing waves are marked by the red color, 
while the incoming ones are marked by the blue color. In (b), the positive z 
direction is marked by an arrow. 
 

According to the QC – BCs in Eq. (12) and Eq. (13) for the 
SRM, a matrix equation can be listed for an interface, 
 1 1 1 1 2 2 2 2 .c c c c+ + − − + + − −⋅ + ⋅ = ⋅ + ⋅Q Q Q Q   (50) 
In Eq. (50), 𝐐𝐐 ’s and c’s are wave matrices and wave 
amplitudes. The subscripts “1” and “2” mark the inner region 
and the outer region of the interface and the superscripts “+” 
and “-” do the outgoing and the incoming types of waves (see 
the red and blue arrows in Fig. 3). By reshuffling the terms on 
both sides of Eq. (50), the S-matrix can be obtained as, 

 
1

1 2 1 2 .
−− + + −   = + − ⋅ − +   S Q Q Q Q   (51) 

The S-matrix links the amplitudes of the incoming waves with 
the ones of the outgoing waves, 

 1 1

2 2

.
c c
c c

− +

+ −

   
= ⋅   

   
S   (52) 

The mathematical forms of 𝐐𝐐 and c in Eqs. (50) – (52) depend 
on whether a spherical or a planar interface is considered. 

For the former, 𝐐𝐐 takes a generic form (see the derivations 
in Appendix II), for the TE system, corresponding to the 𝐌𝐌 
function in Eq. (15) and Eq. (16), 
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for the TM system, which corresponds to the 𝐍𝐍 function in Eq. 
(15) and Eq. (16), 
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  (54) 

The expansion coefficient c’s corresponding to the TE and the 
TM systems are 𝑎𝑎𝑛𝑛𝑛𝑛 and 𝑏𝑏𝑛𝑛𝑛𝑛 as in Eqs. (15) and (16). In Eqs. 
(53) and (54), 𝑟𝑟 is the radius of the interface. 𝑘𝑘, 𝑍𝑍 and 𝜀𝜀 are 
the wavenumber, the wave impedance, and the permittivity of 
the material. Their values depend on whether the inner region 
(the subscript being “1”) or the outer region (the subscript 
being “2”) is regarded. Lastly, 𝑧𝑧𝑛𝑛(𝑘𝑘𝑟𝑟)  can be the spherical 
Bessel (for the superscript being “-”) or the spherical Hankel 
function (for the superscript being “+”). 

For the latter, 𝐐𝐐 takes a generic form (see the derivations in 
Appendix II), for the TE system (i.e., the TE wave and also 
see the 𝜑𝜑�  vector in Fig. 2(b)), 
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  (55) 

for the TM system (i.e., the TM wave and also see the 𝜃𝜃�  
vector in Fig. 2(b)), 
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The c’s are 𝑎𝑎(𝑘𝑘𝑧𝑧) and 𝑏𝑏(𝑞𝑞𝑧𝑧) for the TE and the TM systems, 
respectively (see Appendix II for more details). We note that 
Eqs. (55) and (56) are generalized to include uniaxial media 
(e.g., graphene layers). This contrasts to the works [26], [27] 
where isotropic media are considered and is reflected in Eqs. 
(55) and (56) by the in-plane and out-of-plane permittivity, 
i.e., 𝜀𝜀𝑖𝑖 and 𝜀𝜀𝑧𝑧, in the definition of 𝑘𝑘, i.e., 𝑘𝑘2 =  𝜀𝜀𝑖𝑖𝑘𝑘02, and lastly 
in the use 𝑘𝑘𝑧𝑧 and 𝑞𝑞𝑧𝑧 for the TE and the TM waves. 

In Eq. (55) and Eq. (56), the interface is assumed to be at 
𝑧𝑧 = 𝑧𝑧0. Like the spherical case, the value of the wavenumber 
𝑘𝑘 and the permittivity 𝜀𝜀𝑖𝑖 and 𝜀𝜀𝑧𝑧 depends on whether the inner 
(the subscript being “1”) or the outer (the subscript being “2”) 
is considered. Also, 𝑘𝑘𝑧𝑧  and 𝑞𝑞𝑧𝑧  are place holders for ±𝑘𝑘𝑧𝑧  and 
±𝑞𝑞𝑧𝑧 highlighting the upgoing (for the superscript being “+”, 
i.e., propagation along the positive z direction, see Fig. 3(b) 
for the coordinate system) and the down-going (for the 
subscript being “-”, i.e., propagation along the negative z 
direction, see Fig. 3(b) for the coordinate system) waves. 

IV. RESULTS 
In this section, we verify the implementation by comparing the 

results from the proposed tool with the ones from an in-house 
developed BEM solver [47], [49], [52]. Then, two further 
examples are presented to demonstrate the physical impact of 
the NLHDM and the SRM on the optical response (both near 
field and far field) of the NSoM structure. The simulations are 
run on a workstation with a 16-core CPU (Ryzen 7950X) and 
128 GB RAM. 

A. A Quantitative Check 
In the example, we consider an NS with a radius of 20 nm. 
The NS is made of Gold (Au) and is positioned on top of an 
Au mirror (see Fig. 4). The NS and the mirror are separated by 
a 1nm gap. The excitation is a TM-polarized oblique incident 
plane wave with an incidence angle of 60° (see the inset of 
Fig. 4). For Au, the permittivity is from tabulated data [65], 
while the Fermi velocity 𝑣𝑣𝑓𝑓 is 1.40 × 106 m/s. The 1nm gap is 
assumed to be filled in by a material with refractive index 1.5. 
The far field radiated by the NSoM is calculated on a hemi-
sphere with a radius of 1 m in the top layer (see the black dash 
line in the inset of Fig. 4). The hemi-sphere is discretized by 
1569 triangles and the electric field, the magnetic field, and 
the Poynting vector are evaluated at the centroids of the 
triangles, based on which the scattered power collected by the 
hemisphere is calculated. This scheme of evaluating far field 
properties will be used for the rest of this work. Finally, as a 
remark, for the evaluation of the far field, the reflected SWs in 
Eq. (42) are needed. There, numerical integrations are avoided 
by using the stationary phase method [61]. 
 

 
Fig. 4. Convergence test for the T-matrix solver. The spectral position of the 
fundamental resonance in the scattered power spectra of the NSoM structure 
is plotted against the maximum number of SWs used in the simulation. In the 
inset of the figure, the simulated structure is shown and especially the cut in 
Fig. 5(b) – (e) where the electric field is evaluated is marked by the red dashed 
line. The wave vector 𝐤𝐤 of the incident plane wave forms an angle 𝜃𝜃 = 60° 
with respect to the vertical direction and the incident wave is TM-polarized. 
The hemi-sphere where the far field is collected is denoted by the black dash 
line. 
 

For the proposed tool, different numbers of SWs are used 
to test the convergence of the results. In Fig. 4, we plot the 
spectral position of the fundamental resonance (extracted from 
the scattered power spectra from the NSoM structure) when 
different numbers of SWs, i.e., 𝑛𝑛max in Fig. 4, are used. It is 
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seen that, for 𝑛𝑛max ≥ 20  (we test up to 𝑛𝑛max = 30 ), the 
spectral position converges at 660 nm. 

Further, we compare the results from the proposed tool 
(𝑛𝑛max = 20) with the ones from the BEM solver. The BEM 
solver is a dedicated solver for the NPoM structure and can 
properly account for the NLHDM [52]. The BEM solver 
focuses on the boundary of the NS and discretizes the 
boundary into small triangular patches. In the example, we 
discretize the boundary by 878, 1246 and 1678 triangles. For 
both the T-matrix and the BEM simulations, a wavelength 
range spanning from 570 nm to 800 nm (where the main 
resonance is located) is considered. The range has 24 sampling 
points in-between. In both simulations, the center of the NS is 
set as the origin of the coordinate system. 

It can be seen from Fig. 5(a) that by using denser meshes, 
the scattered power calculated by the BEM solver approaches 
the one by the proposed tool (see the circled lines and the blue 
solid line in Fig. 5(a)). Further, we plot the near fields at a cut 
right in the middle of the gap. The cut is along the 𝑥𝑥𝑦𝑦 plane 
(see the coordinate system and the position of the cut in the 
inset of Fig. 4) is with a size of 40 nm by 40 nm. 41 sampling 
points are taken along each direction. It can be seen from Fig. 
5(b) to (e) that, again with denser meshes, the BEM results 
approach the ones from the proposed tool. To be concrete, we 
evaluate the average and the maximum relative errors, 
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In Eq. (57) and Eq. (58), the superscripts “BEM” and “T” 
mark the results from the BEM solver and the proposed tool, 

respectively. The subscript “i” refers to the 𝑖𝑖𝑖𝑖ℎ sampling point 
in the cut. 𝑁𝑁 is the total number of sampling points on the cut. 
|𝐄𝐄| takes the magnitude of the electric field and “max” picks 
out the maximum value. For the three meshes, the average 
relative errors are 0.0603, 0.0307 and 0.0109, while the 
maximum relative errors are 0.2678, 0.1903 and 0.1301. 

B. Physical Checks 

 
Fig. 6. The power scattered from the NSoM structure with different gap sizes. 
The G = 1 nm case, the G = 3 nm case and the G = 5 nm case are marked by 
the blue, orange and green colors, respectively. In the plot, the dashed lines 
and the solid lines correspond to the local and the nonlocal case, respectively. 
 
As a physical check, we compare the impact of the LRM with 
the one of the NLHDM on the optical response of the NSoM. 
To illustrate, we consider an Au NS with a radius of 30 nm on 
Au mirror with various gap sizes, i.e., 1 nm, 3 nm, and 5 nm. 
The gap is still filled by a medium with a refractive index of 
1.5. The NSoM structure is excited by an oblique incident 
plane wave (the incident direction forming a 60° angle with 

 
Fig. 5. Comparison between the results from the proposed tool and the BEM solver. The result from the T-matrix method is compared with the ones from 
the BEM where 878, 1246 and 1678 triangles are used. (a) plots the normalized scattered power, i.e., the scattered power from the T-matrix method and 
the BEM solver is normalized with respect to the maximum of the scattered power. In (b) – (e), the magnitude of the scattered electric field on a 40 nm by 
40 nm cut (with 41 sampling points in each direction and see the position of the cut in the inset of Fig. 4) is plotted. Here, the magnitude of the scattered 
electric field is normalized with respect to the one of the incident electric field. The color is coded from black to red to mark the amplitude of the electric 
field. 
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respect to the vertical axis). The whole setup resembles the 
one in the inset of Fig. 4. The considered wavelength is from 
400 nm to 800 nm with 81 sampling points in between. Here, 
a sufficient number of SWs (𝑛𝑛max = 20 for all gap sizes) is 
used. 

It can be seen from Fig. 6 that the main resonance in the 
scattered power spectrum predicted by the NLHDM is always 
blue shifted with respect to the one by the LRM. This is 
physically due to the “spill-in” of charges predicted by the 
NLHDM model which reduces the electrical size of the NS. 
Further, the amount of the blue shift reduces as the gap size 
increases, marking the importance of non-classical effects at 
the deep-nm level. 

In the near field regime, similar to the previous example, 
the electric field is calculated on a cut right in the middle of 
the gap (similar to the one in the inset of Fig. 4). The cut is 
along the 𝑥𝑥𝑦𝑦 plane (see the coordinate system in the inset of 
Fig. 4) and spans an area of 60 nm by 60 nm. 61 sampling 
points are taken along each direction. In general, it is seen 
from Fig. 7 that, as the gap size increases, the electric field 

enhancement decreases. This is due to the reduced coupling 
between the NS and its image. The enhancement predicted by 
the NLHDM is always weaker than the one by the LRM (see 
Fig. 7). As discussed in Section II.A, this is a direct result of 
the collapse of the concept of “surface charge” in classical 
electrodynamics [58]. Instead, a volume charge distribution 
near the boundary must be considered. As the gap size 
increases, the effects arising from the boundary region become 
less important. Hence, the results from the NLHDM 
degenerate to the one from LRM at the gap size of 5 nm. The 
above observations are well in line with previous works [33]. 

Last but not least, we look at an NS (with a radius of 10 
nm) made of a simple metal (a representative metal is Sodium) 
on top of a mirror made of the same simple metal with a gap 
size of 0.74 nm. This gap size is very close to the tunneling 
regime, i.e., 0.5 nm [26]. The bulk of the metal is modelled by 
the LRM with the plasma and the damping frequency 𝜔𝜔𝑝𝑝 =
5.9 eV and 𝛾𝛾 = 0.1 eV. For the SRM, 𝑑𝑑⊥, is needed. We adopt 
a fitting model (see supplementary note 9 in [42]) for the 

 
Fig. 7. The magnitude of the scattered electric field on a cut (see the red dashed line in the inset of Fig. 4(a) for the position of the cut) in the mid of 
the gaps. The cut is with the size of 60 nm by 60 nm with 61 sampling points along each direction. In all plots, the magnitude of the scattered electric 
field on the cut is plotted, and the magnitude of the scattered electric field is normalized with respect to the one of the incident electric field. The first, 
the second and the third columns correspond to the cases where G = 1 nm, G = 3 nm, and G = 5 nm, respectively. In (a), (b), (d), (e), (g) and (h), the 
color is coded from black to yellow to denote the magnitude of the field. In (c), (f) and (i), the magnitudes of the normalized scattered electric field 
are plotted for the LRM case (the red dashed line) and for the NLHDM case (the blue solid line) along the white dashed lines in (a) and (b), (d) and 
(e), and (g) and (h), respectively. 
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parameter. Since 𝑑𝑑⊥ is extracted for a vacuum-metal interface, 
a vacuum gap is considered. Further, the incident light is 
chosen to be a plane wave with high angle (the incident 
direction forms an angle of 80° with respect to the vertical 
axis). Hence, this example can be compared with the one in 
Fig. 3(d) in [26] where a dimer of Sodium spheres is of the 
focus. We consider an energy range from 1.5 eV to 6 eV with 
251 sampling points in between. A sufficient number of SWs 
(𝑛𝑛max = 16) is used. It can be seen from Fig. 8(a) that the 
resonances in the scattering spectra from the SRM illustrate a 
systematic red shift against and are broader than the ones from 
the LRM. The former is due to the “spill-out” of charges 
which increases the effective electrical length of the NS, while 
the latter is, similar to the NLHDM case, due to the 
“diffusive”-like effects at the boundary of the NS. This agrees 
well with the previous findings in [26]. To be complete, we 
look at the near field at a cut in the gap (see Fig. 8(b) – (d)). 
Once again, the field enhancement is reduced. 

V. CONCLUSION 
In this work, within the framework of the T-matrix method, 
we present a dedicated modeling tool for the nanosphere-on-
mirror (NSoM) structure where the nonclassical effects in both 
the sphere and the mirror are accounted for by the nonlocal 
hydrodynamic model (NLHDM) and the surface response 
model (SRM). Contrasting with the conventional T-matrix 
method, we find that two key adaptations must be made: one 
is for the T-matrix, while the other is for the R-matrix. The 
former is done by using the concept of S-matrices, while the 
latter is resolved by a four-step procedure where conversions 
between spherical and plane waves are involved. Lastly, by 
comparing with an in-house developed boundary element 
method (BEM) solver and with previous physical findings, the 
proposed tool is quantitatively and qualitatively validated. The 
proposed modeling tool does not only serve as a reference as 
the Mie solution for the homogeneous space, but also provides 
an efficient and effective approach for investigating interesting 
physics at the deep-nanometric scales and can be become an 
essential element in the study of mesoscopic electrodynamics.  

APPENDIX I. INTEGRATION WITH RESPECT TO THE 𝜑𝜑 ANGLE IN 
EQS. (42) - (45) 

In this Appendix, we analytically evaluate the integration with 
respect to the 𝜑𝜑 angle in Eqs. (42) - (45), so that the original 
integrals in the equations are reduced from two-dimensional to 
one-dimensional. 

In Eq. (42) – Eq. (45), 𝜃𝜃�, 𝜑𝜑�  and �̂�𝜅, i.e., the unit vectors of 
the 𝐤𝐤 space (see Fig. 2), are functions of the 𝜑𝜑 angle. Also, the 
phase terms 𝑒𝑒𝑖𝑖𝐤𝐤∥∙𝐫𝐫∥ = 𝑒𝑒𝑖𝑖𝑘𝑘𝜌𝜌𝜌𝜌 cos(𝜑𝜑−𝛼𝛼), where 𝜌𝜌 = �𝑥𝑥2 + 𝑦𝑦2 and 
𝛼𝛼 = atan(𝑦𝑦/𝑥𝑥) , and 𝑒𝑒𝑖𝑖𝑛𝑛𝜑𝜑  (in the coefficients 𝐚𝐚 and 𝐛𝐛, see Eq. 
(26) and Eq. (27)) are dependent on the 𝜑𝜑 angle. By collecting 
these terms, we can extract the integrals with respect to the 𝜑𝜑 
angle from Eq. (42) – Eq. (45), 
 ( )

2

0
ˆ ,i ime e d

π ϕθ ϕ⋅∫ k rk     (59) 

 ( )
2

0
ˆ ,i ime e d

π ϕϕ ϕ⋅∫ k rk     (60) 

 ( )
2

0
ˆ .i imk e e d

π ϕ ϕ⋅∫ k rk     (61) 

Then, we realize that the unit vectors can be written as, 

 ( )ˆ cos sin ,tz z

z

kk k
k k k

ρε
θ ϕ ϕ

ε
= + −k x y z   (62) 

 ( )ˆ sin cos ,ϕ ϕ ϕ= − +k x y   (63) 

 ( )ˆ cos sin .zk k kk
k k k
ρ ρϕ ϕ= + +k x y z   (64) 

From Eq. (62) – Eq. (64), the essential integrals for Eq. (59) – 
Eq. (61) are, 
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0
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,

ik im
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m m

e e d

i J k e i J k e

ρ
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ϕ ϕ
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⋅
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 ( ) ( )2 cos

0
2 .ik im m im

me e d i J k eρ
π ρ ϕ α ϕ α

ρϕ π ρ− = ⋅∫   (67) 

 
Fig. 8. The power scattered by a Jellium NSoM structure with a gap size of 0.74 nm (a) and the near field enhancement on a cut at the mid of the gap for the 
LRM (b) and the SRM (c). In (a), the blue solid line represents the scattered power for the LRM case, while the dashed orange line does the scattered power 
for the SRM case. In (b) and (c), the color is coded from black to yellow to denote the strength of the field. For (b) and (c), the cut spans an area of 20 nm by 
20 nm with 41 sampling points being taken in each direction. In (d), a comparison between the LRM case (the blue solid line) and the SRM (the orange 
dashed line) case is made along the white dashed lines in (b) and (c). 
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In Eq. (65) – Eq. (67), 𝐽𝐽𝑛𝑛(𝑧𝑧) is the 𝑛𝑛𝑖𝑖ℎ order Bessel function 
of the first kind. By combining Eq. (59) – Eq. (67), we achieve 
the aimed reduction in the fold of integration. 

APPENDIX II. DERIVATIONS FOR EQS. (53) - (54) AND EQS. 
(55) - (56) IN SECTION III.B 

In this Appendix, within the SRM, we derive the wave matrix 
Q for a spherical and a planar interface. It is remembered from 
Eqs. (12) and (13) that for both cases the physical quantities to 
be matched at an interface are, 
 ,d E⊥

⊥+ ∇E



  (68) 

 .i dω+ ×H n D 



  (69) 
For the spherical case, we expand the fields in a region as, 
 ( ) ( ) ( ), , ,nm nm nm nm

nm
k a k b= ⋅ + ⋅  ∑E r M r N r   (70) 

 ( ) ( ) ( )1 , , .nm nm nm nm
nm

k a k b
iZ

= ⋅ ⋅ + ⋅  ∑H r N r M r   (71) 

In Eq. (70) and Eq. (71), 𝑘𝑘 and 𝑍𝑍 are the wavenumber and the 
wave impedance of the region. The M and the N functions are 
defined as in [61], 
 ( ) ( ) ( ), , ,nm n nmk z kr θ ϕ= ⋅M r X   (72) 

 
( ) ( ) ( ) ( )

( )( ) ( )
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n
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z kr
k n n Y

kr
rz kr

kr r

θ ϕ

θ ϕ
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∂
+ ⋅

∂

N r r

Z
  (73) 

In Eq. (72) and Eq. (73), 𝑌𝑌𝑛𝑛𝑛𝑛 and 𝐗𝐗𝑛𝑛𝑛𝑛, 𝐙𝐙𝑛𝑛𝑛𝑛 are known as the 
scalar and vector spherical harmonics. The definition for the 
former can be found in (e.g., Appendix D of [61]) and will not 
be repeated here, while the ones for the latter are, 

 ( ) ( )


( )


, ,1, ,
sin

nm nm
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Y Yθ ϕ θ ϕ
θ ϕ

θ ϕ θ
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= −
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X θ φ   (74) 

 ( ) ( )
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nm nm
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θ ϕ

θ θ ϕ
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= +
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Z θ φ   (75) 

𝐗𝐗𝑛𝑛𝑛𝑛 and 𝐙𝐙𝑛𝑛𝑛𝑛 hold the following orthogonality properties, 

 ( ) ( ) ( )
2 *

' ' ' '0 0
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π π
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In Eq. (76) – Eq. (79), the integrations are done with respect to 
all elevation and azimuthal angles. 

By using the expansions in Eq. (70) and Eq. (71) and the 
𝐌𝐌 and the 𝐍𝐍 functions in Eq. (72) and Eq. (73), we express the 
physical quantities in Eq. (68) and Eq. (69) to be matched at 
the interface as, 
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Next, we apply the orthogonality properties in Eqs. (76) –(79), 
so that Eqs. (80) and (81) split into two systems: (I) a TE 
system, which corresponds to the M function and 𝑎𝑎𝑛𝑛𝑛𝑛 in Eqs. 
(70) and (71), 
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(II) a TM system, that corresponds to the N function and 𝑏𝑏𝑛𝑛𝑛𝑛 
in Eqs. (70) and (71), 
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Eq. (82) and Eq. (83) give the Q matrix in Eqs. (53) and (54) 
in the main text. 

For the planar case, we focus on the TE wave in the region, 
 ( ) ( ) ( )ˆ ,zi ik z

ze a kϕ ⋅ += ⋅k rE r k     (84) 

 ( ) ( ) ( )
0

ˆ .zi ik z
z

k e a kθ
ωµ

⋅ += − ⋅k rH r k     (85) 

In Eqs. (84) and (85), we assume the wave propagates along a 
wave vector 𝐤𝐤. 𝜑𝜑� , 𝜃𝜃� and 𝑘𝑘�  (which is the unit vector along the 
wave vector 𝐤𝐤) form a right-handed system, 

 ( ) ( )ˆ ,y xk k
k kρ ρ

ϕ = = − +k X k x y


  (86) 



12 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
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  (87) 

In the above, 𝐤𝐤, 𝐤𝐤∥, 𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦, 𝑘𝑘𝑧𝑧, 𝑘𝑘 𝜌𝜌 and 𝑘𝑘 are introduced in the 
same way as in Eqs. (24) and (25) in the main text, and two 
functions 𝐗𝐗 and 𝐙𝐙 are defined for later use. We substitute Eqs. 
(84) and (85) in Eqs. (68) and (69) for the physical quantities 
to be matched at the interface, 
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We project them onto the 𝐗𝐗 and 𝐙𝐙 functions and get the wave 
matrix, 
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Then, we shift to the TM wave in the region, 
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In Eqs. (91) and (92), 𝑞𝑞𝑧𝑧 is the z component of the wave vector 
of the TM wave. By following the same procedures as in Eq. 
(88) – Eq. (90), we obtain the wave matrix, 
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  (93) 

By replacing 𝑧𝑧 in Eqs. (90) and (93) with a position relative to 
the interface (which is located at 𝑧𝑧0), i.e., 𝑧𝑧 − 𝑧𝑧0, we obtain 
Eqs. (55) and (56) in the main text. 
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