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Abstract

Upper bounds are obtained for the Newtonian capacity of compact sets in R
d, d ≥ 3 in terms

of the perimeter of the r-parallel neighbourhood of K. For compact, convex sets in R
d, d ≥ 3

with a C2 boundary the Newtonian capacity is bounded from above by (d− 2)M(K), where
M(K) > 0 is the integral of the mean curvature over the boundary of K with equality if K is
a ball. For compact, convex sets in R

d, d ≥ 3 with non-empty interior the Newtonian capacity

is bounded from above by (d−2)P (K)2

d|K|
with equality if K is a ball. Here P (K) is the perimeter

of K and |K| is its measure. A quantitative refinement of the latter inequality in terms of the
Fraenkel asymmetry is also obtained. An upper bound is obtained for expected Newtonian
capacity of the Wiener sausage in R

d, d ≥ 5 with radius ε and time length t.
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1 Introduction

In this paper we consider maximisation problems involving Newtonian capacity (or logarithmic
capacity if d = 2). For a compact set K ⊂ R

d, d ≥ 3 we recall a definition of its Newtonian
capacity cap (K) [16, p.293]:

cap (K) = inf
{

∫

Rd

|Du|2 : u ≥ 1K , u ∈ D1(Rd) ∩ C0(Rd)
}

, (1)

where D1(Rd) is the collection of functions f : Rd → R with f ∈ L1
loc(R

d), Df ∈ L2(Rd), and
which vanish at infinity. Here f vanishes at infinity if for all ε > 0, |{|f | > ε}| < ∞, where |A|
denotes the Lebesgue measure of a measurable set A ⊂ R

d. The indicator function is denoted by
1·.

We introduce the following notation. The boundary of A is denoted by ∂A, the perimeter by
P (A), the closure by A, the convex hull by co(A), and the a-dimensional Hausdorff measure by
Ha(A) [7, p.61]. For a non-empty compact set K we denote for r > 0 its closed r-neighbourhood
by

Kr = {x ∈ R
d : dK(x) ≤ r},
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where
dK(x) = min{|x− y| : y ∈ K}, x ∈ R

d,

is the distance to K function. We denote by C(K) the set of critical points of dK . The parallel
sets Kr, r > 0 have been studied extensively in the literature. See for example [22, 8, 18, 19], and
the references therein. It is known ([8, Theorem 4.1]) that C(K) is a compact, countable subset of
[0,∞). That theorem also implies that Kr, r ∈ (0,∞) \ C(K) is a Lipschitz manifold, and hence

P (Kr) = Hd−1(∂Kr), r ∈ [0,∞) \ C(K).

Furthermore in [18, Theorem 3.3] it was shown that

d|Kr|

dr
= Hd−1(∂Kr), r ∈ [0,∞) \ C(K).

Finally in [22, Lemma 2, Lemma 5] it was shown that d|Kr|
dr is continuous wherever it exists.

IfK is compact then R
d\K is open and consists of a countable union of open components. Since

K is bounded there is precisely one unbounded component of its complement, which is denoted by
UK . Let AK be the union of all bounded components of the complement of K. Then AK is open,
and K = R

d \ (AK ∪ UK) ⊂ R
d \ UK := K̃. It is straightforward to show that K̃ = K ∪ AK , and

that cap (K) = cap (K̃).
If K is compact and ∂K is C2, oriented by an outward unit normal vector field, then we denote

the mean curvature map by H : ∂K → R, and define its integral by

M(K) =

∫

∂K

HdHd−1. (2)

Our main results are the following.

Theorem 1. Let K be a non-empty compact set in R
d, d ≥ 3.

(i) If
∫

(0,∞)
(P (K̃t))

−1 dt < ∞, then

cap (K) ≤
(

∫

(0,∞)

(P (K̃t))
−1 dt

)−1

, (3)

with equality if K is a closed ball.

(ii) If

lim
s↓0

∫

(s,∞)

(P (K̃t))
−1 dt = +∞,

then cap (K) = 0.

(iii)

cap (K) ≤ inf
a>0

1

a2
|Ka|. (4)

(iv) If K is convex, and if ∂K is C2, then

cap (K) ≤ (d− 2)M(K), (5)

with equality if K is a closed ball.

It follows from (5) and the Aleksandrov-Fenchel inequalities (38), (35) below (for k = 2, j =
1, i = 0), that

cap (K) ≤
(d− 2)

d

P (K)2

|K|
, (6)

with equality if K is any closed ball.

2



Theorem 2 below weakens the hypotheses under (iv), and quantifies (6) in terms of the Fraenkel
asymmetry. The latter is a measure of how close K is to a ball of the same measure as K. For a
measurable set Ω ⊂ R

d with 0 < |Ω| < ∞ the Fraenkel asymmetry of Ω is the number

A(Ω) = inf
{ |Ω∆B|

|B|
: B is a ball with |B| = |Ω|

}

. (7)

Note that 0 ≤ A(Ω) < 2 and that A(Ω) = 0 if and only if Ω is a ball modulo a set of measure 0.
It was shown in [9] and [10] that for d = 2, 3, ... there exist constants cd > 0 such that for any

compact, convex set K ⊂ R
d with |K| > 0,

P (K)|K|−(d−1)/d

dω
1/d
d

− 1 ≥ cdA
2(K). (8)

Theorem 2. If K is compact and convex in R
d, d ≥ 3 with |K| > 0 then

1−
d cap (K)|K|

(d− 2)P (K)2
≥ γdA

2(K),

where

γd =
Γ(d+ 1)Γ(d− 1)

Γ(2d− 2) + Γ(d)Γ(d − 1)
·

cd

1 + 4dcd
A2(K).

In [2] and [3] the authors obtain inequalities involving the Newtonian capacity and the torsional
rigidity. Recall that the torsion function for a non-empty open set Ω ⊂ R

d, d ≥ 1 with finite
Lebesgue measure is the solution of

−∆v = 1, v ∈ H1
0 (Ω), (9)

and is denoted by vΩ. It is convenient to extend vΩ to all of Rd by putting vΩ = 0 on R
d \Ω. The

torsion function is non-negative and bounded. Moreover if Ω1,Ω2 are open sets in R
d, then

Ω1 ⊂ Ω2 ⇒ 0 ≤ vΩ1 ≤ vΩ2 . (10)

The torsional rigidity of Ω (or torsion for short) is denoted by T (Ω) =
∫

Ω vΩ. Hence (10) implies
that

Ω1 ⊂ Ω2 ⇒ 0 < T (Ω1) ≤ T (Ω2). (11)

By (9) and the definition of T (Ω),

T (tΩ) = td+2T (Ω), t > 0, (12)

where tΩ is a homothety of Ω by a factor t. The de Saint-Venant’s inequality [12, p.206] asserts
that

T (Ω) ≤ T (Ω∗), (13)

where Ω∗ is any ball in R
d with |Ω| = |Ω∗|. By (13) and scaling of Lebesgue measure,

T (Ω)

|Ω|(d+2)/d
≤

T (B1)

|B1|(d+2)/d
=

(

d(d+ 2)ω
2/d
d

)−1
, (14)

where B1 is the open ball with radius 1 and measure ωd.
If K,K1,K2 are compact sets then

K1 ⊂ K2 ⇒ cap (K1) ≤ cap (K2), (15)

and
cap (tK) = td−2cap (K), t > 0. (16)

The classical isocapacitary lower bound

cap (K) ≥ cap (K∗),
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where K∗ is a closed ball with |K| = |K∗|, goes back to [17]. It follows that

cap (K)

|K|(d−2)/d
≥

cap (B1)

|B1|(d−2)/d
= (d− 2)dω

2/d
d , (17)

where B1 is the closed ball with radius 1.
Let

G(Ω) =
T (Ω)cap (Ω)

|Ω|2
. (18)

The functional in (18) is, by (16) and (12), scaling invariant. Fixing |Ω| = 1 we see that the capacity
and torsion are competing: the torsion is, by (13), maximised by a ball with measure 1, whereas the
Newtonian capacity is, by (17), minimised for a ball with measure 1. Furthermore both torsion and
Newtonian capacity are by (11) and (15) increasing set functions under inclusion. While the torsion
is defined by a variational problem on Ω, the Newtonian capacity of Ω is defined by a variational
problem on its complement. These facts make the study of the variational problems involving G(Ω)
very different from the ones leading to the Faber-Krahn inequality or the Kohler-Jobin inequality
for example.

In [2, Theorem 2(i)] it was shown that G(Ω) is not bounded from above on the class of non-
empty open sets with finite measure, and in [2, Theorem 3(i), q = 1] it was shown that there exists
a sequence of convex sets (Ωj) with limj→∞ G(Ωj) = 0. So the only remaining case of interest is
the maximisation of G(Ω) over the collection of convex sets.

In [2, Theorem 2(iii)] it was shown that the variational problem

sup{G(Ω) : Ω non-empty, open, bounded and convex in R
d} (19)

has a maximiser for d = 3. The existence of a maximiser of the variational problem in (19) for
d > 3 remains an open problem. It was shown in [3, Theorem 2(i)] that for any ellipsoid E ⊂ R

d,
G(E) ≤ G(B1). This suggests that for any non-empty, open bounded convex set Ω, G(Ω) ≤ G(B1).

Recall that
P (tΩ) = td−1P (Ω), t > 0. (20)

For d ≥ 3 and 0 ≤ α ≤ 2 we define the functional

Gα(Ω) =
T (Ω)cap (Ω)

|Ω|αP (Ω)d(2−α)/(d−1)
. (21)

By (16), (12) and (20), we see that Gα is scaling invariant. The functional interpolates between a
perimeter and a measure constraint. The following was shown in [3, Theorem 6]:

(i) Let Ed denote the collection of open ellipsoids in R
d. If d ≥ 3 and 0 ≤ α ≤ 2, then

sup{Gα(Ω) : Ω ∈ Ed} = Gα(B1), (22)

and the supremum in the left-hand side of (22) is achieved if and only if Ω is a ball.

(ii) If d ≥ 3 and 0 ≤ α ≤ 2, then

sup{Gα(Ω) : Ω non-empty, open, bounded, convex in R
d} ≤ d2dGα(B1). (23)

(iii) If 0 ≤ α < 2, then the variational problem in the left-hand side of (23) has a maximiser.

The presence of a perimeter term in the denominator of Gα guarantees the existence of a maximiser.

Theorem 3 below shows that B1 is a maximiser for Gα among the collection of open bounded
convex sets provided the exponent of the perimeter is not too small. Theorem 3 together with (i)
and (iii) above suggest that B1 is a maximiser of (21) for 0 ≤ α ≤ 2.

Theorem 3. If d ≥ 3 and 0 ≤ α ≤ 2
d , then

sup{Gα(Ω) : Ω non-empty, open, bounded, convex inRd} = Gα(B1),

and any ball is a maximiser of Gα.

This paper is organised as follows. In Section 2 below we prove Theorems 1, 2 and 3. Section 3
concerns the analysis of some variational problems involving collections of open sets Ω ⊂ R

2 with
torsion T (Ω), and logarithmic capacity cap (Ω). In Section 4 we give various examples and discuss
the optimality for the bounds in Theorems 1 and 3.
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2 Proofs of Theorems 1, 2 and 3

Proof of Theorem 1. The starting point of the proof of Theorem 1 goes back to Theorem 11 in [6]
where the authors obtain, for convex bodies K, an upper bound for cap (K) by restricting the test
functions in (1) to those depending on dK only. The proof of Theorem 1(i) is organised as follows.
In step (a) we restrict the class of test functions in (1) and derive, formally, a candidate for a test
function. In step (b) we show that this function is well defined. In steps (c)–(e) we show that this
function satisfies the constraints in (1), and is admissible. We then complete the proof of (i).

(a) Let s > 0 be arbitrary, and let ϕ = f(dK̃s
), where K̃ = R

d \ UK . Then

|Dϕ|2 = (f ′(dK̃s
))2|DdK̃s

|2 ≤ (f ′(dK̃s
))2.

By the coarea formula

∫

Rd

|Dϕ|2 ≤

∫

Rd

(f ′(dK̃s
))2 =

∫

(0,∞)

(f ′(r))2P (K̃s+r) dr. (24)

Minimising, formally, over all smooth f with f(0) = 1, f(∞) = 0 gives (f ′(r)P (K̃s+r))
′ = 0. Hence

f ′(r)P (K̃s+r) = c for some c ∈ R. It follows that

f(r) = c

∫

(r,∞)

(P (K̃s+t))
−1 dt = c

∫

(r+s,∞)

(P (K̃t))
−1 dt. (25)

Since f(0) = 1 we find that

f(r) =

∫

(r,∞)(P (K̃s+t))
−1 dt

∫

(0,∞)(P (K̃s+t))−1 dt
. (26)

(b) Since K 6= ∅ it contains a point say 0. Then B(0; t) ⊂ K̃t. Since B(0; t) is a convex subset of
K̃t,

P (K̃t) ≥ P (B1)t
d−1, (27)

and
P (K̃t) ≥ P (B1)(r + s)d−1, t ≥ r + s. (28)

Since C(K̃) is compact, (r+ s,∞) \C(K̃) is open, and hence is a countable union of disjoint open
intervals. By the properties of parallel sets mentioned in Section 1, t 7→ P (K̃t) is continuous on
(r + s,∞) \ C(K̃). By (28), P (K̃t) is uniformly bounded away from 0. Hence t 7→ (P (K̃t))

−1 is
continuous on (r + s,∞) \ C(K̃). Since C(K̃) is countable it has measure 0. This shows that the
integral in the right-hand side of (25) is well-defined. To show that the integral in (25) converges
we have, by (27), that

∫

(r,∞)

(P (K̃s+t))
−1dt ≤ ((d− 2)P (B1)(s+ r)d−2)−1 ≤ ((d− 2)P (B1)s

d−2)−1 < ∞.

(c) To prove continuity we have by (26) and (27).

|ϕ(x)− ϕ(y)| ≤ |f(dK̃s
(x)) − f(dK̃s

(y))|

≤ sup
r≥0

|f ′(r)||dK̃s
(x) − dK̃s

(y)|

≤
supr≥0(P (K̃s+r))

−1

∫

(0,∞)(P (K̃s+t))−1 dt
|x− y|

≤
(dωds

d−1)−1

∫

(0,∞)(P (K̃s+t))−1 dt
|x− y|.

Hence ϕ is uniformly continuous. This in turn implies that f ∈ L1
loc(R

d).
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(d) To prove that ϕ vanishes at infinity in the sense of D1(Rd), we have by (27) and (26)

f(r) ≤

(

(d− 2)dωdr
d−2

)−1

∫

(0,∞)
(P (K̃s+t))−1 dt

. (29)

By (29)

{ϕ > ε} = {x ∈ R
d : f(dK̃s

(x)) > ε}

⊂
{

x ∈ R
d : dK̃s

(x) <
(

ε(d− 2)dωd

∫

(0,∞)

(P (K̃s+t))
−1dt

)−1/(d−2)}

. (30)

Since K̃s is contained in a ball with radius diam(K̃s), we have by (30) that the level set {ϕ > ε}
is contained in a ball with radius

diam(K̃s) +
(

(d− 2)dωdε

∫

(0,∞)

(P (K̃s+t))
−1 dt

)−1/(d−2)

.

Hence this level set has finite measure.

(e) To see that Dϕ ∈ L2(Rd) we compute by (24) and (26) that

∫

Rd

|Dϕ|2 ≤
(

∫

(0,∞)

(P (K̃s+t))
−1 dt

)−1

< ∞. (31)

We conclude by (c)–(e) above that ϕ ∈ D1(Rd) ∩C(Rd), and hence is a test function. By (1) and
(31),

cap (K) = cap (K̃) ≤ cap (K̃s) ≤
(

∫

(0,∞)

(P (K̃s+t))
−1 dt

)−1

< ∞. (32)

Since s > 0 was arbitrary we arrive at (3). A direct computation gives equality for a ball. This
completes the proof of Theorem 1 (i).

(ii) The assertion follows immediately from (32).

(iii) Let a > 0 be arbitrary. Since P (K̃t) ≤ P (Kt), we have by (3),

cap (K) ≤
(

∫

(0,∞)

(P (Kt))
−1 dt

)−1

. (33)

By Cauchy-Schwarz and (33)

a =

∫

(0,a)

dt ≤
(

∫

(0,a)

(P (Kt))
−1dt

)1/2(
∫

(0,a)

P (Kt) dt
)1/2

≤
(

∫

(0,∞)

(P (Kt))
−1 dt

)1/2

|Ka|
1/2

≤ cap (K)−1/2|Ka|
1/2.

This implies (4) since a > 0 was arbitrary.

(iv) Steiner’s formula for non-empty, compact and convex K reads

|Kr| =
d

∑

n=0

(

d

n

)

Wn(K)rn, (34)

where the Wn(K) are the Quermass integrals forK. See [20, Sections (4.1), (4.2) Chapter 4]. These
Quermass integrals can be expressed in terms of integrals over the surface ∂K of polynomials in
the d− 1 principal curvatures. In particular

W0(K) = |K|, W1(K) = d−1P (K), W2(K) = d−1

∫

∂K

HdHd−1, Wd(K) = ωd. (35)

6



The right-hand side of (34) is differentiable. Hence

P (Kr) =
d|Kr|

dr
=

d
∑

n=1

n

(

d

n

)

Wn(K)rn−1. (36)

By the change of variable

r =
W1(K)

W2(K)
θ,

we obtain by (3) and (36)

∫

(0,∞)

(P (Kr))
−1dr ≥

1

W2(K)

∫

(0,∞)

(

d
∑

n=1

n

(

d

n

)

Wn(K)W1(K)n−2

W2(K)n−1
θn−1

)−1

dθ. (37)

The Aleksandrov-Fenchel inequalities [20, (7.66)] read

Wj(K)k−i ≥ Wi(K)k−jWk(K)j−i, 0 ≤ i < j < k ≤ d. (38)

Let j = 2, i = 1, k = n in (38). This gives

Wn(K)W1(K)n−2 ≤ W2(K)n−1. (39)

By (37) and (39),

∫

(0,∞)

(P (Kr))
−1dr ≥

1

W2(K)

∫

(0,∞)

(

d
∑

n=1

n

(

d

n

)

θn−1
)−1

dθ

=
1

d(d− 2)W2(K)

=
1

(d− 2)M(K)
,

where we have used (2) and (35). A direct computation gives equality for a ball. This proves (iv)
by (3), and completes the proof of Theorem 1. �

Proof of Theorem 2. Let r > 0. By Steiner’s formula (34) applied to the compact, convex set Kr,

|Kr+s| =
d

∑

n=0

(

d

n

)

Wn(Kr)s
n, s > 0,

where the Quermass integrals Wn(Kr) satisfy the Aleksandrov-Fenchel inequalities. By the change
of variable

s =
W0(Kr)

W1(Kr)
θ,

we obtain

∫

(0,∞)

ds

P (Kr+s)
=

W0(Kr)

W1(Kr)2

∫

(0,∞)

( d
∑

n=1

n

(

d

n

)

Wn(Kr)W0(Kr)
n−1

W1(Kr)n
θn−1

)−1

dθ. (40)

We put j = 1, i = 0, k = n in (38) to get that

W1(K)n ≥ W0(K)n−1Wn(K), 1 ≤ n ≤ d.

This together with (3), (35) and (40) gives

P (Kr)
2

cap (Kr)|Kr|
≥ d2

∫

(0,∞)

( d−1
∑

n=1

n

(

d

n

)

θn−1 + d
Wd(Kr)W0(Kr)

d−1

W1(Kr)d
θd−1

)−1

dθ

= d

∫

(0,∞)

(

(1 + θ)d−1 − θd−1

(

1−
Wd(Kr)W0(Kr)

d−1

W1(Kr)d

))−1

dθ . (41)

7



Since the integrand in the first line of (41) is positive, we have that

θd−1

(

1−
Wd(Kr)W0(Kr)

d−1

W1(Kr)d

)

< (1 + θ)d−1. (42)

By (42)

P (Kr)
2

cap (Kr)|Kr|
≥ d

∫

(0,∞)

(1 + θ)1−d

(

1−
θd−1

(1 + θ)d−1

(

1−
Wd(Kr)W0(Kr)

d−1

W1(Kr)d

))−1

dθ

≥ d

∫

(0,∞)

(1 + θ)1−d

(

1 +
θd−1

(1 + θ)d−1

(

1−
Wd(Kr)W0(Kr)

d−1

W1(Kr)d

))

dθ

=
d

d− 2
+

Γ(d+ 1)Γ(d− 2)

Γ(2d− 2)

(

1−
Wd(Kr)W0(Kr)

d−1

W1(Kr)d

)

, (43)

where we have used [11, 3.194.3].
By (35) and (8)

Wd(Kr)W0(Kr)
d−1

W1(Kr)d
=

(

dω
1/d
d |Kr|

(d−1)/dP (Kr)
−1

)d

≤

(

1

1 + cdA2(Kr)

)d

≤
1

1 + dcdA2(Kr)

≤ 1−
dcdA2(Kr)

1 + 4dcd
, (44)

where we have used that the Fraenkel asymmetry is bounded from above by 2. By (43) and (44),

P (Kr)
2

cap (Kr)|Kr|
≥

d

d− 2
+

Γ(d+ 1)Γ(d− 2)

Γ(2d− 2)

dcd

1 + 4dcd
A2(Kr). (45)

Rewriting (45) as

1−
d cap (Kr)|Kr|

(d− 2)P (Kr)2
≥

C

1 + C
(46)

gives

C =
Γ(d)Γ(d − 1)

Γ(2d− 2)

dcd

1 + 4dcd
A2(Kr)

≤
Γ(d)Γ(d − 1)

Γ(2d− 2)
. (47)

By (46) and (47)

1−
d cap (Kr)|Kr|

(d− 2)P (Kr)2
≥

Γ(d+ 1)Γ(d− 1)

Γ(2d− 2) + Γ(d)Γ(d− 1)
·

cd

1 + 4dcd
A2(Kr). (48)

By monotonicity cap (Kr) ≥ cap (K), and |Kr| ≥ |K|. So (48) implies

1−
d cap (K)|K|

(d− 2)P (Kr)2
≥

Γ(d+ 1)Γ(d− 1)

Γ(2d− 2) + Γ(d)Γ(d− 1)
·

cd

1 + 4dcd
A2(Kr).

By [4, 2.4.1–2.4.3] we have that limr↓0 P (Kr) = P (K). It therefore suffices to show the following.

Lemma 4. If K is a compact, convex set with non-empty interior, then

lim
r↓0

A(Kr) = A(K). (49)
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The straightforward proof is included for completeness.

Proof. If A(K) = 0 then K is a ball, and so is Kr. Then A(Kr) = 0, and there is nothing to prove.
Suppose A(K) > 0. To prove the lemma we let Br be the ball which minimises the right-hand
side of (7) with Ω = Kr, and let 0 be its centre. We denote by B0 the ball with that same centre
0, and measure |K|. We have by (7),

A(K) ≤
|K∆B0|

|B0|
≤

|Kr∆B0|

|B0|
+

|Kr \K|

|B0|

≤
|Kr∆Br|

|B0|
+

|Kr \K|

|B0|
+

|Br \B0|

|B0|

= A(Kr) +A(Kr)
( |Br|

|B0|
− 1

)

+
|Kr \K|

|B0|
+

|Br \B0|

|B0|

≤ A(Kr) +
4|Kr \K|

|K|
, (50)

where we have used that |Kr| = |Br|, |K| = |B0|, and that A(Kr) ≤ 2 in the last line of (50).
We now let B′

0 be the ball which minimises the right-hand side of (7) with Ω = K, and let 0 be
its centre. We denote by B′

r the ball with that same centre 0 and measure |Kr|. We have by (7)

A(Kr) ≤
|Kr∆B′

r|

|B′
r|

≤
|Kr∆B′

r|

|B′
0|

≤
|K∆B′

r|

|B′
0|

+
|Kr \K|

|K|

≤
|K∆B′

0|

|B′
0|

+
|Kr \K|

|K|
+

|B′
r \B

′
0|

|B′
0|

= A(K) +
2|Kr \K|

|K|
. (51)

By (50) and (51) we find that

|A(Kr)−A(K)| ≤
4|Kr \K|

|K|
. (52)

By [4, 2.4.1–2.4.3] we have that limr↓0 |Kr| = |K|. This, together with (52), gives (49).

This completes the proof of Theorem 2. �

Proof of Theorem 3. By Theorem 2 and definition (21)

Gα(Ω) ≤
d− 2

d

T (Ω)

|Ω|(d+2)/d

|Ω|(2−αd)/d

P (Ω)(2−αd)/(d−1)

≤
d− 2

d

T (B1)

|B1|(d+2)/d

|B1|
(2−αd)/d

P (B1)(2−αd)/(d−1)

= Gα(B1). (53)

We have used the de Saint-Venant’s inequality (14) for the first fraction in the right-hand side of
(53), the isoperimetric inequality for the second fraction, and definition (21) for the last equality.

�

3 Logarithmic capacity

In this section we denote by cap (·) the logarithmic capacity, defined on the class of compact sets
in R

2, and recall its definition below. Let µ be a probability measure supported on K, and let

I(µ) =

∫∫

K×K

log
( 1

|x− y|

)

µ(dx)µ(dy).

9



Furthermore let
V (K) = inf

{

I(µ) : µ a probability measure on K
}

.

The logarithmic capacity ofK is denoted by cap (K), and is the non-negative real number cap (K) =
e−V (K).

The logarithmic capacity is an increasing set function, and satisfies (15) for compact sets K1

and K2 in R
2. For an ellipsoid with semi-axes a1 and a2,

cap (E(a)) =
1

2
(a1 + a2).

See [14].
Let d = 2, 0 ≤ α ≤ 3

2 , and let

Hα(Ω) =
T (Ω)1/2cap (Ω)

|Ω|αP (Ω)3−2α
.

Then Hα is scaling invariant. The following results were obtained in [3, Theorem 7]:

(i) Let E2 denote the collection of open ellipses in R
2. If 0 ≤ α ≤ 3

2 , then

sup{Hα(Ω) : Ω ∈ E2} = Hα(B1), (54)

and the supremum in the left-hand side of (54) is achieved if and only if Ω is a ball.

(ii) If 0 ≤ α ≤ 3
2 , then

sup{Hα(Ω) : Ω non-empty, open, bounded, convex} ≤ 22απ3−2αHα(B1). (55)

(iii) If 0 ≤ α < 3
2 , then the variational problem in the left-hand side of (55) has a maximiser. If

Ωα is any such maximiser, then

diam(Ωα)

ρ(Ωα)
≤ 2(3+2α)/(3−2α)π2, (56)

where ρ(·) denotes the inradius.

(iv) If α = 0, then the variational problem

sup
{

H0(Ω) : Ω open, bounded, connected, 0 < |Ω| < ∞
}

,

has a maximiser. Any such maximiser is also a maximiser of (55) for α = 0, and henceforth
satisfies (56).

The main result of this section is the following.

Theorem 5. If d = 2, then

sup
{T (Ω)cap (Ω)

P (Ω)5
: Ω non-empty, open, bounded, connected

}

=
T (B1)cap (B1)

P (B1)5
, (57)

and B1 is a maximiser of the left-hand side of (57).

Proof. We have

T (B1)cap (B1)

P (B1)5
≤ sup

{T (Ω)cap (Ω)

P (Ω)5
: Ω non-empty, open, bounded, connected

}

= sup
{cap (Ω)

P (Ω)

|Ω|2

P (Ω)4
T (Ω)

|Ω|2
: Ω non-empty, open, bounded, connected

}

≤ sup
{cap (Ω)

P (Ω)

|B1|2

P (B1)4
T (B1)

|B1|2
: Ω non-empty, open, bounded, connected

}

, (58)

10



where we have used in the final inequality in (58) the isoperimetric inequality, and the de Saint-
Venant’s inequality respectively. It is clear that Ω is contained in the closure of its convex hull
co(Ω). Hence cap (Ω) ≤ cap (co(Ω)). Furthermore since Ω is connected P (Ω) ≥ P (co(Ω)). By
inequality [17, Table 1.21, Formula 12] we have for any bounded convex set A ⊂ R

2,

cap (A)

P (A)
≤

cap (B1)

P (B1)
. (59)

Applying (59) to the convex set co(Ω), and using (58) we arrive at (57).

4 Examples and Optimality

The example below shows that there exist compact sets K ⊂ R
3 with cap (K) = 0 for which the

right-hand side of (3) is strictly positive. It is straightforward to find such examples for d > 3.

Proposition 6. Let α > 0, let n ∈ N, and let K(α) ⊂ R
3 be given by

K(α) =
(

⋃

n∈N

{(n−α, 0)} ∪ {(0, 0)}
)

× [0, 1].

(i) K(α) is a compact subset of [0, 1]3 with cap (K(α)) = 0.

(ii) If α > 0 then
(

∫

(0,∞)

(P (K(α)r))
−1dr

)−1

≥
4πα

2α+2 + 3α(α+ 1)
. (60)

Proof. (i) Since K(α) is a countable union of line segments in R
3, cap (K(α)) = 0.

(ii) Let

r∗ =
α

2α+2
. (61)

We wish to obtain a lower bound for P (K(α)r). For r ≥ r∗ we use that P (K(α)r) ≥ 4πr2, and
find by (61) that

∫

(r∗,∞)

(P (K(α)r))
−1dr ≤

1

4πr∗
=

2α

πα
. (62)

To obtain a lower bound for P (K(α)r) for 0 < r ≤ r∗ we consider all pairs of line segments
which are at least distance 2r apart. The distance between line segments with x1 = n−α and
x1 = (n+ 1)−α is bounded from below by

n−α − (n+ 1)−α ≥ α(n+ 1)−α−1.

So if 2r ≤ α(n + 1)−α−1 then all line segments with x1 ≥ n−α contribute at least 2πr to the
perimeter. There are at least nr of such line segments, where

nr =
[( α

2r

)1/(α+1)]

− 1,

and where [·] denotes the integer part. Hence

P (K(α)r) ≥ 2πr
([( α

2r

)1/(α+1)]

− 1
)

.

For all x ≥ 2 we have [x]− 1 ≥ x
3 . The choice in (61) implies that

[( α

2r

)1/(α+1)]

− 1 ≥
1

3

( α

2r

)1/(α+1)

, 0 ≤ r ≤ r∗.

Hence

P (K(α)r) ≥
2π

3

(α

2

)1/(α+1)

r
α

α+1 , 0 < r ≤ r∗,
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and by (61)

∫

(0,r∗)

(P (K(α)r))
−1dr ≤

3

2π

( 2

α

)1/(α+1)

(1 + α)(r∗)1/(1+α)

=
3

4π
(1 + α). (63)

By (62) and (63)
∫

(0,∞)

(P (K(α)r))
−1dr ≤

2α

πα
+

3

4π
(1 + α).

This implies (60).

Below we show that the maximisation of |K|αcap (K) over all compact, convex sets in R
d, d ≥ 3

with given perimeter leads either to a restatement of (6) for α ≥ 1, or an infinite supremum for
0 < α < 1. So the exponent 1 of |K| in the variational problem

sup
{ |K|cap (K)

P (K)2
: K non-empty, compact, convex inRd

}

is optimal. The statement under (6) asserts that B1 is a maximiser.
Define for α > 0 the scaling invariant functional

Jα(K) =
|K|αcap (K)

P (K)(dα+d−2)/(d−1)
. (64)

Proposition 7. (i) If d ≥ 3 and α ≥ 1, then

sup{Jα(K) : K non-empty, compact, convex inRd} = Jα(B1),

so that B1 is a maximiser of the left-hand side of (64).

(ii) If d ≥ 3 and 0 < α < 1, then

sup{Jα(K) : K non-empty, compact, convex inRd} = +∞.

Proof. To prove (i) we rewrite Jα as follows:

Jα(K) =
|K|cap (K)

P (K)2

( |K|

P (K)d/(d−1)

)α−1

. (65)

The first term in the right-hand side of (65) is, by Theorem 2, bounded for compact, convex sets

in R
d by |B1|cap (B1)

P (B1)2
. The second term in the right-hand side of (65) is bounded from above by the

isoperimetric inequality,
(

|B1|

P (B1)d/(d−1)

)α−1

. This proves the assertion under (i).

To prove (ii) we consider the open ellipsoid Eε with d− 2 semi-axes of length 1 and 2 semi-axes
of length ε, where 0 < ε < 1 is arbitrary. We have that

|Eε| = ωdε
2. (66)

Since Eε is contained in the cuboid (−ε, ε)× (−ε, ε)× (−1, 1)d−2 we have that

P (Eε) ≤ P
(

(−ε, ε)× (−ε, ε)× (−1, 1)d−2
)

≤ d2dε. (67)

Let E(a), with a = (a1, a2, . . . , ad) ∈ R
d
+, be the ellipsoid

E(a) =

{

x ∈ R
d :

d
∑

i=1

x2
i

a2i
< 1

}

.
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It was reported in [13, p.260] that the Newtonian capacity of an ellipsoid was computed in [5,
Volume 8, p.30]. The formula there is for a three-dimensional ellipsoid, and is given in terms of an
elliptic integral. It extends to all d ≥ 3, and reads

cap
(

E(a)
)

= 2dωde(a)
−1, (68)

where

e(a) =

∫ ∞

0

dt

( d
∏

i=1

(

a2i + t
)

)−1/2

. (69)

In [3], (68) and (69) were used to obtain upper bounds on the capacity of an ellipsoid. Below we
bound e(a) from above to obtain a lower bound for cap (Eε).

cap (Eε) = 2dωd

(

∫ ∞

0

(1 + t)−(d−2)/2(ε2 + t)−1dt
)−1

≥ 2dωd

(

∫ ∞

0

(1 + t)−1/2(ε2 + t)−1dt
)−1

= 2dωd(1− ε2)1/2
(

log
(1 + (1 − ε2)1/2

1− (1 − ε2)1/2

))−1

≥ dωd(1− ε2)1/2
(

log
(2

ε

))−1

, (70)

where we have used that d ≥ 3 in the second line of (70). By (64), (66), (67) and (70) we conclude

Jα(Eε) ≥
dω1+α

d

(d2d)(dα+d−2)/(d−1)
ε(d−2)(α−1)/(d−1) (1 − ε2)1/2

log
(

2
ε

) , 0 < ε < 1.

Hence Jα(Eε) is not bounded from above since 0 < α < 1, and ε ∈ (0, 1) was arbitrary. This
proves the assertion under (ii).

In Proposition 8 we obtain some elementary information on the Newtonian capacity of the
Wiener sausage for a compact set K in R

d. The notation and construction is as follows. Let
(β(s), s ≥ 0;Px, x ∈ R

d) be Brownian motion, that is the Markov process with generator ∆. Here
Px is the law of β(·) starting at x with corresponding expectation Ex. The Wiener sausage of
(time) length t associated to the compact set K is the random set ([15, 1])

WK
t =

⋃

0≤s≤t

(

β(s) +K
)

.

Since the Brownian path is continuous a.s. we have that the Wiener sausage up to t is a compact
set a.s.

Proposition 8. If d ≥ 5, and if K is a compact set, then

(i)

lim sup
t→∞

1

t
E0(cap (W

K
t )) ≤ 16 inf

c>0

1

c4
|Kc|. (71)

(ii) If d ≥ 5, and if K = Bε = εB1, ε > 0, then

lim sup
t→∞

1

t
E0(cap (W

Bε
t )) ≤ κd

(d− 2)d−2

4(d− 4)d−4
εd−4.

In fact the lim supt→∞ in the left-hand side of (71) could be replaced by limt→∞. See [1, (1.8)].

Proof. To prove the inequality we use classical results going back to [21] and to [15, Theorems
1, 2, 3]. These imply that for d > 2,

lim
t→∞

1

t
E0(|W

K
t |) = cap (K). (72)
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Since
(WK

t )a = WKa
t , a > 0,

we have
|(WK

t )a| = |WKa
t |, a > 0, (73)

and by (4), (72) and (73),

E0(cap (W
K
t )) ≤ E0

( 1

a2
|WKa

t |
)

=
1

a2
E0(|W

Ka
t |)

=
1

a2
cap (Ka)t(1 + o(1)), t → ∞. (74)

Using (4) once more, for the compact set Ka, we obtain,

E0(cap (W
K
t )) ≤

1

a2
1

b2
|Ka+b|t(1 + o(1)), t → ∞.

Choosing a = b = c
2 yields the assertion under (i).

To prove (ii) we use that
cap ((Bε)a) = κd(a+ ε)d−2. (75)

This gives by (74) and (75),

E0(cap (W
Bε
t )) ≤

1

a2
κd(a+ ε)d−2t(1 + o(1)). (76)

Minimising the right-hand side of (76) with respect to a gives for d ≥ 5 with a = 2ε
d−4 ,

E0(cap (W
Bε
t )) ≤ κd

(d− 2)d−2

4(d− 4)d−4
εd−4t(1 + o(1)), t → ∞.

This implies the assertion under (ii).
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