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Abstract

We discuss, and give examples of, methods for randomly implementing some minimax

robust designs from the literature. These have the advantage, over their deterministic

counterparts, of having bounded maximum loss in large and very rich neighbourhoods of

the, almost certainly inexact, response model fitted by the experimenter. Their maximum

loss rivals that of the theoretically best possible, but not implementable, minimax designs.

The procedures are then extended to more general robust designs. For two-dimensional

designs we sample from contractions of Voronoi tessellations, generated by selected basis

points, which partition the design space. These ideas are then extended to k-dimensional

designs for general k.

Keywords: central composite design, deterministic design, minimax, random design,

robustness, tessellation, Voronoi.
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1. Introduction and summary

In this article we investigate various methods of implementing experimental designs,

robust against model inadequacies. We begin with a review of the ‘minimax’ theory of

robustness of design, and of some minimax designs from the literature. For this we ini-

tially follow Atkinson (1996) and view a design as any probability measure on the design

space. It will be seen that the designs which protect against a large class of alternative

response models are necessarily absolutely continuous, and so lose their optimality when

approximated by implementable, discrete (deterministic) designs. Two remedies for this

and other issues are proposed, suggested by work of Waite and Woods (2022), who pro-

pose and study random design strategies.

The first remedy is a random design strategy termed jittering. The designs are obtained

by uniform sampling from small neighbourhoods of an optimal set t∗ = {ti|i = 1, ..., n} of

points, chosen to represent the minimax design density. Both completely random and

stratified random – i.e. random within each neighbourhood – are considered. We assess

∗E-mail: doug.wiens@ualberta.ca. Supplementary material is at www.ualberta.ca/~dwiens/.
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these designs by looking at the sample distributions of the mean squared prediction errors

incurred; with respect to these measures both sampling strategies typically lead to designs

very nearly optimal, with the stratification strategy clearly outperforming its completely

random counterpart.

We then investigate a strategy leading to cluster designs, motivated by the observation

that robust designs for a particular response model tend to place their mass near those

points ti ∈ t∗ at which classically optimal designs, focussed solely on variance minimiza-

tion, are replicated – but with their support points spread out in clusters of nearby points,

rather than being replicated. In clustering the idea is to sample from densities concen-

trated near the ti. An advantage to this method over jittering is that there is no need for the

minimax design to already have been derived.

Both these approaches parallel the ‘random translation design strategy’ of Waite and

Woods (2022), who sample uniformly in small neighbourhoods of a chosen set of points,

but with some significant differences. The choice of t∗ in jittering allows for designs

whose maximum expected loss rivals that of the minimax, absolutely continuous design.

In clustering, both the support of the non-uniform densities from which we sample, and

the extent of their concentration near the ti, are governed by a user-chosen parameter ν,

representing the bias/variance trade-off desired by a user seeking robustness against model

misspecifications.

We start by applying these ideas in several one-dimensional cases for which minimax

designs – in continuous or discrete design spaces – have previously been derived. The

framework is that the experimenter will fit a polynomial response, and our random designs

have points assigned at random but in a structured manner near the t∗. The densities from

which we sample are chosen to capture the salient properties of the minimax designs (in

jittering) or classically optimal but deterministic designs (in clustering). The structure we

impose – especially that of stratification – is shown, through a number of examples, to lead

to efficient designs approximating the variance minimizing properties of the deterministic

designs concentrated on the t∗. But the randomness, leading to the clustering effect – this

alone is known to increase robustness – ensures that the bias is bounded as well, even in

continuous design spaces in which the bias of deterministic designs can be unbounded.

We then consider two-dimensional clustering applications in which intervals contain-

ing the ti are replaced by less regular regions formed by shrinking Voronoi tessellations

generated by t∗. We sample from spherical beta densities centred on the ti, and suggest

tuning constants which again result in both efficiency and robustness. We finish with rec-

ommendations for the construction of k-dimensional designs for k ≥ 3.

The examples were prepared using matlab; the code is available on the author’s web-

site.

2. Minimax robustness of design

The theory of robustness of design was largely initiated by Box and Draper (1959),

who investigated the robustness of some classical experimental designs in the presence

of certain model inadequacies, e.g. designs optimal for a low order polynomial response
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when the true response was a polynomial of higher order. Huber (1975) derived minimax

designs for straight line regression; these minimize the maximum integrated mean squared

error, with the maximum taken over a large class of alternative responses. Wiens (1990,

1992) extended these results to multiple regression responses and in a variety of other

directions – see Wiens (2015) for a summary of these and other approaches to robustness of

design. Specifically, the general problem is phrased in terms of an approximate regression

response

E [Y (x)] ≈ f ′ (x) θ, (1)

for p regressors f , each functions of q independent variables x, and a parameter θ. Since

(1) is an approximation the interpretation of θ is unclear; we define this target parameter

by

θ = arg min
η

∫

X

(

E [Y (x)] − f ′ (x)η
)2
µ (dx) , (2)

where µ (dx) represents either Lebesgue measure or counting measure, depending upon

the nature of the design space X. We then define ψ (x) = E [Y (x)] − f ′ (x) θ. This results

in the class of responses E [Y (x)] = f ′ (x) θ + ψ (x), with – by virtue of (2) – ψ satisfying

the orthogonality requirement
∫

X
f (x)ψ (x) µ (dx) = 0. (3)

Assuming that X is rich enough that the matrix A =
∫

X f (x) f ′ (x) µ (dx) is invertible, the

parameter defined by (2) and (3) is unique.

We identify a design with its design measure – a probability measure ξ (dx) on X.

Define

Mξ =

∫

X
f (x) f ′ (x) ξ (dx) , bψ,ξ =

∫

X
f (x)ψ (x) ξ (dx) ,

and assume ξ is such that Mξ is invertible. The covariance matrix of the least squares

estimator θ̂, assuming homoscedastic errors with variance σ2
ε, is

(

σ2
ε/n

)

M−1
ξ , and the bias

is E
[

θ̂ − θ
]

= M−1
ξ bψ,ξ; together these yield the mean squared error (mse) matrix

mse

[

θ̂
]

=
σ2
ε

n
M−1

ξ + M−1
ξ bψ,ξb

′
ψ,ξM−1

ξ

of the parameter estimates, whence the mse of the fitted values Ŷ (x) = f ′ (x) θ̂ is

mse

[

Ŷ (x)
]

=
σ2
ε

n
f ′ (x) M−1

ξ f (x) +
(

f ′ (x) M−1
ξ bψ,ξ

)2
.

A loss function that is commonly employed is the integrated mse of the predictions:

imse (ξ|ψ) =

∫

X
mse

[

Ŷ (x)
]

dx

=
σ2
ε

n
tr

(

AM−1
ξ

)

+ b′ψ,ξM−1
ξ AM−1

ξ bψ,ξ +

∫

X
ψ2 (x) µ (dx) . (4)
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The dependence on ψ is eliminated by adopting a minimax approach, according to which

one first maximizes (4) over a neighbourhood of the assumed response. This neighbour-

hood is constrained by (3) and by a bound
∫

X ψ
2 (x) µ (dx) ≤ τ2/n, required so that errors

due to bias and to variation remain of the same order, asymptotically.

Huber (1975) took X to be an interval of the real line and assumed that the minimax

design measure had a density m (x); Wiens (1992) justified this assumption by proving

that any design whose design space X has positive Lebesgue measure, and which places

positive mass on a set of Lebesgue measure zero, necessarily has supψimse(ξ|ψ) = ∞. Thus

in order that a design on an interval, hypercube, etc. have finite maximum loss, it must be

absolutely continuous. For such a design maxψimse(ξ|ψ) is
(

σ2
ε + τ

2
)

/n times

Iν (ξ) = (1 − ν) trAM−1
ξ + νchmaxKξH

−1
ξ , (5)

where

Hξ = Mξ A−1 Mξ, Kξ =

∫

X
f (x) f ′ (x) m2 (x) dx,

chmax denotes the maximum eigenvalue and ν = τ2
/(

σ2
ε + τ

2
)

∈ [0, 1], representing the

relative importance, to the experimenter, of errors due to bias rather than to variance. Our

examples in this article use ν = .5; other values tell much the same story.

With

Gξ = Kξ − Hξ

=

∫

X

[(

m (x) Ip − MξA−1
)

f (x)
] [(

m (x) Ip − MξA−1
)

f (x)
]

′

dx,

rξ (x) =
τ
√

n
G
−1/2

ξ

(

m (x) Ip − MξA−1
)

f (x) , (6)

the least favourable contaminant is

ψξ (x) = r′ξ (x) βξ, (7)

where βξ is the unit eigenvector belonging to the maximum eigenvalue of G
1/2

ξ
H−1
ξ G

1/2

ξ
+Ip.

See Wiens (2015) for details and further references.

2.1. Random designs

In the following sections we construct distributions Φ (x), with densities φ (x), and

propose randomly choosing design points from Φ. An n-point design D = {xi}ni=1 chosen

in this way has design measure δ = n−1
∑

δxi
, where δxi

is point mass at xi ∼ Φ. By the

preceding any such design has unbounded imse once it is chosen. Of interest however is

the expected imse against a common alternative ψ; for this we take the least favourable

contaminant ψΦ, given by (6) and (7) but with ξ replaced by Φ. In the Appendix we show

that

EΦ
[

imse (δ|ψΦ)
]

=
(

σ2
ε + τ

2
)

/n × Jν (Φ) , (8)
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where

Jν (Φ) = EΦ
[

jν (δ)
]

, for (9)

jν (δ) = (1 − ν) trAM−1
δ + νγδ, and

γδ = β′ΦG
−1/2

Φ

(

MφM−1
δ − MΦA−1

)

A
(

M−1
δ Mφ − A−1 MΦ

)

G
−1/2

Φ
βΦ + 1.

Here Mδ

de f
= 1

n

∑

xi∈D f (xi) f ′ (xi) and Mφ

de f
= 1

n

∑

xi∈D f (xi) φ (xi) f ′ (xi); βΦ is the unit

eigenvector belonging to the maximum eigenvalue of G
1/2

Φ
H−1
Φ G

1/2

Φ
+ Ip.

Note that both Mδ and Mφ are random. The expectation in (9) can be estimated by

averaging over a large number of realizations of δ – we do this in Sections 4 and 5. In

the special case that φ (x) is constant on its support – as is the case in §3 – M−1
δ Mφ is a

constant multiple of Ip, γδ is non-random, and these formulas simplify considerably – see

(12).

An efficient design strategy should result in Jν (Φ) being close to Iν (Φ), with the jν (δ)

being concentrated near their expectation.

A referee has pointed out that a more natural measure is perhaps the maximizer ψ0

of Eδ

[

imse (δ|ψ)
]

; this turns out to be computationally infeasible in all but the simplest

scenarios. And see §3.1, where we argue that a contaminant less favourable than ψΦ is

difficult to imagine. See also Figure 4(d)-(f).

3. Jittering

There are obvious issues in implementing an absolutely continuous design measure

within this framework, since any discrete approximation necessarily suffers from the draw-

back, as above, that the maximum loss is infinite. Noting that in this case the least

favourable contaminating function ψ is largely concentrated on a set of measure zero –

an unlikely eventuality against which to seek protection – Wiens (1992, p. 355) states that

“Our attitude is that an approximation to a design which is robust against more realistic

alternatives is preferable to an exact solution in a neighbourhood which is unrealistically

sparse.” He places one observation at each of the quantiles

ti = ξ
−1

(

i − 1/2

n

)

, i = 1, ..., n, (10)

which is the n-point design closest to ξ in Kolmogorov distance (Fang and Wang 1994;

see Xu and Yuen 2011 for other possibilities).

Despite the disclaimer above, such discrete implementations have become controver-

sial; see in particular Bischoff (2010). In this article we investigate a resolution to these

difficulties offered by Waite and Woods (2022), who propose randomly sampling the de-

sign points from uniform densities highly concentrated in small neighbourhoods of an

optimally chosen set of deterministic points. In our case we propose random sampling

from a piecewise uniform density

φn (x; c) =
1

2c

n
∑

i=1

I

[

ti −
c

n
≤ x ≤ ti +

c

n

]

, (11)
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for chosen c ∈ (0, 1).

We illustrate the method in the context of straight line regression – X = [−1, 1] and

f (x) = (1, x)′ – for which Huber (1975) obtained the minimax density

m (x) = 3
(

x2 − α
)+

/d (α) ,

with α chosen to minimize (5), which in terms of

µ2(α) =

∫ 1

−1

x2m (x) dx, κ0(α) =

∫ 1

−1

m2 (x) dx, κ2(α) =

∫ 1

−1

x2m2 (x) dx,

is

Kν(α) = 2 (1 − ν)
(

1 +
1

3µ2

)

+ 2νmax

(

κ0,
κ2

3µ2
2

)

.

Apart from minor modifications resulting from the change in the support to [−1, 1] from

[−1/2, 1/2], the details of the construction of m are as in Huber (1975). We assume that

max
(

κ0, κ2/3µ
2
2

)

= κ0 and check this once m is obtained. We find

d (α) =















2 (1 − 3α) , α ≤ 0,

2
(

1 −
√
α
)2 (

1 + 2
√
α
)

, α ≥ 0,

with α and ν related by

ν−1 =



















1 +
9(3−5α)2

25(1−3α)3 , α ≤ 0,

1 +
9(3+6

√
α+4α+2α3/2)

2

25(1−
√
α)

2
(1+2

√
α)

3 , α ≥ 0.

The limiting cases are (i) α → −∞, ν → 1, m (x) → .5 (the uniform density), (ii) α = 0,

ν = 25/106, m (x) = 3x2/2, and (iii) α→∞, ν→ 0, m (x)→ point masses of 1/2 at ±1.

It is a fortuitous consequence of the choice of imse as loss that for all ν ∈ [0, 1],

max
(

κ0, κ2/3µ
2
2

)

= κ0, the choice used in the derivation of the minimizing density m. For

other common choices – D-, A- and E-optimality for instance – the situation is far more

complicated. See Daemi and Wiens (2013).

3.1. Jittered designs for SLR

In the construction of the sampling density (11) for this example we will take α ≤ 0

– the case of most interest from a robustness standpoint – and then for m as above, the

symmetrically placed points ti are determined by

t3
i − 3αti = (1 − 3α)

(

2i − 1 − n

n

)

, i = 1, ..., n.

This equation has an explicit solution furnished by Cardano’s formula:

ti =
(

−s/2 +
√
∆
)1/3
+

(

−s/2 −
√
∆
)1/3

,
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Figure 1: (a) Jittered design density φn (x; c) for an approximately linear univariate response using ν = .5,

c = .5, n = 10. (b)
√

nψΦ (x; c) /τ. (c) Iν (Φ) vs. c; horizontal line at Iν (ξ) = 2.31.

for

s = − (1 − 3α)

(

2i − 1 − n

n

)

, ∆ = s2/4 − α3 > 0.

From (10), and the bowl-shape of m(x), one infers that the distances between adjacent

ti are smallest near ±1, largest near 0. Thus the intervals of support of φn will be non-

overlapping, and within [−1, 1], as long as t1 − c/n ≥ −1, i.e. c ≤ n (1 + t1). Note that the

interpretation of c is that it is the proportion of the design space being randomly sampled.

In Figure 1(a) we plot φn (x; c), when placing equal weight on protection against bias

versus variance (ν = .5), 50% of the design space to be sampled from Φ (c = .5) and

n = 10. The ti are the quantiles arising from m(x) ∝
(

x2 + .325
)

.

A comparison of the maximum loss (5) of ξ versus that of the design measure Φ cor-

responding to φ is obtained from

Iν (ξ) = 2 (1 − ν)
(

1 +
1

3µ2(α)

)

+ ν

(

1 +
5

4
(3µ2(α) − 1)2

)

,

Iν (Φ) = 2 (1 − ν)
(

1 +
1

3λ2(c)

)

+
ν

c
max

(

1,
1

3λ2(c)

)

,

where

µ2(α) =
3 − 5α

5 (1 − 3α)
, and λ2(c) =

∫ 1

−1

x2φn (x; c) dx =
1

n

n
∑

i=1

t2
i +

c2

3n2
.

As noted in §2.1, EΦ
[

imse (δ|ψΦ)
]

simplifies considerably for these jittered designs and

then Jν (Φ) is very similar to Iν (Φ), plotted in Figure 1(c). We show in the Appendix that

in this case (9) becomes

Jν (Φ) = (1 − ν) EΦ
[

trAM−1
δ

]

+ νγ0,where γ0 =
1

c
max

(

1,
1

3λ2 (c)

)

, (12)

and that, with IS (x; c) = I (φn (x; c) > 0), the least favourable contaminant for Φ is

ψΦ (x; c) =
τ
√

n

























IS (x; c) − 1
γ0

√

2c
(

1 − 1
γ0

)

























·
(

x
√
λ2

)I(λ2(c)<1/3)

. (13)
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Figure 2: Values of jν (δ) and their averages, estimating Jν (Φ), from 1000 jittered designs δ using ν = .5.

Top: c = .5; bottom: c = .1. (a), (c): Completely random sampling. (b), (d): Stratified random sampling.

In Figure 1(b) we plot a scaled version of ψΦ (x; c). The contaminant ψΦ has the ef-

fect of changing the uncontaminated response E [Y (x)] = θ0 + θ1x to (θ0 − k) + θ1x +

2kI (φn (x; c) > 0) for (when c = .5) k = τ/
√

2n. Thus it biases the intercept and then

places contamination uniformly on the support of φn. In the parlance of game theory, it is

difficult to see how Nature, knowing Φ but not δ and assumed malevolent, could respond

less favourably than this.

For ease in the estimation of Jν (Φ) we note that EΦ
[

trAM−1
δ

]

= 2
{

1 + EΦ
[(

µ2
δ + 1/3

)

/σ2
δ

]}

,

where µδ and σ2
δ

are the mean and variance of the design. See Figure 2 for comparative

values illustrating the close agreement between Jν (Φ) and Iν (Φ).

The plots reveal that the loss associated with the design Φ decreases with c, i.e. as the

design becomes closer to the uniform design on all of χ, for which the bias vanishes. This

is in line with the remark of Box and Draper (1959): “The optimal design in typical situa-

tions in which both variance and bias occur is very nearly the same as would be obtained

if variance were ignored completely and the experiment designed so as to minimize bias

alone.”
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Figure 3: Minimax designs for approximate cubic regression

3.1.1. Sampling methods

We constructed 1000 completely random and stratified random designs, in order to as-

sess their performance. A completely random design δ consisted of n = 10 points chosen

from φn (x; c). The resulting values of jν (δ) are plotted in Figure 2(a),(c). Stratification

consisted of choosing one design point at random from each bin – Figure 2(b),(d). The

sample averages of the losses from the randomized designs were smaller and closer to

Iν (Φ) under the stratified sampling scheme, and more concentrated around their expec-

tation of Jν (Φ), as exhibited by the much shorter tail in (b). In a further simulation, for

which the output is not displayed here, we estimated Jν (ξ), as at (9), by drawing 1000

samples from the minimax density m (x) and averaging their imse. The values { jν} showed

more variation than those plotted in Figure 2(a), and with an average of 2.72 – significantly

larger than the target value Iν (ξ) = 2.31. From this we infer that jittering combined with

stratification gives an efficient, structured implementation of the minimax solution.

Simulations using other inputs also resulted in these same conclusions – that our ran-

dom design strategies typically yield designs very close to optimal with respect to our

robustness and efficiency requirements, and that do not suffer from the drawback of deter-

ministic designs of having infinite maximum loss.

4. Cluster designs in one dimension

Working in discrete design spaces, Wiens (2018) obtained minimax robust designs for

a variety of approximate responses. Those shown in Figure 3 are for cubic regression.

The classically I-optimal design (ν = 0) minimizing integrated variance alone was derived

by Studden (1977) and places masses of .1545 and .3455 at ±1 and ±.4472. The robust

designs can thus be described as taking the replicates of the classical design and spreading

their mass out (‘clustering’) over nearby regions. This same phenomenon has frequently

been noticed in other situations (Fang and Wiens 2000, Heo et al. 2001 for instance).

In this section we aim to formalize this notion in order to obtain designs competing

with the minimax designs, but with finite maximum loss even in continuous design spaces,

and having the advantage of being much more easily derived – there is no need for the
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minimax designs to be known. We consider only one-dimensional designs in this section,

and will illustrate the methods in polynomial response models of degrees p − 1 = 1, 2, 3.

Suppose that a given static design has p support points t1 < · · · < tp in [−1, 1]. Define

midpoints si = (ti + ti+1) /2, i = 1, ..., p − 1. Put s0 = min (−1, t1) and sp = max
(

1, tp

)

.

Then the p intervals Ii = {[si−1, si] , i = 1, ..., p} cover [−1, 1] and have the properties that

ti ∈ Ii and that any point in Ii is closer to ti than to any t j, j , i. This is then a trivial

example of a Voronoi tessellation, to be considered when we pass to higher dimensions.

We propose designs consisting of points sampled from Beta densities on subintervals

of the Ii. Specifically, for i = 1, ..., p let c = c (ν) ∈ [0, 1] satisfy c (0) = 0 and c (1) = 1. Put

Ji (c) = [ti − c (ti − si−1) , ti + c (si − ti)] ≡ [ki, li], with length |Ji| = (li − ki) = c (si − si−1) =

c × |Ii|. Let βa,b (x) be the Beta(a, b) density on [0, 1]. Then

1

|Ji|
βa,b

(

x − ki

|Ji|

)

, x ∈ Ji (c) (14)

is this density, translated and scaled to Ji (c). The interpretation of ‘c’ is as before – it is

the fraction of the design space to be sampled. Here and in the following examples we use

c = νk where k is the dimension of x, so that c varies at the same rate as the volume of χ

as the dimensionality changes.

The parameters (ai, bi) are chosen so that the mode of (14) is at ti ∈ Ji (c), hence the

mode δi ∈ [0, 1] of βa,b (x) is given by

δi ≡
ti − ki

li − ki

=























ai−1

ai−1+bi−1
, ai, bi > 1,

0, ai ≤ 1 < bi,

1, bi ≤ 1 < ai.

Then

(ai − 1) (1 − δi) = (bi − 1) δi. (15)

If δi , 0, 1 we determine one of (ai, bi) in terms of the other through (15). We define ai

in terms of bi for δi < .5 and bi in terms of ai for δi > .5; this ensures that (16) below is

symmetric. If t1 = −1 then δ1 = 0 and we set a1 = 1. If tp = 1 then δp = 1 and we set

bp = 1. In each case the remaining parameter is set equal to 1/c, so that the density tends

to a point mass at ti as ν→ 0 and to uniformity as ν→ 1.

The final density φ (·) from which the design points are to be sampled is a weighted

average of those at (14), with weights proportional to the lengths |Ii| of the Ii. Since

|Ji| = c |Ii| we obtain

φ (x; ν) =
1

2c

p
∑

i=1

βai,bi

(

x − ki

|Ji|

)

I (x ∈ Ji) . (16)

Motivated by the designs of §3.1 we recommend stratified sampling, by which the sample

consists of ≈ n |Ii| /2 points drawn from (14), subject to an appropriate rounding procedure.
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Table 1. Performance measures for the designs of Figure 4.

variance max sqd. bias Iν
ν = .5 ν = .04 ν = .5 ν = .04 ν = .5 ν = .04

p = 2 2.94 2.67 2.67 319 2.80 15.3

p = 3 4.65 4.27 2.62 213 3.64 12.6

p = 4 6.49 6.02 2.54 193 4.51 13.5

4.1. Polynomial regression

We illustrate these proposals in the context of approximate polynomial responses of

degrees p − 1 = 1, 2, 3. As also suggested in ‘Heuristic 5.1’ of Waite and Woods (2022,

p. 1462), t∗ will consist of the support points of the classical I-optimal designs. These

I-optimal designs ξ∗are obtained from Lemma 3.2 of Studden (1977), and are as follows.

p = 2: ξ∗ (±1) = .5,

p = 3: ξ∗ (±1) = .25, ξ∗ (0) = .5,

p = 4: ξ∗ (±1) = 1

2(1+
√

5)
≈ .1545, ξ∗

(

± 1√
5
≈ ±.4472

)

=
√

5

2(1+
√

5)
≈ .3455.

Figure 4 gives the sampling densities (16), together with the subsample sizes when

n = 10. Figure 4(a) gives output for the approximate linear model, with a maximum imse,

as at (5), of Iν (Φ) = 2.804. This compares very favourably with the design of Figure 1,

especially given that its construction does not require the minimax design to be given. This

latter point is especially germane for the design of Figure 4(b), since it is the analogue of

the absolutely continuous minimax designs for approximate quadratic regression derived

– with substantial theoretical and computational difficulty – by Shi et al. (2003) using

methods of non-smooth optimization and by Daemi and Wiens (2013) using completely

different methods.

Figure 5 gives values of jν (δ) from 1000 random designs, together with their average,

estimating Jν (Φ). On average the random designs perform almost as well against ψΦ –

plotted in Figure 4(d)-(f) – as the continuous design Φ.

It is interesting to note – especially for the design of Figure 4(c) – the close agreement

between the I-optimal design weights above, and the weights used in the computation of

φ and detailed in the caption.

See Table 1, where the variance and maximum squared bias components of Iν are

presented for the designs of Figure 4 (ν = .5) and for the corresponding designs with

ν = .04, very closely approximating the I-optimal design (ν = 0) with maximum loss

I0 = ∞. That the robustness of the cluster designs is achieved for such a modest premium

in terms of increased variance is both startling and encouraging.

5. Multidimensional cluster designs

See Figure 6, where a robust design, derived for fitting a full second order bivariate

model – intercept, linear, quadratic and interaction terms – is depicted. It is a discrete
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Figure 4: Top: Cluster design densities φn (x; ν = .5); typical stratified samples using weights (a) {.5, .5}, (b)
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Figure 5: Values of jν (δ) from 1000 cluster designs for polynomial regression (ν = .5, n = 10) and their

averages, estimating Jν (Φ).
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Figure 6: Design for fitting a full second order model; n = 48.

implementation of a design density, optimally robust against model misspecifications in a

certain parametric class of densities - see Heo et al. (2001) for details. This design can

roughly be described as an inscribed Central Composite Design (CCD) with ‘clustering’

in place of replication. It serves as motivation for the ideas of this section, which we

illustrate in the context of k-dimensional, spherical CCD designs as are often used to fit

second order models. Such designs utilize 2k + 2k + 1 points {ti} consisting of 2k corner

points with ti, j = ±1 ( j = 1, ..., k), 2k axial points ti =
(

0, ...,±
√

k, ..., 0
)

and a centre point

ti = (0, ..., 0, ..., 0).

In this and other multidimensional cases we propose choosing design points from

spherical densities concentrated on neighbourhoods of the t i. A spherical density on a

k-dimensional hypersphere

S(k) (t,R) = {x |‖x − t‖ ≤ R }

with centre t and radius R, in which the scaled norm ‖x − t‖ /R has a Beta (k, b) density, is

given by

f (k) (x; t,R, b) =
Γ
(

k
2

)

2πk/2Rkβ (k, b)
·
(

1 − ‖x − t‖
R

)b−1

I
(

x ∈ S(k) (t,R)
)

.

Such a density has mode t and approaches a point mass at t as b → ∞, and uniformity

as b → 1. The choice of k as the first parameter of the beta density ensures that f is

decreasing in ‖x − t‖ and square integrable (required for the evaluation of the matrix KΦ
as at (5)).

A sample value x from f (k) (x; t,R, b) is x = t + Ry, where y ∼ f (k) (·; 0, 1, b) obtained

by drawing a value of ρ = ‖y‖ ∼ Beta(k, b) and, independently, drawing angles θi, −π/2 <
θi ≤ π/2 (i = 1, ..., k−2) with densities ψi (θ) = cosk−i−1 θ /β (1/2, (k − i) /2) – equivalently,
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Figure 7: (a) Voronoi tessellation generated by the points {ti}. (b) Tessellation restricted to χ = [−2, 2]2

with subtiles {Ji (.25)} and enclosing circles
{

S(2) (ti,Ri)
}

.

cos2 θi ∼ Beta(1
2
, k−i

2
) – and θk−1 ∼ Uni f (−π, π). Then

y1 = ρ sin θ1,

y2 = ρ cos θ1 sin θ2,

y3 = ρ cos θ1 cos θ2 sin θ3,

· · ·
yk−1 = ρ cos θ1 cos θ2 · · · cos θk−2 sin θk−1,

yk = ρ cos θ1 cos θ2 · · · cos θk−2 cos θk−1.

To sample θi for i < k − 1 we draw z ∼ Beta(1
2
, k−i

2
) and set θi = ± arccos

√
z, each with

probability 1/2.

5.1. Two dimensional cluster designs on tessellations

In Figure 7(a), the nine points {t i} which are displayed consist of four corner points

(−1,±1), (1,±1), four axial points
(

±
√

2, 0
)

,
(

0,±
√

2
)

and the centre point (0, 0). These

are the generators of the Voronoi tessellation pictured - a tiling with the property that,

within the tile Ti containing t i, all points are closer to ti than to any t j, j , i. Figure

7(b) gives a more detailed depiction of the tessellation, restricted to the design space χ =

[−2, 2] × [−2, 2]. Within each tile Ti, of area |Ti|, we have also plotted a subtile Ji (c)

which is a contraction of Ti with fixed point ti and area |Ji (c)| = c |Ti|. These are then

the analogues of the subintervals Ji (c) ⊆ Ii from §4, and ‘c’ has the same interpretation

– the fraction of the design space to be sampled. Surrounding each Ji (c) is the smallest

enclosing circle S(2) (ti,Ri (c)).
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Figure 8: Sampling density φ (x; ν = .5) constructed for a robust, clustered CCD in two dimensions.

We sample design points from S(2) (ti,Ri (c)), accepting only those points which lie in

Ji (c). We specify b = 1/c and c = ν2, then f (2) (x; ti,Ri (c) , b) approaches a point mass at

ti as ν→ 0, and uniformity on S(2) (t i,Ri (c)) ⊇ Ti as ν→ 1. With

qi(ν) =

∫

Ji(c)

f (2) (x; ti,Ri (c) , b)µ (dx) ,

the density of those points accepted into the design upon being drawn from S(2) (ti,Ri (c))

is
f (2) (x; ti,Ri (c) , b)

qi(ν)
I (x ∈ Ji (c)) .

We again do stratified sampling, with weights ωi = |Ti| /
∑ |Ti| proportional to the area |Ti|,

whence the density of the design on χ is

φ (x; ν) =

9
∑

i=1

ωi

qi(ν)
f (2) (x; ti,Ri (c) , b) I (x ∈ Ji (c)) .

See Figure 8. Although we evaluate qi(ν) by numerical integration, an estimate can be

computed after the sampling is done; it is the proportion of those points which were drawn

from S(2) (ti,Ri (c)) and then accepted into the sample. This estimate turns out to be quite

accurate if an artificially large sample is simulated.

Figure 9 illustrates the results of applying the methods of the preceding discussion.

We chose a total sample size of n = 50, ν = .5, and obtained subsample sizes ni = nωi,

rounded to {7, 7, 7, 7, 5, 5, 5, 5, 2}with each corner point being allocated 7, each axial point

being allocated 5, and the remaining 2 in the centre. The entire sample is shown in Figure

9(a), with Figure 9(b) illustrating the details for Tile 8. The required 5 points were found

after 7 points were drawn from S8. In all, 13 points were rejected as not belonging to the

appropriate subtile.
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Figure 11: (a) Spheres S(3) (t i, r0ν), i = 1, ..., 15 for a three dimensional spherical CCD and ν = .5. (b)

Centre sphere S(3) (0, r0ν) with sampled points.

We repeated this with a total sample size of n = 100. See Figure 10. With the larger

sample size the random designs seem to more accurately duplicate the behaviour of the

parent design Φ – a phenomenon noticed as well in the one dimensional cluster designs of

the previous section.

5.2. Extensions to k > 2

Although the theory of §5.1 extends easily to higher dimensions, the lack of appro-

priate software for constructing and manipulating Voronoi tessellations becomes a se-

vere drawback. But the general idea of sampling from spherical distributions centred

on small neighbourhoods of the {ti} can still be applied, albeit in a less structured man-

ner. Let {t i}qi=1
be the q = 2k + 2k + 1 support points of a spherical CCD in variables

x = (x1, ..., xk)
′, as described at the beginning of this section. The minimum distance be-

tween these points is min
(

2,
√

k
)

, and so hyperspheres S (t i, r0) centred at the ti and with

radius r0 = min
(

1,
√

k/2
)

are disjoint. Define subspheres

Ji (c) = S(k)
(

t i, r0c1/k
)

, 0 < c ≤ 1.

Then
∫

I (x ∈ Ji (c)) dx = |Ji (c)| = c |S (ti, r0)|. The density of x on Ji (c) is f (k)
(

·; ti, r0c1/k, b
)

.

We again specify b = 1/c and c = νk. Then for user chosen weights {ωi} the sampling den-

sity is

φ (x; ν) =

q
∑

i=1

ωi f (k) (x; ti, r0ν, 1/ν) I
(

x ∈ S(k) (t i, r0ν)
)

.

See Figure 11 for an example with k = 3. We sampled a design of size n = 80 with

subsamples sizes ni = 5 (i < 15) and n15 = 10.
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Appendix

A.1. Derivations for §2.1

For an n-point design D = {xi}ni=1 with design measure δ = n−1
∑

δxi
define

F = ( f (x1) , · · ·, f (xn))′ ,ψΦ = (ψΦ (x1) , ..., ψΦ (xn))′ , Dφ = diag (φ (x1) , ..., φ (xn)) .

Then Mφ =
1
n
F′DφF. Define as well

Mδ =

∫

χ

f (x) f ′ (x) δ (dx) =
1

n

∑

xi∈D

f (xi) f ′ (xi) =
1

n
F′F,

bψΦ,δ =

∫

χ

f (x)ψΦ (x) δ (dx) =
1

n

∑

xi∈D

f (xi)ψΦ (xi) =
1

n
F′ψΦ.

Using (7),

ψΦ (xi) = r′Φ (xi) βΦ =
τ
√

n

(

φ (xi) f ′ (xi) − f ′ (xi) A−1 MΦ

)

G
−1/2

Φ
βΦ, (A.1)

so that

ψΦ =
τ
√

n

(

DφF−FA−1 MΦ

)

G
−1/2

Φ
βΦ, (A.2)

bψΦ,δ =
τ
√

n

(

Mφ − MδA−1 MΦ

)

G
−1/2

Φ
βΦ. (A.3)

From (4),

imse (δ|ψΦ) =
σ2
ε

n
tr

(

AM−1
δ

)

+ b′ψΦ,δM−1
δ AM−1

δ bψΦ,δ +

∫

χ

ψ2
Φ (x) µ (dx) ;

substituting (A.2) and (A.3) gives

imse (δ|ψΦ) =
σ2
ε

n
tr

(

AM−1
δ

)

+
τ2

n
γδ, for

γδ = β′ΦG
−1/2

Φ

(

MφM−1
δ − MΦA−1

)

A
(

M−1
δ Mφ − A−1 MΦ

)

G
−1/2

Φ
βΦ + 1.

Now (8) and (9) are immediate.

A.2. Derivations of (12) and (13)

To evaluate (9) and establish (12) we first note that since φ (xi) ≡ (2c)−1 on its support,

we have that MφM−1
δ = (2c)−1 I2, and then (since β′

Φ
βΦ = 1)

γδ = β′ΦG
−1/2

Φ

(

1

2c
I2 − MΦA−1

)

A

(

1

2c
I2 − A−1 MΦ

)

G
−1/2

Φ
βΦ + 1

= β′ΦG−1/2

Φ

(

1

4c2
A − 1

c
MΦ + MΦA−1 MΦ

)

G−1/2

Φ
βΦ + 1

= β′ΦG
−1/2

Φ

(

1

4c2
A − 1

c
MΦ + HΦ + GΦ

)

G
−1/2

Φ
βΦ. (A.4)
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A calculation gives

G1/2

Φ
H−1
Φ G1/2

Φ
+ I2 =

1

c
diag

(

1,
1

3λ2 (c)

)

, (A.5)

so that the maximum eigenvalue is γ0 and

βΦ =

{

(1, 0)′ , if λ2 (c) ≥ 1/3,

(0, 1)′ , if λ2 (c) < 1/3.

The choice of βΦ is somewhat arbitrary if λ2 (c) = 1/3, since then (A.5) is a multiple of I2.

We claim that

γδ ≡ γ0, (A.6)

from which (12) follows, since then γδ does not depend on the design and so is non-

random.

To establish (A.6), use A = MΦH−1
Φ MΦ = 4c2KΦH−1

Φ KΦ and MΦ = 2cKΦ in (A.4) to

obtain

γδ = β
′
Φ

[

G
−1/2

Φ

(

KΦH−1
Φ KΦ − KΦ

)

G
−1/2

Φ

]

βΦ.

Substituting KΦ = GΦ + HΦ, this becomes

γδ = β
′
Φ

[

G
1/2

Φ
H−1
Φ G

1/2

Φ
+ I2

]

βΦ = γ0,

as required.

An evaluation of (A.1), using

A = diag (2, 2/3) , MΦ = diag (1, λ2 (c)) , and

GΦ =
1

2c
diag ((1 − c) , λ2 (c) (1 − 3cλ2 (c))) ,

gives

ψΦ (x; c) =
τ
√

n

(

2cφn (x; c) − c
√

2c (1 − c)
, x

2cφn (x; c) − 3cλ2 (c)
√

2cλ2 (c) (1 − 3cλ2 (c))

)

βΦ.

Using 2cφn (x; c) = IS (x; c), and

c

γ0

=

{

c, if λ2 (c) ≥ 1/3,

3cλ2 (c) if λ2 (c) < 1/3,

this becomes

ψΦ (x; c) =
τ
√

n
·







































IS (x;c)− 1
γ0

√

2c

(

1− 1
γ0

)

, if λ2 (c) ≥ 1/3,

x√
λ2

IS (x;c)− 1
γ0

√

2c

(

1− 1
γ0

)

if λ2 (c) < 1/3,
,

which is (13).
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