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CHARACTERIZATION OF SOLUBILIZERS OF ELEMENTS IN MINIMAL SIMPLE

GROUPS

BANAFSHEH AKBARI, JAKE CHUHARSKI, VISMAY SHARAN, AND ZACHARY SLONIM

Abstract. Given a finite group G, the solubilizer of an element x, denoted by SolG(x), is the set of all
elements y such that 〈x, y〉 is a soluble subgroup of G. In this paper, we provide a classification for all

solubilizers of elements in minimal simple groups. We also examine these sets to explore their properties by
discussing some computational methods and making some conjectures for further work.

Keywords: Soluble group; Simple groups; Solubilizer, Solubility Graph.

1. Introduction

Let G be a finite group. For an element x ∈ G, we define the solubilizer of x in G as the set

SolG(x) := {y ∈ G | 〈x, y〉 is soluble}.
In general, SolG(x) is not a subgroup of G. However, it can happen that this set is a subgroup. In fact, it
has been shown in [2] that SolG(x) is a subgroup of G for any element x ∈ G if and only if G is a soluble
group.

Due to a well known result, a finite group G is soluble if and only if, for every x, y ∈ G the subgroup
〈x, y〉 is soluble (see Thompson [19] and Flavell [10]). This means that a finite group G is soluble if and only
if, for any x ∈ G, SolG(x) = G.

We denote by R(G) the soluble radical of G, which is the largest soluble normal subgroup of G. In [12],
Guralnick et al. proved that for an element x in G, x ∈ R(G) if and only if the subgroup 〈x, y〉 is soluble
for all y ∈ G. Hence, x ∈ R(G) if and only if SolG(x) = G. In Section 2 of this paper, we give some basic
properties of the solubilizer sets, some interesting known results, and some useful lemmas that we use later.

As an interesting problem, we can consider how the properties of the structure of a single solubilizer can
affect the structure of the whole group. For instance, it has been proved in [2] that if G is a group having
an element x such that all elements of SolG(x) commute pairwise, then G is abelian. In [3], this was further
generalized to show that if G has an element x such that [u1, u2, u3] = 1 for every u1, u2, u3 ∈ SolG(x), then
γ3(G) = 1. That is, the subgroup generated by all long commutators of weight 3 is the third term of the
lower central series of G, implying that G is a nilpotent group if all such commutators are trivial. We also
note that the arithmetic properties of the solubilizers of elements can directly influence the structure of the
group. For instance, due to the results obtained in [2] and [3], we can see that if a group G has an element
whose solubilizer has size p or p2, where p is a prime, then G is a p-group.

In this paper, we continue exploring the solubilizer set to find more information about it. We seek to
obtain more information about how exactly the properties of a single solubilizer set influence the entire
group. To do this, we provide a list of all solubilizers and their sizes for the minimal simple groups as an
infinite class of finite groups in Section 3. A minimal simple group is a non-abelian simple group in which
every proper subgroup is soluble. Thompson [19, Corollary 1] determined all minimal simple groups. In
fact, every minimal simple group is isomorphic to one of the following: The projective special linear groups
PSL(2, 2p), where p is any prime; PSL(2, 3p) where p is an odd prime; PSL(2, p) where p > 3 is a prime so
that 5 | p2 + 1 or equivalently so that p ≡ 2 or 3 (mod 5); PSL(3, 3); and the Suzuki groups Sz(2p), where
p is an odd prime. We provide some tables including some information about the structure of subgroups
containing a certain element in minimal simple groups which allows us to find the solubilizer sets and their
sizes.
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In Section 4, we investigate some properties of the induced solubility graph ∆S(G), a simple graph defined
on the finite group G whose vertices are the elements of G \ R(G) and two vertices x, y ∈ G \ R(G) are
adjacent if and only if 〈x, y〉 is soluble. We prove some conditions for when ∆S(G) has an Eulerian or
Hamiltonian cycle, and look specially at when G is a minimal simple group. We also provide some bounds
on the chromatic number of ∆S(G) for a minimal simple group G in Sections 4 and 5. Then, we give some
results using our classification to answer some interesting conjectures about the solubilizer sets for minimal
simple groups. Finally, in Section 6, we give some computational results we obtained regarding colorability
and Hamiltonian cycles using algorithms we ran on the adjacency matrices of ∆S(G) for some small simple
groups.

2. Preliminary Results

The solubilizer of an element in a finite group was introduced in [14]. This set has been studied extensively
in [2,3,17]. This section is intended to collect some recent results on the solubilizer of an element and explore
some additional properties of this set. Finally, we present some results which help us prove the results in
Section 3.

Lemma 2.1 ([2, Lemma 2.1, Corollary 2.2, and Lemma 2.4]). Let G be a group and x ∈ G. Then:

(a) 〈x〉 ( NG(〈x〉) ⊆ NG(〈x〉) ∪R(G) ⊆ SolG(x);
(b) |SolG(x)| is divisible by |x| and |R(G)|.

In view of part (a) of Lemma 2.1, it is easy to check that given an element x ∈ G, if NG(〈x〉) is a maximal
subgroup of G which is the only one containing x, then SolG(x) = NG(〈x〉).
Lemma 2.2 ([2, Lemma 2.1]). Let G be a finite group and x ∈ G, then

SolG(x) =
⋃

x∈H≤G

H

with the union being taken over all soluble subgroups of G containing x.

Given a normal soluble subgroup N of G, we define

SolG(x)

N
= {yN | y ∈ SolG(x)} = {yN | 〈x, y〉 is soluble}.

We can apply the following result to reduce most of the conditions to the case when the soluble radical is
trivial.

Lemma 2.3 ([2, Lemmas 2.4 and 2.5]). Let N be a normal soluble subgroup of a group G. Then |SolG(x)|
is divisible by |N |, and SolG(G/N)(xN) = SolG(x)/N . In particular,

∣

∣

∣

∣

SolG(x)

N

∣

∣

∣

∣

=
|SolG(x)|

|N | .

As mentioned before, generally the solubilizer of an element of a group is not a subgroup. So it would be
reasonable to ask what can occur if this set is a subgroup. In fact, we have the following lemma.

Lemma 2.4 ([2, Theorem 3.4]). A group G is soluble if and only if SolG(x) is a subgroup of G for all x ∈ G.

However, given an insoluble group G, we can often find some element x such that SolG(x) is a subgroup.
Then the normal core of SolG(x), that is the largest normal subgroup of G being contained in SolG(x), is a
subgroup of the soluble radical R(G). So we have the following lemma.

Lemma 2.5. Let G be a group and x an element of G such that SolG(x) is a subgroup of G. Then

CoreG(SolG(x)) is soluble.

Proof. We will show that the normal core of SolG(x) is the union of the normal core of soluble subgroups of
G containing x.

Using Lemma 2.2, we have

CoreG(SolG(x)) =
⋂

g∈G

(
⋃

x∈H≤G

H)g =
⋂

g∈G

(
⋃

x∈H≤G

Hg) =
⋃

x∈H≤G

(
⋂

g∈G

Hg) =
⋃

x∈H≤G

CoreG(H).
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If the soluble radical R(G) is trivial, then we can see that for any soluble subgroup of G containing x,
CoreG(H) is trivial and consequently, CoreG(SolG(x)) is trivial too. So assume that R(G) is nontrivial.
Then the soluble radical of G/R(G) is trivial. Considering Lemma 2.3, we see that SolG(G/R(G))(xR(G))
is a subgroup. So we can use the last case to find CoreG/R(G)(SolG/R(G)(xR(G))) is trivial. On the other
hand,

CoreG/R(G)(SolG/R(G)(xR(G))) =
CoreG(SolG(x))R(G)

R(G)
.

This implies that CoreG(SolG(x)) ≤ R(G) and so CoreG(SolG(x)) is a soluble subgroup of G. �

When SolG(x) is a subgroup of an insoluble group G, we can also consider the case where SolG(x) is
soluble or nilpotent.

Lemma 2.6. Let G be an insoluble group and x an element of G such that SolG(x) is a soluble subgroup of

G. Then SolG(x) is a maximal soluble subgroup of G.

Proof. Note that if there exists a soluble subgroup H of G such that SolG(x) ≤ H < G, then by Lemma 2.2,
we will have H ≤ SolG(x) and so SolG(x) = H . �

By a similar argument to Lemma 2.6, we can prove the following lemma.

Lemma 2.7. Let G be an insoluble group and x an element of G such that SolG(x) is a nilpotent subgroup

of G. Then SolG(x) is a maximal nilpotent subgroup of G.

As a special case of Lemma 2.7, we can consider the case when SolG(x) is a Sylow p-subgroup of G for
some element x in G and an odd prime p. Then it follows that G is a p-group. More precisely, we have the
following lemma.

Lemma 2.8. [3, Lemma 4.1] Let G be an insoluble group and let x be an element of G such that SolG(x) is
a subgroup. Then |SolG(x)| 6= pn for all odd primes p and all positive integers n.

Lemma 2.8 is not always true for the case of p = 2. Let G = PSL(2, 31) and x an element of order 16. We
can see from Atlas of Finite Groups [8] that the maximal subgroup isomorphic to the dihedral group D32

is the only soluble subgroup containing x. It follows that SolG(x) ∼= D32, which is a Sylow 2-subgroup. To
find more information about this case see [17].

In [2] and [3], the authors answered a slightly more general question about when |SolG(x)| can equal pn

even if SolG(x) is not necessarily a subgroup of G. Note that the following result is true for any prime.

Lemma 2.9. [3, Theorem B] Let G be an insoluble group and x an element of G. Then the size of SolG(x)
cannot be p nor p2 for any prime p.

In Section 5, we will generalize Lemma 2.9 in the case where p is an odd prime in all minimal simple
groups.

In the sequel, we provide an applicable way to find the solubilizers of elements in the minimal simple
groups which will be our goal in Section 3.

Clearly, to use Lemma 2.2, we can find SolG(x) just as the union of all maximal soluble subgroups
containing x.

Lemma 2.10. Let G be a minimal simple group and x an element of G. Then SolG(x) =
⋃

x∈M<G M ,

where the union ranges over the maximal subgroups of G containing x.

Proof. Since all maximal subgroups of a minimal simple group are soluble, it suffices to simply take the
union of all maximal subgroups of G containing x. �

To compute all maximal subgroups containing a certain element in a minimal simple group in Section
3, we will use the following lemmas and the fact that given a finite group G and a subgroup H ≤ G, the
number of conjugates of H in G is [G : NG(H)]. Assuming that G is a simple group and M ≤ G is a maximal
subgroup of G, there are [G : M ] conjugate subgroups of M is G because NG(M) = M .

Lemma 2.11 ([14, Lemma 2.11]). Let G be a finite group and suppose x, y ∈ G are conjugate elements such

that x = g−1yg. Then, SolG(x) = g−1SolG(y)g.
3



Note that the following result can be also true for any subgroup of a finite group G.

Lemma 2.12. Let M be a maximal subgroup of a finite group G and x an element of M with m conjugates

in M and n conjugates in G. Suppose that the number of subgroups of G conjugate to M is r. Then the

number of subgroups conjugate to M containing x is equal to mr/n.

Proof. Since we are counting over conjugates of x, the number of subgroups conjugate to M that each
conjugate of x is contained in must be equal, say to some constant k. Then we can count the number of
conjugates of x in G in two ways. By assumption we know that this number is n. We can also count this
by counting over individual subgroups M ≤ G. So we would get that the number of conjugates of x in M
would equal the number of conjugates of M in G multiplied by the number of conjugates of x in M and
then divided by k since this would count every conjugate of x exactly k times. This shows that the number
of conjugates of x in G would be n = mr/k so k = mr/n. �

Lemma 2.13. Let M be a maximal subgroup of a finite group G and suppose x is an element of G contained

in a unique subgroup isomorphic to Cs for some s > 4. Assume that the number of conjugate subgroups of

Cs in M is m and the number of conjugate subgroups of M in G is r. Let n be the number of conjugate

subgroups of Cs in G. Then the number of subgroups conjugate to M containing x is equal to mr/n.

Proof. This follows in the same way as Lemma 2.12 except we count conjugates of the entire subgroup Cs

instead of a single element. �

3. Classification Theorems

In this section, we classify SolG(x) for any element x in a minimal simple group G. According to Lemma
2.10, this set is the union of maximal subgroups containing x. More precisely, to find SolG(x), we need to
count the number of maximal subgroups containing x and give the pairwise intersections. Thus, for each of
the five types of minimal simple groups [19, Corollary 1], we produce a table which classifies the solubilizers.

Theorem 3.1. Let G = PSL(2, 2p) where p is a prime and let q := 2p. Then the following table classifies

all subsets SolG(x) for x ∈ G based on the order of x in terms of the number of maximal subgroups of each

isomorphism type contained in SolG(x), their pairwise intersections and |SolG(x)|:

Maximal Subgroup |x| = 2 |x|
∣

∣ q − 1 |x|
∣

∣ q + 1

Cp
2 ⋊ Cq−1 1 2 0
D2(q−1) q/2 1 0
D2(q+1) q/2 0 1

Intersections ∼= C2
∼= Cq−1 N/A

|SolG(x)| 3q(q − 1) 2q(q − 1) 2(q + 1)

Table 1. Classification of SolG(x) for G = PSL(2, 2p)

Proof. We obtain the classification of the maximal subgroups of G from [16, Corollary 2.2], which also gives
that there is only one conjugacy class of each. Since |G| = q(q − 1)(q + 1), an element x ∈ G has order |x|
dividing q, q − 1, or q + 1. Since q − 1 and q + 1 are both odd, the only even order elements in D2(q+1) and
D2(q−1) are involutions. Similarly, the elements of Cp

2 ⋊ Cq−1 have order either 2 or some divisor of q − 1.
Hence, we know that the only even order elements of G are involutions. Further, note that gcd(q−1, q+1) = 1
since q ± 1 is odd. Hence, if x is not the identity, then |x| is in exactly one of the cases |x| = 2, |x|

∣

∣ q − 1 or

|x|
∣

∣ q + 1.
We can see from [16, Theorem 2.1] that there are q + 1 conjugate abelian Sylow 2-subgroups in G which

contain all the involutions of G. Since any of these Sylow 2-subgroups has q−1 involutions, the total number
of involutions in G is q2 − 1. All of these involutions are conjugate so their solubilizers are conjugate by
Lemma 2.11. Further, from the same source, we know that there are q(q + 1)/2 subgroups of G isomorphic
to Cq−1 which are all conjugate, and similarly there are q(q− 1)/2 conjugate subgroups isomorphic to Cq+1.
Now, we claim that if |x|

∣

∣ q ± 1, then x is contained in a unique subgroup isomorphic to Cq±1.
4



This is because, if |x|
∣

∣ q±1, then |〈x〉| is odd and we can see from the subgroups of the maximal subgroups
of G that the only odd order subgroups are contained in subgroups isomorphic to Cq±1. Then, let y ∈ G
generate the Cq±1 that contains x. So we can write x = yk for some k ∈ N. Now, it is easy to see that
NG(〈y〉) ≤ NG(〈x〉).

Each maximal subgroup isomorphic to D2(q±1) contains exactly one Cq±1 subgroup. Since all the Cq±1

subgroups are conjugate, they must each be contained in some D2(q±1) because at least one Cq±1 is contained
in aD2(q±1) and they all behave in the same way. Since Cq±1 is normal in anyD2(q±1) andD2(q±1) is maximal
in G, we can get that NG(Cq±1) ∼= D2(q±1) because G is a simple group. Thus each Cq±1 is contained in
exactly one D2(q±1) because otherwise D2(q±1) � NG(Cq±1).

Hence, D2(q±1) = NG(〈y〉) ≤ NG(〈x〉) and so we must have equality since D2(q±1) is maximal in G. It
follows that x is contained in exactly one subgroup isomorphic to D2(q±1) which means it is contained in
exactly one subgroup isomorphic to Cq±1, as claimed.

Now, we calculate the number of maximal subgroups of each isomorphism type that contain x using the
fact that each isomorphism type consists of one conjugacy class of subgroups and the number of conjugates
of the maximal subgroup M in G is [G : M ]. There are q+1 conjugates of Cp

2 ⋊Cq−1, q(q− 1)/2 conjugates
of D2(q+1), and q(q + 1)/2 conjugates of D2(q−1). Finally, we use Lemmas 2.12 and 2.13 to calculate the
number of maximal subgroups of each type containing x.

For the element x that is an involution, there are q2−1 conjugates of x in G, and there are q−1, q+1, and
q − 1 conjugates of x in Cp

2 ⋊Cq−1, D2(q+1), and D2(q−1) respectively. Similarly there are q + 1, q(q − 1)/2,
and q(q+1)/2 subgroups of G isomorphic to Cp

2 ⋊Cq−1, D2(q+1), and D2(q−1) respectively. So x is contained

in (q−1)(q+1)
q2−1 = 1 subgroup isomorphic to Cp

2 ⋊Cq−1,
(q+1)(q(q−1)/2)

q2−1 = q/2 subgroups isomorphic to D2(q+1),

and (q−1)(q(q+1)/2)
q2−1 = q/2 subgroups isomorphic to D2(q−1).

For |x|
∣

∣ q± 1, we already have that x is contained in exactly one subgroup isomorphic to D2(q±1). Then,

if |x|
∣

∣ q − 1, it is also contained in (q+1)q
q(q+1)/2 = 2 subgroups isomorphic to Cp

2 ⋊ Cq−1. Hence, we get Table 1

produced at the beginning of the proof.
Next, we turn our attention to the intersections between these maximal subgroups that contain x. In

the case of the involutions, the intersection at least contains C2. Note that q ± 1 is odd and so C2 is
maximal in D2(q±1) so the intersections must all be exactly isomorphic to C2. Similarly, for |x|

∣

∣ q − 1, the
intersections must contain the unique Cq−1 that contains x. Clearly, Cq−1 is maximal in D2(q−1) so again
the intersections must all be isomorphic to Cq−1. Finally, we calculate |SolG(x)| for each column using the
principle of inclusion exclusion (PIE) as follows:

∣

∣

∣

∣

∣

m
⋃

i=1

Mi

∣

∣

∣

∣

∣

=

m
∑

i=1

|Mi| −
∑

1≤i<j≤m

|Mi ∩Mj|+
∑

1≤i<j<k≤m

|Mi ∩Mj ∩Mk| − . . .+ (−1)m−1|M1 ∩M1 ∩ · · ·Mm|,

where M1, · · · ,Mm are the maximal subgroups containing x.
For |x|

∣

∣ q + 1, there are no intersections so |SolG(x)| = |D2(q+1)| = 2(q + 1). For |x|
∣

∣ q − 1, the pairwise
intersection between any of the three maximal subgroups containing x has order |Cq−1| = q − 1 and the
three-way intersection between all three also has order q − 1. So

|SolG(x)| = 2 · |Cp
2 ⋊ Cq−1|+ 1 · |D2(q−1)| − 3 · |Cq−1|+ 1 · |Cq−1|

= 2q(q − 1) + 2(q − 1)− 3(q − 1) + (q − 1) = 2q(q − 1).

Finally, let x be an involution. First note that there are m = 1 + q/2 + q/2 = q + 1 maximal subgroups
containing x and if we choose any i different subgroups of these maximal subgroups, the intersection has
order 2. Then we have:

|SolG(x)| =
∣

∣

∣

∣

∣

q+1
⋃

i=1

Mi

∣

∣

∣

∣

∣

= 1 · q(q − 1) + q/2 · 2(q − 1) + q/2 · 2(q + 1)− 2

(

q + 1

2

)

+ 2

(

q + 1

3

)

− · · ·+ (−1)q · 2
(

q + 1

q + 1

)

= 3q2 − q − 2

(

q+1
∑

i=2

(−1)i
(

q + 1

i

)

)
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= 3q2 − q − 2

(

(1− 1)q+1 − 1− (−1)q + 1

)

= 3q2 − q − 2q = 3q(q − 1).

This completes the classification of the table for G = PSL(2, 2p). �

Theorem 3.2. Let G = PSL(2, 3p) where p is an odd prime and denote q := 3p. Then the following table

classifies all subsets SolG(x) for x ∈ G based on the order of x in terms of the number of maximal subgroups

of each isomorphism type contained in SolG(x), their pairwise intersections and |SolG(x)|:

Maximal Subgroup |x| = 2 |x| = 3 |x|
∣

∣ q − 1 |x|
∣

∣ q + 1

Cp
3 ⋊ C(q−1)/2 0 1 2 0

Dq−1 (q + 1)/2 0 1 0
Dq+1 (q + 3)/2 0 0 1
A4 (q + 1)/4 q/3 0 0

Intersections ∼= C2 or C2
2

∼= C3
∼= C(q−1)/2 N/A

|SolG(x)| q(q + 1) q(q + 5)/2 q(q − 1) q + 1

Table 2. Classification of SolG(x) for G = PSL(2, 3p)

Proof. First, we note that the last two columns of Table 2 are the exact same as those in Table 1 but with
q± 1 replaced by q±1

2 and the proof follows in the same way as in Theorem 3.1. It is important to highlight

that when writing |x|
∣

∣ q ± 1, we mean |x|
∣

∣ q ± 1 but |x| 6= 2 which is treated in the first column. For the
first two columns of Table 2, we apply Lemmas 2.12 and 2.13 and the fact that the number of conjugates
of maximal subgroup M in G is [G : M ], in the same way as in the proof of Theorem 3.1. We also use
the fact that, as before, all the order 2 elements are conjugate, all the C3 subgroups are conjugate, and
similarly [16, Corollary 2.2] for the number of maximal subgroups of each isomorphism type. Note that each
involution is contained in (q + 3)/2 subgroups isomorphic to Dq+1 because Dq+1 has (q + 3)/2 involutions
in 2 conjugacy classes, namely, (q + 1)/2 reflections and 1 rotation.

If |x| = 3, the intersections must all contain C3 and since C3 is maximal in A4, this is precisely what all
the intersections must be. For |x| = 2, the intersections must all contain C2 but C2 is not maximal in Dq+1

and A4 so more care must be taken. We proceed in cases.
As q = 3p and p is odd, we see that q ≡ 3 (mod 4), so q − 1 6≡ 0 (mod 4). In particular, this means that

2
∣

∣∤ q−1
2 so C2 is maximal in Dq−1 because all subgroups of D2n are of the form Cd or D2d for d as a divisor

of n. Thus, the intersection of Dq−1 and any other maximal subgroup containing x must be isomorphic to
C2.

For the intersection between two subgroups isomorphic to A4, we note that C2 is not maximal in A4 and
is instead contained in a maximal C2

2 subgroup. However, C2
2 ⊳A4 so NG(C

2
2 )

∼= A4 since A4 is maximal in
G which is simple. If M1 and M2 are two maximal subgroups isomorphic to A4 such that M1 ∩M2

∼= C2
2 ,

then we would have M1 = NG(M1 ∩ M2) = M2 contradicting the fact that M1 and M2 were assumed to
be distinct subgroups containing x. Thus, we can conclude that the intersection of any two A4 subgroups
containing x is also just C2.

Finally, we consider the intersections between two copies of Dq+1, and between Dq+1 and A4. Now,
q + 1 ≡ 0 (mod 4) and so each subgroup Dq+1 contains a single involution which is in a different conjugacy
class to the rest of the involutions, namely a rotation of order 2 rather than a reflection. Note that involutions
are conjugate in G and we already showed that each involution is contained in (q+3)/2 subgroups isomorphic
to Dq+1. Thus, we see that each involution is contained in exactly one Dq+1 in which it is the singleton
conjugacy class of a rotational involution and (q + 1)/2 copies of Dq+1 where it is in the conjugacy class
of q + 1 reflections. We call this Dq+1 the special Dq+1 corresponding to x, and denote it Ds

q+1 for ease of
reference.

From the properties of the dihedral group we see that x is contained in q+1
4 different copies of C2

2 in Ds
q+1.

We also know that in each copy of A4 containing x we have exactly one C2
2 by the structure of A4. Further,

every C2
2 in G must be contained in some A4 since all order 2 elements are conjugate so all copies of C2

2 are
6



conjugate so behave in the same way. This implies that the C2
2 subgroups are in a one-to-one correspondence

with the A4 subgroups, with each A4 containing a distinct C2
2 . Then, since Ds

q+1 contains q+1
4 copies of C2

2

containing x, this special dihedral group contains every C2
2 containing x.

This shows that the intersection of the special Dq+1 with any of the copies of A4 must be C2
2 . For every

non-special Dq+1, we see that x is not in a singleton conjugacy class, so it is contained in exactly one C2
2 ,

namely the one generated by x and the rotational involution in that Dq+1. This implies that the intersection
between Ds

q+1 and any of the other Dq+1s containing x must be C2
2 . The reason that it cannot be in a larger

dihedral group, is because if there was such a subgroup D2d ≤ Dq+1 where d
∣

∣ q+1, then there would be an
element y ∈ D2d of order d > 2 which is contained in two copies of Dq+1. We showed this was impossible
when considering the last column of the table.

Now we claim that for every A4 there are exactly two of the non-special Dq+1s with intersection C2
2 .

Clearly, every non-special Dq+1 has intersection equal to C2
2 with exactly one A4 since each C2

2 corresponds
to exactly one A4 and each non-special Dq+1 contains one C2

2 subgroup containing x.
In a non-special Dq+1, any subgroup isomorphic to C2

2 that contains x is of the form {1, x, s, xs} where
s is the rotational involution of that Dq+1. This implies that if a given A4 has intersection larger than
〈x〉 = {1, x} with more than 2 of these non-special Dq+1, then these two Dq+1s have the same rotational
involution which is not possible since all of the involutions are conjugate and each is the rotational involution
in exactly one Dq+1. This means that each A4 shares a C2

2 with the special Dq+1 and two of the non-special
Dq+1s. Note that the two non-special Dq+1 that share the C2

2 with the same A4 will also share a C2
2 . This

organizes these subgroups as shown in the figure with each edge representing a shared C2
2 where there are

(q + 1)/4 copies of A4.

Ds
q+1

A4 · · · A4

Dq+1 Dq+1 · · · Dq+1 Dq+1

Figure 1. C2
2 intersections of maximal subgroups containing an involution in PSL(2, 3p)

As in the proof of Theorem 3.1, we now use the principle of inclusion exclusion (PIE) to calculate |SolG(x)|.
For the last three columns, this follows in the exact same way so we omit the calculations. However, for
|x| = 2, we have a bit more work to do. First, we treat each intersection as having order 2 and perform the
same calculation as in Theorem 3.1. Then we account for the intersections which are C2

2 having order 4 by
subtracting off an extra 2 times the alternating sum of the number of such intersections. From Figure 1,
we see that there are 6 · (q + 1)/4 pairwise intersections isomorphic to C2

2 , there are 4 · (q + 1)/4 three-way
intersections isomorphic to C2

2 , and 1 · (q + 1)/4 four-way intersections isomorphic to C2
2 . This gives us

|SolG(x)| =
q + 1

2
· (q − 1) +

q + 3

2
· (q + 1) +

q + 1

4
· 12 + 2

(

1−
(

q + 1

2
+

q + 3

2
+

q + 1

4

))

+2 · (−6 + 4− 1) · q + 1

4
= q2 +

5q

2
+

3

2
− 3 · q + 1

2
= q2 + q.

This completes the classification of the table for PSL(2, 3p). �

Before considering the next case of the minimal simple groups, we state the following lemma which we will
apply to find the size of solubilizer sets for involutions in a different way from inclusion exclusion principle
because in this case the intersections between the maximal subgroups containing involutions are much more
complicated to compute.
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Lemma 3.3. Let G be a finite group and I(S) be the set of involutions of S ⊆ G. If all of the involutions

in G are conjugate and x ∈ G is an involution, then

|SolG(x)| · |I(G)| =
∑

y∈G

|I(SolG(y))|.

Proof. Since all the involutions in G are conjugate, any involution z ∈ G is of the form z = xg for some g ∈ G.
Now we can see from Lemma 2.11 that |SolG(z)| = |SolG(x)|. Thus |SolG(x)| · |I(G)| = ∑z∈I(G) |SolG(z)|.
To compute

∑

z∈I(G) |SolG(z)|, let z be an involution of G. Given an element y ∈ G, if y ∈ SolG(z), then

z ∈ SolG(y). Thus z is an involution of SolG(y) and so z ∈ I(SolG(y)). This completes the proof. �

Theorem 3.4. Let G = PSL(2, p) where p is a prime number such that p ≡ 2 or 3 (mod 5). Then the

following tables classify all subsets SolG(x) for x ∈ G based on the order of x in terms of the number of

maximal subgroups of each isomorphism type contained in SolG(x) and |SolG(x)|.

Maximal Subgroup |x| = 2 |x| = 3 |x| = 4 |x| = p |x|
∣

∣ p− 1 |x|
∣

∣ p+ 1

Cp ⋊ C(p−1)/2 2 2 2 1 2 0
Dp−1 (p+ 1)/2 1 1 0 1 0
Dp+1 (p− 1)/2 0 0 0 0 1
S4 3(p− 1)/4 (p− 1)/3 (p− 1)/4 0 0 0

|SolG(x)| (p− 1)(2p+ 3) (p− 1)(p+ 6) (p− 1)(p+ 4) p(p− 1)/2 p(p− 1) p+ 1

Table 3. Classification of SolG(x) for G = PSL(2, p) when p ≡ 1 (mod 24)

Maximal Subgroup |x| = 2 |x| = 3 |x| = p |x|
∣

∣ p− 1 |x|
∣

∣ p+ 1

Cp ⋊ C(p−1)/2 2 0 1 2 0
Dp−1 (p+ 1)/2 0 0 1 0
Dp+1 (p− 1)/2 1 0 0 1
A4 (p− 1)/4 (p+ 1)/3 0 0 0

|SolG(x)| (p− 1)(2p− 1) 4(p+ 1) p(p− 1)/2 p(p− 1) p+ 1

Table 4. Classification of SolG(x) for G = PSL(2, p) when p ≡ 5 (mod 24)

Maximal Subgroup |x| = 2 |x| = 3 |x| = 4 |x| = p |x|
∣

∣ p− 1 |x|
∣

∣ p+ 1

Cp ⋊ C(p−1)/2 0 2 0 1 2 0
Dp−1 (p+ 1)/2 1 0 0 1 0
Dp+1 (p+ 3)/2 0 1 0 0 1
S4 3(p+ 1)/4 (p− 1)/3 (p+ 1)/4 0 0 0

|SolG(x)| (p+ 1)(p+ 4) (p− 1)(p+ 6) 5(p+ 1) p(p− 1)/2 p(p− 1) p+ 1

Table 5. Classification of SolG(x) for G = PSL(2, p) when p ≡ 7 (mod 24)

Maximal Subgroup |x| = 2 |x| = 3 |x| = p |x|
∣

∣ p− 1 |x|
∣

∣ p+ 1

Cp ⋊ C(p−1)/2 0 0 1 2 0
Dp−1 (p+ 1)/2 0 0 1 0
Dp+1 (p+ 3)/2 1 0 0 1
A4 (p+ 1)/4 (p+ 1)/3 0 0 0

|SolG(x)| p(p+ 1) 4(p+ 1) p(p− 1)/2 p(p− 1) p+ 1

Table 6. Classification of SolG(x) for G = PSL(2, p) when p ≡ 11 (mod 24)

8



Maximal Subgroup |x| = 2 |x| = 3 |x| = p |x|
∣

∣ p− 1 |x|
∣

∣ p+ 1

Cp ⋊ C(p−1)/2 2 2 1 2 0
Dp−1 (p+ 1)/2 1 0 1 0
Dp+1 (p− 1)/2 0 0 0 1
A4 (p− 1)/4 (p− 1)/3 0 0 0

|SolG(x)| (p− 1)(2p− 1) (p− 1)(p+ 3) p(p− 1)/2 p(p− 1) p+ 1

Table 7. Classification of SolG(x) for G = PSL(2, p) when p ≡ 13 (mod 24)

Maximal Subgroup |x| = 2 |x| = 3 |x| = 4 |x| = p |x|
∣

∣ p− 1 |x|
∣

∣ p+ 1

Cp ⋊ C(p−1)/2 2 0 2 1 2 0
Dp−1 (p+ 1)/2 0 1 0 1 0
Dp+1 (p− 1)/2 1 0 0 0 1
S4 3(p− 1)/4 (p+ 1)/3 (p− 1)/4 0 0 0

|SolG(x)| (p− 1)(2p+ 3) 7(p+ 1) (p− 1)(p+ 4) p(p− 1)/2 p(p− 1) p+ 1

Table 8. Classification of SolG(x) for G = PSL(2, p) when p ≡ 17 (mod 24)

Maximal Subgroup |x| = 2 |x| = 3 |x| = p |x|
∣

∣ p− 1 |x|
∣

∣ p+ 1

Cp ⋊ C(p−1)/2 0 2 1 2 0
Dp−1 (p+ 1)/2 1 0 1 0
Dp+1 (p+ 3)/2 0 0 0 1
A4 (p+ 1)/4 (p− 1)/3 0 0 0

|SolG(x)| p(p+ 1) (p− 1)(p+ 3) p(p− 1)/2 p(p− 1) p+ 1

Table 9. Classification of SolG(x) for G = PSL(2, p) when p ≡ 19 (mod 24)

Maximal Subgroup |x| = 2 |x| = 3 |x| = 4 |x| = p |x|
∣

∣ p− 1 |x|
∣

∣ p+ 1

Cp ⋊ C(p−1)/2 0 0 0 1 2 0
Dp−1 (p+ 1)/2 0 0 0 1 0
Dp+1 (p+ 3)/2 1 1 0 0 1
S4 3(p+ 1)/4 (p+ 1)/3 (p+ 1)/4 0 0 0

|SolG(x)| (p+ 1)(p+ 4) 7(p+ 1) 5(p+ 1) p(p− 1)/2 p(p− 1) p+ 1

Table 10. Classification of SolG(x) for G = PSL(2, p) when p ≡ 23 (mod 24)

Proof. We obtain the isomorphism types of the maximal subgroups of PSL(2, p) from [16, Corollary 2.2].
We note that when G has a subgroup isomorphic to S4, there are two conjugacy classes of S4 subgroups
and two conjugacy classes corresponding to order 4 elements. In any other case, there is always exactly one
conjugacy class of each type of maximal subgroup.

First, we note that the last three columns are always the exact same in any of the eight cases and these
are very similar to the last three columns of Table 2. This is because we are assuming |x| > 4 in these last
three columns so exactly the same proof applies since x /∈ A4 or S4. In addition, by [16, Theorem 2.1] we
can see that when p ≡ ±3 (mod 8), there are elements of order 4, but they behave in the same way as the
|x|
∣

∣ p± 1 elements, so we do not need a separate column for them. The |x| = p column follows easily as p
9



just divides the order of the maximal subgroup Cp ⋊ C(p−1)/2 and then we apply Lemma 2.13 and the fact
that the number of conjugates of maximal subgroup M in G is [G : M ], as before.

The |x| = 3 and |x| = 4 cases are similar to each other and depend on the value of p (mod 3) and p
(mod 4) respectively. First, by the possibilities for p, we see that if x is an element of order 3 or 4, then
either |x| divides p−1 or |x| divides p+1. In both of these cases, we may actually apply the exact same logic
we did for the last two columns of the table to construct the first three rows of the table. Unlike the last two
columns in which |x| > 4, we must also consider x being contained in some copies of A4 or S4. Note that if
p ≡ ±3 (mod 8), then an element of order 4 has the same solubilizer as an element of order greater than 4
dividing p∓ 1. This is because G has A4 maximal subgroups (instead of S4) and A4 contains no elements of
order 4.

We will look at the specific case p ≡ 17 (mod 24) in detail to get an idea of how this works. In this case,
p ≡ −1 (mod 3) and p ≡ 1 (mod 4). So for |x| = 3, x is contained in zero copies of Cp ⋊ C(p−1)/2 and
Dp−1, and one copy of Dp+1 just like any other non-involution element of order dividing p+ 1. For |x| = 4,
x is contained in two copies of Cp ⋊C(p−1)/2, one copy of Dp−1, and zero copies of Dp+1 just like any other
non-involution element of order dividing p− 1.

Then, we note that the number of copies of S4 in G is [G : NG(M)] = [G : M ] where M is a maximal
subgroup of G isomorphic to S4. There are two conjugacy classes of maximal subgroups of G isomorphic

to S4, each of which having p(p+1)(p−1)
48 conjugate subgroups, giving a total number of p(p+1)(p−1)

24 . We also
know from [16, Theorem 2.1] that there are p(p − 1)/2 cyclic subgroups of order 3 and p(p + 1)/2 cyclic
subgroups of order 4 in G. A subgroup isomorphic to either C3 or C4 has two elements of order 3 or 4
respectively. So there are p(p− 1) elements of order 3 and p(p+1) elements of order 4 in G. Note that these
order 4 elements are split into two equal-sized conjugacy classes (based on which of the conjugacy classes of
the S4 subgroups they are contained in). We also note that S4 has eight elements of order 3 and six elements
of order 4.

Now, we can use Lemma 2.12 as before to calculate the number of copies of S4 that x is contained in. If
|x| = 3, then the number of subgroups isomorphic to S4 containing x is:

8 · p(p+ 1)(p− 1)/24

p(p− 1)
=

p+ 1

3
,

and if |x| = 4, then the number of subgroups isomorphic to S4 containing x is:

6 · p(p+ 1)(p− 1)/24

p(p+ 1)
=

p− 1

4
.

This completes every column of Table 8 except the first.
This approach works for all of the 8 cases mod 24 that can arise, giving slightly different results for each.

If p ≡ ±3 (mod 8) and |x| = 3 or p ≡ ±1 (mod 8) and |x| = 4, then |x|
∣

∣ p ± 1 and so p ≡ ∓1 (mod |x|).
Then there are

(p± 1)

|x|
copies of A4 when |x| = 3 or S4 when |x| = 4. We summarize this all in the Tables 3 through 10.

Next, we seek to describe the intersections between these copies of A4 or S4 that contain x and the other
maximal subgroups containing x. As stated above, the intersections between the maximal subgroups in the
first three rows of the table are the same as for the |x|

∣

∣ p±1, |x| > 4 cases so this is all we are left to consider.
As discussed in Theorems 3.1 and 3.2, the intersections always contain subgroups isomorphic to C|x|, namely
the subgroup 〈x〉. We note that C3 is maximal in A4, so we must always get subgroups isomorphic to C3

when intersecting any copy of A4 containing x with another maximal subgroup containing x for |x| = 3.
However, in S4, both C3 and C4 are contained in dihedral groups of order 6 and 8 respectively, so if p ≡ ±1
(mod 8), we have a bit more work to do.

Again, we shall look at the p ≡ 17 (mod 24) case and the result generalizes nicely. First, consider |x| = 3.
As 3

∣

∣ p+ 1, the Dp+1 subgroup contains subgroups isomorphic to D6. In particular, if we pick y to be any
involution in Dp+1, then we have 〈x, y〉 ∼= D6 ≤ Dp+1. We can see that these D6 subgroups of Dp+1 partition
the involutions of Dp+1 into (p+ 1)/6 sets of size 3.

Now, all of these D6 subgroups of G are conjugate so each one is contained in the same number of maximal
subgroups isomorphic to S4. Namely, there are (p+1)/3 subgroups isomorphic to S4 containing x and these
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must contain (p+ 1)/6 subgroups isomorphic to D6. So each D6 must be contained in exactly two copies of
S4. Hence, the S4s that contain x are split into (p+1)/6 pairs depending on which of the (p+1)/6 subgroups
isomorphic to D6 containing x they contain. The Dp+1 that contains x, contains all of these D6 subgroups
and so it has intersection of size 6 with any of the S4s containing x.

For |x| = 4, we have a similar result. However, when picking an involution y ∈ Dp−1, we cannot pick the
involution which is in a singleton conjugacy class because in this case 〈x, y〉 ∼= C4 (6= D8). Then we have
(p− 1)/2 choices for y which gives (p− 1)/8 subgroups of Dp−1 isomorphic to D8. Thus the S4s that contain
x are split into (p− 1)/8 pairs depending on which of the (p− 1)/8 subgroups isomorphic to D8 containing
x they contain and the Dp−1 consisting of x contains all of these D8 subgroups and so it has intersection of
size 8 with any of the S4s containing x.

This approach works for all of the 8 cases mod 24 that can arise, giving slightly different results for each.
If p ≡ ±3 (mod 8), then the intersections of the maximal subgroups containing x are always just C|x| for

|x| = 3 and are Cp±1 for |x| = 4. If p ≡ ±1 (mod 8), then let |x| = 3 or 4 and suppose |x|
∣

∣ p± 1. Then, the
intersection between the subgroup isomorphic to Dp±1 and each of the (p± 1)/|x| subgroups isomorphic to
S4 containing x is D2|x|. Finally, the S4s are split into (p ± 1)/(2|x|) pairs where each pair has intersection
isomorphic to D2|x|. In any other case, the intersection is just C|x|. We summarize this all in the Tables 3
through 10.

Now, we can use the principle of inclusion exclusion (PIE) to count the size of SolG(x) which is the union
of the copies of maximal subgroups containing x, for |x| = 3 or 4. This is a simple calculation that follows
the same steps we used when G = PSL(2, 3p) and |x| = 2. So we omit the details and put the final results
in the Tables 3 through 10.

We continue to the |x| = 2 case. To calculate the number of each isomorphism type of maximal subgroup
containing x, we use the same method as for the |x| = 3 or 4 case. We summarize the technique in the
following table where we assume p ≡ ±1 (mod 4):

Cp ⋊ C(p−1)/2 Dp−1 Dp+1 A4 or S4

Copies of maximal subgroup in G p+ 1 p(p+1)
2

p(p−1)
2

p(p+1)(p−1)
24

Involutions in maximal subgroup 1±1
2

p−1
2 + 1±1

2
p+1
2 + 1∓1

2 3 or 9

Maximal subgroups containing x 1± 1 p+1
2

p+1
2 ∓ 1 p∓1

4 or 3(p∓1)
4

Table 11. Classification of involutions and subgroups in G when G = PSL(2, p)

The first row gives the number of subgroups of G isomorphic to each type of maximal subgroup, the second
gives the number of involutions in each one of these subgroups, and the last uses Lemma 2.12 and the number
of involutions in G to give the number of maximal subgroups of each type that contain an involution x. We
use these values to populate the first column of Tables 3 to 10. Now, based on the definition of SolG(x),
it would seem natural to once again look at the intersections between these. However, for involutions this
becomes very difficult. So we will find |SolG(x)| using Lemma 3.3 instead.

To apply this lemma, consider the following. Define Gi := {g ∈ G | |g| = i} for i = 1, 2, 3, 4, or p and let
Gp±1 := {g ∈ G | |g|

∣

∣ p ± 1}. Then, as we have shown above, for any i ∈ {1, 2, 3, 4, p, p± 1}, SolG(y) has
the same structure for any y ∈ Gi. In particular, we have partitioned G into seven sets based on the order
of the elements for which the number of involutions in SolG(y) is constant on each set. So we want to find
how many elements are in each of these seven sets and how many involutions are in SolG(y) for a y in each
one. We will sum the product of these over the seven sets and then divide by the number of involutions in
G to get |SolG(x)| for an involution.

First, we will to count the number of elements in each of the Gi. We shall specifically look at the case
p ≡ 17 (mod 24) but the other cases are very similar (and in fact even easier). In this case, 3

∣

∣ p + 1 and

4
∣

∣ p − 1 so we know that there are p(p − 1)/2 and p(p + 1)/2 cyclic subgroups isomorphic to C3 and C4

respectively which gives p(p − 1) and p(p + 1) elements of order 3 and 4 respectively in G. Further, there
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are p(p+ 1)/2 involutions and clearly the identity element. There are p+ 1 cyclic groups isomorphic to Cp

in G which gives (p+ 1)(p− 1) = p2 − 1 elements of order p.
For the elements of order dividing p±1 but greater than 4, we note that |x|

∣

∣ (p±1)/2 since these elements
are contained in C(p±1)/2 subgroups. So again, we look at the p(p∓ 1)/2 cyclic subgroups of order (p± 1)/2.
To count the number of elements with order greater than 4, we subtract the number of elements of order 1,
2, 3, or 4 from |C(p±1)/2|. There is the one identity element. In this case, since 3

∣

∣ p+1, there are two order

3 elements in C(p+1)/2 and zero in C(p−1)/2. Since 4
∣

∣ p− 1, there is an order 2 element in C(p−1)/2 and zero

in C(p+1)/2. Finally, since 8
∣

∣ p− 1, there are two order 4 elements in C(p−1)/2 and zero in C(p+1)/2.
Hence, we get that each C(p−1)/2 contains (p−1)/2−4 elements of order greater than 4 while each C(p+1)/2

contains (p + 1)/2 − 3 elements of order greater than 4. So the total number of elements of order dividing
p− 1 (resp. p+ 1) but greater than 4 in G is p(p+ 1)/2 · ((p− 1)/2− 4) (resp. p(p− 1)/2 · ((p+ 1)/2− 3).)

Now, we want to calculate the number of involutions in SolG(y) for an element y of each order, again
looking specifically at the p ≡ 17 (mod 24) case. If y is itself an involution, we use the fact that the subgroup
generated by two involutions is always either a cyclic group or a dihedral group, both of which are soluble.
Hence, the number of involutions in SolG(y) is just the total number of involutions in G, namely p(p+1)/2.
Similarly, if y is the identity, every involution is in SolG(y). Next, we seek to count the number of involutions
in SolG(y) for |y| = 3 or 4.

Recreating the important columns of Table 8 for ease of reference, we have:

Maximal Subgroup |y| = 3 |y| = 4

Cp ⋊ C(p−1)/2 0 2
Dp−1 0 1
Dp+1 1 0
S4 (p+ 1)/3 (p− 1)/4

|SolG(y)| 7(p+ 1) (p− 1)(p+ 4)

Table 12. Classification of SolG(y) for |y| = 3, 4 for G = PSL(2, p) when p ≡ 17 (mod 24)

If |y| = 3. There are nine involutions in each of the (p + 1)/3 copies of S4 containing y and (p + 1)/2
involutions in Dp+1 since 4

∣

∣∤ p+1 so we do not have a rotational involution. So there are (p+1)/2+9·(p+1)/3
total involutions. Now, we look at the intersections. When an intersection is isomorphic to C3, it contains
no involutions so we may ignore it. Then, there are (p + 1)/3 intersections between Dp+1 and S4 which
are isomorphic to D6, there are (p + 1)/6 intersections between two S4s isomorphic to D6, and there are
(p+ 1)/6 three-way intersections isomorphic to D6. These latter two cancel out using PIE. In D6, there are
three involutions so we must subtract 3 · (p+1)/3 = p+1 from the initial calculation which gives 5(p+1)/2
total involutions in SolG(y) for |y| = 3.

Next let |y| = 4. Again, there are nine involutions in each copy of S4, and (p − 1)/2 + 1 = (p + 1)/2
involutions in Dp−1 since 4

∣

∣ p − 1 as we have a rotational involution. Further, since 4
∣

∣ p − 1 and so

2
∣

∣ (p−1)/2, there are p involutions in Cp⋊C(p−1)/2. Adding these all up gives p ·2+(p+1)/2 ·1+9 ·(p−1)/4
total involutions. As described above, we now have intersections either isomorphic to C(p−1)/2 which has one
involution, C4 which has one involution, or D8 which has five involutions. We shall first assume that every
intersection is one of the first two and then subtract off the extra four involutions for each of the intersections
which are D8.

In total, there are (p− 1)/4 + 1 + 2 maximal subgroups that contain y, so applying PIE as before

(p−1)/4+3
∑

i=2

(−1)i+1

(

(p− 1)/4 + 3

i

)

= −
(

(p− 1)/4 + 3

1

)

+ 1

by rearranging the expression for (1 − 1)n. As before in the case |y| = 3, there are (p − 1)/4 intersections
between Dp−1 and S4 isomorphic to D8, there are (p− 1)/8 intersections between two S4s isomorphic to D8,
and (p− 1)/8 three-way intersections isomorphic to D8. Again, these last two cancel when doing PIE so we
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need to subtract off 4 · (p− 1)/4 from our sum to account for these dihedral group intersections. Overall, we
thus get that the number of involutions in SolG(y) for |y| = 4 is:

|I(SolG(y))| = 2p+ (p+ 1)/2 + 9(p− 1)/4− (p− 1)/4− 3 + 1− (p− 1) = (7p− 5)/2.

Thus, the number of involutions in SolG(y) for |y| = 3, 4 is 5(p + 1)/2 and (7p − 5)/2 respectively. For
|y| = p, we have SolG(y) = Cp⋊C(p−1)/2 which contains one involution since (p−1)/2 is even. For |y|

∣

∣ p−1,

we can easily use PIE to see that there are (5p− 3)/2 involutions in SolG(y) and finally, for |y|
∣

∣ p+1, there
are (p+ 1)/2 involutions in SolG(y).

We can now use Lemma 3.3 to compute |SolG(x)| for x an involution, nothing that the number of invo-
lutions in G is p(p+ 1)/2.

|SolG(x)| =
2

p(p+ 1)

[

1 · p(p+ 1)

2
+

p(p+ 1)

2
· p(p+ 1)

2
+ p(p− 1) · 5(p+ 1)

2
+ p(p+ 1) · (7p− 5)

2

+ (p2 − 1) · p+ p(p+ 1)

2

(

p− 1

2
− 4

)

· 5p− 3

2
+

p(p− 1)

2

(

p+ 1

2
− 3

)

·
(

p+ 1

2

)

]

= 2p2 + p− 3 = (p− 1)(2p+ 3).

We can follow the exact same procedure for each of the other cases to compute |SolG(x)| which we put in
the Tables 3 through 10.

�

Theorem 3.5. Let G = Sz(2p) where p is an odd prime. Then the following table classifies all subsets

SolG(x) for x ∈ G based on the order of x in terms of the number of maximal subgroups of each isomorphism

type contained in SolG(x) and |SolG(x)|. For convenience, we define q± := q ±√
2q + 1.

Maximal Subgroup |x| = 2 |x| = 4 |x|
∣

∣ q − 1 |x|
∣

∣ q+ |x|
∣

∣ q−

(Cp
2 .C

p
2 )⋊ Cq−1 1 1 2 0 0

D2(q−1) q2/2 0 1 0 0
Cq+ ⋊ C4 q2/4 q/2 0 1 0
Cq− ⋊ C4 q2/4 q/2 0 0 1

Intersections ∼= C2 or C4
∼= C4

∼= Cq−1 N/A N/A
|SolG(x)| q2(4q − 3) q2(q + 3) 2q2(q − 1) 4q+ 4q−

Table 13. Classification of SolG(x) for G = Sz(2p)

Proof. We obtain the classification of the isomorphism types of the maximal subgroups of G and that there
is only one conjugacy class of each type of maximal subgroup from [1, Proposition 2] and [5, Theorem 7.3.3].
We also get from [20, Theorem 2] that the set of orders of the elements of G consists of 2, 4, and all factors
of q−1, and q±. The last three columns of Table 13 follow in the exact same way as in the proof of Theorem
3.2. We also calculate the number of copies of the maximal subgroups that contain an element of order 2 or
4 using Lemma 2.12 in the same way as in the proof of Theorem 3.1 after calculating the number of elements
of order 2 and 4 in G.

Any element of order 2 or 4 is contained in a Sylow 2-subgroup of G which is isomorphic to Cp
2 .C

p
2 . We

know this group has q−1 involutions and q(q−1) elements of order 4. Now, we see from [18, Theorem 1] that
all of these Sylow subgroups have pairwise trivial intersections and using [G : NG(C

p
2 .C

p
2 )] = [G : Cp

2 .C
p
2 ], we

can find that there are q2 +1 such subgroups. Hence, there are (q2 +1)(q− 1) and q(q2 +1)(q− 1) elements
of order 2 and 4 in G respectively.

The intersections in the |x| = 4 case are all isomorphic to C4 since C4 is maximal in Cq± ⋊ C4. Then,
|SolG(x)| = q2(q + 3) follows quickly by applying PIE as in the proof of Theorem 3.1. For |x| = 2, the
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intersections can be either C2 or C4 and we approach this analysis as follows. First, since q− 1 is odd, C2 is
maximal in D2(q−1) and so the intersection of D2(q−1) with any of the other maximal subgroups is just C2.

To calculate the intersections of the other maximal subgroups containing x, we first need to figure out how
many subgroups isomorphic to C4 contain each involution. Since all of the involutions in G are conjugate,
they behave in the same way. In particular, any involution, x ∈ G, must have the same number of elements
y of order 4 such that y2 = x. From above, there are (q2 + 1)(q − 1) involutions and q(q2 + 1)(q − 1)
elements of order 4 in G. As for any element y of order 4, y2 is an involution, we can find that the number

of elements y of order 4 such that y2 = x is q(q2+1)(q−1)
(q2+1)(q−1) = q. This gives q/2 subgroups isomorphic to C4

containing x as each C4 contains two distinct elements of order 4 that square to x. All of these subgroups are
clearly contained in the subgroup (Cp

2 .C
p
2 )⋊ Cq−1 consisting of x because it contains the Sylow 2-subgroup

consisting of x.
There is only one conjugacy class containing all of the involutions in Cq+⋊C4. Each involution is contained

in a unique C4 in Cq+ ⋊ C4. Thus, for a given x ∈ G and a given Cq+ ⋊ C4 containing x, there is exactly
one C4 ≤ Cq+ ⋊C4 that contains x. Further, we know that all of the q/2 subgroups isomorphic to C4 which
contain x are conjugate in G so any specific C4 cannot be contained in the more copies of Cq+ ⋊C4s. Indeed,

each C4 that contains x must be contained in exactly (q2/4)/(q/2) = q/2 of the Cq+ ⋊ C4s that contain x.
Any two of these groups that contain the same C4 clearly have intersection isomorphic to this C4 since

C4 is maximal so it cannot be larger. And two groups that contain different C4s must only intersect at
〈x〉 ∼= C2. Hence, we have split the q2/4 copies of Cq+ ⋊ C4 into q/2 sets of each q/2 copies, where within
each set, the intersection is C4 and between sets, it is just C2.

We apply similar logic to the Cq− ⋊C4 subgroups that contain x and get the same result. In addition, we
see that these sets actually overlap in the sense that a given copy of C4 containing x, is contained in exactly
q/2 copies of both Cq+ ⋊ C4 and Cq− ⋊ C4.

Hence, summarizing the above analysis, we have the following figure:

(Cp
2 .C

p
2 )⋊ Cq−1

Cq+ ⋊ C4 · · · Cq+ ⋊ C4 · · · Cq+ ⋊ C4 · · · Cq+ ⋊ C4

Cq− ⋊ C4 · · · Cq− ⋊ C4 · · · Cq− ⋊ C4 · · · Cq− ⋊ C4

Figure 2. C4 intersections of maximal subgroups containing an involution in Sz(2p)

where lines between subgroups represent when the intersection is not just C2, and there are q/2 complete
blocks containing q/2 copies each of Cq+ ⋊ C4 and Cq− ⋊ C4. Finally, as in the calculation of |SolG(x)| for
|x| = 2 in Theorem 3.2, we can use PIE and subtract off all of the extra intersections we get where the
intersections have size 4 instead of 2. We omit the calculation here and merely report that the union of these
maximal subgroups has size

|SolG(x)| = q2(4q − 3).

�

Theorem 3.6. Let G = PSL(3, 3). Then the following table classifies all subsets SolG(x) for x ∈ G based on

the order of x in terms of the number of maximal subgroups of each isomorphism type contained in SolG(x)
and |SolG(x)|.
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Maximal Subgroup |x| = 2 |x| = 3 |x| = 3 |x| = 4 |x| = 6 |x| = 8 |x| = 13

(C2
3 ⋊Q8)⋊ C3 10 2 8 2 4 2 0
C13 ⋊ C3 0 6 0 0 0 0 1

S4 18 3 2 2 0 0 0

|SolG(x)| 2832 1026 2376 848 1368 816 39
|NG(〈x〉)| 48 18 108 16 12 16 39

Table 14. Classification of SolG(x) for G = PSL(3, 3)

Proof. We used GAP [11] to directly compute how many copies of each maximal subgroup contain an
element in each conjugacy class. The intersections are quite complicated so we leave their classification to
the appendix but this was also just computed in GAP. Note that this is the only example of a minimal
simple group for which SolG(x) depends on more than just the order of x so we clarify that by distinguishing
between these columns with the order of NG(〈x〉). �

4. Graphical Properties

In this section, we will focus on the solubility graphs associated to the finite groups. In [2, 6, 7], many
properties of this graph have been studied. We prove some properties regarding Eulerian cycles, Hamiltonian
cycles and the colorability of this graph.

We first recall that the solubility graph of G, denoted ΓS(G), is defined as a graph whose vertex set is G,
and there is an edge between x and y when 〈x, y〉 is soluble. As discussed in the introduction [Section 1],
the soluble radical of G, R(G), coincides with the set of universal vertices of the graph ΓS(G), namely the
vertices that are adjacent to every other vertex of the graph. As a result of Thompson’s Theorem, given a
soluble group G, the solubility graph ΓS(G) is complete. So, to explore the graphical properties we consider
only insoluble groups G and focus on the induced solubility graph of G which is the induced subgraph of
ΓS(G) on the set G \ R(G). We denote this graph by ∆S(G).

Now, we recall some relevant definitions in graph theory. A graph Γ is called Eulerian if it contains an
Eulerian cycle which is a trail that starts and ends at the same vertex and passes through each edge of Γ
exactly once. A graph Γ is Hamiltonian if it contains a Hamiltonian cycle which is a cycle visiting each
vertex of Γ exactly once. The chromatic number of a graph Γ, denoted χ(Γ), is the minimal number of colors
required to color the vertices such that no two adjacent vertices are the same color.

Lemma 4.1. Given an insoluble finite group G, ΓS(G) is not Eulerian.

Proof. As a well-known result in graph theory, a connected graph is Eulerian if and only it has no graph
vertices of odd degree. As the solubility graph ΓS(G) is connected, we can use this equivalent condition.
Assume that ΓS(G) is Eulerian. By definition of the solubility graph, dG(x) = |SolG(x)| − 1. Let x be an
element of R(G). Then we have |SolG(x)| = |G| = 2n + 1 where n is a positive integer. Thus, G has odd
order which implies that G is soluble by the Feit-Thompson theorem, a contradiction. �

Lemma 4.2. For a finite group G, if ∆S(G) has a Hamiltonian cycle, then ΓS(G) does too.

Proof. Any element in R(G) is connected to all other elements in the graph ΓS(G). Hence, we can perform
the Hamiltonian cycle in ∆S(G) except for the final edge, then progress through all of the elements in R(G),
before ending where we started to give a Hamiltonian cycle in ΓS(G). �

The converse of Lemma 4.2 need not be true since ΓS(G) can have many more connections than ∆S(G).

Lemma 4.3. Let G be a finite group. Then χ(ΓS(G)) = χ(∆S(G)) + |R(G)|.

Proof. This is easy to show using the fact that every element of R(G) is joined to every other element in
the group. In fact, given a proper n-coloring of ∆S(G), we can extend this to a proper (n+ |R(G)|)-coloring
of ΓS(G) by simply coloring each of the elements of R(G) a distinct color that we have not used so far for
∆S(G). It is also clear that we cannot obtain a proper coloring with fewer colors. �
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As we can see in Lemmas 4.1, 4.2, and 4.3, we can learn a lot about ΓS(G) from the induced solubility
graph ∆S(G). Thus, we presently turn our attention to this graph for the rest of our analysis in this paper.

Theorem 4.4. Given an insoluble finite group G, ∆S(G) is Eulerian if and only if |R(G)| is odd and for

any element x in G, |SolG(x)| is even.

Proof. We first note that according to [2, Corollary 2.2], the induced solubility graph ∆S(G) is always
connected. Then, the reverse direction of the statement is easy to show using the definition of ∆S(G)
since d∆(x) = |SolG(x)| − |R(G)| − 1 is even for any vertex in G \ R(G) where d∆(x) is the degree of
x. To prove the forward direction, assume d∆(x) is even for all x ∈ G \ R(G). Then, if |R(G)| is even,
so too is |SolG(x)| by Lemma 2.1, a contradiction to d∆(x) being even. So |R(G)| is odd and then using
|SolG(x)| = d∆(x) + |R(G)| + 1, we clearly see that |SolG(x)| must be even for any x ∈ G \ R(G). Finally,
for an element x ∈ R(G), we have |SolG(x)| = |G| is even as G is insoluble. �

Theorem 4.5. If G = PSL(2, 2p) for p a prime, then ∆S(G) has a Hamiltonian cycle.

Proof. We will start and end our cycle at an involution. The subgroup generated by any two involutions
is a dihedral group which is soluble. So the involutions of G form a complete subgraph of ∆S(G). Also by
the proof of the characterization of the solubilizers in Theorem 3.1, we get that it suffices that we cover all
involutions, copies of Cq−1, and copies of Cq+1 since every element is in one of these subgroups. Further,
each of these subgroups is a complete subgraph ∆S(G) since cyclic groups are always soluble. We reproduce
Table 1 here for ease of reference.

Maximal Subgroup |x| = 2 |x|
∣

∣ q + 1 |x|
∣

∣ q − 1

Cp
2 ⋊ Cq−1 1 0 2
D2(q+1) q/2 1 0
D2(q−1) q/2 0 1

Intersections ∼= C2 N/A ∼= Cq−1

|SolG(x)| 3q(q − 1) 2(q + 1) 2q(q − 1)

We first claim that the subgraph induced by all of the Cq−1s contains a Hamiltonian path so for this part
we simply need to choose a starting and ending involution. We know that there are a total of q+1 subgroups
of G isomorphic to Cp

2 ⋊Cq−1 by [16, Theorem 2.1]. From Theorem 3.1, each Cq−1 is the intersection of two

copies of Cp
2 ⋊Cq−1 and there are a total of q(q+1)

2 =
(

q+1
2

)

pairs of Cp
2 ⋊Cq−1. There are also exactly q(q+1)

2

copies of Cq−1 ([16, Theorem 2.1]). So each Cq−1 is uniquely the intersection of two copies of Cp
2 ⋊ Cq−1.

Now, we label all of the copies of Cp
2 ⋊ Cq−1 as A1,A2, ...,Aq+1 in any random order since there are q + 1

total. Let Bi = Ai ∩ Ai+1 and we know that every Bi is a copy of Cq−1 since every intersection is a Cq−1.
So then we can find an involution in A1 and have it connect to all of the copies of Cq−1 in A1 in any

order, finishing with an element in B1. Then when we are at B1 we can connect to all of the copies of Cq−1

in A2, finishing with an element in B2. We can continue this process until we finish with all of the copies of
Cq−1 in Aq+1. Note that we skip the copies of Cq−1 that we have already covered. Further, at each step, we
know that we have not visited the Bi before we get to it. This is because Bi

∼= Cq−1 is defined as Ai ∩Ai+1

and so it cannot be in any Aj with j < i since it is in exactly two Ais from Table 1. Also note that this
path would cover every copy of Cq−1 since each of these is in exactly two Ais and we have reached every Ai.
Once we reach Aq+1 we can return to any involution in Aq+1. So then we can use this involution for the
remaining path.

Next, we deal with the Cq+1 subgroups. First, we show that the intersection of any two D2(q+1)s is a
unique subgroup isomorphic to C2. Let D and D′ be two specified subgroups of G isomorphic to D2(q+1).
From the classification of the intersections of the maximal subgroups containing involutions in Table 1, we
know that D ∩ D′ ≤ C2. We show that the intersection of D with any D′ is nontrivial. We first note
that as D2(q+1) has q + 1 involutions and each of these involutions is contained in exactly q/2 copies of
D2(q+1), we see that there are (q+1)(q/2− 1) subgroups isomorphic to D2(q+1) other than D which contain
its involutions. This is because two involutions in D cannot both be contained in the same other D′ as
otherwise |D∩D′| > 2. However, (q+1)(q/2− 1) = q(q− 1)/2− 1 is the total number of D2(q+1) subgroups
of G other than D by using [16, Theorem 2.1]. This means that every D2(q+1) in G contains an involution
that is contained in D so the intersection of D with any other D2(q+1) is nontrivial and must be exactly C2.
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Now, consider ordering the D2(q+1)s in some arbitrary order, say labelling them as B1, B2, . . . , Bq(q−1)/2.
Since the intersection of any two D2(q+1) is isomorphic to a unique C2, we have q(q − 1)/2 − 1 involutions

that occurs between Bi and Bi+1 for 1 ≤ i ≤ q(q − 1)/2. There are q2 − 1 total involutions in G and we
started with an involution so we may pick any of the remaining q2 − 2− (q(q− 1)/2− 1) = (q2 + q− 2)/2 to
transition from the Cq−1 to the Cq+1 subgroups. Then, we go through the Bis as detailed above, completing
each Cq+1 subgroup and then using the unique involution in Bi ∩Bi+1 to get to the next D2(q+1). If it turns
out that an involution we need to progress from Bi to Bi+1 was used as the starting point of the whole cycle,
we can simply choose a different involution to start that is in A1. At the end, we are guaranteed that there
are many involutions left to choose from Bq(q−1)/2. Finally, we can clean up the remaining involutions since
they form a complete subgraph of ∆S(G), ending on the involution we originally used to start the cycle. So
the proof is complete. �

Theorem 4.6. If G = PSL(2, 3p) for p an odd prime or G = PSL(2, p) for p a prime with p ≡ 19 (mod 24)
and p ≡ 2 or 3 (mod 5), then ∆S(G) never has a Hamiltonian cycle.

Proof. We show that forG = PSL(2, 3p),∆S(G) cannot have a Hamiltonian cycle. The proof for PSL(2, p), p ≡
19 (mod 24) is similar. We reproduce Table 2 above classifying the solubilizers of elements in G:

Maximal Subgroup |x| = 2 |x| = 3 |x|
∣

∣ q − 1 |x|
∣

∣ q + 1

Cp
3 ⋊ C(q−1)/2 0 1 2 0

Dq−1 (q + 1)/2 0 1 0
Dq+1 (q + 3)/2 0 0 1
A4 (q + 1)/4 q/3 0 0

Intersections ∼= C2 or C2
2

∼= C3
∼= C(q−1)/2 N/A

|SolG(x)| q(q + 1) q(q + 5)/2 q(q − 1) q + 1

Consider an element x of order dividing q+1. From the proof of Theorem 3.2, we see that x is contained in
exactly one subgroup isomorphic to C(q+1)/2 which is contained in exactly one Dq+1, and so SolG(x) ∼= Dq+1.
Then, we notice that the order of an element in Dq+1 can only be 2 or some other divisor of q + 1. Thus,
in ∆S(G), we have that x is only adjacent to involutions or other elements in the unique C(q+1)/2 subgroup
that contains x. If we want to make a Hamiltonian cycle in ∆S(G), we need to reach every Dq+1 subgroup
at least once such that we reach all of these non-involutions of order dividing q + 1. For each Dq+1 that we
visit, we must also visit an involution before and after all of the elements of order dividing q+1 because this
is the only way to get in to/out of the Dq+1.

However, we note from before that there are q(q−1)/2 involutions in G and there are also exactly q(q−1)/2
subgroups isomorphic to Dq+1. Thus, there are too few involutions to visit one before and after each Dq+1

that we visit. Indeed, we would need at least one more involution that Dq+1 subgroups for this to work.
Hence, ∆S(G) can never have a Hamiltonian cycle. For G = PSL(2, p), the exact same logic applies to the
Dp+1 subgroups of which there are p(p− 1)/2 which is equal to the number of involutions in G. �

5. Conjectures and Corollaries

Corollary 5.1. Let G be a minimal simple group. For all x ∈ G, we have |NG(〈x〉)|
∣

∣ |SolG(x)|.
Proof. This is an easy check using the structure of the minimal simple groups to find the normalizers of
cyclic subgroups and using the values of |SolG(x)| computed in the classification tables in Section 3. �

Conjecture 5.2. [17, Conjecture 3] For a group G and any element x ∈ G, we have |NG(〈x〉)|
∣

∣ |SolG(x)|.
Remark: We have computationally verified this using GAP for all simple groups of order less than 2

million.

Corollary 5.3. If G is a minimal simple group and x ∈ G, then |SolG(x)| 6= pn for an odd prime p and

positive integer n.

Proof. This follows immediately from the tables in Section 3 giving |SolG(x)| for the minimal simple groups.
�
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Corollary 5.4. Let G be a minimal simple group and x ∈ G. Then, |SolG(x)| = 2n if and only if we are in

the following case: G = PSL(2, 2n − 1) for n ≡ 3 (mod 4), n > 3 where 2n − 1 is a Mersenne prime, and

|x| = 2m for 2 < m < n.

Proof. Again, this follows immediately from the tables in Section 3 giving |SolG(x)| for the minimal simple
groups. For instance, if G = PSL(2, 127) and |x| = 8, 16, 32, or 64, then |SolG(x)| = 128. �

Conjecture 5.5. [17, Conjecture 2] If G is any finite insoluble group, then |SolG(x)| 6= pn for any odd prime

p and positive integer n.

Remark: We have computationally verified this using GAP for all simple groups of order less than 2
million. Note that in [17, Conjecture 1], it was also speculated that if |SolG(x)| = 2n, then SolG(x) is a
subgroup of G. We computationally find a counterexample. Namely, if G = A8 and x is an order 4 element
in the conjugacy class containing (1, 2, 3, 4)(5, 6), then |SolG(x)| = 1024 but clearly SolG(x) is not a subgroup
of G since 1024

∣

∣∤ |G|.
As mentioned in the introduction, a finite group is soluble if any 2-generated subgroup is soluble. In [13],

the authors provided a probabilistic version of this result as follows. Given a finite group G, if the probability
that two randomly chosen elements of G generate a soluble group is greater than 11/30, then G is soluble.

Given an element x in a finite group G, we introduce the solubilizer probability of x, denoted by PS(x),
as follows:

PS(x) =
|SolG(x)|

|G| .

Given the minimal simple groups, we noticed that in most of the cases for any nontrivial element x other
than involutions, PS(x) ≤ 1

2 . Indeed, we can state the following corollary:

Corollary 5.6. Let G be a minimal simple group and x be a nontrivial element of G. Then PS(x) >
1
2 if

and only if one of the following cases is satisfied:

(1) G = A5, x is any involution, and PS(x) =
3
5 ,

(2) G = PSL(2, 7), x is any involution, and PS(x) =
11
21 ,

(3) G = PSL(3, 3), x is any involution, and PS(x) =
59
117 .

Proof. Using all information about |SolG(x)| obtained in the tables in Section 3, it is not hard to find the
result. �

Using GAP, we computed the solubilizer probability numbers for the non-abelian simple groups of various
orders not exceeding 2 million. In fact, except for the three minimal simple groups listed in Corollary 5.6,
we have only found one other group with PS(x) >

1
2 , namely an involution x of the orthogonal group O(5, 3)

with PS(x) =
5
9 . So the following conjecture arises:

Conjecture 5.7. Let G be an insoluble group. Then for all elements x ∈ G \ R(G), we have PS(x) ≤ 3
5 .

Furthermore, given a nontrivial element x ∈ G which is not an involution, we have PS(x) <
1
2 .

Corollary 5.8. If G is a minimal simple group and x ∈ G, then SolG(x) = NG(〈x〉) if and only if one of

the following cases is satisfied:

(1) G = PSL(2, 2p) where p is a prime and |x|
∣

∣ 2p + 1,

(2) G = PSL(2, 3p) where p is an odd prime, and |x|
∣

∣ 3p + 1 when |x| 6= 2,

(3) G = PSL(2, p) where p is a prime with p ≡ 2 or 3 (mod 5), and |x|
∣

∣ p+ 1 when |x| > 4,
(4) G = PSL(2, p) where p is a prime with p ≡ 2 or 3 (mod 5), and |x| = p,
(5) G = Sz(2p) where p is an odd prime and |x|

∣

∣ 2p + 2(p+1)/2 + 1,

(6) G = Sz(2p) where p is an odd prime and |x|
∣

∣ 2p − 2(p+1)/2 + 1,
(7) G = PSL(3, 3) and |x| = 13.

Proof. This follows immediately from the tables in Section 3. �

Corollary 5.9. Given a minimal simple group G, we obtain the following bounds on the chromatic number

of ∆S(G):

(1) If G = PSL(2, 2p) where p a prime, then 22p − 1 ≤ χ(∆S(G)) ≤ 3 · 2p(2p − 1)− 2,
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(2) If G = PSL(2, 3p) where p an odd prime, then
3p(3p−1)

2 ≤ χ(∆S(G)) ≤ 3p(3p + 1)− 2,

(3) If G = PSL(2, p) where p is a prime with p ≡ 2 or 3 mod 5, then p(p−1)
2 ≤ χ(∆S(G)) ≤ (p− 1)(2p+

3)− 2,
(4) G = Sz(2p) where p is an odd prime, then (22p + 1)(2p − 1) ≤ χ(∆S(G)) ≤ 22p(4 · 2p − 3)− 2,
(5) G = PSL(3, 3), then 431 ≤ χ(∆S(G)) ≤ 2830.

Proof. The lower bounds follow from the number of colors that we need for involutions as they form a
complete subgraph. So we require at least as many colors as the the number of involutions. The upper
bounds follow from Brook’s theorem and the maximum degree of vertices that we computed due to our
classifications of the solubilizers in minimal simple groups. The lower bound for PSL(3, 3) comes from the
maximal subgroup (C2

3 ⋊Q8)⋊C3 of size 432 which is soluble and so forms a complete subgraph of ∆S(G)
with 431 vertices. �

We can also use Lemma 4.4 to find the minimal simple groups G such that ∆S(G) is Eulerian.

Corollary 5.10. Let G be a minimal simple group. Then ∆S(G) is Eulerian if and only if G is not one of

the following cases:

(1) G = PSL(2, p) for p > 3 a prime such that p ≡ 3 or 7 (mod 20),
(2) G = PSL(3, 3).

Proof. This immediately follows from the tables in Section 3 classifying |SolG(x)| for minimal simple groups
and Theorem 4.4. �

6. Computational Results

All code, matrices and explicit results can be found in the following Github repository.

https://github.com/jchuharski/GroupsOnGraphs

In the following lemma, we computationally improve the bounds on the chromatic number of ∆S(G) for
some small simple groups which is based on some computational results.

Lemma 6.1. Given the following groups G, the bounds on the chromatic number of ∆S(G) are as follows:

(1) If G = A5 = PSL(2, 4), then χ(∆S(G)) = 15,
(2) If G = PSL(2, 8), then χ(∆S(G)) = 63,
(3) If G = PSL(2, 16), then χ(∆S(G)) = 255,
(4) If G = PSL(2, 7), then 23 ≤ χ(∆S(G)) ≤ 28,
(5) If G = PSL(2, 11), then 55 ≤ χ(∆S(G)) ≤ 56,
(6) If G = PSL(2, 13), then 91 ≤ χ(∆S(G)) ≤ 92,
(7) If G = PSL(2, 17), then 153 ≤ χ(∆S(G)) ≤ 155,
(8) If G = PSL(2, 19), then 171 ≤ χ(∆S(G)) ≤ 174,
(9) If G = A6, then 45 ≤ χ(∆S(G)) ≤ 47,
(10) If G = A7, then 105 ≤ χ(∆S(G)) ≤ 107,
(11) If G = PSL(3, 3), then 431 ≤ χ(∆S(G)) ≤ 441.

Proof. As in Corollary 5.9, we obtain the lower bounds from the number of involutions in these groups,
which we can compute directly using GAP. For the upper bounds, we employ a greedy coloring algorithm
which runs through the vertices in the graph and assigns to each the lowest number that it is not adjacent
to. While this does not guarantee optimal coloring, it necessarily produces a proper coloring, hence resulting
in an upper bound on the chromatic number. In the first three cases, we obtain a proper coloring with the
lower bound and thus must have equality. Similar to how we tightened the lower bound for PSL(3, 3) in
Corollary 5.9, for PSL(2, 7), we use the subgroup S4 to get a lower bound of 23 instead of 21 which is the
number of involutions. �

Lemma 6.2. We computationally obtain Hamiltonian cycles ∆S(G) for the following groups: A5,A6,PSL(2, 7),
PSL(2, 8),PSL(2, 11),PSL(2, 13),PSL(2, 16),PSL(2, 17),PSL(3, 3). As proved previously, for PSL(2, 19) this
is impossible.
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Proof. First, we use a GAP program to produce an adjacency matrix for ∆S(G) by checking which pairs of
elements generate a soluble subgroup of G. Then, we use Julia [4] to implement a greedy random algorithm
to find a Hamiltonian cycle in this graph. At each step, we randomly move to the neighbor with the least
number of neighbors that we still need to get to. The output is in the Github linked above and takes the
form of a list of indices, corresponding to the non-identity elements of G, listed in the order given by the
GAP command List(G). �
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Appendix

The intersections between maximal subgroups containing x for G = PSL(3, 3).
Case 1: |x| = 2.

- (C2
3 ⋊Q8)⋊ C3 ∩ (C2

3 ⋊Q8)⋊ C3
∼= (C2

3 ⋊ C3)⋊ (C2
2 ). Occurs 12 times.

- (C2
3 ⋊Q8)⋊ C3 ∩ (C2

3 ⋊Q8)⋊ C3
∼= S3 × S3. Occurs 20 times.

- (C2
3 ⋊Q8)⋊ C3 ∩ (C2

3 ⋊Q8)⋊ C3
∼= GL(2, 3). Occurs 13 times.

- (C2
3 ⋊Q8)⋊ C3 ∩ S4 ∼= D8. Occurs 60 times.

- (C2
3 ⋊Q8)⋊ C3 ∩ S4 ∼= C2 × C2. Occurs 72 times.

- (C2
3 ⋊Q8)⋊ C3 ∩ S4 ∼= S3. Occurs 48 times.

- S4 ∩ S4 ∼= D8. Occurs 15 times.
- S4 ∩ S4 ∼= C2. Occurs 96 times.
- S4 ∩ S4 ∼= C2 × C2. Occurs 18 times.
- S4 ∩ S4 ∼= S3. Occurs 24 times.

Case 2: |x| = 3, |NG(〈x〉)| = 18.

- S4 ∩ (C2
3 ⋊Q8)⋊ C3

∼= S3. Occurs 6 times.
- S4 ∩ S4 ∼= S3. Occurs 3 times.
- S4 ∩C13 ⋊ C3

∼= C3. Occurs 18 times.
- (C2

3 ⋊Q8)⋊ C3 ∩ (C2
3 ⋊Q8)⋊ C3

∼= (C2
3 ⋊ C3)⋊ (C2

2 ). Occurs 1 times.
- (C2

3 ⋊Q8)⋊ C3 ∩C13 ⋊ C3
∼= C3. Occurs 12 times.

- C13 ⋊ C3 ∩ C13 ⋊ C3
∼= C3. Occurs 15 times.

Case 3: |x| = 3, |NG(〈x〉)| = 108.

- (C2
3 ⋊Q8)⋊ C3 ∩ (C2

3 ⋊Q8)⋊ C3
∼= GL(2, 3). Occurs 9 times.

- (C2
3 ⋊Q8)⋊ C3 ∩ (C2

3 ⋊Q8)⋊ C3
∼= (C2

3 ⋊ C3)⋊ (C2
2 ). Occurs 7 times.

- (C2
3 ⋊Q8)⋊ C3 ∩ (C2

3 ⋊Q8)⋊ C3
∼= S3 × S3. Occurs 12 times.

Case 4: |x| = 4

- (C2
3 ⋊Q8)⋊ C3 ∩ (C2

3 ⋊Q8)⋊ C3
∼= GL(2, 3). Occurs 1 time.

- (C2
3 ⋊Q8)⋊ C3 ∩ S4 ∼= D8. Occurs 4 times.

- S4 ∩ S4 ∼= D8. Occurs 1 time.

Case 5: |x| = 6.

- (C2
3 ⋊Q8)⋊ C3 ∩ (C2

3 ⋊Q8)⋊ C3
∼= (C2

3 ⋊ C3)⋊ (C2
2 ). Occurs 3 times.

- (C2
3 ⋊Q8)⋊ C3 ∩ (C2

3 ⋊Q8)⋊ C3
∼= S3 × S3. Occurs 2 times.

- (C2
3 ⋊Q8)⋊ C3 ∩ (C2

3 ⋊Q8)⋊ C3
∼= GL(2, 3). Occurs 1 time.

Case 6: |x| = 8.

- (C2
3 ⋊Q8)⋊ C3 ∩ (C2

3 ⋊Q8)⋊ C3
∼= GL(2, 3). Occurs 1 time.

Case 7: |x| = 13.

- No intersections.
20



References

[1] S. Abe, A characterization of some finite simple groups by orders of their soluble subgroups, Hokkaido Math. J., 31, (2002)
349-361.

[2] B. Akbari, M. L. Lewis, J. Mirzajani and A. R. Moghaddamfar, The solubility graph associated with a finite group, Internat.
J. Algebra Comput. 30(8) (2020) 1555-1564.

[3] B. Akbari, C. Delizia, and C. Monetta, On the solubilizer of an element in a finite group. Mediterr. J. Math., 20, 135
(2023).

[4] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A Fresh Approach to Numerical Computing. SIAM, 59 (1),
(2017).

[5] J. N. Bray, D. F. Holt, and C. M. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups,
Cambridge University Press, (2013).

[6] P. Bhowal, D. Nongsiang, and R. K. Nath, Solvable graphs of finite groups. Hacet. J. Math. Stat., 49 (6), (2020) 1955-1964.
[7] T. C. Burness, A. Lucchini, and D. Nemmi, On the soluble graph of a finite group, J. Comb., 194 (2023).
[8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups Clarendon Press, Oxford

University Press, Eynsham, (1985).
[9] D. S. Dummit and R. M. Foote, Abstract Algebra. 3rd Edition, John Wiley & Sons, Inc, Hoboken, (2004).

[10] P. Flavell, Finite groups in which every two elements generate a soluble group, Invent. Math., 121, (1995) 279-285.
[11] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.12.2 (2022). https://www.gap-system.org.

[12] R. Guralnick, B. Kunyavskĭi, E. Plotkin and A. Shalev, Thompson-like characterization of the solvable radical, J. Algebra,
300 (1), (2006) 363-375.

[13] R. Guralnick and J. S. Wilson, The probability of generating a finite soluble group, Proc. Lond. Math. Soc., 81 (2), (2000),
405-427.

[14] D. Hair-Reuven, Non-solvable graph of a finite group and solvabilizers. ArXiv Preprint, arxiv:1307.2924v1.
[15] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967.
[16] O. H. King, The subgroup structure of finite classical groups in terms of geometric configurations. From Surveys in

Combinatorics, Cambridge University Press, Cambridge, (2005) 29-56.
[17] H. Mousavi, M. Poozesh, and Y. Zamani, The impact of the solubilizer of an element on the structure of a finite group.

Ricerche mat. (2023).
[18] M. Suzuki, Finite groups of even order in which Sylow 2-groups are independent. Ann. Math., 80, (1964), 58-77.
[19] J. H. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable. Bull. Am. Math. Soc., 48 (2), (1973),

511-592.
[20] W. J. Shi, A characterization of Suzuki’s simple groups, PROC, 114 (3), (1992) 589-591.

Banafsheh Akbari, Department of Mathematics, Cornell University, Ithaca, New York, USA, b.akbari@cornell.edu

Jake Chuharski, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts,

USA, chuharsk@mit.edu

Vismay Sharan, Department of Mathematics, Yale University, New Haven, Connecticut, USA, vismay.sharan@yale.edu

Zachary Slonim, Department of Mathematics, University of California, Berkeley, Berkeley, California, USA,

zachslonim@berkeley.edu

21

mailto:b.akbari@cornell.edu
mailto:chuharsk@mit.edu
mailto:vismay.sharan@yale.edu
mailto:zachslonim@berkeley.edu

	1. Introduction
	2. Preliminary Results
	3. Classification Theorems
	4. Graphical Properties
	5. Conjectures and Corollaries
	6. Computational Results
	References

