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Mn3Sn, a metallic antiferromagnet with an anti-chiral 120◦ spin structure, generates intriguing magneto-
transport signatures such as a large anomalous Hall effect, spin-polarized current with novel symmetries,
anomalous Nernst effect, and magneto-optic Kerr effect. When grown epitaxially as MgO(110)[001]∥
Mn3Sn(01̄1̄0)[0001], Mn3Sn experiences a uniaxial tensile strain, which changes the bulk six-fold anisotropy to
a two-fold perpendicular magnetic anisotropy (PMA). Here, we investigate the field-assisted spin orbit-torque
(SOT)-driven dynamics in single-domain Mn3Sn with PMA. We find that for non-zero external magnetic
fields, the magnetic octupole moment of Mn3Sn can be switched between the two stable states if the in-
put current is between two field-dependent critical currents. Below the lower critical current, the magnetic
octupole moment exhibits a stationary state in the vicinity of the initial stable state. On the other hand,
above the higher critical current, the magnetic octupole moment shows oscillatory dynamics which could,
in principle, be tuned from the 100s of megahertz to the terahertz range. We obtain approximate analytic
expressions of the two critical currents that agree very well with the numerical simulations for experimentally
relevant magnetic fields. We also obtain unified functional form of the switching time versus the input current
for different magnetic fields. Finally, we show that for lower values of Gilbert damping (α ≲ 2 × 10−3), the
critical currents and the final steady-states depend significantly on α. The numerical and analytic results
presented in our work can be used by both theorists and experimentalists to understand the SOT-driven order
dynamics in PMA Mn3Sn and design future experiments and devices.

I. INTRODUCTION

Antiferromagnets (AFMs) are a class of magnetic ma-
terials that produce negligible stray fields, are robust to
external magnetic field perturbations, and exhibit res-
onant frequency in the terahertz (THz) regime. These
distinctive properties are a consequence of strong ex-
change interactions between the uniquely arranged spins
of the neighboring atoms, and a negligible net macro-
scopic magnetization.1–4 AFMs are, therefore, consid-
ered as promising candidates for building next generation
magnonic devices, high-density memory devices, and ul-
trafast signal generators.5 Among the various possible
AFMs, noncollinear but coplanar metallic AFMs of the
form Mn3X, with a triangular spin structure, have re-
cently been explored extensively owing to their intrigu-
ing magneto-transport characteristics, such as a large
spin Hall effect (SHE),6 anomalous Nernst effect (ANE),
anomalous Hall effect (AHE)7–10 and magneto-optical
Kerr effect (MOKE),11 ferromagnet-like spin-polarized
currents,12,13 and a finite tunneling magnetoresistance
(TMR).14,15 These noncollinear AFMs are chiral in na-
ture and could be further classified as positive (X = Ir,
Pt, Rh) or negative (X = Sn, Ge, Ga) chirality materials
based on the type of spin interaction.16

Here, we focus on thin-film Mn3Sn, owing to its var-
ious technologically-relevant properties. Bulk Mn3Sn,
which is a six-fold spin-degenerate chiral antiferromag-
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net with a small net magnetization, has a high Néel
temperature of approximately 420 − 430 K.11,17,18 Re-
cent experiments have demonstrated that the magnetic
order parameter in Mn3Sn, referred to as the magnetic
octupole moment, can be switched between the six sta-
ble states using spin-orbit torque (SOT) in a bilayer
setup of AFM and heavy metal (HM).19–23 The criti-
cal charge current density required to switch the mag-
netic octupole moment was found to be of the order of
106−107 A/cm2, which is smaller than or comparable to
that required to switch the magnetization in most ferro-
magnets (∼ 107− 108 A/cm2).24 Some experiments have
also alluded to current-driven oscillations of the octupole
moment, with frequencies in the range of 100’s of MHz
to a few GHz, in the bilayer setup.20,25 In all of these
experiments, the changes in the octupole moment were
detected via the AHE since Mn3Sn exhibits large anoma-
lous Hall conductivity, ranging between 30−40 Ω−1 cm−1

at 300 K, owing to the broken time-reversal symmetry
(TRS).7,26,27 The magnitude and sign of the AHE signal
can be further modulated by the application of small in-
plane tensile or compressive uniaxial strain of the order of
0.1%, as revealed recently.28 Such uniaxial strains alter
the crystal symmetry, followed by the spin degeneracy,
and hence the Hall conductivity.28,29

Thin films of Mn3Sn, when grown epitaxially on
MgO(110)[001] substrate, also experience in-plane tensile
strain, arising from the lattice mismatch between Mn3Sn
and MgO. Consequently, the six-fold spin-degenerate
system reduces to a two-fold spin-degenerate system,
with a comparatively larger net magnetization, leading
to perpendicular magnetic anisotropy (PMA) in such
films.30,31 The AHE measurements further revealed that
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the magnetic octupole moment of the PMA Mn3Sn
films, used in a bilayer setup, can be deterministi-
cally switched in the presence of a symmetry-breaking
magnetic field, which is parallel to the current direc-
tion.30,31 Recently, all antiferromagnetic tunnel junctions
comprising Mn3Sn/MgO/Mn3Sn, utilizing PMA Mn3Sn,
were found to display non-zero TMR of about 2% at
room temperature—owing to the TRS breaking and the
momentum-dependent spin splitting of electronic band
structure.15,32 These promising developments make thin-
film PMA Mn3Sn a strong candidate for future high-
density memory and ultrafast nano-oscillator devices.

For a better understanding of the current-driven dy-
namics, on the theoretical front, Higo et al. presented
a brief numerical investigation of the different possible
steady-states in PMA Mn3Sn, as a function of the ap-
plied current and magnetic field.30 Their study, however,
is limited in its scope as it does not provide an insight
into the dependence of the different dynamical regimes
on the intrinsic energy scale of Mn3Sn, or its material
parameters. Analytic expressions of threshold currents,
switching times, and oscillation frequency as functions of
material parameters and input stimuli are also lacking.
Another recent work, focusing on Mn3Sn with uniaxial
strain, numerically investigated only the field-free oscilla-
tion and pulsed-SOT switching dynamics.29 In their very
recent work, Yoon and Zhang et al. developed analytic
models of the first- and second-harmonic Hall resistances
and successfully validated them against experimental ob-
servation.31 Their analysis, however, was limited to the
quasi-static regime. Previous theoretical works have also
explored current-driven switching and oscillation dynam-
ics in AFMs with two-fold spin degeneracy.33–35 However,
those materials were not representative of Mn3Sn with
uniaxial strain since the net magnetization was consid-
ered zero. In this work, therefore, we address the existing
limitations and investigate, both numerically and analyt-
ically, the magnetic field-assisted SOT-driven determin-
istic switching and oscillation dynamics in monodomain
Mn3Sn, with two stable states.

For the numerical investigation of the static and dy-
namic properties of single-domain Mn3Sn with in-plane
uniaxial strain, an energy interaction model is presented
in Section II of this work. To elucidate the properties of
the ground states as well as their dependence on the ma-
terial parameters, a simpler analytic model of the energy
interaction is perturbatively obtained in Section IIA, and
shown to agree well with the numerical results. Next,
the field-assisted SOT-driven dynamics of the magnetic
order in PMA Mn3Sn is analyzed in Section III. Ana-
lytic models, pertinent to the current-driven dynamics
such as threshold currents, stationary states, switching
time and oscillation frequency, are presented in detail.
Previously, we had utilized this framework to analyze
field-free SOT-driven dynamics in monodomain Mn3Sn
with six states36. In our present work, however, we build
models that elucidate the impact of strain as well as mag-
netic field on the dynamics. The impact of the Gilbert

damping constant on the dynamics is investigated and
the salient features are discussed in Section IV. The field-
assisted SOT-driven dynamics in Mn3Sn with no strain37

and compressive strain is discussed in supplementary ma-
terial, along with a brief discussion of the AHE and the
TMR detection schemes.

II. FREE ENERGY MODEL AND GROUND STATES

Below its Néel temperature, Mn3Sn crystallizes into a
hexagonal Kagome D019 lattice and can only be stabi-
lized in slight excess of Mn atoms. The Mn atoms are
located at the corners of the hexagons whereas the Sn
atoms are located at their respective centers. Such lat-
tices are stacked along the c axis ([0001] direction) in
an ABAB arrangement. A simple representation of the
crystal structure is presented in Fig. 1. In each Kagome
plane, the magnetic moments on the Mn atoms form
a geometrically frustrated noncollinear triangular spin
structure (Fig. 1(a)), with spins on the nearest neighbors
aligned at an angle of approximately 120◦ with respect to
each other.17 These spins are canted slightly toward the
in-plane easy axes, resulting in a small net magnetiza-
tion, which is six-fold degenerate in the Kagome plane.26

Under the application of a small in-plane uniaxial strain,
the system becomes two-fold degenerate, and its net mag-
netization is also altered.28,30,31
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FIG. 1. (a) Atomic and one of the six possible spin arrange-
ments in the basal plane of bulk Mn3Sn. (b) Unit cell of
Mn3Sn.

To investigate the static and the current-driven dy-
namic behavior of a single-domain particle of uniaxially
strained-Mn3Sn, comprising three interpenetrating sub-
lattices, the free energy density is defined as28,30

F (m1,m2,m3) = JE ((1 + δE)m1 ·m2 +m2 ·m3

+m3 ·m1) +DMz · (m1 ×m2 +m2 ×m3

+m3 ×m1)−
3∑

i=1

(
Ke(mi · ue,i)

2
+MsHa ·mi

)
,

(1)

where m1,m2, and m3 are the magnetization vectors
corresponding to the three sublattices, while JE(> 0),
DM (> 0), and Ke(> 0) are the symmetric exchange
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interaction constant, asymmetric Dzyaloshinskii-Moriya
interaction (DMI) constant, and single-ion uniaxial mag-
netocrystalline anisotropy constant, respectively. Each
magnetization vector has a constant saturation magneti-
zation, Ms. Here, it is assumed that the uniaxial strain
acts between m1 and m2. The effect of this uniaxial
strain is included in the empirical parameter δE—a pos-
itive (negative) value indicates a stronger (weaker) ex-
change interaction between m1 and m2.

28,30,31 There-
fore, a positive (negative) δE corresponds to a shorter
(longer) bond length and hence compressive (tensile)
strain. The last term in Eq. (1) represents the Zee-
man energy due to the externally applied magnetic field
Ha. Finally, ue,i is the local easy axis correspond-
ing to mi. The easy axes are assumed to be ue,1 =

−(1/2)x + (
√
3/2)y, ue,2 = −(1/2)x − (

√
3/2)y and

ue,3 = x. Mn3Sn is an exchange dominant AFM such
that JE ≫ DM ≫ Ke. Typical values of the material
parameters of Mn3Sn, considered in this work, are listed
in Table I. The ground states for different δE and Ha can
be obtained by minimizing Eq. (1) with respect to mi.

The ground states of single-domain strained-Mn3Sn,
in the absence of any magnetic field (Ha = 0), are shown
in Fig. 2. In all the cases, m1, m2, and m3 exhibit
a clockwise ordering with approximately 120◦ angle be-
tween them, all lying within the x-y plane. Compared to
the six-fold degeneracy observed in single-domain Mn3Sn
with no strain,36,38 a two-fold spin degeneracy is observed
in strained-Mn3Sn, where m3 coincides with its easy axis
in the case of compressive strain (Fig. 2(a, b)) while it
is perpendicular to its easy axis in the case of tensile
strain (Fig. 2(c, d)). A small non-zero net magnetiza-
tion, m = m1+m2+m3

3 , exists in single-domain Mn3Sn

with no strain.36,38 We find that strained-Mn3Sn also
hosts a net magnetization which is parallel (antiparal-
lel) to m3 in the case of the compressive (tensile) strain.
For |δE | = 10−3, which represents a uniaxial strain of
0.1%, the norm of the net magnetization increases from
the bulk value of ∥m∥ ≈ 3.66×10−3 to ∥m∥ ≈ 3.95×10−3(
∥m∥ ≈ 3.92× 10−3

)
in the case of compressive (ten-

sile) strain. The non-zero m suggests that the angle
between the sublattice vectors is not exactly 120◦. In-
deed, in the case of compressive (tensile) strain, η12 ≈
0.78◦(−0.78◦) and η23 = η31 ≈ −0.39◦(0.39◦), where
ηij = cos−1 (mi ·mj) − 2π

3 . For both compressive and
tensile strain, η12 + η23 + η31 = 0. For δE = 0, our
calculations showed that the respective |ηij | were differ-
ent from the values reported above and depended on the
ground state under consideration.36 The aforementioned
results with and without strain are as expected—strong
exchange and DM interactions attempt enforcing a clock-
wise ordering of m1, m2, and m3 with exactly 120◦ an-
gle between them, within a plane perpendicular to the
z-axis. However, the anticlockwise ordering of ue,1, ue,2,
and ue,3 forces the sublattice vectors in the x-y plane
with a small deviation from the 120◦ ordering. Uniaxial
strain leads to further increase in the deviation.

External magnetic fields, when applied to a thin

TABLE I. List of material parameters for the AFM, Mn3Sn,
and the heavy metal (HM), which is chosen as W, in the SOT
device setup.

Parameters Definition Values Ref.
JE (J/m3) Exchange constant 2.4× 108 16
D (J/m3) DMI constant 2× 107 16
Ke (J/m3) Uniaxial anisotropy constant 3× 106 16
Ms (A/m) Saturation magnetization 1.3× 106 16

|δE | Strain parameter 10−3 30
α Gilbert damping 0.003 19
θSH Spin Hall angle for HM 0.06 30

FIG. 2. Equilibrium states in single-domain Mn3Sn crystal
under (a, b) compressive and (c, d) tensile strains. The sub-
lattice vectors lie in the Kagome plane which is assumed to
coincide with the x-y plane. (a, b) Only m3 coincides with
its easy axis. (c, d) None of the sublattice vectors coincide
with their local easy axes. Instead, tensile strain forces m3

perpendicular to its easy axis. The two equilibrium states for
compressive as well as tensile strains are separated by 180◦

with respect to each other. A small in-(Kagome)-plane aver-
age magnetization, m, exists parallel (antiparallel) to m3 in
the case of compressive (tensile) strain. The magnitude of m
depends on the strength of the strain. Here, m is not drawn
to scale but magnified by 100× for the purpose of clear rep-
resentation.

film of Mn3Sn, change the energy of the system, and
therefore, the ground states. Here, we only consider
an external magnetic field in the Kagome plane as
Ha = H0(cos (φH), sin (φH), 0), where φH is the an-
gle between the magnetic field and the x-axis. Fig-
ure 3(a) shows the ground states of Mn3Sn when Ha =
(0, 0.1 T, 0) is applied to the equilibrium state of Fig. 2(a)
whereas Fig. 3(b) shows the ground state when Ha =
(−0.1 T, 0, 0) is applied to the equilibrium state of
Fig. 2(c). In both the cases m tilts towards the mag-
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netic field, while the sublattice vectors either tilt to-
wards Ha or away from it, in order to lower the energy
of the system. Compared to the equilibrium states of
Fig. 2, the angles between the sublattice vectors change,
although by a negligible amount. However, if the ap-
plied field is large it could disturb the almost 120◦ rel-
ative orientation of the magnetic moments. Therefore,
in this work, we consider relatively small magnetic fields
that are sufficient to aid the dynamics (discussed later in
Sec. III) without disturbing the antiferromagnetic order,
viz. JE ≫ DM ≫ H0Ms.

FIG. 3. Ground states of monodomain Mn3Sn crystal,
with (a) compressive strain and (b) tensile strain, un-
der the effect of in-plane external magnetic field, Ha =
H0(cos (φH), sin (φH), 0). In both the cases m tilts towards
Ha. Here, ∥Ha∥ = 0.1 T while m is magnified by 100× for
the purpose of clear representation in both the cases.

A. Perturbative Analysis

For a clear understanding of the aforementioned
ground states of the monodomain strained-Mn3Sn,
we consider the perturbative approach presented in
Refs. [31, 38–40]. Firstly, we define the sublattice vector

as mi =
(√

1− u2
i cos (φi),

√
1− u2

i sin (φi), ui

)
, where

φi and ui are its azimuthal angle and the z-component,
respectively. Secondly, we define the experimentally rele-
vant cluster magnetic octupole moment31,40,41 as moct =
1
3Mzx

[
R( 2π3 )m1 +R(− 2π

3 )m2 +m3

]
. Here, m1 andm2

are rotated by +2π/3 and −2π/3, respectively, while the
y-component of the resultant vector undergoes a mirror
operation with respect to x-z plane.31,40 This ensures
that the octupole and the sublattice vectors are copla-
nar, and φoct = −φ1+φ2+φ3

3 , where φoct is the azimuthal
angle of the magnetic octupole moment. Thirdly, we de-
fine φi = −φoct − 2πi

3 + ηi, where ηi is a small angle
(ηi ≪ 2π/3) that includes the effect of small deviation
from the rigid 120◦ configuration due to both the frus-
trated bulk structure and the strain. Here, ηi is linearly
independent of φoct and η1+η2+η3 = 0. Finally, we use
the perturbative approach, as outlined in the supplemen-
tary material, to arrive at an energy landscape, which is

a function of φoct
31,38–40 and is given as

F (φoct) ≈ −3A

2
cos (2φoct)−

B

2
cos (6φoct)

− 3MsH0(C cos (φoct − φH) +D cos (φoct + φH)),
(2)

where A = 2JEδEKe

3(JE+
√
3DM)

, B =
(3JE+7

√
3DM)K3

e

9(JE+
√
3DM)

3 , C =

Ke

3(JE+
√
3DM)

, andD = JEδE
3(JE+

√
3DM)

. The constant terms

are not shown here as they do not affect the ground states
solution.
For H0 = 0 in Eq. (2), the cos (2φoct) term dominates

over the cos (6φoct) term, if A ≫ B and |A| ≫ 3B in
the case of Mn3Sn with compressive and tensile strains,
respectively. For the material parameters listed in Ta-
ble I, these conditions are equivalent to δE ≫ 0.08×10−3

and |δE | ≫ 0.24 × 10−3, respectively. Therefore, for
|δE | = 10−3, compressive (tensile) strain leads to two
minimum energy equilibrium states of the octupole mo-
ment, corresponding to φoct = 0 and π (φoct = π/2 and
3π/2), as shown in Fig. 2. On the other hand, when a
magnetic field is turned on (H0 > 0), the energy of the
system changes, and two ground states of the octupole
moment, corresponding to the minimum of Eq. (2), are
possible. We find that, if φH is 0◦ or 180◦ (90◦ or 270◦)
for Mn3Sn with compressive (tensile) strain, the possible
ground states are same as the initial equilibrium states.
Conversely, if φH is different from the equilibrium di-
rection, the possible ground states are different from the
equilibrium states (Fig. 3).
In the special case of Ha perpendicular to the equi-

librium direction, degenerate ground states with energies
lower than that of the equilibrium states are obtained.
This is depicted in Fig. 4, where an external magnetic
field is applied in the negative x-direction (φH = 180◦)
to Mn3Sn with tensile strain. As the strength of the
magnetic field increases, the energy of the ground states
decrease and they move away from the equilibrium states
of 90◦ and 270◦, towards 180◦. In addition, the en-
ergy barrier separating the two states reduces at 180◦

but increases at 360◦. The two ground states exist if

H0 ≲ 2|A+3B|
Ms(C+D) . Within this limit, ∥m∥ was found to

increase with both δE and H0 (see supplementary ma-
terial). For higher H0, φoct = π becomes a minimum
too and ∥m∥ decreases with δE at fixed H0 (supplemen-
tary material). In the case of Mn3Sn with compressive
strain and Ha perpendicular to the equilibrium states,

two ground states exist if H0 ≲ 2(A+3B)
Ms(C−D) . These limits

suggest that the maximum value of H0, which could be
applied while maintaining two ground states, increases
with δE . This is because larger δE leads to higher intrin-
sic energy barrier, which is given as |3A + B|, between
the two equilibrium states.

III. SOT-DRIVEN DYNAMICS

To investigate the dynamics of Mn3Sn under the effect
of spin current, we consider the spin-Hall effect (SHE)
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FIG. 4. Energy density as a function of the octupole angle of
a monodomain Mn3Sn with tensile strain for different applied
magnetic field, H0, along the -x-direction (φH = 180◦). Ex-
ternal magnetic field breaks the symmetry of the system, and
therefore, the barrier height reduces at φoct = π but increases
at φoct = 0, as H0 increases.

setup shown in Fig. 5. This setup resembles the ex-
perimental designs from Refs. [30, 31], where Mn3Sn
grown epitaxially on a (110)[001] MgO substrate exhibits
uniaxial tensile strain in the x-direction resulting in a
PMA energy landscape for the magnetic octupole mo-
ment.30,31 Hereafter, we only focus on the dynamics of
single-domain Mn3Sn with tensile strain while the discus-
sion on the dynamics of Mn3Sn with compressive strain
and no strain is relegated to supplementary material. In
our convention, as mentioned previously, the Kagome
plane of Mn3Sn is assumed to coincide with the x-y plane
while the z-axis coincides with [0001] direction. Charge-
to-spin conversion in the HM, due to the flow of charge
current density, Jc, leads to the generation of a spin cur-
rent density, Js, polarized along np, which is assumed to
coincide with z-axis. Previous works have shown that the
current required to induce dynamics in this setup, with
np perpendicular to the Kagome plane, is significantly
smaller than that required in the case where np is paral-
lel to the Kagome plane.20,30,31 Finally, the external field
Ha is assumed to be applied in the negative x-direction,
or φH = 180◦.
For each sublattice of Mn3Sn, the magnetization dy-

namics is governed by the classical Landau-Lifshitz-
Gilbert (LLG) equation, which is a statement of the con-
servation of angular momentum. The LLG equations for
the three sub-lattices are coupled via the exchange inter-
actions.16,35 For sublattice i, the LLG equation is given
as42

ṁi = −γ
(
mi ×Heff

i

)
+ α(mi × ṁi)

− ℏ
2e

γJs
Msda

mi × (mi × np),
(3)

where ṁi =
∂mi

∂t , t is time in seconds, Heff
i is the effec-

tive magnetic field experienced by mi, α is the Gilbert
damping parameter for Mn3Sn, and da is the thickness

𝐦oct

Jc
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Js
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FIG. 5. Spin-orbit torque device setup for manipulating the
magnetic state in Mn3Sn. The MgO substrate leads to tensile
strain in the x-direction, and hence the PMA in Mn3Sn. Spin-
Hall effect in the HM generates SOT when a charge current
flows into it. Jc and Js are the charge current density and the
spin current density, respectively. Ha is the external magnetic
field which is applied to aid the deterministic switching of the
magnetic octupole moment, moct, in strained-Mn3Sn.

of the AFM layer. Other parameters in this equation,
viz. ℏ = 1.054561 × 10−34 J s, e = 1.6 × 10−19 C, and
γ = 17.6 × 1010 T−1 s−1 are the reduced Planck’s con-
stant, the elementary charge of an electron, and the gy-
romagnetic ratio, respectively. The spin current density
depends on the input charge current density and the spin-
Hall angle of the HM, θSH, as Js = θSHJc. The spin-Hall
angle is associated with the efficiency of the SOT effect.
Here, we consider the HM to be W since it has a large
θSH

19.
The effective magnetic field for sublattice i can be ob-

tained by using Eq. (1) as

Heff
i = − 1

Ms

∂F

∂mi
= − JE

Ms
(mj +mk)

+
DMz× (mj −mk)

Ms
+

2Ke

Ms
(mi · ue,i)ue,i +Ha,

(4)

where (i, j, k) = (1, 2, 3), (2, 3, 1), or (3, 1, 2), respectively.
Equations (3) and (4) are then solved simultaneously,
for a range of H0(> 0) and Js, for both φinit

oct = π/2
and φinit

oct = 3π/2 as the initial states. The steady-state
response of the magnetic order of Mn3Sn is found to be
dependent on the initial ground states, magnitude of H0,
and the direction and magnitude of the input current.
These differences in the steady state behavior are shown
in Figs. 6 and 7 for H0 = 0.1 T and φH = 180◦.
Figure 6 shows the time dynamics of the magnetic oc-

tupole moment and that of the out-of-(Kagome)-plane
component of the average magnetization, mz, for the cur-
rent pulse shown in Fig. 6(b). It can be observed that
for t < 1 ns, where Js = 0, the magnetic octupole mo-
ment evolves to ground states (i) and (ii), for the equilib-
rium states at φinit

oct = π/2 and φinit
oct = 3π/2, respectively.

When Js is increased to 1.5 MA/cm2 at t = 1 ns, (i)
and (ii) evolve to stationary steady-states (iii) and (iv),
respectively. Although the φoct corresponding to both
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(iii) and (iv) are larger than those for (i) and (ii), they
are still near the initial states, that is, 1.5 MA/cm2 is
not large enough to induce deterministic switching. Sta-
tionary steady-states near the initial ground states are
also observed when Js is decreased to −1.5 MA/cm2 at
t = 3 ns: (i) and (ii) evolve to (v) and (vi), respectively.
In this case, the φoct corresponding to the stationary
states are smaller than those of the ground states. States
(iii) and (v) return to the ground state (i) while (iv) and
(vi) return to the ground state (ii), when the current
is turned off. The final steady-states, therefore, depend
on both the magnitude and the direction of the input
current. As shown in Fig. 6(b), mz is zero in the steady
state. It changes negligibly, in the direction of the change
in Js, when the current is turned on or off.

It can be further observed from Fig. 6(a) that the mag-
netic octupole moment in both the ground states (i) and
(ii) evolve to the stationary steady-state (vii), when Js is
increased to 2.5 MA/cm2 at t = 5 ns. On the one hand,
this dynamics corresponds to the deterministic switching
of the magnetic octupole moment in (i). On the other
hand, for the magnetic octupole moment in (ii), (vii) is
just a stationary steady-state with φoct greater than that
of (ii). However, when the current direction is reversed
by lowering Js to −2.5 MA/cm2 at t = 7 ns, the mag-
netic octupole moment in (ii) switches deterministically
to (viii), which is near (i) but has a smaller correspond-
ing φoct. In this case, the magnetic octupole moment
in (i) will not switch, but move to (viii). As shown in
Fig. 6(b) at t = 5 ns and t = 7 ns, deterministic switch-
ing is accompanied by a large spike in mz. The direction
of change in mz depends on the direction of the input
current—positive (negative) Js leads to positive (nega-
tive) mz.

Further increasing |Js| to 2.69 MA/cm2 results in chi-
ral oscillations for the magnetic octupole moment in both
the ground states (i) and (ii), as shown in Fig. 7(a). For
positive Js, the magnetic octupole moment in (i) deter-
ministically switches to (ii) in the first step; therefore,
the phase of (i) lags that of (ii). On the contrary, for
negative Js, the magnetic octupole moment in (ii) deter-
ministically switch to (i) in the first step; therefore, the
phase of (ii) lags that of (i). The oscillation dynamics of
the magnetic octupole moment is accompanied by large
mz, as shown in Fig. 7(b). Similar to the case of deter-
ministic switching dynamics, the direction of mz depends
on the direction of current—positive (negative) Js leads
to positive (negative) mz. However, unlike the case of de-
terministic switching, mz shows two spikes per oscillation
(inset of Fig. 7(b)).

Detailed numerical simulations revealed that for
φinit
oct = π/2 (φinit

oct = 3π/2) and Js > 0 (Js < 0), the
final steady-state of moct depended on the magnitude of
Js with respect to two threshold currents—J th1

s and J th2
s ,

where J th1
s < J th2

s . As summarized in Fig. 8, if the in-
jected current density is smaller than the lower threshold
current, that is |Js| < J th1

s , the ground state of the AFM
evolves to a non-equilibrium stationary steady-state in

FIG. 6. Steady-state response of (a) the magnetic octupole
moment and (b) the out-of-(Kagome)-plane component of the
average magnetization, mz, as a function of time under the
effect of a current pulse, which is turned on at t = 1 ns
and t = 3 ns to |Js| = 1.5 MA/cm2 while it is increased
to |Js| = 2.5 MA/cm2 at t = 5 ns and t = 7 ns. Otherwise
the current is turned off. (a) (i) and (ii): Possible ground
states for H0 = 0.1 T in the negative x-direction and Js = 0.
(iii) and (iv): Js = 1.5 MA/cm2. No switching. Station-
ary states at angles larger than (i) and (ii), respectively. (v)
and (vi): Js = −1.5 MA/cm2. No switching. Stationary
states at angles smaller than (i) and (ii), respectively. (vii):
Js = 2.5 MA/cm2. Deterministic switching of (i). No switch-
ing for (ii). Stationary states at angles larger than (ii). (viii):
Js = −2.5 MA/cm2. Deterministic switching of (ii). Station-
ary states at angles smaller than (i). (b) |mz| is zero in the
steady state but increases during the switching process. The
change in |mz| is negligible for the case of no switching.

the initial energy well. The case of |Js| = 1.5 MA/cm2

and H0 = 0.1 T, shown in Fig. 6(a), belongs to this
regime. On the other hand, if J th1

s < |Js| < J th2
s the

magnetic octupole moment deterministically switches to
a non-equilibrium stationary steady-state in the other
energy well (|Js| = 2.5 MA/cm2 and H0 = 0.1 T in
Fig. 6(a)). Finally, when J th2

s < |Js| the magnetic oc-
tupole moment exhibits steady-state chiral oscillations
(|Js| = 2.69 MA/cm2 and H0 = 0.1 T in Fig. 7(a)),
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FIG. 7. Steady-state oscillation dynamics of (a) the magnetic
octupole moment and (b) the out-of-(Kagome)-plane com-
ponent of the average magnetization, mz, as a function of
time under the effect of a current pulse. The pulse is turned
on at t = 1 ns (t = 3 ns) to Js = 2.69 MA/cm2 (Js =
−2.69 MA/cm2) and turned off at t = 2 ns (t = 4 ns). (a) (i)
and (ii): Possible ground states for H0 = 0.1 T in the negative
x-direction. Oscillation dynamics for |Js| = 2.69 MA/cm2:
the octupole moment in both (i) and (ii) oscillate at a fre-
quency of about 2.5 GHz in a direction decided by the di-
rection of the input current. When the current is turned off,
the octupole moment probabilistically settles into either of
(i) or (ii). (b) Non-zero mz facilitates high frequency chiral
oscillations in the steady state due to the strong exchange in-
teraction between out-of-(Kagome)-plane components of the
sublattice vectors.

whose frequency could be tuned from the 100s of MHz to
the 10s of GHz range by varying |Js|. The three regimes
of operation are marked as I, II, and III for no switching,
deterministic switching, and chiral-rotation, respectively.
The overlaid dashed white lines represent J th1

s and J th2
s .

It can be observed that J th1
s decreases with an increase

in H0 while J th2
s increases with H0. As a result, the

range of input currents where the system exhibits deter-
ministic switching increases with H0. For φinit

oct = 3π/2
(φinit

oct = π/2) and Js > 0 (Js < 0), the magnetic oc-
tupole moment displays a stationary steady-state in the
initial energy well, if |Js| < J th2

s (Fig. 6(a)), while it
shows chiral oscillations for J th2

s < |Js| (Fig. 7(a)). In
the limiting case of H0 = 0, J th1

s = J th2
s , and no deter-

ministic switching of the magnetic octupole moment is
observed. Instead, the magnetic octupole moment dis-
plays either a non-equilibrium stationary state in the ini-
tial energy well or chiral oscillations. If the current is
turned off during the oscillation, the magnetic octupole
moment probabilistically switches to either of the energy
wells.20,29,36

FIG. 8. Final steady-state as a function of the magnitude of
the input current, |Js|, for different applied magnetic fields
H0. I, II, and III represent regions of no switching, switching,
and chiral oscillation, respectively. The dashed white lines
represent the two threshold currents, Jth1

s and Jth2
s obtained

from numerical solution of Eq. (6). This phase diagram is
applicable if φinit

oct = π/2 (φinit
oct = 3π/2) and Js > 0 (Js < 0).

For φinit
oct = 3π/2 (φinit

oct = π/2) and Js > 0 (Js < 0), region III
would still represents chiral oscillation, however, the regions
encompassing I and II would both correspond to no switching.

A. Stationary State and Threshold Current

To explore the dependence of the dynamics on the in-
trinsic energy scale of the system, obtain analytic ex-
pressions for the two threshold currents as a function of
the applied magnetic field and material parameters, and
establish scaling laws related to switching and chiral os-
cillations, we evaluate the rate of change of the average

magnetization, ṁ = (ṁ1+ṁ2+ṁ3)
3 , as

ṁ =
1

3

3∑
i=1

(
− γ

(
mi ×Heff

i

)
+ α(mi × ṁi)

− ℏ
2e

γJs
Msda

(mi × (mi × z))

)
,

(5)

where mi ×Heff
i = 1

3µ0Ms

∂F
∂φoct

z while ∂F
∂φoct

is obtained

from Eq. (2) with φH = π.
In the stationary states, irrespective of φinit

oct , the net
torque on the magnetic octupole moment is zero since
the spin-orbit torque generated by the input current is
balanced by the torque due to the internal and external
magnetic fields. Consequently, we set the time deriva-
tives (ṁ and ṁi) in Eq. (5) to zero. Our numerical
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simulations revealed that the z-component of all the sub-
lattice vectors were zero in the stationary steady-state.
So, we set mi,z = ui = 0 in Eq. (5) to arrive at the torque
balance equation:

A sin (2φoct) +B sin (6φoct)−MsH0(C +D) sin (φoct)

=
ℏ
2e

Js
da

.

(6)

For φinit
oct = π/2 and 0 ≤ Js < J th1

s , the solution
to Eq. (6) should lead to one stationary solution with
GS1 ≤ φoct < π, where GS1 ∈ (π/2, π) is the smaller
of the two minima of Eq. (2). On the other hand, for
J th1
s ≤ Js < J th2

s , the magnetic octupole moment should
switch to a stationary state in the other energy well, and
the solution of Eq. (6) should lead to GS2 < φoct < 2π.
Here, GS2 ∈ (π, 3π/2) is the larger of the two minima of
Eq. (2). Indeed the same can be observed from Fig. 9,
where the numerical solutions of the coupled LLG equa-
tions (symbols) fit the solutions from Eq. (6) (lines) very
well in both the energy wells, for three different values
of H0. Consequently, J th1

s is the minimum current for
which Eq. (6) has no solution in (GS1, π), but has a so-
lution in (GS2, 2π). On the other hand, J th2

s is the min-
imum current for which Eq. (6) has no solutions. The
numerical solution of the threshold currents for differ-
ent H0, obtained from Eq. (6), is shown by the dashed
white lines overlaid on Fig. 8. It can be observed that
the solutions from Eq. (6) match the results from Eq. (3)
very well. If φinit

oct = 3π/2 and 0 ≤ Js < J th2
s , the so-

lution of Eq. (6) would lead to GS2 ≤ φoct < 2π, as is
shown in Fig. 9 for J th1

s ≤ Js < J th2
s . Although not

shown here, reversing the direction of current (Js < 0)
with 0 ≤ |Js| < J th2

s leads to stationary steady-states
in (0,GS1] for φinit

oct = π/2 while φinit
oct = 3π/2 exhibits a

stationary state in (π,GS2], if 0 ≤ |Js| < J th1
s , and in

(0,GS1), if J
th1
s ≤ |Js| < J th2

s .

FIG. 9. Stationary steady-states as a function of the applied
spin current, Js, for a thin film of Mn3Sn under tensile strain.
Numerical result from the solution of Eq. (3) (symbols) agree
very well with the results obtained from Eq. (6) (lines)

An exact expression of either of the two threshold cur-
rents is cumbersome to obtain, however, in the limit of
small magnetic fields that do not disturb the two-fold de-
generacy of PMA Mn3Sn, they can be approximated as

J th1
s = da

2e

ℏ

(
−A+B − MsH0√

2
(C +D)

)
, (7a)

J th2
s = da

2e

ℏ

(
−A+B +

MsH0√
2

(C +D)

)
. (7b)

In the absence of an external magnetic field, the thresh-
old current is the minimum current that provides just
enough SOT to overcome the maximum torque due to
the effective in-plane anisotropy. This maximum occurs
at φoct = 45◦, 135◦, 225◦, and 315◦ since they lead to
sin (2φoct) = ±1 and sin (6φoct) = ∓1. For non-zero ex-
ternal magnetic field, first, we consider the effect of the
in-plane anisotropy to be dominant while that of H0 to
be small. We then evaluate Eq. (6) at φoct = 135◦ and
φoct = 315◦ to obtain J th1

s and J th2
s , respectively. Fig-

ure 10 compares the analytic expressions of Eq. (7) (lines)
against the values of the threshold currents obtained from
the solution of Eq. (6) (symbols), for different values of
H0. It can be observed that the analytic results match
very well against the numerical values. Since the torque
due to H0 acts against (along) the torque due to the ef-
fective in-plane anisotropy at φoct = 135◦ (φoct = 315◦),
larger H0 reduces (increases) J th1

s (J th2
s ). Although the

error between the numerical and the analytic values of
the two threshold currents increases with an increase in
H0, it is still smaller than 5% even for H0 = 0.3 T. This
linear dependence of the threshold currents on the exter-
nal field is similar to that in the case of a PMA ferro-
magnet driven by a SOT.43

FIG. 10. Comparison of the analytic expressions of thresh-
old currents (Eq. (7)), shown by lines, against the numerical
values obtained from the solution of Eq. (6), represented by
symbols. The numerical and analytic values show excellent
agreement for the values of H0 considered here.
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B. Deterministic Switching Dynamics

For H0 > 0 and J th1
s ≤ |Js| < J th2

s , the time deriva-
tives in Eq. (5) change to non-zero values (|ṁ| > 0 and
|ṁi| > 0), if φint

oct = 90◦ (φint
oct = 270◦) and Js > 0

(Js < 0). Here, the external magnetic field assists the
SOT in overcoming the maximum torque due to the in-
ternal magnetic fields. Consequently, the magnetic oc-
tupole moment moves away from its initial stable state
and switches over the energy barrier at φoct = 180◦ to
the other energy well, while both |mz| and |ui| increase
to non-zero values. In the second energy well, initially,
the torque due to the magnetic fields and the SOT act
in the same direction, leading to further increase in |mz|
until ṁ decreases to zero due to the effect of the intrinsic
damping. Subsequently, |mz| decreases to zero while the
octupole moment slows down and reaches a stationary
state. The SOT cannot overcome the torques due to the
magnetic fields anymore since the external field aids the
internal fields in the second energy well. If, however, the
input current is reversed, such that J th1

s ≤ |Js| < J th2
s ,

for the same H0, the magnetic octupole moment goes
back to the initial energy well, by crossing the barrier
at φoct = 180◦ as the external field assists the SOT.
This bidirectional switching behavior was clearly demon-
strated in Fig. 6 for |Js| = 2.5 MA/cm2 and H0 = 0.1 T.
Instead of reversing Js, if Ha was reversed to the positive
x-direction, the deterministic switching dynamics would
have proceeded by crossing the barrier at φoct = 360◦,
provided that J th1

s ≤ |Js| < J th2
s .

The SOT-driven bidirectional deterministic switching
dynamics in PMA Mn3Sn could be useful for building
next-generation antiferromagnetic memory devices. In
this regard, the switching time, tsw, as a function of the
input current is an important metric. Figure 11 shows
the tsw as function of Js for two different magnetic fields.
Here, tsw is defined as the time taken by the magnetic
octupole moment in the ground state φinit

oct = π/2 to go
from φoct = π/2 to φoct = π. This is the minimum dura-
tion of an input current pulse that can induce determin-
istic switching. Such a pulse ensures that the magnetic
octupole moment reaches the top of the energy barrier.
Thereafter, the current pulse is turned off and the torques
due to the magnetic fields assist in switching to the other
energy well. It can be observed from Fig. 11 that tsw de-
creases with an increase in either Js or H0. For a fixed
H0, tsw decreases with an increase in Js since a higher
input current leads to a larger SOT on the magnetic oc-
tupole moment. On the other hand, at a fixed Js, tsw
decreases with an increase in H0 since it lowers the en-
ergy barrier at φoct = 180◦, as shown in Fig. 4.

Our numerical simulations showed that both ui and
mz were relatively small as the magnetic octupole moved
from φoct = π/2 to φoct = π. Therefore, the switching

time was obtained from the z-component of Eq. (5) as

tsw =
αMs

γ

2e

ℏ
da
Js

∫ π

π/2

× dφ
′

oct

1− (A sin (2φ′
oct)+B sin (6φ′

oct)−MsH0(C+D) sin (φ′
oct))

ℏ
2e

Js
da

,

(8)

where we neglected the rate of change of mz since ∂mz

∂t ≪
α∂φoct

∂t . It can be observed from Fig. 11 that the switch-
ing times obtained from the numerical integration of
Eq. (8) (lines) fit the data obtained from the solution
of Eq. (3) (symbols) very well for the two magnetic fields
considered here.

0.0 0.1 0.2 0.3 0.4
tsw (ns)

1.5

2.0

2.5

3.0

J
s

(M
A
/
cm

2
)

H0 = 0.1 T

H0 = 0.2 T

FIG. 11. Switching time, tsw, as a function of the applied spin
current, Js, and external magnetic field, H0, for a thin film of
Mn3Sn under tensile strain. In each case, the applied current
is above Jth1

s and below Jth2
s . tsw obtained from the solution

of Eq. (8) (lines) fits the data obtained from the solution of
Eq. (3) (symbols) very well.

C. Oscillation Dynamics

For H0 > 0 and J th2
s ≤ |Js|, the SOT overcomes

the maximum of the torques due to the internal and ex-
ternal magnetic fields, irrespective of the initial state or
the direction of input current, resulting in |ṁ| > 0 and
|ṁi| > 0. Consequently, the magnetic octupole moves
away from its initial stable state, crosses the barrier at
φoct = 360◦, and oscillates between the two energy wells
with frequencies ranging between 100’s of MHz to 10s of
GHz, as shown in Fig. 12. Similar to the case of deter-
ministic switching dynamics, |mz| increases till ṁ reaches
zero due to the intrinsic damping, following which |mz|
decreases. Here, however, |mz| increases again as ṁ in-
creases, owing to the different direction of the torques
in each energy well. Therefore, mz exhibits two peaks
of varying magnitude in each oscillation cycle, as shown
clearly in the inset of Fig. 7(b). The higher peak occurs
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after the octupole moment crosses the energy barrier at
φoct = 360◦ whereas the lower peak occurs after it crosses
the energy barrier at φoct = 180◦.

FIG. 12. Oscillation frequency as a function of the applied
spin current, Js, and external magnetic field, H0, for a thin
film of Mn3Sn under tensile strain. In each case, the applied
current is above the respective Jth2

s . The dash-dotted red line
represents f = γ

2παMs

ℏ
2e

Js
da

and fits the numerical data very
well for large Js. The figure in the inset shows the variation
in f with Js for smaller input currents.

For medium to large currents, the oscillation frequency,
f , is almost independent ofH0 and increases linearly with
Js, as shown in Fig. 12. The dash-dotted red line, which
corresponds to f = γ

2παMs

ℏ
2e

Js

da
, represents this behavior

clearly. For such Js, ui increases to larger values. Conse-
quently, the effect of the out-of-(Kagome)-plane exchange
interaction on the dynamics is expected to become sig-
nificant while that of the in-plane anisotropy and H0 is
expected to reduce. The x- and z-components of m as
functions of time, for Js = 8 MA/cm2 and three different
magnetic fields, are shown in Fig. 13. Although the av-
erage frequency in the three cases is the same, there are
subtle differences in the magnetization dynamics, owing
to the symmetry-breaking magnetic field. In particular,
mz is symmetric only for H0 = 0 while it shows the ex-
pected asymmetry for non-zero H0. Since the difference
between the barrier heights increases with an increase in
H0 (Fig. 4), the asymmetry in mz is more prominent for
H0 = 0.2 T. A small asymmetry can also be observed in
the sinusoidal mx, where the magnitude in the negative
(positive) x-direction increases (decreases) with H0, ow-
ing to Ha being along the negative x-direction. Although
not shown here, non-zero magnetic fields have negligible
effect on the y-component of m.
For small currents, on the other hand, Fig. 12 shows

that f increases non-linearly with Js and depends on H0.
This dependence of the oscillation dynamics on magnetic
fields can also be observed from Fig. 14, which shows the
dynamics ofmx andmz for three different magnetic fields
near their respective threshold currents. The strong in-
plane anisotropy leads to non-sinusoidal mx, unlike the
case of large Js (Fig. 13(a)). It also leads to a spike-like

FIG. 13. (a) The x-component and (b) z-component of the
average magnetization vector, m, as functions of time, for
large current Js = 8 MA/cm2 and three different values of
H0. Although the average oscillation frequency is evaluated
to be the same for such large current, both mx and mz show
the effect of H0.

dynamics of mz, where each oscillation of the magnetic
octupole moment is accompanied by two spikes. Non-
zero magnetic field breaks the symmetry of the system
leading to asymmetric profiles of mx and mz. The spikes
in mz are equally spaced in time for H0 = 0 T. On the
other hand, for H0 > 0, the two spikes of each oscillation
cycle are close to each other but far from those of the
previous or next cycle. This is mainly due to the varying
effects of the torque due to Ha as the magnetic octupole
traverses the two energy wells.

Finally, in the non-linear regime, higher H0 leads to
lower f , at a fixed Js, as depicted clearly in the inset of
Fig. 12. This is because the barrier height at φoct = 360◦

increases with an increase inH0, thereby requiring higher
input energy in order to achieve the same oscillation fre-
quency. As current-driven oscillations are accompanied
by large mz, a strong exchange field along the z-direction
affects the dynamics. However, since such an exchange
energy interaction is not included in Eq. (2), and conse-
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FIG. 14. (a) The x-component and (b) z-component of the
average magnetization vector as functions of time at small
current (Js ≃ Jth2

s ) for two different values of H0. The effect
of the in-plane effective anisotropy is evident from the shape
of mx. For non-zero H0, the mz shows two spikes of varying
amplitude due to energy barriers of different heights.

quently in Eq. (5), our model cannot be used to obtain
a unified model of f as a function of H0 and Js.

IV. EFFECT OF DAMPING

The results presented in this work, so far, corre-
spond to a Gilbert damping constant of α = 0.003,
which has previously been used for numerical analy-
sis in Refs. [19, 29, 36]. On the other hand, a lower
damping constant of α = 0.0007 was used in other re-
cent works.21,30 In particular in Ref. [30], it was shown
through numerical simulations that for α = 0.0007, as
compared to α = 0.003, the lower limit of external mag-
netic field for deterministic switching was a non-zero
value. That is, for low values of H0 ≳ 0, the magnetic
octupole moment cannot be deterministically switched.
Instead, it exhibits either a stationary steady-state or chi-
ral oscillation depending on the magnitude of the input

current. This behavior is distinct from that presented in
Figs. 8 and 10. Therefore, we numerically investigate the
dependence of the final steady-states and the threshold
currents on α.

Figure 15 shows the three components of the average
magnetization vector, m, for different values of α but
the same values of H0 and Js. In the case of α = 5 ×
10−3, for Js = 2 MA/cm2 and H0 = 0.1 T applied at
t = 100 ps, the AFM magnetization switches to a steady
state in the other energy well. This is signified by a
change in the sign of my. As shown by the dashed blue
curve and dotted green curve, the final steady-state for
α = 5 × 10−3 is exactly same as that obtained for α =
3 × 10−3. The switching time, however, is longer in the
case of higher damping since tsw is directly proportional
to α (Eq. (8)). On the other hand, for the case of lower
damping, namely α = 7 × 10−4, the magnetic octupole
moment exhibits chiral oscillations when Js = 2 MA/cm2

and H0 = 0.1 T are applied at t = 100 ps. This suggests
that for lower damping, the threshold currents are lower
than those predicted by Eq. (7); and could be dependent
on α. It can also be observed that for α = 7 × 10−4,
the oscillating mz is rather large. This suggests that
the out-of-(Kagome)-plane exchange interaction plays a
major role in the oscillation dynamics, similar to that
discussed in Section III C.

To further elucidate this dependence of the dynamics
on α, we present the phase space of the steady-states as
a function of Js and H0 for various α values in Fig. 16.
Notably, the phase space analysis reveals an additional
dynamical regime, labeled as IV, for α = 9 × 10−4 and
2×10−3, alongside the three previously identified regimes
observed for α = 3× 10−3, and also found in the case of
α = 0.01. As highlighted earlier for α = 0.003, region
I represents stationary steady-states in the proximity of
the initial ground states, for φinit

oct = 90◦ (φinit
oct = 270◦)

and Js > 0 (Js < 0). Region II, on the other hand, corre-
sponds to deterministic switching between the two stable
states, while the magnetic octupole moment exhibits chi-
ral oscillations in region III, regardless of the initial state
or the direction of Js, as long as |Js| exceeds the highest
threshold current. Interestingly, in region IV, chiral os-
cillations occur for φinit

oct = 90◦ (φinit
oct = 270◦) and Js > 0

(Js < 0), while only stationary states are observed for
φinit
oct = 270◦ (φinit

oct = 90◦). This scenario is vividly de-
picted in Fig. 17 for α = 9 × 10−4, |Js| = 1.72 MA/cm2

and H0 = 0.1 T.

In contrast to the scenario with high damping, where
the three regimes were distinguished by two threshold
currents, the presence of four regimes in the low α case is
marked by three distinct threshold currents. Although
all the three threshold currents seem to scale linearly
with H0 for α ≲ 2 × 10−3, it can be clearly observed
that they depend on the Gilbert damping constant, un-
like Eq. (7). Moreover, for low values ofH0, deterministic
switching is not possible; instead the magnetic octupole
moment can only exhibit oscillation dynamics above the
threshold current. Deterministic switching between the
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FIG. 15. The three components of the average magnetization, m, as a function of time for three different values of the Gilbert
damping constant, α. Here, H0 = 0.1 T and Js = 2 MA/cm2 are both applied to the equilibrium state of Fig. 2(c) at t = 100 ps.
In the case of α = 0.003 and 0.005 the magnetic octupole moment switches to the same final steady-state in the other energy
well. Switching time increases with α. On the other hand, for α = 0.0007, chiral oscillations with large mz are observed.

FIG. 16. Final steady-state as a function of the input current Js and applied magnetic fields for different Gilbert damping
constant. Here, I and II represent the case of no switching and switching while both III and IV correspond to chiral oscillation.
The black dashed lines superimposed on the phase space, in the case of α = 0.01, are the two threshold currents, as discussed
in the case of α = 3× 10−3.

two stable states of PMA Mn3Sn becomes feasible again
for larger values of H0. This lower limit of H0 for de-
terministic switching dynamics decreases as α increases.
Although further analytic investigation is required to un-
derstand the dependence of the dynamics on the damp-
ing constant, we suspect that in region I the net input
energy is low; therefore, the magnetic octupole moment
cannot overcome the barrier at 180◦. On the other hand,
in region III the net input energy is very high such that
magnetic octupole moment can exhibit sustained oscilla-
tions. In region IV, for low H0, the barrier at 180

◦ is low-
ered which enables deterministic switching to the other
energy well. However, the low damping of the system
possibly does not dissipate enough energy of the mag-
netic octupole moment, and therefore, it goes over the
barrier at 360◦ due to its inertia. This leads to sustained
oscillations. For higher fields, the barrier at 360◦ be-
comes significantly large and the magnetic octupole can-
not overcome it, such that deterministic switching be-
comes possible. Finally, we found that for α = 0.01 the
analysis presented in Section III holds true. Since this
analysis is true for both α = 3 × 10−3 and α = 10−2,
it is applicable for all other values of damping constants
between them.

V. CONCLUSION

Mn3Sn is a metallic antiferromagnet that shows large
AHE, ANE, and MOKE signals. In addition, the
octupole states can be detected via TMR in an all-
antiferromagnetic tunnel junction comprising two layers
of Mn3Sn with an insulator layer sandwiched between
them. Bulk Mn3Sn has a 120◦ anti-chiral structure, how-
ever, a competition between the local anisotropy and the
DMI leads to the existence of a small net magnetiza-
tion which is six-fold degenerate. Application of strain
to bulk Mn3Sn reduces its symmetry from six-fold to
two-fold degenerate, and provides a way to control the
strength of the net magnetization as well as that of the
AHE signal. In this work, we analyzed the case of both
uniaxial compressive and tensile strains, and discussed
the dependence of the magnetic octupole moment on the
strain as well as on the external field. Since recent exper-
iment reported tensile strain in epitaxial Mn3Sn grown
on (110)[001] MgO substrate, we numerically and ana-
lytically explored the field-assisted SOT driven dynam-
ics in monodomain Mn3Sn with tensile strain. We found
that the magnetic octupole moment exhibits either a sta-
tionary state or chiral oscillations in the absence of a
symmetry-breaking field. On the other hand, when an
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FIG. 17. Steady-state dynamics of the magnetic octupole mo-
ment as a function of time for α = 9×10−4. (i) and (ii): Pos-
sible ground states for H0 = 0.1 T in the negative x-direction.
(a) The pulse is turned on at t = 1 ns to Js = 1.72 MA/cm2

and turned off at t = 2 ns. Steady-state oscillations for (i)
but not for (ii). (b) The pulse is turned on at t = 3 ns to
Js = −1.72 MA/cm2 and turned off at t = 4 ns. Steady-state
oscillations for (ii) but not for (i).

external field is applied, in addition to the stationary
state and chiral oscillations, the magnetic octupole mo-
ment can also be deterministically switched between the
two stable states for a range of currents. We derived
an effective equation which accurately predicts the sta-
tionary states in both the energy wells. We also derived
simple analytic expressions of the threshold currents and
found them to agree very well against the numerical re-
sults for small external magnetic fields. We obtained
functional form of the switching time as a function of the
material parameters and the external stimuli and found
it to match very well against numerical data. The fre-
quency of chiral oscillations, which can be tuned from
100s of MHz to 10s of GHz range, was found to vary non-
linearly closer to the threshold current and linearly for
larger input currents. Further, through numerical simu-
lations, we showed that the order dynamics is dependent

on the Gilbert damping for lower values of α. For the sake
of a complete picture, we also explored the field-assisted
switching dynamics in thin films of Mn3Sn with no strain
as well as compressive strain, and presented the relevant
results in the supplementary document. We expect the
insights of our theoretical investigation to be useful to
both theorists and experimentalists in their exploration
of the interplay of field-assisted SOT and the order dy-
namics in Mn3Sn, and further benchmarking the device
performance.

SUPPLEMENTARY MATERIAL

See supplementary material for the perturbative anal-
ysis of the ground state, the SOT-driven dynamics of
thin films of Mn3Sn with compressive strain as well as
no strain, and a brief discussion of the AHE and TMR
detection schemes.
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