
Symbolic Regression on Sparse and Noisy Data with Gaussian Processes

Junette Hsin1, Shubhankar Agarwal2, Adam Thorpe1, Luis Sentis1, and David Fridovich-Keil1

Abstract— In this paper, we address the challenge of deriving
dynamical models from sparse and noisy data. High-quality
data is crucial for symbolic regression algorithms; limited and
noisy data can present modeling challenges. To overcome this,
we combine Gaussian process regression with a sparse identi-
fication of nonlinear dynamics (SINDy) method to denoise the
data and identify nonlinear dynamical equations. Our simple
approach offers improved robustness with sparse, noisy data
compared to SINDy alone. We demonstrate its effectiveness on a
Lotka-Volterra model, a unicycle dynamic model in simulation,
and hardware data from an NVIDIA JetRacer system. We
show superior performance over baselines including 20.78%
improvement over SINDy and 61.92% improvement over SSR
in predicting future trajectories from discovered dynamics.

I. INTRODUCTION

Accurate dynamic models are crucial for effective robot
design and operation. In many cases, it is desirable to obtain
analytic expressions over black box models, as analytic
models extrapolate well beyond the training dataset and are
more suitable for system analysis. One approach that has
received significant attention is the Sparse Identification of
Nonlinear Dynamics (SINDy) algorithm [1]. It employs sym-
bolic regression—a least-squares-based method—to learn the
system dynamics purely from data using a predefined set of
candidate functions. SINDy is simple in its approach but
suffers from limitations in practice. In particular, the accu-
racy of the learned solution relies heavily on the selection
of proper candidate function terms, and measurement noise
in the data can significantly degrade the performance of
SINDy for even simple systems [2]. Additionally, SINDy
requires derivative data, which is often obtained through
finite differencing or other approximation methods which
can add additional error [3]. The sparsity of the data also
impacts SINDy’s performance; while it can identify models
with limited data [4], low frequency data may reduce model
accuracy. In this work, we devise a method that combines
Gaussian process regression in conjunction with SINDy to
learn system dynamics using sparse and noisy data.

SINDy’s key advantage lies in discovering understand-
able models that balance accuracy and simplicity. While
other data-driven methods have had success [5], limited data
often limit their effectiveness, and the models they discover
lack insight into the system’s structure [6]. In contrast,
SINDy has been widely applied across various disciplines to
understand the underlying structure of physical phenomena
[7]–[9]. In the field of robotics, it has been used to learn the

1Departments of Aerospace Engineering & Engineering Mechanics and
2Electrical and Computer Engineering, University of Texas at Austin,
{jhsin, somi.agarwal, adam.thorpe, lsentis,
dfk}@utexas.edu

dynamics of actuated systems for control purposes such as
modeling jet engines for feedback linearization and sliding
mode control [10]. SINDy’s appeal lies in its simple and
highly adaptable sparse linear regression approach, requiring
less data compared to methods like neural networks [6].

However, noise in the data remains a problem. A growing
body of research based on SINDy seeks to mitigate the
impact of noise on identifying the correct system dynam-
ics. Reactive SINDy [11] uses vector-valued functions with
SINDy to uncover underlying biological cell structures from
noisy data, but can fail to converge to the correct reaction
network with increasing levels of noise. PiDL-SINDy [12]
utilizes a physics-informed neural network with sparse re-
gression to learn the system dynamics, and DSINDy [3] and
a modified SINDy using automatic differentiation (AD) [13]
simultaneously de-noise the data and identify the governing
equations. However, PiDL-SINDy [12] and AD-SINDy [13]
run into computational bottlenecks and challenges with the
structure of their optimization problems. Derivative-based
approaches show promise, but DSINDy makes assumptions
on the structure of its function library that may not be true
in practice. ESINDy [6] proposes a statistical framework
to compute the probabilities of candidate functions from
an ensemble of models identified from noisy data, but its
approach relies on Sequentially Thresholded Least Squares
(STLS) regression. STLS can be effective for small levels of
noise, but it deteriorates with larger noise levels [2].

Advancements in non-parametric based approaches also
tackle the problem of learning governing equations from
noisy data. Neural networks have been used to parameterize
the state derivatives through a blackbox differential equation
solver [14], and Gaussian processes have been used to
infer parameters of linear equations from scarce and noisy
observations [15] and generate vector fields of nonlinear
differential equations [16]. Gaussian process regression is
particularly effective as an interpolation tool and at reducing
the noise in measurement data [5].

The novelty of our method lies in how we approximate the
state derivatives by constructing the Gaussian process kernel
using smoothed state measurements. This approach addresses
issues caused by measurement noise and low temporal reso-
lution for model learning. We learn the relationship between
the state and time derivatives using Gaussian processes, and
then determine analytic expressions for the dynamics with
SINDy. We benchmark our method on both simulated and
experimental hardware data, comparing it with SINDy, neural
network models, and other baselines. The results show that
our approach is notably more robust in identifying models
from sparse and noisy data.

ar
X

iv
:2

30
9.

11
07

6v
2

 [
cs

.L
G

]
 2

8
M

ar
 2

02
4

II. PROBLEM FORMULATION

Consider a system characterized by unknown dynamics

ẋ(t) = f(x(t),u(t)), (1)

where t ∈ R, x(t) ∈ Rn denotes the state of the system at
time t, and u(t) ∈ Rm the control input. We presume that
f : Rn×Rm → Rn in (1) is unknown, meaning we have no
prior knowledge of the system dynamics. Instead, we assume
that we have access to a dataset X consisting of a sequence
of r ∈ N state measurements corrupted by noise and control
inputs U taken at discrete times t1, t2, . . . , tr, given by

X = {x(t1) + ϵ1,x(t2) + ϵ2, . . . ,x(tr) + ϵr}
U = {u(t1),u(t2), . . . ,u(tr)},

(2)

where ϵi ∼ N (0, δ2I). We assume that the derivatives of the
state with respect to time ẋ(t) ∈ Rn corresponding to x(t)
are not directly measurable and must be approximated using
only the available data, e.g. using (central) finite differencing.
Let Ẋ be the approximate state derivatives with respect to
time of the points in the dataset X in (2) after applying
the corresponding control input in U , such that Ẋi is the
derivative of Xi using control input U i.

Intuitively, we can view X and Ẋ as matrices in Rr×n

where the ith row Xi corresponds to the state at time ti

X =

 | X1 |

...

| Xr |

 , (3)

and the ith row Ẋi is the time derivative of Xi. The
state measurements X , affected by noise, lead to rough and
inaccurate estimates of the time derivatives in Ẋ .

We assume that the dynamics can be described by a linear
combination of relatively few elementary function terms
such as polynomials of varying degrees, sinusoidal terms,
or exponential functions. For instance,

ẋ(t) = Θ(x(t),u(t))⊤Ξ, (4)

where Θ(x(t),u(t)) ∈ Rp is the candidate function library
of elementary basis functions evaluated at the current state
x(t) and control input u(t) and Ξ ∈ Rp×n is a matrix of
real-valued coefficients that weight the candidate function
terms. For simplicity, using the dataset X , the applied control
inputs U , and the state derivatives Ẋ , we can write the
relationship between the datasets via

Ẋ = Θ(X,U)⊤Ξ. (5)

In practice, (5) does not exactly hold as the dataset X is
corrupted by noise, and the approximation of Ẋ introduces
additional error as given by

Ẋ = Θ(X,U)⊤Ξ+ ηZ, (6)

where Z is a matrix of independent, identically distributed
zero-mean Gaussian entries and η is the magnitude of the
standard deviation of the noise.

To find Ξ, one can use ordinary least-squares with X and
Ẋ to find the model f from (1). However, this approach

does not lead to a sparse representation, instead overfitting
the model to the data and finding a solution with nonzero
elements in every element of Ξ. Sparsity is desirable to
prevent overfitting, particularly with noisy data. Fortunately,
LASSO [17] has been shown to work well with noise, using
L1 regularization to promote sparsity in the solution.

Problem 1 (LASSO for Symbolic Regression). We seek to
solve the LASSO problem

ξj = argmin
ξ∈Rp

∥Θ(X,U)⊤ξ − Ẋj∥2 + λ∥ξ∥1, (7)

where the optimization variable ξj ∈ Rp is the jth column
of Ξ from (6), Ẋj is the jth column of Ẋ from (6), and
λ > 0 is the L1 regularization parameter.

Solving the LASSO problem produces a more sparse
representation compared to least-squares. However, our ex-
periments demonstrate that using noisy data in Equation (7)
can result in identifying a model that inaccurately reflects
the system dynamics and performs poorly in extrapolation
for prediction. Furthermore, data with sparse temporal res-
olution, such as low frequency, might not provide enough
information to learn models with rapidly evolving dynamics.
Addressing the challenges posed by noise and data sparsity
is crucial for accurately identifying system dynamics.

III. APPROACH

Several techniques exist for de-noising data including
Fourier transforms, a range of filtering methods, and neural
networks [18]. In this work, we propose using Gaussian
process regression (kriging) for data smoothing to mitigate
noise-related issues, interpolate data for symbolic regression,
and enhance the analytical model’s precision.

Like SINDy, Gaussian process regression yields a model
for relating input and output data. Unlike SINDy, Gaussian
process regression is non-parametric; it models a probability
distribution of the data X , which is a function of t. This
distribution is described by a mean function m(·) and covari-
ance kernel function k(·, ·), and the negative log-likelihood
of the data X is given by

− log p(X) =
1

2
XT (K + θ2n)

−1X

+
1

2
log |K + θ2n|+

n

2
log(2π),

(8)

where K = k(t, t) and θn is a tunable hyperparameter for
noise variance. Gaussian process regression performance is
sensitive to the kernel choice; different kernels can lead to
poor extrapolation, where the predicted mean reverts to the
training dataset’s mean function [5]. We use the standard
squared-exponential kernel, characterized by its tunable hy-
perparameters: θf (signal variance) and θl (length scale)

k(ti, tj) = θ2f exp
(
− 1

2θ2l
||ti − tj ||2

)
. (9)

In practice, the hyperparameters are determined by mini-
mizing (8) with respect to θf , θl, and θn. To use Gaussian
process regression as a de-noising tool, we first assume that

X was generated from a zero-mean Gaussian process at
training times t. Now, let X∗ be a random Gaussian vector
generated from a Gaussian process at desired test times t∗[

X∗
X

]
∼ N

([
0
0

]
,

[
K(t∗, t∗) K(t∗, t)
K(t, t∗) K(t, t) + θ2nI

])
, (10)

where r is the number of training points, and r∗ is the number
of test points. K(t, t∗) denotes the r × r∗ matrix of the
covariances evaluated at all pairs of training and test points,
K(t, t) is a r × r matrix of covariances, and likewise for
K(t∗, t) and K(t∗, t∗). To obtain smoothed estimates of X
evaluated at the test points, we condition the distribution of
the training data on the test data to compute the posterior

XGP = K(t∗, t)[K(t, t) + θ2nI]
−1 X. (11)

We can evaluate XGP at the test points of the input data
or interpolate t∗ to higher frequencies to increase the data
for symbolic regression. The joint distribution of the training
and test points for the state derivatives Ẋ is given by[

Ẋ∗
Ẋ

]
∼ N

([
0
0

]
,

[
K(X∗,X∗) K(X∗,X)
K(X,X∗) K(X,X) + σ2

nI

])
, (12)

where K(X,X∗) denotes the r × r∗ matrix of the co-
variances and similarly for K(X,X), K(X∗,X) and
K(X∗,X∗). σn is the noise variance hyperparameter for
Ẋ . The kernel for Ẋ is characterized by its tunable hyper-
parameters: σf (signal variance) and σl (length scale)

k(Xi,Xj) = σ2
f exp

(
− 1

2σ2
l

||Xi −Xj ||2
)
. (13)

To calculate smoothed estimates of Ẋ evaluated at the test
points X∗, we compute the posterior mean

ẊGP = K(X∗,X)[K(X,X) + σ2
nI]

−1 Ẋ. (14)

We note that ẊGP can also be computed using the smoothed
or interpolated measurements XGP via

ẊGP = K(XGP∗,XGP)[K(XGP ,XGP) + σ2
nI]

−1 Ẋ.
(15)

Now that we have shown how to obtain XGP and ẊGP ,
we move forward to solve the problem in (7).

Remark 1. The novelty of our method lies in how we
treat XGP as the input to the kernel for smoothing Ẋ .
This approach can produce smoothed and interpolated state
derivatives ẊGP for symbolic regression.

A. GPSINDy: Symbolic Regression with GP Denoising

First, we minimize the negative log-likelihood of the state
X with respect to the hyperparameters θ = [θf , θl, θn],
assuming its mean function m(t) = 0 via Equation (8). Then,
we condition the distribution of the training data on the test
data to obtain the posterior mean of the state evaluated at
the test points t∗ according to (11).

Next, we minimize the negative log-likelihood of the state
derivative Ẋ with respect to the hyperparameters σf , σl, and
σn as in (16), which is given by

− log p(Ẋ) =
1

2

(
Ẋ −m(X)

)⊤
(K + σ2

n)
−1
(
Ẋ

−m(X)
)
+

1

2
log |K|+ n

2
log(2π),

(16)

where K = k(XGP ,XGP). Again, we assume a mean
function m(X) = 0. Then, we compute the posterior mean
ẊGP using Equation (15). Finally, we update the LASSO
problem from (7) to use XGP and ẊGP when solving for
the coefficients of the system dynamics

ξj = argmin
ξ∈Rp

∥Θ(XGP ,U)⊤ξ − ẊGP,j∥2 + λ∥ξ∥1, (17)

where ẊGP,j represents the jth column of ẊGP .

B. Optimization and Cross-Validation

LASSO can be computationally expensive for large data
sets. Fortunately, the objective function in (17) is separable,
making it suitable for optimization via splitting methods.
One such method, the Alternating Direction Method of
Multipliers (ADMM) [19], handles processing of large data
sets by splitting its primary variable into two parts and then
updating each part in an alternating fashion. We can solve
the LASSO problem in (17) using ADMM by treating Ξ as
the primary variable to be split as shown in Algorithm 1.

Algorithm 1 GPSINDy with ADMM (LASSO)
Input: state measurements X , control inputs U , computed

state derivatives Ẋ, L1 parameter λ
Output: coefficients for active nonlinear terms Ξ

1: compute XGP and ẊGP using (11) and (15)
2: construct data matrix Θ using XGP and U
3: for k = 1, 2, . . . , n do
4: ξk = ADMM(Θ, Ẋk, λ)
5: end for
6: Ξ = [ξ1, ξ2, . . . , ξn]

A suitable λ balances model complexity (determined by
the number of nonzero coefficients in Ξ) and accuracy.
Cross-validation determines the optimal sparsity parame-
ter and hyperparameters by evaluating model performance
across various training and test sets to achieve the best results
[20]. In this work, we perform cross-validation with LASSO
to achieve a sparse solution with the best model fit based on
the dataset. We use ADMM to solve the LASSO problem in
(17) to discover the dynamics for an unknown system using
noisy measurements, and we call this method GPSINDy.

IV. EXPERIMENTS & RESULTS

We demonstrate the effectiveness of GPSINDy on the
Lotka-Volterra model, a nonholonomic model with unicycle
dynamics, and data from the NVIDIA JetRacer. This latter
test underscores GPSINDy’s robustness in handling noisy
datasets from real-world hardware. We benchmark GPSINDy
against the SINDy algorithm [1] and a neural network-based
method, NNSINDy, which uses a neural network for data

Ground Truth SINDy GPSINDy

Θ term ẋ1 ẋ2 ẋ1 ẋ2 ẋ1 ẋ2

x1 1.1 0.0 1.108 0.0 1.097 0.0
x2 0.0 -0.1 0.0 -0.997 0.0 -0.980
x1x2 -0.4 0.4 -0.397 0.382 -0.358 0.396
x2x2 0.0 0.0 0.0 0.0 0.0 -0.005
cos(x1) 0.0 0.0 0.0 0.016 -0.049 0.0
x1 cos(x1) 0.0 0.0 0.0 -0.005 0.0 0.0
x1x1 sin(x2) 0.0 0.0 -0.003 0.0 0.0 0.0
x1x2 sin(x1) 0.0 0.0 0.0 -0.007 0.0 0.0
x1x2 sin(x2) 0.0 0.0 0.003 0.0 0.0 0.0
x1x1 cos(x1) 0.0 0.0 0.0 -0.009 0.0 -0.003
x1x1 cos(x2) 0.0 0.0 -0.001 0.0 0.0 0.0

TABLE I: GPSINDy learns better coefficients for the predator-
prey model. In this table we compare the coefficients learned by
SINDy and GPSINDy with the ground truth coefficients. The bold
values show the best learned coefficients compared the the ground-
truth coefficients for both ẋ1 and ẋ2.

refinement and LASSO for symbolic regression. The neural
network used in NNSINDy has two layers with 32 hidden
neurons each and is trained using the ADAM optimizer [21].
We refer to the ground-truth coefficients as ΞGT and the
learned coefficients as ΞLearned for all experiments.

Experimental Setup: In all of the experiments unless
specified, we simulate the system for 30s at discrete time
steps t ∈ {t1, t2, . . . , tr} with a sampling interval of 0.1s.
We compute the derivatives ẋ(t) using the truth dynamics
and add noise ϵ ∼ N

(
0, σ2

)
on top of x(t) and ẋ(t) to

simulate measurement noise, thereby obtaining X and Ẋ .
We set aside the last 20% of the simulated data for validation
purposes and use the rest for training. We smooth X and Ẋ
using Gaussian process regression as described in (11) and
(14) to obtain XGP and ẊGP from the training data and
then compute Θ(XGP) using (18). We apply Gaussian pro-
cess regression with a squared exponential kernel, optimizing
the hyperparameters through maximum likelihood. Finally,
using ẊGP and Θ(XGP), we solve the L1-regularized
least-squares problem in (17) using λ = 0.1. For the baseline
NNSINDy, we train a neural network to predict Ẋ given the
observations of X using the training data and apply LASSO
regression to discover the coefficients.

We choose the candidate function library Θ(X,U) (un-
less specified) such that it consists of polynomial terms up to
3rd order, sinusoidal terms (sin and cos), and combinations
of the polynomial and sinusoidal terms. For example,

Θ(X,U) =

[
1 X XP2 · · · sin(U) · · ·

]
, (18)

where XP2 denotes the quadratic nonlinearities in the state
variable X . While we have chosen Θ for the dynamical
systems in our experiments, in practice, the function library
Θ(X,U) could be expanded to include a wider range of
nonlinear basis functions tailored to the system in question.

A. Lotka-Volterra Model (Predator/Prey)

We first consider the problem of identifying the equations
of motion for the Lotka-Volterra model [22], which can be

Fig. 1: GPSINDy outperforms baselines in learning model
coefficients for the Predator-Prey (top) and the unicycle model
(bottom) under noisy measurements. Contrast the dynamics learned
by SINDy (blue), GPSINDy (orange), and NNSINDy (green) across
varying levels for added noise standard deviation σ. The horizontal
axis represents σ varying from 0.050 to 0.25 and the vertical axis
the mean-squared error between the ground-truth coefficients (ΞGT)
and the learned coefficients (ΞLearned). The ribbon indicates the
standard deviation around the mean line. Lower overall error is
better. Each experiment evaluates coefficients learned from noisy
measurements with trials repeated over 40 seeds for each σ.

used to model the population of predator and prey species
over time. The dynamics of the system are given by

ẋ1 = ax1 − bx1x2, ẋ2 = −cx2 + dx1x2, (19)

where x1 represents the size of the prey population and
x2 represents the size of the predator population, a = 1.1
and b = 0.4 describe the prey growth rate and the effect
of predation upon the prey population, and c = 1.0 and
d = 0.4 describe the predator’s death rate and the growth of
predators based on the prey population. For this experiment,
we standardize the data, i.e. normalize to have zero mean and
unit variance, to improve parameter estimation of covariance
functions and and mitigate numerical issues associated with
inverting ill-conditioned covariance matrices [23].

We first compare the learned coefficients Ξ between
SINDy and our proposed approach in Table I. We observe
that the estimates for the parameters a, b, c, and d obtained
by GPSINDy are generally a closer approximation of the
true underlying dynamics and that the coefficients matrix Ξ
learned by GPSINDy is also more sparse than the one learned
by SINDy. This is because our approach uses Gaussian
processes to estimate Ẋ , which is a smoother approximation
of the true derivatives of X than the one corrupted by noise.

We also quantitatively compare the performance of SINDy,
NNSINDy, and GPSINDy on data corrupted by different
levels of noise as shown in Figure 1. The results show
GPSINDy consistently outperforms the baselines across all
noise magnitudes, highlighting its robustness in dealing with

Fig. 2: GPSINDy outperforms baselines on NVIDIA JetRacer trajectories under noisy measurements. Each column represents the
NVIDIA JetRacer dataset at different noise levels. The horizontal axis represents the data frequency (Hz) and the vertical axis quantifies
the log root mean-squared error (RMSE) between the predicted states of a trajectory from learned system dynamics and ground-truth
states. Lower overall RMSE is better. Each baseline is shown in a different color, with GPSINDy in red. This figure shows that over 45
rollouts, GPSINDy (red) achieves the lowest RMSE for most frequencies and noise levels. The baseline SSR Residual (yellow) sometimes
beats GPSINDy; however, its significantly higher variance makes it unreliable for real-world settings.

noisy data. While SINDy is effective at low noise levels, it
struggles at higher levels. NNSINDy, constrained by limited
data, fails to effectively learn model coefficients.

B. Unicycle Dynamics (Simulation)

We now consider the nonholonomic unicycle system

ẋ1 = x3 cos(x4), ẋ2 = x3 sin(x4), ẋ3 = u1, ẋ4 = u2. (20)

We set the control inputs as u1(t) = sin(t) and u2(t) =
1
2 cos(t) to perturb the dynamics from an initial condition
x0 = [0, 0, 0.5, 0.5]⊤. In practice, any function can be chosen
which perturb the dynamics. Unlike the prior experiment, we
opt to not standardize the states x(t) since the data spread
was already apt for Gaussian process regression. We note that
we use polynomial terms up to 1st order in Θ(XGP ,U) as
each method failed to identify the truth coefficients when 3rd

order terms were included.
We compare the performance of SINDy, NNSINDy, and

GPSINDy on data with varying noise levels in Figure
1. GPSINDy consistently outperforms other methods at
higher noise levels. While NNSINDy and GPSINDy perform
similarly for both the predator-prey and unicycle systems,
SINDy’s performance notably degrades for the unicycle
system, particularly with increased noise levels. All methods
show significant errors in learned coefficients compared to
true system dynamics, suggesting model mismatch. Never-
theless, GPSINDy learns more accurate coefficients even
with complex dynamics like the nonholonomic unicycle
system and noise-corrupted measurements.

C. JetRacer Hardware Demonstration

We also test our method real hardware data collected
from a NVIDIA JetRacer, a 1/10 scale high speed car. We
actuated the car to drive in a figure-8 made up of two circles,
3m in diameter. The nominal time for each lap was 5.5s
with nominal velocity of 3.4m s−1. VICON sensors captured
22.85s of the system’s motion at discrete timesteps of 0.2s
(50 Hz), and the control inputs U were saved at the same
sampling rate for 45 total runs. We define the state Xi at

time ti to be the measured x1 and x2 position in m, forward
velocity magnitude v of the car in ms−1, and heading angle
ϕ (with respect to a global frame) in rad s−1. We stack
each state measurement (3) to gather X , after which we
approximate Ẋ using central finite differencing.

To evaluate performance for varying frequencies and noise
levels, we downsample the 50 Hz state and control time his-
tories to 25, 10, and 5 Hz and add noise ϵlow ∼ N

(
0, 0.012

)
and ϵhigh ∼ N

(
0, 0.022

)
to the state measurements. We

generate smoothed points XGP and ẊGP at the same time
points for each frequency and as well as twice the input
frequency to provide more points for symbolic regression.
Finally, we compute Θ(XGP ,U) using the smoothed points
and then solve the L1-regularized least squares problem in
(17) to obtain the GPSINDy dynamics model.

To achieve the best model fit, we tune λ individually for
SINDy and GPSINDy via cross-validation, starting at λ =
10−6 and increment logarithmically until reaching 1. Then,
we increase λ by 10 until all of the coefficients regress to 0.
We propagate the dynamics for each λ and, at the end, select
the λ for each Ẋ that best fit the data. Our baselines include
Stepwise Sparse Regressor (SSR) Coefficient and Residual
[24], algorithms designed mitigate measurement noise like
GPSINDy and serve as suitable benchmarks. SSR Coeff
truncates the smallest coefficient at each iteration while SSR
Res computes multiple models chopping each coefficient,
finally choosing the model with the lowest residual error.

In Figure 2, we show the results for all 45 rollouts for
GPSINDy and the aforementioned baselines. For the datasets
with added noise ϵlow and ϵhigh, SSR Residual shows the
lowest error at the lower frequencies, but GPSINDy gives the
lowest error at the higher frequencies. However, the error
bars for GPSINDy demonstrate lower variance than SSR
Residual across all frequencies. GPSINDy beats all baselines
for all frequencies with no added noise to the collected data,
in particular the real-world 50 Hz hardware data.

Table II shows that GPSINDy achieves 20.78% lower
RMSE error than SINDy, 83.16% lower error than SSR
Coeff, and 82.23% lower error than SSR Res. GPSINDy has

Fig. 3: GPSINDy Trajectories Align Closely with Ground
Truth for the Real JetRacer System. The plot contrasts trajecto-
ries predicted from SINDy (blue) and GPSINDy (orange) with the
ground truth (black) based on one rollout out of the total collected
JetRacer data. The axes denote the JetRacer’s Cartesian coordinates.
For this trajectory, the RMSE error norm between the x1 and
x2 coordinates for SINDy on the testing data is 1.4m2, while
for GPSINDy it is reduced to 0.23m2.

the lowest aggregate prediction error and variance among the
chosen baselines.

GPSINDy SINDy SSR Coeff SSR Res

Mean RMSE
± variance

11.002
± 1.525

13.888
± 1.619

65.349
± 3.823

61.917
± 40.987

TABLE II: GPSINDy Achieves Lowest Predicted Error Among
Baselines on JetRacer Trajectories Under Noisy Measurements.
This table shows the mean RMSE and variance for all frequencies
(5, 10, 25, and 50 Hz) and noise levels (no noise, low noise, and
high noise). Although SSR Residual sometimes beats GPSINDy on
lower frequencies as shown in Figure 2, GPSINDy has the lowest
mean RMSE and variance across all frequencies and noise levels.

V. DISCUSSION

We have devised a method to learn models using data with
high noise and sparsity in symbolic regression algorithms
such as SINDy. We smooth and interpolate sparse, noisy
measurements using Gaussian Process regression and then
solve the LASSO problem with ADMM to learn more
accurate dynamics over SINDy and other baselines. We
demonstrate our approach on a Lotka-Volterra system, on
an simulated unicycle system, and on noisy data taken from
hardware experiments using an NVIDIA JetRacer system.
Our results show that using Gaussian processes significantly
improves system identification for SINDy.

Extensive experimentation ultimately led to the simplicity
of our method. We initially tried optimizing the marginal
log-likelihood for the data Ẋ while simultaneously learning
the dynamics coefficients Ξ using a novel ADMM-based
method. We replaced the mean function m(X) in Equation
(16) with Θ(X,U)Ξ from Equation (5) and iteratively tuned
the hyperparameters while solving for Ξ, but this approach
did not lead to accurate results. We also experimented with
different kernel functions including the periodic kernel and
various Matern kernels, finding that the squared-exponential
kernel worked best with our data.

Future work should benchmark our method against di-
rectly taking the derivative of Gaussian Processes, provide
a more thorough comparison between existing approaches,
and conduct more testing on different dynamic systems.

REFERENCES

[1] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing
equations from data by sparse identification of nonlinear dynamical
systems,” Proceedings of the National Academy of Sciences, vol. 113,
no. 15, pp. 3932–3937, 2016.

[2] A. Cortiella, K.-C. Park, and A. Doostan, “Sparse identification
of nonlinear dynamical systems via reweighted ℓ1-regularized least
squares,” Computer Methods in Applied Mechanics and Engineering,
vol. 376, p. 113620, 2021.

[3] J. Wentz and A. Doostan, “Derivative-based SINDy (DSINDy): Ad-
dressing the challenge of discovering governing equations from noisy
data,” Computer Methods in Applied Mechanics and Engineering,
vol. 413, p. 116096, Aug. 2023. arXiv:2211.05918 [math].

[4] E. Kaiser, J. N. Kutz, and S. L. Brunton, “Sparse identification of
nonlinear dynamics for model predictive control in the low-data limit,”
Proceedings of the Royal Society A, 2018.

[5] C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine
Learning. MIT Press, 2006.

[6] U. Fasel, J. N. Kutz, B. W. Brunton, and S. L. Brunton, “Ensemble-
SINDy: Robust sparse model discovery in the low-data, high-noise
limit, with active learning and control,” Proceedings of the Royal
Society A, vol. 478, no. 2260, p. 20210904, 2022.

[7] H. Schaeffer and S. G. McCalla, “Sparse model selection via integral
terms,” Physical Review E, vol. 96, no. 2, p. 023302, 2017.

[8] L. Boninsegna, F. Nüske, and C. Clementi, “Sparse learning of
stochastic dynamical equations,” The Journal of chemical physics,
vol. 148, no. 24, 2018.

[9] K. Kaheman, J. N. Kutz, and S. L. Brunton, “Sindy-pi: a robust algo-
rithm for parallel implicit sparse identification of nonlinear dynamics,”
Proceedings of the Royal Society A, 2020.

[10] G. L’Erario, L. Fiorio, G. Nava, F. Bergonti, H. A. O. Mohamed,
E. Benenati, S. Traversaro, and D. Pucci, “Modeling, identification and
control of model jet engines for jet powered robotics,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 2070–2077, 2020.

[11] M. Hoffmann, C. Fröhner, and F. Noé, “Reactive sindy: Discovering
governing reactions from concentration data,” The Journal of chemical
physics, vol. 150, no. 2, 2019.

[12] Z. Chen, Y. Liu, and H. Sun, “Physics-informed learning of governing
equations from scarce data,” Nature communications, 2021.

[13] K. Kaheman, S. L. Brunton, and J. N. Kutz, “Automatic differentia-
tion to simultaneously identify nonlinear dynamics and extract noise
probability distributions from data,” Machine Learning: Science and
Technology, vol. 3, no. 1, p. 015031, 2022.

[14] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neu-
ral ordinary differential equations,” Advances in neural information
processing systems, vol. 31, 2018.

[15] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Machine learning
of linear differential equations using gaussian processes,” Journal of
Computational Physics, vol. 348, pp. 683–693, 2017.

[16] M. Heinonen, C. Yildiz, H. Mannerström, J. Intosalmi, and
H. Lähdesmäki, “Learning unknown ode models with gaussian pro-
cesses,” in International conference on machine learning, pp. 1959–
1968, PMLR, 2018.

[17] R. Tibshirani, Regression Shrinkage and Selection via the Lasso.
Oxford University Press, 1996.

[18] S. V. Vaseghi, Advanced digital signal processing and noise reduction.
John Wiley & Sons, 2008.

[19] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends in Machine Learning,
vol. 3, pp. 1–122, 01 2011.

[20] K. Ito and R. Nakano, “Optimizing support vector regression hyper-
parameters based on cross-validation,” in Proceedings of the Interna-
tional Joint Conference on Neural Networks, IEEE, 2003.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” CoRR, vol. abs/1412.6980, 2015.

[22] V. Křivan, “Prey–predator models,” in Encyclopedia of Ecology (S. E.
Jørgensen and B. D. Fath, eds.), pp. 2929–2940, Oxford: Academic
Press, 2008.

[23] H. C. Lingmont, F. Alijani, and M. A. Bessa, “Data-driven techniques
for finding governing equations of noisy nonlinear dynamical sys-
tems,” 2020.

[24] L. Boninsegna, F. Nüske, and C. Clementi, “Sparse learning of
stochastic dynamical equations,” The Journal of chemical physics,
vol. 148, no. 24, 2018.

