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The brain’s remarkable and efficient information processing capability is driving research into brain-inspired
(neuromorphic) computing paradigms. Artificial aqueous ion channels are emerging as an exciting platform for
neuromorphic computing, representing a departure from conventional solid-state devices by directly mimicking
the brain’s fluidic ion transport. Supported by a quantitative theoretical model, we present easy to fabricate
tapered microchannels that embed a conducting network of fluidic nanochannels between a colloidal structure.
Due to transient salt concentration polarisation our devices are volatile memristors (memory resistors) that are
remarkably stable. The voltage-driven net salt flux and accumulation, that underpin the concentration polar-
isation, surprisingly combine into a diffusionlike quadratic dependence of the memory retention time on the
channel length, allowing channel design for a specific timescale. We implement our device as a synaptic ele-
ment for neuromorphic reservoir computing. Individual channels distinguish various time series, that together
represent (handwritten) numbers, for subsequent in-silico classification with a simple readout function. Our
results represent a significant step towards realising the promise of fluidic ion channels as a platform to emulate
the rich aqueous dynamics of the brain.

Neuromorphic computing aims to replicate the information
processing of the human brain, which is orders of magnitude
more energy efficient than conventional computing devices
[1, 2]. This is paramount as the unsustainable trend of en-
ergy consumption by computers is growing at an exponen-
tial rate, driving investigations into brain-inspired computing
paradigms [3]. To pursue brain-like information processing, a
device structure that goes beyond the conventional von Neu-
mann architecture is necessary [4]. To this end, memristors
(memory resistors) have emerged as promising artificial ana-
logues to biological synapses that enable brain-inspired circuit
architectures [2, 3, 5–7].

Despite the successful implementation of memristors in
various conventional platforms, the vast majority of these de-
vices consist (at least partially) of solid-state components,
rely on only a single information carrier (usually electrons
or holes), and only respond to electric driving forces [3, 7].
These limitations contrast with the brain’s nimble synapses,
which can utilize both electrical and chemical signals by rely-
ing on transport in an aqueous environment of various ionic
and molecular species in parallel [8]. In light of this dis-
parity, an emerging and exciting approach seeks inspiration
not only from the architecture of the brain, but also from its
aqueous medium and ionic signal carriers [9]. These so-called
iontronic devices employ ions moving in an aqueous environ-
ment to carry information, offering the promise of multiple in-
formation carriers, chemical regulation, and bio-integrability
[10]. Consequently, various iontronic memristors have been
presented [11–14] that can exhibit synaptic plasticity features
[15, 16], and utilize chemical regulation [17, 18]. Addition-
ally, recent advancements have been made in employing ion-
tronic devices for signaling and computing, with theoretical
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proposals [19–21], and demonstrations of traditional truth ta-
bles [22–24], respectively. Despite these prospects, the devel-
opment of aqueous neuromorphic devices is still in its infancy
and neuromorphic computing implementations remain a chal-
lenge [10, 25, 26].

Here we theoretically propose and experimentally realise
the implementation of an aqueous volatile memristor as a
synaptic element for iontronic neuromorphic computing. This
device is stable over long periods of time, providing reliable
and distinct responses to temporal inputs, enabling its use as
computing element. Additionally, device fabrication is fast,
cost-effective and easy via a soft-lithography process that is
almost free-shaping. By constructing a channel of a certain
chosen length, made easy by the flexible fabrication process,
we can design our channel to feature a specific timescale cho-
sen from a wide range, a desirable property of memristive
devices [27]. The volatile nature, i.e. decaying conductance
memory when driving forces are removed, with adjustable
memory retention times makes our memristor a promising
candidate for reservoir computing, a brain-inspired machine
learning framework which has drawn attention due to its ca-
pability of handling complex time series and sequential tasks
[28–33]. We implement benchmark protocols of classifying
(handwritten) numbers that are encoded as temporal signals.
Our aqueous channels process the time series, distinguishing
them for subsequent in silico classification with a simple read-
out function, performing (at least) comparable with more con-
ventional solid-state platforms employing similar protocols
[32–35].

Our iontronic device is understood through a quantitative
theoretical model that directly derives from continuum trans-
port equations and identifies an inhomogeneous ionic space
charge density, observed between the colloids [36], as (a gen-
eral) main ingredient to induce salt concentration polarisation
and consequent ion current rectification. Moreover, our the-
ory elucidates how the voltage-driven net salt flux and accu-
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FIG. 1. Features and properties of our iontronic memristor through theory and experiment. (a) Schematic (left) and pictures (right) of the
device. The channel connects two reservoirs of aqueous KCl electrolyte and incorporates a rigid colloidal structure, forming a network of
nanochannels between the colloids. (b) Steady-state I −V curve observed in experiments (blue) and predicted by our theory (red), showing
a similar current rectification property. (c) Dynamic I −V curve in response to a sinusoidal voltage over the channel (top, green). The
theory (bottom, red) and the experiments (bottom, blue) both exhibit a similar pinched hysteresis loop. (d) Simplified schematic of synaptic
signal transmission. An action potential triggers neurotransmitter release (not depicted) from the presynaptic neuron (orange), binding to
receptors on the postsynaptic neuron (yellow), potentially inducing ion transport and altering its membrane potential [8]. The dynamic channel
conductance is analogous to the synaptic strength. (e) Current measurements (blue) when four consecutive 5 V pulses and five read pulses
(green) are applied. (f) Short-term plasticity features observed in the channel (blue) and predicted by the theory, where we show the full
(numerical) solution for g(t)/g0 (red, dashed) and the measurements this would correspond to in the experiment (red, dots). Four consecutive
voltage pulses with ∆t smaller than the channel’s memory retention time τ leads to facilitation (top) and depression (middle) for pulses of 5 V
and −2.5 V, respectively. The short term characteristic is clearly visible when ∆t ≫ τ , in this instance no cumulative change in conductance
is found (bottom).

mulation, that underpin the (transient) concentration polari-
sation, surprisingly combine into a diffusionlike conductance
memory timescale that quadratically depends on the chan-
nel length. Consequently, the theory correctly predicts the
voltage-dependent (dynamic) conductance, thereby facilitat-
ing a great acceleration of the experiments by pointing out the
relevant signal voltages, signal timescales, and suitable reser-
voir computing protocol.

The combination of i) a stable fluidic memristor that can be
designed to feature a specific memory timescale, made with
ii) an almost free-shaping and cost-effective soft-lithography
fabrication process, iii) a theoretical model that quantitatively
describes and predicts the device dynamics, and iv) the imple-
mentation of an aqueous iontronic device as an element for
neuromorphic computing, forms a significant advancement

towards developing iontronic devices that can facilitate the
wealth of communication pathways harnessed by the brain.

1 Fluidic NCNM Memristor: Theory and Experiment

Our experimental system, as shown in Fig. 1(a), consists of
a tapered microfluidic channel of uniform height H = 5 µm
and a width that linearly decreases over its length L = 150 µm
from 2Rb = 200 µm at the broad base to 2Rt = 10 µm at the
narrow tip. The channel, which connects two deep reservoirs
containing an aqueous 10 mM KCl electrolyte, is filled with a
rigid face-centered cubic (fcc) crystal structure at a near-close-
packed volume fraction η ≃ 0.74 of charged silica spheres
with radius a = 100 nm and approximate surface charge den-
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sity σc = −0.01 Cm−2. To form the colloidal structure, the
colloids, dispersed in a 70% ethanol solution, are injected into
deep channel 1 (as in Fig. 1(a)) of 100 µm height, filling the
tapered shallow channel up to the base through capillary ac-
tion. The fluid halts at the interface between the shallow chan-
nel and deep channel 2 due to the Laplace-pressure and con-
sequently evaporates, promoting nanoparticle self-assembly
into a close-packed fcc. The device is then dried and prepared
for the experiments by filling it with the aqueous electrolyte.
The electrolyte in the space between the colloids forms a con-
ducting nanochannel network membrane (NCNM) with pore
spaces up to tens of nm in the tetrahedral and octahedral holes
of the fcc lattice. This connected porous structure can sup-
port an ionic current I driven by a voltage drop V over the
length of the channel, defined as tip minus base voltage (i.e.
V = −Vapp). More system parameters and characteristics are
laid out in the SI.

Some of us previously showed that these type of colloid-
filled microchannels are ionic diodes with excellent ion cur-
rent rectification (ICR) ratios of up to 55 for the channels on
which the devices in this work are based [36], and even up
to ∼ 1600, the highest reported value at the time, for a more
recent version containing two colloidal structures of opposite
surface charge [37]. The physical phenomenon that underpins
the ICR is the strong voltage-dependent salt concentration po-
larisation, hypothesised to be induced by an experimentally
observed inhomogeneous ionic space charge density between
the colloidal particles [36]. Calculations on a standard col-
loidal Wigner-Seitz cell model, presented in detail in the Sup-
plemental Information (SI), show that a small (essentially in-
visible) variation of order ∼ 1% in the colloidal packing frac-
tion between base and tip of the channel can alter the colloidal
surface charge density by several 10% for a fixed zeta poten-
tial. By assuming macroscopic electroneutrality [38, 39], the
ionic space charge in the (thin) electric double layers of the
charged colloids varies similarly, thereby providing a natural
explanation for the hitherto unexplained ionic charge density
profile. In order to theoretically investigate the hypothesis that
the inhomogeneous space charge density is responsible for the
ICR, we employ standard Poisson-Nernst-Planck (PNP) equa-
tions for ionic transport to explain that the inhomogeneous
ionic space charge density indeed leads to current rectifica-
tion. Our theoretical framework, based on an efficient slab-
averaging approach in tapered channel geometries [40, 41], is
described below, while the detailed calculations can be found
in the SI.

The PNP equations form an effective theoretical frame-
work to analyse ion transport in charged porous materials [42].
However, the complex three-dimensional geometric structure
of the NCNM, with features on length scales varying from the
colloidal surface-surface distance all the way up to the chan-
nel length, introduces intricate numerical challenges for fully
spatially resolved solutions of the PNP equations. To simplify,
we consider slab-averages, i.e. the average along a cross sec-
tion [38, 40, 41, 43, 44], of the electric potential and the ionic
concentrations in the porous structure between the colloids.
Although this sacrifices on nanoscale details, it does account
for the pinched electric field lines towards the channel tip and

for the spatial variation of the ionic charge density. Through
this method we reduce the three-dimensional Nernst-Planck
equation to a one-dimensional form, providing an expression
for the total salt and charge flux through the channel. The
divergence of the total salt flux qualitatively shows that the
experimentally observed inhomogeneous ionic space charge
density forms a source (sink) term of salt, resulting in salt
accumulation (depletion) upon a positive (negative) applied
voltage V . Quantitatively, a divergence-free steady-state con-
dition on the total salt flux provides a differential equation for
the voltage-dependent slab-averaged salt concentration pro-
file, which we solve analytically. By viewing the channel as a
series of conductive slabs, with the conductance of each slab
proportional to the (now known) voltage-dependent salt con-
centration, we calculate the steady-state channel conductance
g∞(V ) = I(V )/V . This describes how an increase (decrease)
in salt in the channel at positive (negative) voltages makes
the channel more (less) conductive. Our theory thus quan-
titatively confirms the experimental hypothesis that the ionic
space charge distribution results in salt concentration polari-
sation and hence in current rectification [36]. Moreover, lever-
aging the general analytical nature of our theory, we demon-
strate that any inhomogeneous ionic space charge density in
generic channels (provided they are well-described by slab-
averaged PNP equations) is the key ingredient for a source-
sink term of salt and thus for current rectification, derived in
detail in the SI. Therefore we not only provide a mechanistic
insight as to how the space charge leads to current rectifica-
tion in the channel of present interest, but this understanding
could also explain current rectification in channels with other
sources of space charge densities and with other geometries
[23, 37]. Furthermore, this insight may provide inspiration
for future design of devices that exhibit current rectification.

In Fig. 1(b) we plot the predicted steady-state current (red)
and the experimentally observed current (blue), revealing a
similar current rectification. The experimentally observed
ICR ratio of 11 is lower than one of our earlier (slightly more
complicated) microchannels [36], however it is sufficient for
this work and we believe it will be straightforward to optimise
our channel for higher ratios in the future as higher ratios were
already achieved in similar channels [36, 37].

Up to this point, we treated the system in steady-state.
When extending our view to the device dynamics we need to
consider the time it takes for ions to accumulate into or deplete
out of the channel. Utilizing our aforementioned expression
for the total salt flux through the channel, we calculate the net
flux γV ′ into the channel upon a small applied voltage V ′ and
find (see SI for details) that γ ∝ D/L, with L the channel length
and D the ionic diffusion coefficient. The contributions to the
net flux solely come from the conductive, i.e. voltage-driven,
flux term in the Nernst-Planck equation. The proportionality
to D/L is intuitive as the electric field strength in the channels
is proportional to 1/L and all flux terms are proportional to
the ionic mobilities and hence to D. With our expression for
the slab-averaged salt concentration profile we also calculate
the total change in salt αV ′ upon applying the small voltage
V ′, and we find α ∝ L. This proportionality to L again is in-
tuitive, as the volume of the channel scales with L. The ratio
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α/γ between this total change in salt and net flux provides an
estimate for the concentration polarisation timescale, given by

τ =
L2

4D
ξ , (1)

where ξ ≈ 0.42 is an involved dimensionless number that de-
pends on the ratio of the channel widths Rt/Rb and on the
ratio of the internal space charge density at the tip and the
base (full expression in SI). Eq. (1) shows that τ is a diffu-
sionlike time, which is remarkable as no diffusion terms from
the Nernst-Planck equation go directly into the derivation of
Eq. (1). Nevertheless, from the aforementioned intuitive de-
pendencies on D/L and L of the net salt flux and total change
in salt, respectively, we surprisingly do retrieve a diffusionlike
timescale from a voltage-driven process. Inserting our present
system parameters, including D = 1.45 µm2ms−1, yields a
memory timescale of τ = 1.62 s.

With the the steady-state conductance g∞(V ) and the con-
ductance memory timescale τ , we formulate our theory for
the time-dependent channel conductance g(t) resulting from
a time-dependent voltage V (t). We intuitively expect g(t) to
relax towards the instantaneous static conductance g∞(V (t))
on a time scale τ , with a vanishing rate of change dg(t)/dt
once g(t) = g∞(V (t)). We employ a simple equation of mo-
tion (which we more rigorously support in the SI) that charac-
terises this relaxation process and write

dg(t)
dt

=
g∞(V (t))−g(t)

τ
; (2)

I(t) =g(t)V (t), (3)

where Eq. (2) is a form that was also successfully applied in
previous studies on various memristors [18, 20, 41, 45] and
Eq. (3) is Ohm’s law.

To demonstrate the memristive properties of our device we
impose a sinusoidal voltage V (t) of amplitude 5V and fre-
quency f = 0.1 Hz as shown in Fig. 1(c, green). The resulting
current-voltage (I −V ) diagram is shown in Fig. 1(c, blue),
where a clear pinched hysteresis loop is observed, the hall-
mark of a memristor [46]. This loop features a pronounced
memory effect (i.e. more open hysteresis loop) compared to
various fluidic memristive devices [12, 17, 18, 47], allowing
for a wide range of comparatively high conductances. More-
over, in Fig. 1(c, red) we see that our theory shows good agree-
ment with experimental findings.

Memristors are recognised as artificial analogues to
synapses, the connections between neurons [6]. In neuronal
communication, the change in membrane potential of a post-
synaptic neuron, triggered by an influx of ions in response to a
signal from a connected presynaptic neuron, is a measure for
the synaptic connection strength [8]. Similarly, our device’s
measured ion current, also a result of ion flux through a mem-
brane, draws a parallel between the channel’s conductance
and synaptic strength in neurons, as schematically depicted in
Fig. 1(d). A crucial aspect of neuronal functioning is short-
term plasticity (STP), which allows neurons to adjust their
synaptic strength in response to recent input history, being of
key importance in information processing [48]. STP involves

FIG. 2. Stability of our NCNM memristors. Averaged current
(blue) measured over 50 subsequent voltage pulse train cycles, taking
roughly 30 minutes. Each train consists of four write-pulses, of -2 V
and 5 V respectively, interspersed with five read-pulses of 1 V. All cy-
cles showed essentially the same behaviour, producing a spread with
standard deviation for each current measurement around the average
of maximally ∼ 7% (blue-gray), demonstrating the device stability.

changes in the synaptic strength that decay over timescales
ranging from milliseconds to minutes, where an increase of
the synaptic strength is called (short-term) facilitation and a
decrease (short-term) depression [48–50]. To demonstrate
that our fluidic memristor can mimic these aspects of neu-
ronal STP, we apply four consecutive positive and negative
“write-pulses” of 5 V and −2.5 V, respectively, with a 0.75 s
duration, separated by intervals of ∆t = 0.75 s < τ smaller
than the memory retention time τ . The asymmetric 5 V and -
2.5 V voltages helped optimize the conductance response. We
measure the channel conductance by applying small and short
“read-pulses” of -1 V and duration 50 ms after each write-
pulse. In Fig. 1(e) we show the current measurements (blue)
when four 5 V write-pulses and five -1 V read-pulses (green)
are applied, with energy consumption of ∼ 1− 10 µJ for the
write-pulses and ∼ 10−100 nJ for the read-pulses. The read-
pulses are converted to the measured channel conductances
shown in Fig. 1(f). As illustrated in Fig. 1(f, blue), our flu-
idic memristor exhibits both facilitation (top graph) and de-
pression (middle graph), hence replicating the characteristic
features of neuronal STP. These results are the average of
three devices with two measurements per device, each show-
ing quantitatively similar behaviour. In Fig. 1(f, bottom graph)
the short-term character of the response is prominently visible
when the interval between the pulses is much longer than the
typical memory retention time τ and no cumulative change
in conductance is observed. Our experimental findings are
mostly in good agreement with Eq. (2) shown in Fig. 1(f, red),
the only notable discrepancy being that the measured strength
of depression is weaker than predicted. The overall agree-
ment emphasizes the robustness and predictive power of the
theoretical model in quantitatively characterizing the device
properties.

To reliably perform neuromorphic reservoir computing our
devices need to repeatedly produce the same response to sig-
nals. In Fig. 2, we demonstrate the stability and reproducibil-
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50 μm 100 μm 150 μm (a) (b) (c) (d)

FIG. 3. Voltage-driven concentration polarisation occurs over a diffusionlike timescale. Experimental I −V curves for channels of length (a)
50 µm, (b) 100 µm, and (c) 150 µm for a sinusoidal potential with amplitude 5 V and frequencies of 0.1 Hz (magenta), 0.215 Hz (cyan), and
0.9 Hz (orange). Measurements were also conducted for intermediate frequencies of 0.01 Hz, 0.05 Hz, 0.075 Hz, 0.1 Hz, 0.125 Hz, 0.175 Hz,
0.215 Hz, 0.255 Hz, 0.6 Hz, 0.9 Hz, 1.2 Hz, and 2 Hz, shown in the SI. (d) Memory timescale τ for all channels determined by the frequency
fmax for which the enclosed area inside the loop is maximal via the relation 2π fmaxτ = 1 [51]. The measured frequencies around each fmax
yield upper and lower bounds, shown here as error bars.

ity of our device by applying 50 subsequent cycles of four
write-pulses of -2 V and 5 V respectively, taking roughly 30
minutes to complete. The resulting current, averaged over all
50 cycles (blue), shows a narrow spread with a standard de-
viation (blue-gray) of at most ∼ 7%. In the SI, we present
additional measurements, including 26 cycles over 4 hours
for all 16 different four-pulse voltage trains, reliably finding
a similar conductance modulation each cycle with conduc-
tance standard deviations of typically a few % and no more
than ∼ 10%. As fabrication is fast and easy, we normally con-
structed new devices for new sets of experiments. However,
devices were in fact stable enough to be reusable, but did dry
out if kept for long with our current way of storing, requir-
ing cleaning the salt residue before using again. The device
stability is an important feature that enables it to reliably dis-
tinguish a large number of different time series, underpinning
the reservoir computing, as we discuss later.

The typical timescale τ over which the conductance mem-
ory is retained is an important property of memristive systems
and the ability to incorporate a wide range of timescales is
desirable [27]. As per Eq. (1), we predict that the memory
timescale of a device can freely be chosen from a wide range
of options by constructing it with the appropriate length L or
radii Rt/Rb, here we focus on the L-dependence. The pre-
diction that τ is determined by a diffusionlike time ∝ L2/D,
despite the channel being voltage driven, forms a specific,
non-trivial and easily falsifiable prediction. To test this we
fabricated channels of lengths 50 µm, 100 µm and 150 µm
and determined for all three at which frequency fmax of an
applied sinusoidal voltage the area enclosed in the hystere-
sis loop in the I −V diagram is maximal. Using the relation
2π fmaxτ = 1, we can find an estimate for the timescale τ [51],
and check whether τ ∝ L2. The natural relation 2π fmaxτ = 1
entails that maximal hysteresis is observed when the voltage
changes over the typical memory time τ , i.e. providing enough
time for the conductance to change, but not enough to reach
its steady-state. We mathematically derived this relation for
general memristors described by Eqs. [2]-[3] when a sinu-

soidal voltage is applied [51]. Additionally, since the equi-
librium channel conductance is inversely proportional to the
channel length g0 ∝ 1/L we expect the overall current, and
thus the overall loop area, to decrease for longer L at the same
voltage. In our experiments we indeed find that channels of
different lengths respond to different frequencies, and show
overall decreasing conductances for increasing L, as can be
seen by the various hysteresis loops in Fig. 3(a,b,c). By com-
paring the different values for fmax we not only confirm that
f−1
max ∝ L2, but that quantitatively we have good agreement

with the theory. Thus by manufacturing channels of differ-
ent lengths, facile via the flexible fabrication process, a wide
range of memory timescales can be achieved. Therefore our
device offers a versatility important for tasks that require pro-
cessing of signals over various timescales [27].

2 Aqueous Reservoir Computing

The short-term memory properties of our fluidic memris-
tor, with a memory retention time that can easily be chosen
for each device from a wide range of options as shown in
Fig. 3, make it a promising candidate for performing reser-
voir computing, a brain-inspired framework that leverages a
fixed dynamic network, or “reservoir”, to transform complex
temporal input data into an output that can be easily classified
[31]. Unlike traditional neural network approaches, where the
full network needs to be trained, in reservoir computing only
a comparatively simple read-out function (here a single-layer
neural network) that classifies the output of the reservoir re-
quires training [28]. These properties have driven interest in
reservoir computing for analysing a variety of temporal sig-
nals [28, 30]. Generally, a device needs two properties for it to
be applicable in reservoir computing, (i) a short-term memory
and (ii) nonlinear dynamics [30], which our device satisfies as
shown in Fig. 1(f).

To demonstrate the reservoir computing capabilities of our
fluidic memristor, we carry out an established benchmarking
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FIG. 4. Our iontronic memristor as a reservoir computing element. (a) Theoretical prediction (top) and experimental observation (bottom)
of the relative change in conductance as a response to the 24 = 16 different possible bit-strings, where a “0” and “1” correspond to pulses
of −2.5 V and 5 V, respectively. Three separate devices were used to find the average conductance and typical variation in response to each
unique voltage train. (b) Depiction of how a “2” can be transformed into 5 distinct bit-strings (other digits are depicted in the SI). (c) Schematic
of how the number “2” from (b) is translated to 5 voltage trains, yielding 5 conductance values after the fourth (last) pulse. The conductances
and variabilities from (a) were then used to train a single-layer fully connected 5×10 neural network in silico, that converts the conductances
to a classification of the number “2". (d) Nine examples of handwritten numbers from the MNIST database [52], where the (originally 28×28
pixel) images are trimmed to 20×22 pixel images, the grayscales are rounded to either white or black pixels and then the image is segmented
into 110 bit-strings. (e) The loss function (mean squared loss) during training per training round when the experimentally found noise, which is
experimentally quantified using the (device-to-device) variabilities found in our result in (a), of the devices is not taken into account (orange)
and when it is taken into account (blue). (f) The confusion matrix on a test set of 2,000 samples, showing an overall accuracy of 81%,
comparable with recent reported results using more conventional platforms [32, 33].

protocol of classifying handwritten numbers using reservoir
computing [32, 33]. To build up to this, we first employ a
standard method of separating 4-bit strings and show that our
memristor already performs remarkably well at this initial task
compared to previous results using more conventional plat-
forms [34, 35]. All 24 = 16 combinations are translated into a
series of voltage pulses with a duration of 0.75 s, separated by
intervals of 0.75 s, where a 0 and a 1 correspond to a voltage
of -2.5 V and 5 V, respectively. In theory, applying the voltage
pulse trains should yield 16 distinct conductance time traces
g(t) shown in Fig. 4(a, top), effectively mapping the 16 pos-
sible input patterns onto the 16 different conductance values
after the fourth pulse, purely by virtue of the device proper-
ties. Excitingly, when we apply this protocol in experiments
we find the predicted 16 distinct conductance signatures as
shown in Fig. 4(a, bottom), featuring the exact same ordering
of conductance values and quantitatively similar changes in
conductances, once more highlighting the predictive power of

the theory. To obtain Fig. 4(a, bottom), all 16 different volt-
age pulse trains were repeated twice on three different devices,
producing six measurements in total and yielding the average
conductances shown in Fig. 4(a, bottom). All 6 runs displayed
essentially the same behaviour, producing a spread of conduc-
tances after the fourth write-pulse for each pulse train, with
standard deviations of around g/g0 ∼ 0.06− 0.26 (complete
list in SI). Individual device variability is lower, with typically
standard deviations of several g/g0 ∼ 0.01 and no more than
0.16. As we perform an analog computing method, rather than
discrete logic, the possible overlap between measured conduc-
tances is not an issue and the various time series can reliably
encode (handwritten) numbers, as we show next.

To illustrate how the results shown in Fig. 4(a) can be lever-
aged to classify more complex data inputs with an explanatory
example, let us consider the simple single-digit numbers 0-9,
represented by black and white 4× 5 pixel images. By con-
verting a row of 4 pixels to a string of bits by letting a white
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pixel correspond to a “0” and a black pixel to a “1”, we can
encode the entire image with 5 strings of 4 bits, as shown in
Fig. 4(b) for the number “2” (other digits are shown in the SI).
These bit-strings then generate 5 distinct signature outputs, as
we saw in Fig. 4(a). A single-layer fully connected 5×10 neu-
ral network is then trained in silico to classify the 5 measured
conductances as numbers. This protocol is schematically il-
lustrated in Fig. 4(c). Other types of simple readout functions
could possibly also suffice. We trained our read-out network
in silico using the results shown in Fig. 4(a, bottom). To incor-
porate the (device-to-device) variability, each individual pulse
was subject to some noise newly drawn from a normal distri-
bution with mean 0 and standard deviation given by the ex-
perimentally determined standard deviation for that specific
voltage train. During training, we repeated this process 100
times for each of the numbers 0-9, achieving perfect classifi-
cation of all 10 digits with noise-free inference measurements.
If we also take the noise into account during inference, we still
achieve an overall accuracy of 95%, highlighting the system’s
robustness against noise. Note that actual training is only per-
formed on a simple and small neural network, that would oth-
erwise not be capable of handling temporal inputs, while the
“hard” work of separating the time-dependent signals is han-
dled by the internal physics of our fluidic memristor. Ulti-
mately, this successful classification of simple digit images
serves as an explanatory proof-of-concept for the broader ap-
plication of performing complex time-dependent data analysis
tasks.

Building on our previous experiments with classifying sim-
ple digit images, we go a step further by classifying hand-
written numbers from the well-known MNIST database. This
database contains a large dataset of 28× 28 pixel images of
handwritten numbers and has become a standard dataset to
test and demonstrate the classification capabilities of machine
learning methods [52]. We first converted each image into
a 20×22 pixel black and white image by trimming the edges
off and rounding the grayscales to either black or white pixels,
as depicted in Fig. 4(d). Each image was then sectioned into
pixel rows of four pixels, which can be encoded with a voltage
pulse train as outlined before, leading to a total of 110 con-
ductance states per image. The readout function consists of a
single-layer fully connected 110×10 neural network, trained
on a dataset of 20,000 samples. The training incorporated the
conductance response and device-to-device noise using the re-
sults shown in Fig. 4(a), with the noise taken into account
like we did for the classification 4×5 pixel digits. The noise
hardly had any effect on overall accuracy, as can be seen by
the nearly identical decrease of the loss function during train-
ing in Fig. 4(e). Via this rudimentary straightforward proto-
col, we achieved an accuracy of 81% on a test set of 2,000
samples, comparable with earlier reported accuracies of 83%
and 85.6% resulting from the same protocol using solid-state
memristors [32, 33]. In Fig. 4(f) the classification is schemat-
ically depicted in a confusion matrix, where we see how often
each combination of true and predicted numbers occurred in
the test set.

Our successful implementation of an aqueous iontronic de-
vice as a synaptic element for reservoir computing with a per-

formance that is (at least) on par with more traditional plat-
forms [32–35] is a promising demonstration of the potential
that our fluidic platform offers for brain-inspired computing.
The functionality extracted from our simple devices is remark-
able, obviating the need for complicated circuits to distinguish
the various time series of interest here, instead relying on the
stable conductance modulation of individual devices. Con-
sequently, as we advance towards circuits integrating multi-
ple coupled NCNM devices, we anticipate that the robust in-
dividual device properties demonstrated here will enable the
realization of expanded functionalities with relatively simple
circuits.

3 Discussion and Conclusion

We implemented a fluidic iontronic volatile memristor
as a synaptic element for neuromorphic reservoir comput-
ing, while the device relies on the same aqueous electrolyte
medium and ionic signal carriers as biological neurons. Our
memristor consists of a tapered microchannel that features a
conducting network of nanochannels embedded in a rigid col-
loidal structure, forming a nanochannel network membrane
(NCNM). Device fabrication is fast, cost-effective, and easy
via an almost free-shaping soft-lithography process. The trait
that underpins the conductance memory effect of the channel
is its steady-state diode behaviour, for which NCNM devices
have shown excellent performance [36, 37], translating into
a wide range of achievable conductances. Additionally, our
device exhibited stable and reliable (dynamic) conductance
modulation, enabling its use as a computing element. More-
over, the quadratic dependence of the memory timescale on
the channel length offers a straightforward method to design a
channel to feature a specific timescale, a sought after feature
for advancing neuromorphic computing capabilities [27].

Our memristor is inspired and supported by a compre-
hensive theory directly derived from the underlying physical
equations of diffusive and electric continuum ion transport.
We experimentally quantitatively verified the predictions of
our theory on multiple occasions, amongst which the specific
and surprising prediction that the memory retention time of
the channel depends on the channel diffusion time, despite the
channel being constantly voltage-driven. The theory exclu-
sively relies on physical parameters, such as channel dimen-
sions and ion concentrations, and enabled streamlined experi-
mentation by pinpointing the relevant signal timescales, signal
voltages, and suitable reservoir computing protocol. Addi-
tionally, we identify an inhomogeneous charge density as the
key ingredient for iontronic channels to exhibit current rec-
tification (provided they are well-described by slab-averaged
PNP equations). Consequently, our theory paves the way for
targeted advancements in iontronic circuits and facilitates ef-
ficient exploration of their diverse applications.

For future prospects, a next step is the integration of multi-
ple devices, where the flexible fabrication methods do offer a
clear path towards circuits that couple multiple channels. Ad-
ditionally, optimising the device to exhibit strong conductance
modulation for lower voltages would be of interest to bring
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electric potentials found in nature into the scope of possible
inputs and reduce the energy consumption for conductance
modulation. From a theoretical perspective, the understand-
ing of the (origin of the) inhomogeneous space charge and
the surface conductance is still somewhat limited. These con-
tain (physical) parameters that are now partially chosen from
a reasonable physical regime to yield good agreement, but do
not directly follow from underlying physical equations. We
also assume that the inhomogeneous ionic space charge distri-
bution is constant, while it might well be voltage-dependent.
Lastly, our theoretical model treats the complex porous struc-
ture in terms of slab-averages, thereby possibly missing out on
detailed features. These constraints of the theoretical model
could account for some of the discrepancies between theory
and experiment, which is notable in the steady-state current
in Fig. 1(b) and the decrease in conductance in Fig. 1(f). For
the purposes of this work our current approach is sufficient,
however, a more in-depth study could offer a more profound
understanding into the interesting features of the channel.

In conclusion, in order to narrow the gap between the
promise of aqueous iontronic neuromorphic computation and
its implementation, our work demonstrates the capabilities of
a fluidic memristor by employing it as an artificial synapse for
carrying out neuromorphic reservoir computing. Temporal
signals, in the form of voltage pulse trains, that together
represent (handwritten) numbers were distinguished by
individual channels for subsequent in silico classification
with a simple readout function, demonstrating (at least)
comparable performance to more conventional solid-state
platforms [32–35]. Additionally, the device is fabricated with
a cost-effective easy soft-lithography process. The achieved
computing properties are inspired and supported by a quan-
titative predictive theoretical model of the device dynamics.
Consequently, our work establishes a solid foundation, both
theoretically and experimentally, for future investigations into
fluidic memristive systems and their application in aqueous
neuromorphic computing architectures, paving the way for
computing systems that more closely resemble the brains
fascinating aqueous processes.
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Methods

The fabrication of microchannel and formation of the
NCNM for the fluidic memristor is similar to previously re-
ported methods [36, 37] and is described in the SI in detail.
A master for multi-layered channels (target heights are 5 µm
for shallow channel and 100 µm for deep) was created us-
ing a multi-step UV exposure with negative photoresist (PR,
SU-8 2005, 3050, Microchem Co., USA). After surface treat-
ment of the master with (3,3,3-trifluoropropyl)silane (452807,
Sigma-Aldrich, USA) for easy separation, Polydimethylsilox-
ane (PDMS, Sylgard, Dow Corning Korea Ltd., Korea) was
poured and cured by heating. The detached PDMS device
was bonded with a slide glass. The formation of NCNM
was formed by a self-assembly of homogeneous nanoparti-
cles with negative surface charge in the desired shallow chan-
nel using Laplace pressure to halt the solvent at the base and
evaporation of solvent. A close-packed fcc was formed by the
growth of the ordered lattice induced by the evaporation.
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1 Theory

1.1 Poisson-Nernst-Planck equations

We consider ionic transport through a triangular tapered channel of uniform height H, length L, and widths 2Rt and 2Rb at
the (smaller) tip and the (larger) base, i.e. Rt < Rb, as illustrated in Fig. 1(a) of the main text. In our experiments we have
L = 150 µm (unless stated otherwise), Rt = 5 µm and Rb = 100 µm. We introduce the axial coordinate x, with x = 0 at the
base and x = L at the tip, and the cartesian width-coordinate y ∈ [0,R(x)], with y = 0 the symmetry axis and y = R(x) the half
width of the channel given by R(x) = Rb − (Rb −Rt)x/L for x ∈ [0,L]. In the channel the height coordinate z lies in the interval
z ∈ [−H/2,H/2]. The channel is filled with a rigid close-packed fcc crystal of charged colloidal spheres (in the experiments
with packing fraction η ≃ 0.74, radius a = 100 nm, and zeta potential ψ0 ≈ −39 mV). The channel connects two large and
deep aqueous reservoirs containing a 1:1 electrolyte at room temperature with salt bulk concentration ρb (in the experiments
ρb = 10 mM KCl with a Debye length λD = 3.1 nm). The ionic transport takes place through the electrolyte that fills the space
between the colloids in the colloidal crystal and is driven by a time-dependent voltage V (t). We define the applied voltage
V = V (L)−V (0) to be the voltage at the tip minus the voltage at the base, such that conductance enhancement always occurs
when V > 0, regardless of which side is grounded. In the main text we have a grounded tip so we apply Vapp(t) =−V (t) at the
base. The transport is described in terms of the Poisson-Nernst-Planck (PNP) equations, that relate the electrostatic potential
Ψ(x,y,z, t) and the cationic and anionic concentrations ρ+(x,y,z, t) and ρ−(x,y,z, t), respectively, to the ionic fluxes j±(x,y,z, t).
In the space between the colloidal spheres we write

∇2Ψ =− e
ε
(ρ+−ρ−), (S1)

∂ρ±
∂ t

+∇ · j± = 0, (S2)

j± =−D
(

∇ρ±±ρ±
e∇Ψ
kBT

)
, (S3)

where e denotes the elementary charge, ε = 80.23ε0 the dielectric constant of water at room temperature T , kB the Boltzmann
constant, and D the ionic diffusion coefficient that we take equal for the cations and the anions. The electrostatics is accounted
for by the Poisson equation (S1), the conservation of ions by the continuity equation (S2), and the combination of Fickian
diffusion and Ohmic conduction by the Nernst-Planck equation (S3). We neglect electro-osmotic fluid flow, which we expect to
be relatively small due to the narrow constrictions of the geometry. The system of equations (S1)-(S3) is closed upon imposing
blocking boundary conditions on all solid walls, n · j± = 0, with n the (inward) normal on the walls of the channel and the
colloids, together with Gauss’ law n ·∇Ψ =−eσ/ε with σ the surface charge density (on the wall and on the colloidal surfaces).
We also impose that ρ±(x,y,z, t) equals the bulk concentration ρb at the far end of either reservoir, that Ψ(0,y,z, t) = 0 and
Ψ(L,y,z, t) =V (t) to account for the applied potentials.

The resulting closed set of PNP equations and boundary conditions can in principle be solved numerically by finite-element
methods. The geometry of a colloidal crystal in a tapered channel, however, is computationally challenging as it requires a spatial
resolution on the nm length scale of the electric double layer, on the 1-100 nm length scale of the pore structure in between the

∗ These two authors contributed equally to this work † Corresponding author

ar
X

iv
:2

30
9.

11
43

8v
2 

 [
co

nd
-m

at
.s

of
t]

  2
5 

A
pr

 2
02

4



2

colloidal particles, and on the 10-100 µm length scale of the channel dimensions. By treating the complex porous structure
homogeneous medium, these equations were modified and successfully solved numerically to describe the simplified physics
inside the type of channel of interest here [1], however at a considerable computational cost and no analytic insights. Instead of
a computationally costly numerical approach, we will derive analytical results straight from the Nernst-Planck equation (S3) to
obtain an analytic approximation for the channel dynamics. This will yield a computationally significantly cheaper theoretical
model which can be treated analytically to investigate the origin of the ion current rectifying properties of the channel, and to
predict features such as its conductance memory properties.

1.2 Slab-averaged electric field, space charge, and salt concentration

Our theoretical approach is based upon a methodology that we successfully developed and applied recently to quantitatively
explain the steady-state and dynamic conductance properties of simpler channels filled with a homogeneous aqueous electrolyte
[2–4]. Here we show that this methodology can be extended to the nanoporous channel network that characterizes the channel
we study in this work. The colloidal structure within the channel forms a (nearly) close-packed face centered cubic (fcc) crystal
at a volume fraction η ≃ 0.74 as we saw before. With a colloid radius a = 100 nm, this means that the pores through which
ions can be transported have diameters as large as several tens of nm in the octahedral and tetrahedral holes of the fcc-lattice
[5, 6], which is much larger than the Debye length of λD ≈ 3.1 nm that characterises the thickness of the electric double layers.
In other words, the channels are mostly in the regime of non-overlapping and hence fully developed thin electric double layers,
bringing us into the scope of area-averaging techniques [2, 4, 7, 8]. Specifically, this justifies the same underlying assumption
as in Refs. [2–4] that the local and voltage-dependent total salt concentration ρs ≡ ρ++ρ−, the total ionic space charge density
ρe = ρ+−ρ−, and the local electric potential Ψ can faithfully be represented by the y−z-slab-averaged functions ρs(x,V ), ρe(x),
and Ψ(x), respectively, where we recall that the lateral coordinate x ∈ [0,L] runs from base to tip. Here we explicitly denote
the dependence of ρs on V , while refraining from denoting the explicit (linear) dependence of Ψ on V below for notational
convenience. While we expect also a V -dependence of ρe in a full calculation, we will restrict ourselves to a V -independent
form below.

If the slab-averaged electric field lines cannot escape the tapered channel, a realistic assumption in our experiments as the di-
electric constant of water is much higher than that of the wall-material, then the slab-averaged electric field component −∂xΨ(x)
must be proportional to 1/R(x) on the basis of charge neutrality on the length scale beyond the Debye length. Since we define
V =V (L)−V (0), i.e. the tip minus the base voltage, the applied voltage also satisfies

∫ L
0 ∂xΨ(x)dx =V . Combining the scaling

with this property, we find with ∆R = Rb −Rt that

∂xΨ(x) =
∆RV

L ln
(

Rb
Rt

)
R(x)

. (S4)

This slab-averaged electric field in the channel is therefore proportional to the applied field V/L and gets progressively stronger
closer to the tip. The total steady-state salt flux js(x,y,z) = j+(x,y,z, t)+ j−(x,y,z) can now be integrated over slabs in the y and
z direction to obtain for the x-component of the total salt flux Jx(x) =

∫ R(x)
−R(x)

∫ H/2
−H/2 js(x,y,z) · x̂dydz through the channel

Jx(x) =−Dεfcc

(
2R(x)H∂xρs(x,V )+2R(x)Hρe(x)

e∂xΨ(x)
kBT

)
. (S5)

Here we introduced the porosity εfcc = 1−η to take the volume into account that is excluded to the electrolyte by the colloidal
fcc crystal, where we assume the colloidal particles to be impenetrable to the electrolyte. As we take slab averages one would
expect an area term, instead of the porosity. However, microscopically, the available electrolyte area through which the ions can
diffuse in the slab has a periodicity in x that is dictated by the lattice spacing, which is much smaller than the channel length L
and can hence be ignored in our slab-averaged description. Therefore we consider each slab to have the same available surface
area for ions, which in this simplified one-dimensional view is the porosity εfcc [9].

Eq. (S5) depends on the slab-averaged ionic space charge density ρe(x), that picks up contributions from the electric double
layers (EDLs) around the charged colloidal spheres. Given that EDLs have spatial extensions as small as the Debye length (here
λD = 3.1 nm) around the colloidal spheres (here of radius a = 100 nm), one might expect the slab-averaged space charge density
to be a constant on the much larger length scale of the channel, with a magnitude ∝ ηZ with Z the charge of a colloid. Interest-
ingly, however, earlier measurements presented in Ref. [1] on channels nearly identical to the ones we study here convincingly
showed a heterogeneous rather than a homogeneous space charge density that could well be fitted by the monotonic functional
form
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ρe(x) =
ρe,t

1− (1−ρe,t/ρe,b)(L− x)/L
, (S6)

where ρe,t and ρe,b are the space charge density at the tip and the base, respectively, which may differ from each other even at
zero applied voltage [1]. In this work we have ρe,t = 8.85 mM and ρe,b = 8.00 mM for the steady-state results of Fig. 1(b) and
ρe,b = 6.3 mM for the other (dynamic) results, the choice for these values is further discussed in Sec. 2. Whereas we take the
functional form of Eq.(S6) as experimental input from now on, the reason for this ionic charge heterogeneity on length scales
of the channel length remains an interesting open question. Our hypothesis, that we underpin with standard Poisson-Boltzmann
calculations of a single colloid in a spherical Wigner-Seitz cell in Sec. 1 .5, shows that a reduction of the colloidal packing
fraction from 0.74 to 0.73 can already increase the colloidal charge density (and hence the average ionic charge in the EDLs) by
as much as ∼ 20% at a fixed zeta potential. Thus, a small heterogeneity of the colloidal packing fraction from tip to base could
provide a microscopic explanation for the spatial dependence of ρe(x) by assuming macroscopic electroneutrality [7, 9]. Given
the device fabrication (see Sec. 3) such a small asymmetry of η between tip and base is quite well possible although such a small
deviation in packing fraction is difficult to observe experimentally.

With Eqs. (S4) and (S6) every component of Eq. (S5) is known except for ρs(x,V ). We can use Eq. (S5) for Jx(x) to find the
steady-state salt concentration ρs(x,V ) explicitly by imposing the steady-state condition ∂xJx(x) = 0. This yields a differential
equation for ρs(x,V ), that can be solved analytically after inserting Eqs.(S4) and (S7), yielding

ρs(x,V ) = 2ρb −ρe,b
eV

kBT
∆R
Rb

ln
(

Rb
Rt

)
ln
(

ρe,t
ρe,b

L−x
L + x/L

)
+ ln

(
R(x)
Rt

)
ln
(

ρe,b
ρe,t

)

ln2
(

Rb
Rt

)
(ρe,b/ρe,t −Rt/Rb)

. (S7)

We note that H, D, and εfcc do not appear in Eq. (S7) since these drop out of the underlying differential equation ∂xJx(x) = 0.
More importantly, ρs(x,V ) is voltage-dependent, resulting in the voltage-dependent channel conductance we derive next.

1.3 Static channel conductance

The tapered microchannels of our interest are well known to exhibit ionic rectification properties characterised by a static
conductance g∞ ≡ I(V )/V that is a nontrivial function of the applied static voltage V . By viewing the slabs of thickness dx at
x ∈ [0,L] as a series of resistors with resistivities ∝ dx/ρs(x), one can write the static conductance of the channels of present
interest as

g∞(V ) = g0

∫ L

0
ρs(x,V )dx/(2ρbL), (S8)

where we made an approximation compared to the more accurate dependence on L/
∫ L

0 (ρs(x,V ))−1dx, which reduces compu-
tational complexity and yields mostly the same results [2–4]. The V -dependence stems from the salt concentration dependence
on V as given by Eq.(S7). As in Ref. [4], we replace ρs(x,V ) by max [0.2ρb,ρs(x,V )] in the actual (numerical) evaluations of
Eq. (S8) in order to account for the possibility of unphysical negative concentrations that could follow from Eq.(S7) at strongly
negative voltages in part of the density profiles. (In this regime the underlying assumption that the Debye length is much larger
than than the channel dimensions breaks down).

The reference (zero-voltage) conductance g0 of the channel can, in direct analogy with recent results from Refs. [2–4], be
written as

g0 =2ρbεfcceD
2∆RH

L ln(Rb
Rt
)

e
kBT

+gs = 2ρb
e2D
kBT

εfcc
2∆RH

L ln(Rb
Rt
)

[
1+

4λD

Rpore

(
cosh

(
eψ0

2kBT

)
−1

)]
, (S9)

which includes the volumetric contribution ∝ εfcc that depends on the channel-geometry parameters calculated with the total
charge flux

∫ R(x)
−R(x)

∫ H/2
−H/2 [j+(x,y,z)− j−(x,y,z)] · x̂dydz. Additionally we also consider a surface contribution ∝ λD/Rpore, with

Rpore the effective radius of the pores embedded in the fcc crystal, which accounts for the excess conductivity due to the excess
salt concentration in the colloidal EDLs [10] and which we determine below. This surface term is of direct relevance here due to
the large internal surface in the channel as a result of the colloidal structure. However, the internal structure of the fcc crystal is
complex with pores of varying sizes and shapes, and regions with fully developed EDLs in the pores with the size of several tens
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Jx(x)

Treat electric field,
charge density, and 

salt concentration as slab averaged

Reduce Nernst-Planck Eq. to
a one-dimensional form

via integration

Ψ(x,y,z)
ρs(x,y,z,V)
ρe(x,y,z)

Ψ(x)
ρs(x,V)
ρe(x)

j(x,y,z)

Unknown

∂xJx(x) = 0 ρs(x,V)

Solve differential equation

1)

2)

3)

4)
Net flux

Total salt change Concentration polarisation 
timescale 𝜏

Fig. S1. Schematic depiction of the steps taken in our theoretical analysis, involving 1) the slab-averaging assumption, 2) the integration of the
salt flux over each slab to reduce the full three-dimensional Nernst-Planck equation to its one-dimensional slab-averaged form as in Eq. (S5),
and 3) the solution of the steady-state condition of a divergence-free flux to obtain Eq. (S7). Lastly, 4) the combination of the salt concentration
and the salt flux to extract a timescale for the salt concentration polarisation as detailed in Sec. 1 .4.

of λD neighboured by regions where the EDLs are not fully developed since the shortest distance between colloids is smaller than
a few λD. Therefore, the surface conductance of the channel is a highly non-trivial property and investigating this in full detail
falls outside the scope of this work. Instead we will employ an effective method where we treat the internal pores as a channel
of radius Rpore, with a total slab surface area 2εfccR(x)H. This approach then yields Eq. (S9) [10]. We find good agreement with
the experiments if we take Rpore = 2λD = 0.06a. Although this seems somewhat small compared to the radii of up to ∼ 10λD
for the larger pores, it is still in a reasonable regime given the fact that many regions in a close-packed fcc crystal feature much
smaller distances between colloids. For the parameters used in the experiment (see Sec. 2) we have that gs/g0 ≈ 0.38, so the
conductance is still mostly dictated by bulk conductance, as expected with the relatively large pores compared to the Debye
length.

The combination of Eq. (S8) and Eq. (S9) provides us with the steady-state conductance function g∞(V ) used in the main text.

1.3.1 Space charge density inhomogeneity is a salt source or sink term

The methodology we employ in Sec. 1 .2 to derive salt concentration polarisation can provide insights into designing new
devices that also exhibit salt accumulation and depletion. As shown in Sec. 1 .3, the presence of salt concentration polarisation
affects the channel conductance and will hence lead to current rectification. Our theoretical model explains current rectification
in the colloid-filled channels we present here, but other types of channels also exhibit current rectification as a result of an
inhomogeneous space charge [11, 12]. Our theoretical description might provide insights into such other systems as well,
provided some assumptions are satisfied. (i) The underlying PNPS equations only describe continuum transport, so sub-nm or
atomic scale systems [13, 14] will fall outside the scope of this theoretical framework. (ii) The radial dependence of the potential
and the concentrations must be relatively weak and/or short ranged, such that the slab-averaged salt-concentration ρs(x,V ) and
electric field −∂xΨ(x) are fair approximations. For instance, a single channel with strongly overlapping electric double layers
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throughout the entire channel will exhibit a significant salt concentration profile in the radial direction of the channel, possibly
resulting in physical phenomena that a slab average ρs(x,V ) does not take into account.

Eq. [S5] can be generalised to

Jx(x) =−Da
(

A(x)∂xρs(x,V )+Qe(x)
e∂xΨ(x)

kBT

)
=−Da

(
A(x)∂xρs(x,V )+A(x)ρe(x)

e∂xΨ(x)
kBT

)
, (S10)

with Qe(x)dx the total ionic charge in a slab of infinitesimal thickness dx with volume A(x)dx at location x, and where we
define ρe(x)≡ Qe(x)/A(x) the slab-averaged ionic charge density. Eq. (S10) describes a channel with cross-sectional area A(x)
and the average area per slab available for ions a (which would be 1 for materials without any solid obstructions for the ions),
where we remark that in the simplified one-dimensional view of treating each slab to feature the same available area one can
use the porosity as we did in Eq. (S5) [9]. In the present channel geometry we have A(x) = 2HR(x), but Eq. (S10) could also
apply to hourglass shaped channels [12], T-shaped channels [11], or conical channels [2, 4]. If macroscopic charge neutrality
is ensured within the channel, e.g. in the case of thin electric double layers, and if the electric field lines cannot leave the
channel because of a weakly polarising outside medium, then the relation −∂xΨ(x) ∝ 1/A(x) must hold. A fully analytical
solution as in Eq. (S4) might not always be possible, however the inverse proportionality with the channel area A(x) suffices
for the qualitative mechanistic understanding discussed here. Consider, namely, a channel without any applied voltage such
that the salt concentration ρs(x,V ) is constant within the channel. Upon applying a voltage, the electric field −∂xΨ(x) will
form quasi-instantaneously, so a short time after the voltage is applied we have a fully formed electric field, but still a constant
salt concentration ρs(x,V ). In this case the diffusion term in Eq. (S10) vanishes and due to the aforementioned proportionality
−∂xΨ(x) ∝ 1/A(x), the only x-dependence that remains in Eq. (S10) is ρe(x). Therefore, if we take the divergence ∂xJx(x) of
the total salt flux in Eq. (S10) and apply the continuity Eq. [S2] we find

dρs(x,V )

dt
=−dJx(x)

dx
∝ ρe(x). (S11)

This shows how any inhomogeneous ionic space charge density forms a source or sink for salt term upon applying a voltage,
thereby inducing salt concentration polarisation and consequently current rectification. An important understanding is that the
ionic charge density must be inhomogeneous, and not just the total ionic charge in the slab. The reason is that even though the
total charge Qe(x) ≡ ρe(x)A(x) in the slab for a constant space charge density ρe(x) = ρe could still be x-dependent due to its
scaling with A(x), this dependence would cancel out with the 1/A(x) dependence of the electric field.

The insight that an inhomogeneous charge density forms a source-sink term previously explained how a constant surface
charge density σ in a conical geometry could induce current rectification [2] as the total (surface) charge is in this case given
by Qe(x) = 2πR(x)σdx. Since in this geometry A(x) = πR(x)2 we see that Qe(x) ∝

√
A(x) and therefore ρe(x)≡ Qe(x)/A(x) ∝

1/
√

A(x), exhibiting the required x-dependence. Additionally Eq. (S11) shows why merely a geometric inhomogeneity, such
as a tapered geometry, is not enough to induce current rectification; it must go coupled with a spatially varying slab-averaged
ionic charge density. The insight of Eq. (S11) could not only explain current rectification in channels with a space charge density
step-function as in recent polyelectrolyte channels [12] and NCNM channels with colloids of opposing charge [11], it may also
provide specific guidance to design current rectification properties in future iontronics.

1.4 Typical conductance memory retention time

As detailed in Refs. [3, 4], the process of ion accumulation and depletion is not instantaneous. To investigate this timescale
for the channel of interest here we can apply the same approach as in Refs. [3, 4]. We consider two quantities, the total number
of ions N =

∫ L
0 2R(x)Hεfccρs(x,V )dx in the channel and the net salt flux Jx(0)− Jx(L) into the channel. The change of N given

by Eq. (S7) upon a small voltage perturbation V ′ around V = 0 yields

∂N
∂V

∣∣∣∣
V=0

V ′ =
εfcceHLρe,tρe,b∆RV ′

2kBT ln2
(

Rb
Rt

)
(ρe,tRt −ρe,bRb)

(
(Rb +Rt) ln

(
ρe,t

ρe,b

)

+
ln
(

Rb
Rt

)(
−(ρe,t −ρe,b)∆R(ρe,t(Rb +3Rt)−ρe,b(3Rb +Rt))−2ln

(
ρe,t
ρe,b

)
(ρe,tRt −ρe,bRb)

2
)

(ρe,t −ρe,b)2∆R




≡αV ′,

(S12)

where α > 0 for our parameters, in agreement with the enhanced (reduced) conductance of a positive (negative) potential V ′

found in the experiments and as can be seen in Fig. 1(b).
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At V = 0 the concentration profile is at equilibrium, so for a small voltage perturbation V ′ we can assume ρ̄s(x) = 2ρb. With
this assumption the first term in Eq. (S5) vanishes. The net salt flux into the channel, Jx(0)− Jx(L), is then determined by the
remaining conductive terms

Jx(0)− Jx(L) = 2Dεfcc
∆RH

L ln
(

Rb
Rt

) (ρe,t −ρe,b)
e

kBT
V ′ ≡ γV ′, (S13)

where γ > 0 for our parameter choices, again in agreement with the enhanced (reduced) conductance of a positive (negative)
potential V ′ found in the experiments and as can be seen in Fig. 1(b). We see that the net flux is determined by the difference in
space charge density between the tip and the base (ρe,t −ρe,b). This is consistent with Eq. (S5), where we saw that the total salt
flux is proportional to the charge density in the absence of a diffusion term. Therefore, this reconfirms the underlying mechanistic
insight that a inhomogeneous charge density is what drives a net salt flux and consequent salt concentration polarisation, as also
argued in Sec. 1 .3 .1.

The typical time it takes for ion depletion or accumulation, and thus the typical memory retention timescale, is then approxi-
mated by τ = α/γ . This yields

τ =

L2ρe,tρe,b


(Rb −Rt)(Rb +Rt) ln

(
ρe,t
ρe,b

)
+

ln
(

Rb
Rt

)(
−(ρe,t−ρe,b)(Rb−Rt)(ρe,t(Rb+3Rt)−ρe,b(3Rb+Rt))−2ln

(
ρe,t
ρe,b

)
(ρe,tRt−ρe,bRb)

2
)

(ρe,t−ρe,b)2




4D(ρe,t −ρe,b)(Rb −Rt) ln
(

Rb
Rt

)
(ρe,tRt −ρe,bRb)

=
L2

4D
ρe,tρe,b




(Rb +Rt) ln
(

ρe,t
ρe,b

)

(ρe,t −ρe,b) ln
(

Rb
Rt

)
(ρe,tRt −ρe,bRb)

− ρe,tRb −ρe,bRt

(ρe,t −ρe,b)2(ρe,tRt −ρe,bRb)

− 3
(ρe,t −ρe,b)2 −

2ln
(

ρe,t
ρe,b

)
(ρe,tRt −ρe,bRb)

(ρe,t −ρe,b)3∆R




=
L2

4D




(1+Rt/Rb) ln
(

ρe,t
ρe,b

)

(1−ρe,b/ρe,t) ln
(

Rb
Rt

)
(ρe,tRt/(ρe,bRb)−1)

− 1−ρe,bRt/(Rbρe,t)

(ρe,t/ρe,b +ρe,b/ρe,t −2)(Rt/Rb −ρe,b/ρe,t)

− 3
ρe,t/ρe,b +ρe,b/ρe,t −2

−
2ln

(
ρe,t
ρe,b

)
(Rt/Rb −ρe,b/ρe,t)

(1−ρe,b/ρe,t)(ρe,t/ρe,b +ρe,b/ρe,t −2)∆R/Rb


 .

From the above calculation it has now become clear that τ ∝ L2/(4D), which corresponds to the time it takes to diffuse over
distances of the order of the channel length L. The remaining involved terms form a dimensionless number

ξ =
(1+Rt/Rb) ln

(
ρe,t
ρe,b

)

(1−ρe,b/ρe,t) ln
(

Rb
Rt

)
(ρe,tRt/(ρe,bRb)−1)

− 1−ρe,bRt/(Rbρe,t)

(ρe,t/ρe,b +ρe,b/ρe,t −2)(Rt/Rb −ρe,b/ρe,t)

− 3
ρe,t/ρe,b +ρe,b/ρe,t −2

−
2ln

(
ρe,t
ρe,b

)
(Rt/Rb −ρe,b/ρe,t)

(1−ρe,b/ρe,t)(ρe,t/ρe,b +ρe,b/ρe,t −2)(1−Rt/Rb)

of order O(10−1) depending on the channel geometry Rt/Rb and internal space charge distribution ρe,b/ρe,t. Fig. S2 shows
the dependence of ξ for typical tip-to-base ratios of the space charge concentrations in Fig. S2(a) and the channel widths in
Fig. S2(b). For our standard parameters we find ξ ≈ 0.42. This simplifies our notation considerably such that we arrive at the
final concise expression Eq. (S14) for τ which can be found in the main text as Eq. [1],

τ =
L2

4D
ξ . (S14)

For our standard parameter set as laid out in Sec. 2, we have τ ≈ 1.62 s.
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To then arrive at Eq. [2] of the main text, we make the natural assumption that the time-derivative of the dynamic conductance
∂tg(t) depends on the difference with the corresponding steady-state conductance, i.e. ∂tg(t) = f

(
g∞(V (t))− g(t)

)
for some

function f , where f (0) must vanish based on stability arguments. By expanding f up to first order we find ∂tg(t) ∝ g∞(V (t))−
g(t) with the proportionality constant naturally given by the typical timescale τ of the underlying salt concentration polarisation
that drives the conductance change, given by Eq. (S14) (Eq. [1] in the main text).

(a) (b)

Fig. S2. The memory time proportionality function ξ as a function the internal space charge ratio ρe,b/ρe,t in (a) and the tip and base radii
ratio Rt/Rb in (b), for three different values of Rt/Rb and ρe,b/ρe,t, respectively. In both (a) and (b) the blue graph represents Rt/Rb = 0.05
and ρe,b/ρe,t = 0.71, respectively, the system parameters used in the main text, except for Fig. 1(b) which uses ρe,b/ρe,t = 0.90.

1.5 Cell model

In Sec. 1 .2 we showed how the inhomogeneous charge distribution leads to salt concentration polarisation and thereby to ion
current rectification. However, Eq. (S6) presented in Ref. [1], which describes the inhomogeneous space charge, follows from
empirical measurements without a microscopic explanation of the actual origin of this important feature of the channel. Here we
will leverage the well-established Poisson-Boltzmann cell-model [15, 16] to propose a tentative explanation of the emergence of
the observed inhomogeneous space charge.

We consider a dispersion of charged colloidal spheres of radius a at packing fraction η in a 1:1 electrolyte of Debye length
λD, such that the volume per particle equals (4π/3)b3 with b ≡ aη−1/3 > a. The environment of each particle fluctuates due
to colloidal Brownian motion, and hence the calculation of the profile of the electric potential ψ(r;{R}) is a complicated
many-body problem that depends on the instantaneous configuration {R} of the colloidal particles. This problem can be reduced
tremendously, however, if we assume each sphere to be at the center of an electrically neutral and spherically symmetric Wigner-
Seitz cell of radius b. The dimensionless electrostatic potential φ(r) ≡ eψ(r)/kBT is then the same in each cell, and can for
r ∈ [a,b] be described by the Poisson-Boltzmann equation with boundary conditions

φ ′′(r)+
2
r

φ ′(r) =λ−2
D sinhφ(r), (S15)

φ ′(b) =0, (S16)
φ(a) =φ0, (S17)

where a prime denotes a radial derivative and where φ0 is the fixed dimensionless zeta potential in units of kBT/e ≃ 25 mV. This
is a closed system of equations that can easily be solved numerically for fixed a, b, λD, and ψ0 or rather for fixed dimensionless
η , a/λD and φ0. The resulting surface charge density eσ of the spheres is then from Gauss’s law given by σ = −φ ′(a)/4πλB
with λB = e2/4πεkBT = 0.72 nm the Bjerrum length of water.

For dispersions that are dilute enough that b−a ≫ λD, the EDLs described by Eqs.(S15) are fully developed. In this regime it
is well known that the colloidal particles obtain their maximum (absolute) surface charge [17]. At high packing fraction where
b−a≃ λD, the colloidal surfaces discharge and loose their charge completely in the (unphysical) limit b= a. The situation for the
colloidal dispersion of our system is intricate, since for a = 100 nm and η = 0.74 we have b/a ≃ 1.105 and hence b−a ≃ 3λD.
In this regime the assumption of spherical symmetry of the EDLs is highly questionable, because the surface-surface distances
between a central particle in a close-packed fcc crystal at η = 0.74 vary between smaller than λD in the 12 directions of its
nearest neighbours to about 10λD in the directions of the 8 tetrahedral and the 6 octahedral holes of the fcc crystal. We can
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therefore expect that the particles only significantly discharge in the vicinity of nearest-neigbour contact. Within the spherical-
cell approximation, we mimic this anisotropy of the colloidal surface charge by averaging over these 12+8+6 = 26 directions,
with equal weight for simplicity, to define the effective surface charge density σ∗ = (12σ2 +14σ∞)/26, with the surface charges
σ2 and σ∞ of the spherical cell with b half the nearest-neighbour distance and b ≫ a the dilute limit, respectively. In Fig. S3
we show the dependence of σ∗/σ∞ on the packing fraction η for the present system parameter with φ0 =−1.53, which is such
that σC = σ∞ = 0.01 C/m2. It shows that decreasing the packing fraction from η = 0.74 to 0.73, which corresponds to reducing
b by as little as 0.5 nm (i.e. by ≃ λD/6), the colloidal charge can increase by as much as ∼ 20%. A reduction to η ≃ 0.67
and η ≃ 0.63 (which corresponds to b− a = λD and 2λD) increases the surface charge by about 80% and 100%, respectively,
compared to that at η = 0.74. On the basis of these simple estimates, we argue that the slab-averaged space charge in the channel
(that compensates the colloidal surface charge) can therefore also exhibit the same relative change between tip and base. The
variation we use of ρe,b/ρe,t = 0.90 for the steady-state results of Fig. 1(b) and ρe,b/ρe,t = 0.71 for the other (dynamic) results
falls well within this reasonable range of change predicted by the explanation we offer here. We leave an additional estimate on
an alleged spatial variation of φ0 in the channel to explain the heterogeneous space charge as future work.

0.62 0.66 0.7 0.74
0.5

0.6

0.7

0.8

0.9

1

η

σ
*
/σ

∞

b-a=λDb-a=2λD

Fig. S3. Dependence on the colloidal packing fraction η of the effective surface charge density σ∗ of a colloid in an fcc crystal as a fraction
of the surface charge density σ∞ = σC = 0.01 C/m2 of a free isolated colloid. An increase of up to ∼ 100% in σ∗ is already visible when the
cell radius b in the direction of the nearest neighbour just extends one or two Debye lengths λD beyond the colloid of radius a, i.e. when the
nearest neighbour distance b−a ∈ [0,2λD].

2 System parameters

The channel has a base radius of Rb = 100µm, a tip radius of Rt = 5µm and a height of H = 5µm. The channel connects
two reservoirs with a bulk concentration ρb = 10 mM of aqueous KCl electrolyte, yielding a Debye length of λD ≈ 3.1 nm.
The colloids have a radius of a = 100 nm and carry a uniform charge density of σC = −0.01 C/m2, squeezed together during
the device fabrication to form a face centered cubic crystal with a close-packed packing fraction η = 1− εfcc ≈ 0.74, where
εfcc is the porosity. The maximum space charge at the tip is determined in the same way as in Ref. [1], i.e. ρe(L) = ρe,t =

4πa2σCn/(eεfccΩ) = 8.85 mM with n = 3
4 ηΩ/(πa3) the number of colloids in the channel and Ω the overall channel volume.

The space charge concentration at the base is assumed to be ρe(0) = ρe,b = 8 mM in the steady-state calculations for Fig. 1(b)
and ρe,b = 6.3 mM in the rest of the manuscript for the time-dependent calculations. These values were chosen such that (i)
the change in space charge density does not exceed the reasonable regime predicted by our tentative explanation for the the
inhomogeneous space charge in Sec. 1 .5, i.e. the difference between ρe,b and ρe,b is not more than ∼ 40%, and (ii) a good
agreement is found with the experiments. Although the space charge density ρe(x) of Eq. (S6) has a clear physical meaning, its
precise form and parameters values are not entirely clear and may contain a voltage-dependence that we ignore in the present
study and leave for future investigations. We stress, however, that our present overall results do not depend strongly on the
detailed value of ρe,b and ρe,t, as it only marginally changes the conductance properties in the parameter regime we consider
here and the overall behaviour relevant to reservoir computing remains. However, we do note that our theory predicts that some
difference between the space charge density at the tip and at the base is necessary for any current rectification, so even though
the precise values of ρe,b and ρe,t are not of major importance for our overall results, our theory still predicts it is crucial that
there is some difference between the two. Lastly, the effective diffusion coefficient is also taken to be similar to Ref. [1] with
Deff = εfccD = 0.38 µm2ms−1.
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3 Device fabrication

Fig. S4. Soft lithography process to construct our microfluidic memristor.

Fig. S4 shows schematic diagrams describing the fabrication procedures for microfluidic devices using soft lithography: A
negative photoresist (PR) was applied to the silicon wafer (SU-8 2005; Microchem Co., Westborough, Massachusetts, USA)
using a spin coater and then soft-baked. The PR was then exposed to UV to create a shallow channel and the wafer was hard
baked. The unexposed PR was removed to form the shallow 5 µm channel. A deep 100 µm channel was then formed using
a negative photoresist, SU8-3050 (Microchem Co., Westborough, Massachusetts, USA), in the same process as above. After
completion of the master mold, the surface was treated with (3,3,3-trifluoropropyl)silane (452807; Sigma-Aldrich, St. Louis,
Missouri, USA). Polydimethylsiloxane (PDMS; Sylgard; Dow Corning Korea Ltd., Gwangju-si, Gyeonggi-do, Republic of
Korea) was then poured over the master mold and heated on a hot plate at 95 ◦C for 1 hour. The reservoir of the PDMS device
was punched out with a 1.5 mm medical punch. The surface of the PDMS and the slide glass were treated using a plasma device
(Cute-MP; Femto Science, Hwaseong-si, Gyeonggi-do, Republic of Korea) and bonded together.

Fig. S5. Schematic depiction of in situ nanoparticle assembly in the microchannel.

As shown in Fig. S5, the diluted nanoparticles (with a carboxylic (-COOH) end groups on the surface and with radius a =
100 nm) dispersed in a 2 µL 70% ethanol solution were injected into the deep channel, such that the solution including the
nanoparticles fills the shallow channel through the capillary. Due to the neck pressure at the interface between the shallow
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and deep channels, the flow of the particle dispersion stopped, after which evaporation of the solvent (70% of the ethanol) was
induced through the deep channel. This way additional nanoparticles were transported toward the neck by the convective flow
that compensates for the loss of solvent by evaporation. This influx of particles promotes the growth (and the compression) of
the ordered fcc lattice in the shallow channel. When the self-assembled nanoparticles completely filled the shallow channel with
a wet close-packed fcc lattice, the remaining diluted nanoparticles were removed from the deep channel by suction. The finished
device was dried for one day and then used for the experiment.

4 Additional experimental results

4.1 Voltage pulse measurements

To obtain Fig. 4(a) we applied all 24 = 16 different voltage trains of four pulses in sequence with 30 s between each pulse
train. This was performed on three different devices with two cycles per device, resulting in 6 independent measurements per
voltage train, all individually shown in Fig. S6. The average of these measurement is shown in Fig. 4(a), the standard deviations
calculated with the six conductance values after the fourth (last) pulse for each pulse train are shown in Table I. These values
are used in the main text to take the measured (device-to-device) variability into account. Therefore we stress that all (device-to-
device) variability visible in Fig. S6 is incorporated in the main text.

To ensure that our devices also remain reliable and stable over longer periods of time, we performed various additional cycles
of pulse trains over a single device. In Fig. S7 we show a 50 cycle repeat, which lasted about 30 minutes, of the pulse train
corresponding to the bitstring 0101. We see a remarkable stability, with essentially the same current response each cycle (which
we also show as Fig. 2 in the main text), yielding a narrow spread for each pulse and reliably measured altered conductances
with conductance standard deviations of g/g0 ∼ 0.03−0.05. Moreover, we cycled through all 16 different bitstrings for a total
of 26 cycles, lasting around 4 hours, and found essentially the same current response for each cycle, even after the device had
been cycling for 4 hours. The resulting average normalized conductances per pulse, per cycle, are shown in Fig. S8, with the
corresponding standard deviations in the range g/g0 ∼ 0.02−0.15.

We repeated a similar protocol, but now with the ground at the base and the applied voltage at the channel tip. In this instance,
a “0" corresponds to a pulse of 2 V, while a “1" corresponds to a pulse of -5 V. Pulse duration and interval are still 0.75 s, the read
pulses are 1 V of 50 ms duration. The result is shown in Fig. S9, showing a similar clear separation of the different bit-strings. To
again ensure the device stability, the bit-strings 1111, 0101 and 0011 were repeated 5 times, which we present in Fig. S10. Here
we show the 5 individual measurements (light grey), the average of the measured current (black) and the calculated normalized
conductances in the bar plots, averaged over the 5 measurements. The error bars depict the measured standard deviations, where
we find good reproducibility for each voltage pulse train.

In Fig. S11 we schematically show how we use the read pulses to calculate the channel conductance. We calculate the differ-
ence in (average) current during a read pulse and the measured current just before the read pulse to calculate the conductance.

In the main text we classified simple single-digit images consisting of 4× 5 black and white pixels. In Fig. 3(b) we only
showed the “2” as an example, the other digits used are depicted in Fig. S12.

4.2 Timescale measurements

In Fig. 2 we show measured hysteresis loops for 3 different frequencies for channels of lengths 50 µm, 100 µm and 150 µm.
Additional measurements were conducted for intermediate frequencies in order to find upper and lower bound for the frequency
which exhibits the most open hysteresis loop. All loops are shown in Fig. S13, Fig. S14 and Fig. S15 for channel lengths of
50 µm, 100 µm and 150 µm respectively.
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Fig. S6. Six measurements of the normalized channel conductance for all 24 = 16 different voltage pulse trains, obtained from three devices.
Each column of two figures corresponds to a device. The average for each different pulse train is used to create Fig. 4(a). Standard deviations
for the conductance measurement after the fourth (last) pulse were also calculated with these six measurements and shown in Table I.

Bit-string Standard deviation Bit-string Standard deviation
0000 0.137 1000 0.142
0001 0.193 1001 0.143
0010 0.080 1010 0.061
0011 0.157 1011 0.170
0100 0.088 1100 0.093
0101 0.148 1101 0.178
0110 0.058 1110 0.087
0111 0.207 1111 0.256

TABLE I. The standard deviations of the normalized channel conductance g/g0 for each different bit-string, determined through the six
measurements per bit-string shown in Fig. S6.
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Fig. S7. A 50-cycle repeat of the 0101 voltage pulse train. With (left) the current measurement during all cycles, (top right) all cycles overlaid
with the light grey spread the raw overlaid data, the dark grey line the average of the measurements, and the variability characterised by the
standard deviation in light blue. (bottom right) The resulting normalized conductances determined by the five read-pulses with their respective
standard deviations.
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26 cycles (~ 4 hours)

Fig. S8. Normalized conductances and their respective standard deviations obtained by cycling all 16 voltage pulse trains for a total of 50
times, taking roughly 4 hours to complete.
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Fig. S9. Measurements of the normalized channel conductance for all 24 = 16 different voltage pulse trains, but here the channel base is
grounded and the voltage is applied at the tip.
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Fig. S10. Voltage pulse train measurements with the ground at the tip and the applied voltage at the channel base. A “0" corresponds to a pulse
of 2 V, while a “1" corresponds to a pulse of -5 V. Pulse duration and interval are 0.75 s, with read pulses of 1 V and 50 ms duration. Voltage
pulse trains corresponding to the bit-strings 1111, 0101 and 0011 were repeated 5 times, where we show the 5 individual measurements
(light grey), the average of the measured current (black) and the calculated normalized conductances in the bar plots, averaged over the 5
measurements. The error bars depict the measured standard deviations.
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Fig. S11. Schematic depiction of how the read-pulses are used to calculate the channel conductance. The current measurements during the
read pulse are averaged. The difference with the average current just before the read pulse then yields the channel conductance after dividing
by the applied voltage. Before each voltage pulse train, a read pulse is applied to obtain the base conductance g0, which is used to normalise
the measurements.

Fig. S12. Simple single digit numbers used for classification in the main text as shown in Fig. 3(b) and Fig. 3(c).
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Fig. S13. Current-voltage hysteresis loops for the 50 µm channel as a result of a sinusoidal voltage over the channel of amplitude 5 V for
the various frequencies shown. Measurements were gathered during five periods, depicted as the light grey graphs, where the average of the
measurements is shown as a black graph. Enclosed areas were calculated with fmax = 0.9 Hz (highlighted yellow) exhibiting the most open
hysteresis loop.
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Fig. S14. Current-voltage hysteresis loops for the 100 µm channel as a result of a sinusoidal voltage over the channel of amplitude 5 V for
the various frequencies shown. Measurements were gathered during five periods, depicted as the light grey graphs, where the average of the
measurements is shown as a black graph. Enclosed areas were calculated with fmax = 0.215 Hz (highlighted yellow) exhibiting the most open
hysteresis loop.
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Fig. S15. Current-voltage hysteresis loops for the 150 µm channel as a result of a sinusoidal voltage over the channel of amplitude 5 V for
the various frequencies shown. Measurements were gathered during five periods, depicted as the light grey graphs, where the average of the
measurements is shown as a black graph. Enclosed areas were calculated with fmax = 0.1 Hz (highlighted yellow) exhibiting the most open
hysteresis loop. In the first run of measurements, 0.05 Hz yielded a hysteresis loop with an enclosed area very close to 0.1 Hz. Both frequencies
have been tested various more times, where the 0.1 Hz loops were consistently more open, one of these experiments was used for Fig. 1(c).
The other 0.05 Hz measurements are shown here.



19

[1] E. Choi, C. Wang, G. T. Chang, and J. Park, High current ionic diode using homogeneously charged asymmetric nanochannel network
membrane, Nano Letters 16, 2189 (2016).

[2] W. Q. Boon, T. E. Veenstra, M. Dijkstra, and R. van Roij, Pressure-sensitive ion conduction in a conical channel: optimal pressure and
geometry, Physics of Fluids 34, 101701 (2022).

[3] T. M. Kamsma, W. Q. Boon, T. ter Rele, C. Spitoni, and R. van Roij, Iontronic neuromorphic signaling with conical microfluidic
memristors, Phys. Rev. Lett. 130, 268401 (2023).

[4] T. M. Kamsma, W. Q. Boon, C. Spitoni, and R. van Roij, Unveiling the capabilities of bipolar conical channels in neuromorphic iontronics,
Faraday Discussions (2023).

[5] O. Soloveva, S. Solovev, R. Zaripova, F. Khamidullina, and M. Tyurina, Evaluation of the effective porosity of an open cell foam material
for using in heat and mass transfer numerical simulations, in E3S Web of Conferences, Vol. 258 (EDP Sciences, 2021) p. 11010.

[6] T. Heidig, T. Zeiser, and H. Freund, Influence of resolution of rasterized geometries on porosity and specific surface area exemplified for
model geometries of porous media, Transport in Porous Media 120, 207 (2017).

[7] A. Mani, T. A. Zangle, and J. G. Santiago, On the propagation of concentration polarization from microchannel- nanochannel interfaces
part i: analytical model and characteristic analysis, Langmuir 25, 3898 (2009).

[8] T. A. Zangle, A. Mani, and J. G. Santiago, On the propagation of concentration polarization from microchannel- nanochannel interfaces
part ii: numerical and experimental study, Langmuir 25, 3909 (2009).

[9] A. Mani and M. Z. Bazant, Deionization shocks in microstructures, Physical Review E 84, 061504 (2011).
[10] M. Aarts, W. Q. Boon, B. Cuénod, M. Dijkstra, R. van Roij, and E. Alarcon-Llado, Ion current rectification and long-range interference

in conical silicon micropores, ACS Applied Materials & Interfaces (2022).
[11] J. Kim, J. Jeon, C. Wang, G. T. Chang, and J. Park, Asymmetric nanochannel network-based bipolar ionic diode for enhanced heavy

metal ion detection, ACS nano 16, 8253 (2022).
[12] B. Sabbagh, N. E. Fraiman, A. Fish, and G. Yossifon, Designing with iontronic logic gates-from a single polyelectrolyte diode to an in-

tegrated ionic circuit, ACS Applied Materials & Interfaces 15, 23361 (2023), pMID: 37068481, https://doi.org/10.1021/acsami.3c00062.
[13] P. Robin, N. Kavokine, and L. Bocquet, Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale

slits, Science 373, 687 (2021).
[14] P. Robin, T. Emmerich, A. Ismail, A. Niguès, Y. You, G.-H. Nam, A. Keerthi, A. Siria, A. Geim, B. Radha, et al., Long-term memory

and synapse-like dynamics in two-dimensional nanofluidic channels, Science 379, 161 (2023).
[15] H. Von Grünberg, R. van Roij, and G. Klein, Gas-liquid phase coexistence in colloidal suspensions?, Europhysics Letters 55, 580 (2001).
[16] E. Trizac, L. Bocquet, M. Aubouy, and H.-H. von Grünberg, Alexander’s prescription for colloidal charge renormalization, Langmuir 19,

4027 (2003).
[17] F. Smallenburg, N. Boon, M. Kater, M. Dijkstra, and R. van Roij, Phase diagrams of colloidal spheres with a constant zeta-potential, The

Journal of chemical physics 134 (2011).


