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Abstract

In open-world semi-supervised learning, a machine
learning model is tasked with uncovering novel cat-
egories from unlabeled data while maintaining per-
formance on seen categories from labeled data. The
central challenge is the substantial learning gap
between seen and novel categories, as the model
learns the former faster due to accurate supervi-
sory information. Moreover, capturing the seman-
tics of unlabeled novel category samples is also
challenging due to the missing label information.
To address the above issues, we introduce 1) the
adaptive synchronizing marginal loss which im-
poses class-specific negative margins to alleviate
the model bias towards seen classes, and 2) the
pseudo-label contrastive clustering which exploits
pseudo-labels predicted by the model to group un-
labeled data from the same category together in the
output space. Extensive experiments on benchmark
datasets demonstrate that previous approaches may
significantly hinder novel class learning, whereas
our method strikingly balances the learning pace
between seen and novel classes, achieving a re-
markable 3% average accuracy increase on the Im-
ageNet dataset. Importantly, we find that fine-
tuning the self-supervised pre-trained model sig-
nificantly boosts the performance, which is over-
looked in prior literature. Our code is available at
https://github.com/yebo0216best/LPS-main.

1 Introduction
Over the past decade, Semi-Supervised Learning (SSL) algo-
rithms [Zhu and Goldberg, 2009] have demonstrated remark-
able performance across multiple tasks, even when presented
with a meagre number of labeled training samples. These
algorithms delve into the underlying data distribution by har-
nessing numerous unlabeled samples. Among the representa-
tive methods employed for this purpose are pseudo-labeling
[Lee, 2013] and consistency regularization [Laine and Aila,
2016; Sajjadi et al., 2016]. Pseudo-labeling involves utilizing
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Figure 1: Summary of OpenSSL setting.

model predictions as target labels, while consistency regular-
ization encourages similar predictions for distinct views of
an unlabeled sample. However, the majority of current ap-
proaches operate under the assumption that unlabeled data
exclusively comprises samples belonging to seen classes, as
observed within the labeled data [Bendale and Boult, 2015;
Boult et al., 2019]. In contrast, the presence of samples
from novel classes in the unlabeled data is common, as it is
challenging for human annotators to discern such instances
amidst an extensive pool of unlabeled samples [Oliver et al.,
2018].

To aid this challenge, Open-World Semi-Supervised
Learning, denoted as OpenSSL, has gained recent attention,
leading to the proposition of several effective methodologies
[Cao et al., 2022; Guo et al., 2022; Liu et al., 2023]. Fig-
ure 1 demonstrates the problem setting of OpenSSL as an in-
tuitive example. To tackle this issue, extant methods adopt a
two-pronged strategy. On one front, they endeavour to iden-
tify unlabeled samples pertaining to seen classes and allocate
pseudo-labels accordingly. On the other front, they automati-
cally cluster unlabeled samples belonging to novel categories.
Notably, OpenSSL shares an affinity with Novel Class Dis-
covery (NCD) [Han et al., 2019; Han et al., 2020], particu-
larly concerning the clustering of novel class samples. How-
ever, NCD methodologies presuppose that unlabeled samples
originate exclusively from novel classes. OpenSSL relaxes
this assumption to mirror real-world scenarios more accu-
rately. Evidently, the central challenge of effectively clus-
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(a) Accuracy Gap. (b) Overall Accuracy.

Figure 2: (a) Accuracy gap between seen and novel classes. (b)
The overall accuracy of LPS, ORCA, and NACH. Experiments are
conducted on the CIFAR-100 dataset with 50% seen classes (50%
labeled) and 50% novel classes.

tering novel class samples hinges upon the acquisition of
discriminative feature representations, given the absence of
supervisory information. To mitigate this quandary, exist-
ing methods harness self-supervised learning paradigms (e.g.,
SimCLR [Chen et al., 2020a]) which circumvent the need for
labeled data during the training of feature extractors within
deep neural networks. Subsequently, a linear classifier is cul-
tivated by optimizing the cross-entropy loss for labeled data,
in conjunction with specifically tailored unsupervised objec-
tives for the unlabeled counterpart. Widely employed unsu-
pervised objectives include entropy regularization and pair-
wise loss, both of which effectively enhance performance.

This paper introduces a novel OpenSSL algorithm. An ini-
tial observation reveals that the model exhibits faster learning
of seen classes compared to novel classes. This discrepancy is
intuitive because of accurate supervision within labeled data
for seen classes, whereas novel classes are learned through
unsupervised means. Figure 2 depicts a demonstration of the
learning speed discrepancy between seen and novel classes.
Motivated by this intrinsic problem, we propose an adaptive
distribution-aware margin mechanism, designed to steer the
model’s attention towards novel class learning. Notably, this
margin diminishes as the model’s predicted class distribution
approaches the underlying (class-balanced) distribution. To
learn robust representations and facilitate the clustering of
novel classes, we introduce pseudo-label contrastive cluster-
ing. This technique aggregates unlabeled samples sharing the
same class, guided by model predictions. Importantly, we
exploit multiple positive and negative pairs as supervisory
signals, in contrast to the reliance on a single positive pair
as seen in previous works. For unlabeled samples exhibiting
low confidence, we integrate unsupervised contrastive learn-
ing to facilitate the acquisition of informative representations.
This unsupervised contrastive objective operates as a comple-
ment to the pseudo-label contrastive clustering. Combining
the aforementioned modules, we present, LPS, to address the
OpenSSL challenge. Figure 2 showcases the efficacy of LPS
compared with existing state-of-the-art approaches. Notably,
we reveal that the conventional practice of freezing the fea-
ture extractor, previously trained via self-supervised learning
in prior research, falls short of optimal.

In summary, our main contributions are:
• We propose a novel and simple method, LPS, to effec-

tively synchronize the learning pace of seen and novel
classes for open-world semi-supervised learning.

• We conduct extensive experiments to verify the effec-
tiveness of the proposed method against the previous
state-of-the-art. Particularly, LPS achieves over 3% av-
erage increase of accuracy on the ImageNet dataset.

• We examine the effectiveness of the key components of
the proposed method. Different from previous works,
we discover that fine-tuning the pre-trained backbone al-
lows the model to learn more useful features, which can
significantly improve the performance.

2 Related Work

Semi-Supervised Learning. Within the realm of SSL,
pseudo-labeling [Lee, 2013] and consistency regularization
[Laine and Aila, 2016; Sajjadi et al., 2016; Wei et al., 2022;
Wei and Gan, 2023] are two widely used techniques. Pseudo-
labeling converts model predictions on unlabeled samples
into either soft labels or hard labels, subsequently employed
as target labels. Consistency regularization strives to ensure
model outputs exhibit a high degree of consistency when ap-
plied to perturbed samples. Recent advancements [Berth-
elot et al., 2019; Sohn et al., 2020; Xu et al., 2021] com-
bine pseudo-labeling with consistency regularization to yield
further performance enhancements. In addition to the above
techniques, the application of contrastive learning into SSL
has also received substantial interest. For example, TCL
[Singh et al., 2021] introduces contrastive learning as a tool to
enhance representation learning. TCL maximizes agreement
between different views of the same sample while minimiz-
ing agreement for distinct samples. In consonance with this
paradigm, we design a new complementary contrastive loss
to explore the consistency of all samples effectively.

Novel Class Discovery. The setting of NCD aligns closely
with the scenario investigated in this paper. NCD assumes a
scenario where the labeled data consists of samples of seen
classes, while the unlabeled data exclusively comprises sam-
ples of novel classes. [Han et al., 2019] initially raised the
NCD problem. Subsequent research such as [Han et al.,
2020; Zhong et al., 2021a; Zhong et al., 2021b] predomi-
nantly adopted multi-stage training strategies. The underly-
ing principle is capturing comprehensive high-level seman-
tic information from labeled data, subsequently propagated
to unlabeled counterparts. The majority of NCD methods
involve preliminary model pre-training, wherein several ob-
jective functions are invoked to minimize inter-sample dis-
tances for each class. However, in real-world scenarios, the
assumption of unlabeled data solely comprising novel classes
is unrealistic, as seen classes also significantly populate the
unlabeled dataset. Our experimentation reveals that NCD al-
gorithms struggle to match the performance of other leading
methods in the context of OpenSSL.

Open-World Semi-Supervised Learning. While conven-
tional SSL methods operate under the assumption of la-
beled and unlabeled data being associated with a predefined
set of classes, recent advancements [Oliver et al., 2018;



Figure 3: Overview of LPS framework. The LPS objective function is composed of an adaptive margin objective LAM, a pseudo-label
contrastive clustering objective LPC, and an unsupervised contrastive learning objective LUC.

Chen et al., 2020b; Guo et al., 2020; Saito et al., 2021] chal-
lenge this notion and acknowledge the potential emergence of
novel classes within the unlabeled data. Further, ORCA [Cao
et al., 2022] delves into the OpenSSL problem and attempts
to cluster novel classes from unlabeled data. Both ORCA
and NACH [Guo et al., 2022] notice the discrepancy in learn-
ing pace between seen and novel classes. They propose to
use an entropy regularizer and pair-wise loss to ameliorate
this issue. More recently, OpenNCD [Liu et al., 2023] intro-
duces prototypes-based contrastive learning for recognizing
seen classes and discovering novel classes. This paper intro-
duces an adaptive margin loss and pseudo-label contrastive
clustering mechanism to synchronize the learning pace and
enhance novel class discovery.

3 The Proposed Method
Notations. The training dataset is composed of the labeled
data Dl = {(xi, yi)}ni=1 and the unlabeled data Du =
{xi}n+m

i=n+1. Within the context of OpenSSL, the classes in
Dl are designated as seen classes, constituting the set de-
noted as Cs. The scenario of interest acknowledges a dis-
tribution mismatch, leading to Du comprising instances from
both seen and novel classes. The collection of these novel
classes is represented as Cn. Additionally, we adopt the
premise of a known number of novel classes akin to prior
OpenSSL methodologies [Cao et al., 2022; Guo et al., 2022;
Liu et al., 2023]. The goal of OpenSSL is to classify samples
originating from the Cs and cluster samples emanating from
the Cn.

Overview. The fundamental challenge in OpenSSL arises
from the pronounced discrepancy in learning paces between

seen and novel classes, primarily due to the precise super-
visory guidance for seen classes. This discrepancy results
in a bias towards seen classes in the model’s predictions,
adversely impacting both the accurate classification of seen
class samples and the effective clustering of novel class sam-
ples. To circumvent this challenge, we introduce Learning
Pace Synchronization (LPS), a methodology with adaptive
synchronizing loss and pseudo-label contrastive clustering as
in Figure 3. The adaptive synchronizing loss aims to achieve a
balance between the learning pace of seen and novel classes,
and the pseudo-label contrastive clustering exploits pseudo-
labels to group unlabeled data from the same class together
in the output space.

3.1 Adaptive Synchronizing
To start with, we describe the proposed adaptive marginal loss
which regularizes the learning pace of seen classes to syn-
chronize the learning pace of the model. Conventionally, the
margin is defined as the minimum distance of the data to the
classification boundary. For a sample (x, y), we have:

∆(x, y) = f(x)y −max
j ̸=y

f(x)j (1)

Instead of employing a fixed margin, LDAM [Cao et al.,
2020] introduces a class-specific margin, where the margin
between rare classes and other classes is larger than the mar-
gin for frequent classes, for tackling class-imbalanced data.
Specifically, it sets the margin of class j as:

∆j =
C

n
1/4
j

(2)

The constant C controls the intensity and nj denotes the fre-
quency of class j in the training data. Motivated by this, we



propose a new variant of the margin loss to synchronize the
learning pace of seen and novel classes. We apply adaptive
margin loss to demand a larger margin between the novel and
other classes, so that scores for seen classes, towards which
the model highly biased, do not overwhelm the novel classes.
For each sample (x, y), the adaptive margin loss is defined as
follows:

ℓAM(x, y) = − log
exp(zy −∆y)

exp(zy −∆y) +
∑

j ̸=y exp(zj)

where ∆j = −KL
(
π̂
∥∥ π

) π̂j

max(π̂)
C, j ∈ [K]

(3)

In this formulation, K represents the total number of classes,
zj signifies the model output for the j-th class, z = f(x; θ),
and π̂ denotes the estimated class distribution by the model.
Additionally, we introduce an approximation of the true class
distribution π, which is naturally inaccessible during training.
In line with prior studies, we assume a uniform distribution
for π, leaving the exploration of arbitrary distributions for
future investigations. The hyper-parameter C is introduced to
control the maximum margin, and we empirically set C = 10
across all experiments. We conduct a series of studies on the
value of C in the supplementary material.

For the sake of simplicity, we assume that the mini-batch is
comprised of labeled data Bl and unlabeled data Bu. Given
that the computation of Eq. (3) relies on the class distribu-
tion, we proceed to estimate the complete class distribution
through labeled data and unlabeled data exhibiting high pre-
dictive confidence. Specifically, we endeavour to achieve this
estimation through:

π̂ = Normalize

∑
xi∈Bl

ŷi+
∑

xj∈Bu

I
(
max(ŷj)≥λ

)
ŷj

 (4)

Here, ŷ = softmax(z). In view of the tendency for
novel class samples to exhibit underconfidence, we empiri-
cally introduce a progressively evolving confidence threshold
λnovel = 0.4 + 0.4 × t

T , where t and T signify the current
training iteration and the total training iterations, respectively.
For seen classes, a fixed confidence threshold λseen = 0.95
is employed.

Given that the estimated class distribution π̂ mirrors the
model’s confidence in class predictions, we harness this in-
sight to regulate the learning pace of both seen and novel
classes. Notably, in the early training phases, the model
is inclined towards seen classes, with the logit adjustment
term ∆j assuming a larger negative margin for seen classes,
thereby attenuating their learning pace. As training pro-
gresses, the model attains a more balanced capability across
both seen and novel classes, as reflected by a diminishing
Kullback-Leibler (KL) divergence between π̂ and π.

In summary, the adaptive margin loss LAM for both labeled
and pseudo-labeled data is defined as follows:

LAM =
1

|Bl|
∑

xi∈Bl

ℓAM(zw
i , y)+

1

|Bu|
∑

xj∈Bu

I
(
max(ŷj) ≥λ

)
ℓAM(zs

j , p̂j)
(5)

In this context, zw and zs correspond to the output log-
its stemming from the weak and strong augmented ver-
sions of sample x, respectively. The symbol | · | denotes
the set cardinality operation. Additionally, we utilize p̂ =
argmax(softmax(zw)) to represent the pseudo-label associ-
ated with the sample.

Distinctions and Connections with Alternatives. It is
worth noting that the concept of adaptive margin has been
used in prior literature [Li et al., 2020; Ha and Blanz, 2021;
Cao et al., 2022]. Different from LPS, [Li et al., 2020]
leverages the semantic similarities between classes to gener-
ate adaptive margins with the motivation to separate similar
classes in the embedding space, and [Ha and Blanz, 2021] uti-
lizes the ground-truth distance between different samples to
generate adaptive margins with the motivation to adapt to rat-
ing datasets. In OpenSSL, ORCA [Cao et al., 2022] also in-
tegrates an adaptive margin mechanism based on the model’s
predictive uncertainty, which can only equally suppress the
learning pace of seen classes. However, there are still dif-
ferences in the learning paces of different classes among seen
classes. Our proposed adaptive margin is based on the current
estimated distribution to reflect the learning pace of different
classes, which offers increased flexibility for regulating the
learning pace across classes by generating the class-specific
negative margin. Furthermore, the inclusion of the KL diver-
gence term effectively guards against the model converging
to a trivial solution where all samples are arbitrarily assigned
to a single class.

3.2 Pseudo-Label Contrastive Clustering
The basic idea of discovering novel classes is to explore the
correlations between different samples and cluster them into
several groups. Prior OpenSSL approaches often transform
the clustering task into a pairwise similarity prediction task,
wherein a modified form of binary cross-entropy loss is op-
timized. Different from existing works, we introduce a new
clustering method to fully exploit reliable model predictions
as supervisory signals.

Our approach involves the construction of a multi-viewed
mini-batch by using weak and strong augmentations. Within
each mini-batch, we group the labeled and confident unla-
beled samples, which is denoted as Bl′ . Concurrently, unla-
beled samples exhibiting predicted confidence levels failing
below the threshold λ are denoted as Bu′ . Pseudo-label con-
trastive clustering only takes Bl′ as inputs. For each sample
in Bl′ , the set of the positive pairs contains samples with the
same given label or pseudo-label. Conversely, the set of neg-
ative pairs contains samples of other classes. Formally, the
objective of pseudo-label contrastive clustering is defined as
follows:

LPC=− 1

|Bl′ |
∑

xi∈Bl′

log
1

|P (xi)|

∑
xp∈P (xi)

exp (zi ·zp/τ)∑
xa∈A(xi)

exp (zi ·za/τ)
, (6)

where zi denotes the output logits, P (xi) denotes the set of
positives of xi and A(xi) ≡ Bl′\{xi}. τ is a tunable tem-
perature parameter and we set τ = 0.4 in all experiments.



In contrast to existing methods such as ORCA [Cao et al.,
2022] and NACH [Guo et al., 2022], which establish a single
positive pair for each sample by identifying its nearest neigh-
bour, the objective in Eq. (6) adopts pseudo-labels to form
multiple positive pairs. This approach offers dual advantages:
firstly, the alignment of samples within the same class is more
effectively harnessed through the utilization of multiple pos-
itive sample pairs; secondly, it leverages the consistency of
distinct views of the same sample to mitigate the negative im-
pact of erroneous positive pairs, while concurrently imparting
a repulsion effect to samples from different classes through
negative pairs.

Since Eq. (6) augments the labeled dataset by unlabeled
samples of high predictive confidence, we ask whether unla-
beled samples of low confidence can be used to enrich rep-
resentation learning. In pursuit of this, we incorporate unsu-
pervised contrastive learning [Wang and Isola, 2020] to en-
courage similar predictions rather than embeddings between
a given sample and its augmented counterpart. This helps to
signify the uniformity among unlabeled samples, ultimately
leading to clearer separations. In detail, for each sample in the
low-confidence set Bu′ , the unsupervised contrastive learn-
ing couples it with its augmented view to constitute a positive
pair. Simultaneously, a set of negative pairs is formulated,
containing all the samples within the mini-batch except the
sample itself. The unsupervised contrastive learning loss LUC
is formulated as follows:

LUC = − 1

|Bu′ |
∑

xj∈Bu′

log
exp (zj · zp/τ)∑

xa∈ A(xj)

exp (zj · za/τ)
(7)

Here, xp is the positive sample of xj and A(xj) ≡ Bu′ ∪
Bl′\{xj} for the sample xj .

In essence, unsupervised contrastive learning complements
the pseudo-label contrastive clustering by fully exploiting the
unlabeled samples. In the experiments, the ablation studies
underscore the pivotal role played by both types of contrastive
losses in our approach.

Lastly, we incorporate a maximum entropy regularizer to
address the challenge of converging during the initial train-
ing phases, when the predictions are mostly wrong (e.g., the
model tends to assign all samples to the same class) [Arazo
et al., 2020]. Specifically, we leverage the KL divergence
between the class distribution predicted by the model and a
uniform prior distribution. It is worth noting that the integra-
tion of an entropy regularizer is a widespread practice in deal-
ing with the OpenSSL problem, including approaches such as
ORCA, NACH, and OpenNCD. The final objective function
of LPS is articulated as follows:

Ltotal = LAM + η1LPC + η2LUC +REntropy (8)

where REntropy denotes the entropy regularizer, η1 and η2 are
hyper-parameters set to 1 in all our experiments. We provide
detailed analyses on the sensitivity of hyperparameters in the
supplementary material.

4 Experiments
4.1 Experimental Setup

Datasets. We evaluate our method on three commonly used
datasets, i.e., CIFAR-10, CIFAR-100 [Krizhevsky, 2009], and
ImageNet [Russakovsky et al., 2015]. Following prior works
[Cao et al., 2022; Guo et al., 2022; Liu et al., 2023], we as-
sume that the number of novel classes is known. Specifically,
we randomly select 50% of the classes as seen classes, and the
remaining classes are regarded as novel classes, e.g., the num-
ber of novel classes is 50 for CIFAR-100. On each dataset,
we consider two types of labeled ratios, i.e., only 10% or 50%
of data in seen classes are labeled. For the ImageNet dataset,
we subsample 100 classes to form the ImageNet-100 dataset
for fair comparisons with existing works.

Following prior works [Cao et al., 2022; Guo et al., 2022;
Liu et al., 2023], we evaluate our method with respect to the
accuracy of seen classes, novel classes, and all classes. For
seen classes, the accuracy is calculated as the normal classi-
fication task. For novel classes, we first utilize the Hungarian
algorithm [Kuhn, 1955] to solve the optimal prediction-target
class assignment problem and then calculate the accuracy of
novel classes. For overall accuracy, we also solve the op-
timal assignment in the entire unlabeled dataset to calculate
the novel class accuracy, measuring the overall performance.

Implementation Details. Following [Cao et al., 2022; Guo
et al., 2022; Liu et al., 2023], we utilize the self-supervised
learning method SimCLR [Chen et al., 2020a] to pre-train the
backbone and fix the first three blocks. In LPS, the weak aug-
mentation contains random crop and horizontal flip, and the
strong augmentation is RandAugment [Cubuk et al., 2019].
For CIFAR-10 and CIFAR-100, we utilize ResNet-18 as our
backbone which is trained by the standard SGD with a mo-
mentum of 0.9 and a weight decay of 0.0005. We train the
model for 200 epochs with a batch size of 512. For the Im-
ageNet dataset, we opt for ResNet-50 as our backbone. This
choice also undergoes training via the standard SGD, featur-
ing a momentum coefficient of 0.9 and a weight decay of
0.0001. The training process spans 90 epochs, with a batch
size of 512. and The cosine annealing learning rate schedule
is adopted on CIFAR and ImageNet datasets. These experi-
ments are conducted on a single NVIDIA 3090 GPU.

4.2 Comparing with Existing Methods

Baselines. We compare LPS with SSL methods, open-set
SSL methods, NCD methods, and OpenSSL methods. The
NCD methods consider that the labeled data only has disjoint
classes compared with the unlabeled data and aim at cluster-
ing novel classes without recognizing seen classes. For novel
classes, clustering accuracy can be obtained directly. For seen
classes, we first regard them as novel classes and leverage the
Hungarian algorithm to match some of the discovered classes
with seen classes, and then calculate the classification accu-
racy. We select two competitive NCD methods DTC [Han
et al., 2019] and RankStats [Han et al., 2020] in the exper-
iments. Moreover, we include GCD [Vaze et al., 2022] for
comparison, which is an extended NCD method.



CIFAR-10 CIFAR-100 ImageNet-100
10% labeled 50% labeled 10% labeled 50% labeled 10% labeled 50% labeled

Methods Seen Novel All Seen Novel All Seen Novel All Seen Novel All Seen Novel All Seen Novel All
FixMatch
DS3L
DTC
RankStats
SimCLR
ORCA
GCD
OpenNCD
NACH
LPS (ours)

64.3
70.5
42.7
71.4
44.9
82.8
78.4
83.5
86.4
86.3

49.4
46.6
31.8
63.9
48.0
85.5
79.7
86.7
89.4
90.6

47.3
43.5
32.4
66.7
47.7
84.1
79.1
85.3
88.1
88.6

71.5
77.6
53.9
86.6
58.3
88.2
78.4
88.4
89.5
90.2

50.4
45.3
39.5
81.0
63.4
90.4
79.7
90.6
92.2
93.4

49.5
40.2
38.3
82.9
51.7
89.7
79.1
90.1
91.3
92.4

30.9
33.7
22.1
20.4
26.0
52.5
49.7
53.6
57.4
55.2

18.5
15.8
10.5
16.7
28.8
31.8
27.6
33.0
37.5
41.0

15.3
15.1
13.7
17.8
26.5
38.6
38.0
41.2
43.5
47.5

39.6
55.1
31.3
36.4
28.6
66.9
68.5
69.7
68.7
64.5

23.5
23.7
22.9
28.4
21.1
43.0
33.5
43.4
47.0
49.9

20.3
24.0
18.3
23.1
22.3
48.1
45.2
49.3
52.1
54.3

60.9
64.3
24.5
41.2
42.9
83.9
82.3
84.0
86.3
87.0

33.7
28.1
17.8
26.8
41.6
60.5
58.3
65.8
66.5
73.6

30.2
25.9
19.3
37.4
41.5
69.7
68.2
73.2
71.0
78.0

65.8
71.2
25.6
47.3
39.5
89.1
82.3
90.0
91.0
91.3

36.7
32.5
20.8
28.7
35.7
72.1
58.3
77.5
75.5
81.3

34.9
30.8
21.3
40.3
36.9
77.8
68.2
81.6
79.6
84.5

Table 1: Accuracy comparison of seen, novel, and all classes on CIFAR-10, CIFAR-100, and ImageNet-100 datasets with 50% classes as
seen and 50% classes as novel. We conducted experiments with 10% and 50% labeled data of seen classes.

For the SSL and open-set SSL methods, we leverage their
capability in estimating out-of-distribution samples to ex-
tend to the OpenSSL setting. For comparison, we select
FixMatch[Sohn et al., 2020], which assigns pseudo-labels to
unlabeled samples based on confidence. The classification
accuracy of seen classes can be reported directly according
to pseudo-labels. For novel classes, we first estimate sam-
ples without pseudo-labels as novel classes and then utilize
k-means to cluster them. The open-set SSL methods main-
tain the classification performance of seen classes by reject-
ing novel classes. We compare with DS3L [Guo et al., 2020]
and calculate its accuracy in the same way as FixMatch.

For the OpenSSL methods, we compare with ORCA [Cao
et al., 2022], NACH [Guo et al., 2022], and OpenNCD [Liu
et al., 2023]. We also compare the self-supervised pre-trained
model SimCLR and conduct K-means on the primary features
to calculate the accuracy.

Results. The results on three datasets are reported in Table
1. The mean accuracy is computed over three runs for each
method. Although the non-OpenSSL methods perform well
on their original tasks, their overall performance is unsatisfac-
tory in the OpenSSL setting. The results of SimCLR are ob-
tained by the pre-trained model without extra fine-tuning, and
the OpenSSL methods are based on the pre-trained model. It
is obvious that the OpenSSL methods achieve significant per-
formance improvements compared to non-OpenSSL meth-
ods. Compared with the state-of-the-art OpenSSL methods,
our method LPS achieves the best overall performance across
all datasets. On the CIFAR-10 dataset, LPS outperforms
NACH by 1.2% in novel class accuracy. Likewise, on the
CIFAR-100 dataset, LPS demonstrates superiority, yielding
a substantial 3.2% improvement. Particularly concerning the
ImageNet-100 dataset, LPS has the capacity to surpass exist-
ing state-of-the-art methods, resulting in a 3.8% increase in
overall accuracy. Experimental results demonstrate that LPS
can effectively balance the learning of seen and novel classes.

Distribution Analysis. For further validation of our ap-
proach, we present a comprehensive analysis of the KL di-
vergence trend between the estimated and prior class distri-
butions, along with the estimated class distributions at the

(a) KL Divergence. (b) Class Distribution.

Figure 4: (a) The KL divergence between the estimated and prior
class distributions. (b) The estimated class distribution of the final
training iteration. Experiments are conducted on the CIFAR-100
dataset with 50% seen classes (50% labeled) and 50% novel classes.

concluding training iteration for LPS, NACH, and ORCA in
Figure 4. It can be seen that LPS is able to give more atten-
tion to novel classes in the early training stage, in contrast
to ORCA and NACH, which exhibit a preference for learn-
ing seen classes primarily. This becomes particularly evident
in the estimated class distribution at the end of the training,
where ORCA and NACH falter in effectively distinguishing
novel classes, leading to the erroneous assignment of certain
novel class samples. In contrast, the estimated distribution
obtained by LPS closely aligns with the prior distribution,
consequently fostering effective novel class differentiation.
Feature Visualization. We employ t-distributed stochastic
neighbour embedding (t-SNE) [Van der Maaten and Hin-
ton, 2008] to visualize the learned feature representations
through LPS and prior methods. The results depicted in Fig-
ure 5 demonstrate that the representations obtained by LPS
yield clearer classification boundaries and exhibit fewer in-
stances of misclassifications. Conversely, ORCA and NACH
manifest a higher frequency of misclassifications and unclear
boundaries, resulting in comparatively inferior performance
in contrast to LPS. In addition, we utilize the metric of nor-
malized mutual information (NMI) to further assess the clus-
tering performance and representations of novel classes. We
report the results in Table 2 which clearly demonstrate the
superiority of LPS. Given that all methods share the same



(a) SimCLR pre-training (b) ORCA

(c) NACH (d) LPS (ours)

Figure 5: The t-SNE visualization of features for different methods
on CIFAR-10 dataset with 50% seen classes (50% labeled) and 50%
novel classes.

foundation of SimCLR pre-trained backbone, the visualiza-
tion, and NMI results highlight the efficacy of our approach
in enhancing representation learning.

CIFAR-10 CIFAR-100
Methods 10% 50% 10% 50%
ORCA 73.93 80.92 45.26 52.10
NACH 80.07 83.44 49.96 56.45
LPS (ours) 82.41 86.45 51.92 58.42

Table 2: The NMI of novel classes on CIFAR datasets.

Fine-tuning the Pre-trained Backbone. Furthermore, it is
noteworthy that all previous OpenSSL methods adopt a prac-
tice of freezing the parameters within the first three blocks of
the backbone, solely fine-tuning the last block, with the in-
tention of mitigating overfitting. However, such an approach
constrains the extent of performance enhancement, as the
backbone’s parameters remain unmodifiable and unoptimized
to better suit downstream tasks. To establish that our method
is not susceptible to the overfitting dilemma, we conducted a
series of experiments on the CIFAR dataset employing state-
of-the-art OpenSSL methods while fine-tuning the backbone.
The results are reported in Table 3. The experimental results
reveal that existing OpenSSL methods manifest modest per-
formance improvement, if any, in comparison to their initial
frozen counterparts. In contrast, our proposed method, un-
affected by overfitting concerns, consistently yields substan-
tial performance gains across both seen and novel classes.
Specifically, the overall accuracy for CIFAR-10 experiences
a notable improvement of 2.9%, while an impressive 6.3% in-
crease is observed for CIFAR-100. These results underscore

CIFAR-10 CIFAR-100
Methods Seen Novel All Seen Novel All
ORCA 89.8 90.8 90.5 69.4 42.5 48.2
OpenNCD 88.9 91.8 90.8 62.2 44.9 50.4
NACH 95.0 93.3 93.9 73.8 47.8 54.6
LPS (ours) 95.0 95.5 95.3 72.6 55.5 60.6

Table 3: Mean accuracy over three runs with removing the limitation
of freezing the backbone on CIFAR datasets with 50% seen classes
(50% labeled) and 50% novel classes.

CIFAR-10 CIFAR-100
Methods Seen Novel All Seen Novel All
w/o LAM 90.6 89.4 89.8 67.1 46.2 52.7
w/o LPC 89.7 89.1 89.3 60.4 48.1 51.8
w/o LUC 91.3 88.2 89.2 64.7 42.3 48.5
w/o REntropy 90.8 55.4 66.2 73.4 28.8 30.8
LPS (ours) 90.2 93.4 92.4 64.5 49.9 54.3

Table 4: Accuracy when removing key components of our method.
We report the average accuracy over three runs on CIFAR datasets
with 50% seen classes (50% labeled) and 50% novel classes.

the effectiveness of LPS in harnessing the additional learn-
able parameters for further enhancing model performance.

Ablation Analysis. Moreover, we conduct a comprehensive
analysis of the contributions of distinct components in our ap-
proach. The objective function of LPS comprises the adap-
tive margin loss (LAM), the pseudo-label contrastive clus-
tering loss (LPC), the unsupervised contrastive learning loss
(LUC), and the entropy regularizer (REntropy). Concretely, the
ablation study is mainly conducted by removing each term
individually from the objective function except for the adap-
tive margin which is replaced by a standard cross-entropy. As
observed in Table 4, the removal of any components leads to
performance degradation. The substantial drop in novel per-
formance after removing the entropy regularizer highlights its
significant role in the process of novel class discovery. More-
over, the utilization of both pseudo-label contrastive loss and
adaptive margin loss substantially improves the accuracy of
novel classes.

5 Conclusion
In this study, we present Learning Pace Synchronization
(LPS), a potent solution tailored to the OpenSSL problem.
LPS introduces an adaptive margin loss to effectively nar-
row the learning pace gap that exists between seen and novel
classes. Moreover, we formulate a pseudo-label contrastive
clustering loss to augment the process of novel class discov-
ery. Extensive evaluation is conducted across three bench-
mark datasets with distinct quantities of labeled data. We
also discover that the conventional practice of freezing the
self-supervised pre-trained backbone hinders the generaliza-
tion performance. We hope our work can inspire more efforts
towards this realistic setting.
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7 Supplementary Material for LPS
7.1 Parameter Sensitivity Analysis
Parameters η1 and η2 define the weight of the pseudo-label
contrastive clustering loss and the unsupervised contrastive
learning loss, respectively. We conduct several experiments
on the CIFAR datasets with various values of η1 and η2 to as-
sess the performance of our method LPS, and the results are
shown in Table 5. By further adjusting the parameters η1 and
η2, our method LPS displays great robustness and promising
results. We also provide detailed analysis for λnovel. In par-
ticular, we set λnovel = 0.4 + {0.3, 0.35, 0.4, 0.45, 0.5} × t

T
and the results are reported in Table 6. We find that higher val-
ues of λnovel achieve better performance on seen classes. In-
tuitively, higher values of λnovel will pseudo-label less novel

CIFAR-100 CIFAR-100
η1 Seen Novel All η2 Seen Novel All
0.6 63.5 48.4 53.1 0.6 64.7 50.8 55.1
0.8 63.7 49.3 53.7 0.8 64.4 49.8 53.6
1.0 64.5 49.9 54.3 1.0 64.5 49.9 54.3
1.2 64.2 50.2 54.4 1.2 63.7 49.8 54.0
1.4 64.1 48.8 53.5 1.4 63.2 50.6 54.4

Table 5: Accuracy with various values of η1 and η2.

CIFAR-10 CIFAR-100
λnovel Seen Novel All Seen Novel All
0.70 89.9 92.2 91.5 62.9 49.3 53.4
0.75 89.8 93.5 92.3 63.9 49.0 53.5
0.80 90.2 93.4 92.4 64.5 49.9 54.3
0.85 90.5 91.7 91.3 64.8 48.0 53.2
0.90 90.9 90.3 90.5 65.2 49.6 54.4

Table 6: Accuracy with various values of λnovel.

unlabeled samples and further let LAM give more importance
to seen classes.

Recall that C defined in LAM is a tunable parameter to con-
trol the maximum margin. Table 7 displays the results of LPS
under varying C conditions. Intuitively, increasing the C will
lead to a faster alignment between the predicted distribution
and the prior distribution. From the results of C = 20 in the
Table 7, if the alignment is too fast, the model may balance
the learning pace between seen and novel classes by assign-
ing incorrect pseudo-labels. Meanwhile, if the alignment is
too slow, the margin mechanism does not effectively bias the
model towards novel classes, which is reflected in the results
of C = 1 and C = 5 in the Table 7.

CIFAR-10 CIFAR-100
C Seen Novel All Seen Novel All
1 90.5 90.6 90.5 66.6 45.3 51.9
5 90.3 91.9 91.4 64.6 47.4 52.7

10 90.2 93.4 92.4 64.5 49.9 54.3
15 90.2 93.3 92.2 63.2 50.8 54.6
20 90.2 91.9 91.3 62.4 48.7 52.9

Table 7: Accuracy with various values of C.

The temperature parameter τ within LPC and LUC is used
to adjust the measurement of similarity between samples. In-
creasing the temperature will lead to a flatter representation
space for samples. Conversely, decreasing it results in a
sharper space. We conduct a series of experiments by setting
various temperature values. Table 8 depicts that alterations
in τ do not exert a pronounced impact on performance and
τ = 0.4 yields the best performance.

7.2 Additional Results
In addition, we conduct more experiments to validate the ro-
bustness of the proposed method. We first conduct a series ex-
periments on CIFAR-100 dataset with different numbers of
novel classes, and the results are reported in the Figure 6 (a)



CIFAR-10 CIFAR-100
τ Seen Novel All Seen Novel All

0.2 85.3 92.7 90.3 61.4 48.8 52.6
0.3 89.2 92.2 91.2 63.2 49.2 53.4
0.4 90.2 93.4 92.4 64.5 49.9 54.3
0.5 90.9 92.3 91.8 64.4 47.2 52.5
0.6 91.0 91.3 91.2 63.8 46.5 51.8

Table 8: Accuracy with various values of τ .

and (b). Further, we conduct a series experiments on CIFAR-
100 dataset with different ratios of labeled data, and the
results are shown in the Figure 6 (c) and (d). From the re-
sults, it can be clearly seen that LPS consistently outperforms
ORCA and NACH across all settings. In Figure 6 (c) and (d),
both ORCA and NACH deteriorate their performance when
the ratio of labeled data reaches 70%, while LPS is able to
yield further improvement.

(a) Novel Class Accuracy. (b) Overall Accuracy.

(c) Novel Class Accuracy. (b) Overall Accuracy.

Figure 6: (a) The novel class accuracy and (b) overall accuracy with
different numbers of novel classes. (c) The novel class accuracy and
(d) overall accuracy with different ratios of labeled data.

To further evaluate the performance when fine-tuning the
pre-trained backbone, we conduct a series of experiments
on the CIFAR dataset with 50% seen classes (10% labeled)
and 50% novel classes. From Table 9, we can see that both
ORCA and NACH show significant declines (over 10% over-
all accuracy), while our method LPS maintains high perfor-
mance on CIFAR-100 and shows further improvements on
CIFAR-10, which further verifies that LPS is not susceptible
to the overfitting dilemma.

CIFAR-10 CIFAR-100
Methods Seen Novel All Seen Novel All
ORCA 78.1 80.7 79.5 39.7 23.7 29.6
NACH 87.0 82.5 80.8 51.0 28.9 37.1
LPS(ours) 88.6 91.6 90.2 57.0 39.3 47.3

Table 9: Accuracy without freezing the backbone on CIFAR
datasets.
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