
Superfluidity of Total Angular Momentum

Yeyang Zhang1 and Ryuichi Shindou1, ∗

1International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
(Dated: March 26, 2024)

Spontaneous symmetry breaking of a U(1) symmetry leads to superfluidity of a corresponding
conserved charge. We generalize the superfluidity to systems with U(1) symmetries acting on both
matter fields and two-dimensional spatial coordinates. Such systems can be effectively realized in
easy-plane ferromagnetic systems with spin-orbit coupling where the conserved charge is a total
angular momentum. We clarify that under a steady injection of spin angular momentum, the super-
fluid of the total angular momentum shows spacetime oscillations of the spin density and geometry-
dependent spin hydrodynamics. We also demonstrate that the steady spin injection destabilizes the
superfluid of total angular momentum, causing a dissipation effect in its spin hydrodynamic prop-
erties. Our study broadens the comprehension of superfluidity and sheds new light on the interplay
between symmetries and phases of matter.

Introduction.—The discovery of superfluidity [1–3] is a
milestone in the history of physics. Exotic macroscopic
quantum phenomena in superfluids are explained by the
condensation of bosonic atoms [4, 5] or neutral Cooper
pairs [6]. Spontaneous symmetry breaking (SSB) of a
U(1) global gauge symmetry leads to Goldstone modes
with gapless and linear dispersions [7–9], which enables
dissipationless mass currents. By alternative U(1) sym-
metries, the superfluidity can be generalized to spin [10–
17] and excitonic [18–23] currents.

General relations between Goldstone modes and SSB
of continuous symmetries are derived in the literature
[24–27], while they mostly considered continuous inter-
nal symmetries that transform only field operators lo-
cally. Spacetime symmetries act on both field opera-
tors and spacetime coordinates [28], and the symmetries
bring about fundamental physical consequences such as
the relativistic spin-orbit coupling (SOC). The contin-
uous spacetime symmetries can be spontaneously bro-
ken in spinful superfluids in cold-atom systems [29–34].
Nonetheless, it remains largely unexplored how the SSB
of the continuous spacetime symmetries affects the hy-
drodynamic transport of “charges” associated with the
broken spacetime symmetries.

In this Letter, we generalize the concept of superfluid-
ity to the SSB of continuous spacetime symmetries. As
a physical system, we consider the superfluidity of total
angular momentum, where a joint U(1) rotational sym-
metry of the in-plane spin vector and two-dimensional
(2D) spatial coordinates is spontaneously broken. The
superfluid of total angular momentum is nothing but a
spin superfluid [10–17] in the presence of the SOC. It
can be effectively realized in a ferromagnet or a spin-
triplet exciton condensate [35–37] with easy-plane spin
anisotropy.

We derive an effective field theory of a Goldstone
mode in the total-angular-momentum superfluid and
solve its classical equation of motion in the presence
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of a steady injection of spin. We find that the total-
angular-momentum superfluid shows spacetime oscilla-
tions of spin density and current under the spin injection,
which contrasts with conventional spin superfluid with-
out SOC [10–17]. We also uncover unique geometry de-
pendence and non-reciprocity in its hydrodynamic spin
transport. When the system is in a circular geometry
with finite curvature, the spin hydrodynamics depends
on the direction of the spin flow as well as the curvature
of the system.
We also show that unlike in the conventional spin su-

perfluid, the steady spin injection destabilizes the total-
angular-momentum superfluid. Landau argued that uni-
form superfluids moving slower than a critical velocity re-
alize states at local minima of energy, so the superfluidity
is protected from any dissipative perturbation [13, 38–
40]. Based on the same spirit as Landau’s argument,
we demonstrate that the total-angular-momentum super-
fluid is not an energy-local-minimum state in the pres-
ence of the spin injection, and decay processes to lower
energy states bring about a dissipation effect in the spin
hydrodynamic properties of the superfluid.
Model.—Consider a 2D complex bosonic field ϕ ≡ ϕx+

iϕy, where the 2D real and time-reversally-odd vector
field (ϕx, ϕy) and 2D spatial coordinate (x, y) transform
under a joint U(1) rotation around z-direction,

ϕ→ ϕeiϵ, x+ iy → (x+ iy)eiϵ. (1)

The vector field here stands for a spin vector in physical
systems. In the presence of the time-reversal symmetry,
ϕ → −ϕ†, t → −t, i → −i, the SSB of the joint U(1)
symmetry is characterized by a real-time field theory of
ϕ,

Lϕ =
η21
2
(∂tϕ

†)(∂tϕ)−
η21c

2
⊥

2
(∂jϕ

†)(∂jϕ)−
η21c

2
z

2
(∂zϕ

†)(∂zϕ)

− αη21c
2
⊥

4
[(∂−ϕ)

2 + (∂+ϕ
†)2]− U

2
(ϕ†ϕ− ρ0)

2, (2)

where ∂± ≡ ∂x ± i∂y, j = x, y. A global phase of ϕ is
properly chosen so that α is real and positive. α ∈ R
and α > 0. We assume 0 < α < 1 for the stability of
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the theory. Ground states for ρ0 > 0 break the U(1)
symmetry by uniform field configurations ϕ =

√
ρ0e

iθ0 .
In this Letter, we study a classical equation of motion
(EOM) of θ around the ground states.

The joint nature of the rotational symmetry results
from spin-orbit locking in solid-state materials with SOC.
An example of the joint rotational symmetry breaking is
the XY ferromagnet phase in a three-dimensional (3D)
trigonal or hexagonal lattice. A localized spin model for
spin-orbit coupled magnets generally comprises symmet-
ric and antisymmetric exchange interactions,

Hspin =
1

2

∑
i,j

∑
µ,ν=x,y,z

(
Jij,µν +Dij,µν

)
Si,µSj,ν , (3)

with lattice sites i ≡ (i⊥, iz), j ≡ (j⊥, jz), spin operators
Si,µ (µ = x, y, z), Jij,µν = Jij,νµ, and Dij,µν = −Dij,νµ.
i⊥ and iz are xy and z coordinates of the lattice site i
on the lattices, respectively. Suppose that Hspin has an
easy-plane spin anisotropy in the XY spin plane, and
undergoes a quantum phase transition of ferromagnetic

ordering of the XY spins, S⃗i,⊥ ≡ (Si,x, Si,y). When
Hspin belongs to a point group of C3i, D3d, C3v, C3h, C6h,
C6v, D3h or D6h, spin hydrodynamics of the XY spin
near the ferromagnetic transition point is described by
Eq. (2), where ϕ(ri) ≡ Si,x+iSi,y and a 2 by 2 symmetric
matrix comprised of Jij,µν (µ, ν = x, y) determines the
strength of the α term. Specifically, for each bond (i, j),
the 2 by 2 matrix Jij,µν has real eigenvalues λij,m and
eigenvectors tij,m (m = 1, 2). Defining ∆λij ≡ λij,1 −
λij,2, aij,⊥ ≡ |i⊥ − j⊥|, Ω as the total volume of the
material, and εij,⊥ as an angle between tij,1 in the XY
spin plane and i⊥ − j⊥ in the xy coordinate plane, α in
Eq. (2) is given by a sum of ∆λij with a phase e2iεij,⊥

over all the bonds [41],

αη21c
2
⊥ =

1

8Ω

∑
i,j

a2ij,⊥ ∆λij e
2iεij,⊥ . (4)

Note that the joint rotational symmetry in solid-state
materials with periodic lattices must be discrete due to
the lattices. In fact, Lϕ for the XY ferromaget on the
hexagonal lattices generally acquires additional hexago-
nal easy spin axes within the XY spin plane in the form
of c̃6ϕ

6 + h.c.. Near the ferromagnetic transition point,
however, the additional term becomes effectively negligi-
ble compared to the α term in a hydrodynamic regime
with an intermediate crossover length scale [41].

Another example of Eq. (2) can be found in the triplet
exciton condensate phase in semiconductors with Rashba
spin-orbit interaction. Suppose that electron energy
bands near the conduction-band bottom and valence-
band top in the semiconductors can be approximated by

a model with continuous rotational symmetry,

Hex,0 =

∫
d3ra†[(− ∂2i

2m0
+ ϵg0)σ0 − ξR0(i∂yσx − i∂xσy)]a

+

∫
d3rb†[(

∂2i
2m′

0

− ϵg0)σ0 + ξ′R0(i∂yσx − i∂xσy)]b

+

∫
d3r(∆ta

†σ0b+∆∗
t b

†σ0a), (5)

with i = x, y, z, a ≡ (a↑, a↓) and b ≡ (b↑, b↓) for spin- 12
electrons in conduction and valence bands, respectively.
In the presence of the Rashba interactions (ξR,0, ξ

′
R,0)

and spinless inter-band coupling (∆t, ∆∗
t ), an attrac-

tive interaction between conduction electrons and valence
holes induces a condensation of the XY components of
exciton pairing, Oµ ≡ ⟨b†σja⟩ (j = x, y). The spin
hydrodynamics of the XY -components can be well de-
scribed by Eq. (2) with ϕ ∝ ReOx + iReOy, where α is
determined by the Rashba interactions [41].

Motivated by these physical realizations, we study clas-
sical motion around the ground states. Taking ϕ =√
ρ0 + δρeiθ, integrating a gapped amplitude mode δρ,

and neglecting fluctuations along z, we obtain a two-
dimensional (2D) effective field theory for a Goldstone
mode θ in the SSB phase,

L =
1

2
(∂tθ)

2 − 1

2
(∂xθ)

2[1− αcos(2θ)]

− 1

2
(∂yθ)

2[1 + αcos(2θ)] + α(∂xθ)(∂yθ)sin(2θ). (6)

We set η1 = c⊥ = ρ0 = 1 without loss of generality. For a
given ground state ϕ =

√
ρ0e

iθ0 , the dispersion of a phase
fluctuation δθ = θ−θ0 is gapless with a linear dispersion,
where velocities are anisotropic and depend on θ0. Note
that the joint U(1) symmetry generally allows higher-
order terms in derivatives or fields in the effective theory,
while they do not affect the hydrodynamic transport of
low-energy excitations near the ground states.

According to Noether’s theorem [28, 42], the U(1) con-
tinuous spacetime symmetry endows the classical motion
with a conserved current of total angular momentum,
which can be divided into a spin part (jsµ) and an orbital

part (jlµ),

jsµ =
∂L

∂(∂µθ)
∆θ,

jlµ = [δµνL − ∂L
∂(∂µθ)

(∂νθ)]∆xν , (7)

with µ, ν ∈ {t, x, y}, ∆xν ∈ {∆t,∆x,∆y}, ∆θ = 1, and
(∆t,∆x,∆y) = (0,−y, x). The two parts are not con-
served by themselves, ∂µj

s
µ = −∂µjlµ = G, where a spin

torque G can be defined by the divergence of the spin cur-
rent. The spin torque (G), spin currents (jsx, j

s
y), and a

spin angular momentum along z-direction (jst ) are given
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by the following equations [41],

G = −α[(∂xθ)2 − (∂yθ)
2]sin(2θ) + 2α(∂xθ)(∂yθ)cos(2θ),

jsx = −(∂xθ)[1− αcos(2θ)] + α(∂yθ)sin(2θ),

jsy = −(∂yθ)[1 + αcos(2θ)] + α(∂xθ)sin(2θ),

s ≡ jst = ∂tθ. (8)

Though the orbital part jlµ is non-local, the spin torque
G as well as the spin part jsµ are local. The locality
of the spin torque results from a continuous spacetime
translational symmetry of L.
Spin injection and transport.—To illustrate observ-

ables of a total-angular-momentum superfluid, consider
a uniform spin current j0 (j0 > 0) injected into one end
(x = 0) of the superfluid (0 < x < L). The spin current
passes through the superfluid and flows into a spin non-
superfluid at the other end x = L (see Fig. 1(a)) [11, 13].
The non-superfluid “lead” has diffusive spin transport.
Hydrodynamic spin transport in the superfluid is deter-
mined by a one-dimensional (1D) EOM of the Goldstone
mode θ(x, t) in Eq. (6) with ∂yθ = 0,

∂2t θ − (∂2xθ)[1− αcos(2θ)]− α(∂xθ)
2sin(2θ) = 0. (9)

The EOM Eq. (9) will be solved together with proper
boundary conditions. To determine the boundary con-
ditions, note that spin transport in the non-superfluid
(x > L) is described by diffusion equations [11, 13],

∂s

∂t
+
∂jsx
∂x

= − s

T ′
1

, jsx = −Ds
∂s

∂x
, (10)

with relaxation time T ′
1 and a diffusion coefficient Ds.

The diffusive spin current is caused by the gradient of
the spin density. Due to the relaxation time, the density
and current decay exponentially in space for L > 0,

s(x, t) ≡
∑
c∈R

sc(x, t) =
∑
c∈R

ace
icte−

√
D−1

s ωcx,

jsx(x, t) ≡
∑
c∈R

jsx,c(x, t) =
∑
c∈R

√
Dsωcace

icte−
√
D−1

s ωcx.

(11)

Here ωc = ic + 1
T1
, ac are complex coefficients, and the

square roots of D−1
s ωc take positive real parts. The spin

current is assumed to be continuous at the junction be-
tween the superfluid and non-superfluid, and it is pro-
portional to the gradient of an effective local magnetic
field felt by the spin density [11],

jsx(x = L−, t) = jsx(x = L+, t)

=− βt[
1

χ′ s(x = L+, t)− 1

χ
s(x = L−, t)]. (12)

Here χ, χ′ are magnetic susceptibilities at x = L− and
x = L+ respectively, βt is a response coefficient of the
junction, and they are all positive. Eq. (12) imposes a

boundary condition (BC) on the spin density and current
at x = L− for each frequency c,

sc(x = L−, t) = kcj
s
x,c(x = L−, t), (13)

with kc ≡ χ
χ′

[
Ds(

1
T ′
1
+ ic)

]− 1
2 + χ

βt
, k−c = k∗c , and

Re(kc) > 0. The steady injection of spin imposes another
boundary condition at x = 0+, jsx(x = 0+, t) = j0 [11].
In the following, the EOM Eq. (9) is solved for θ(x, t)
such that s(x, t) and jsx(x, t) satisfy the BCs.
An analytical solution of θ(x, t) can be obtained per-

turbatively in the SOC. The solution at the first order
consists of three parts,

θ(x, t) = θ0(x, t) + θ1(x, t) + θ2(x, t) +O(α2). (14)

θ0 is the zeroth order solution satisfying the EOM and
BCs [11, 13],

θ0(x, t) = k0j0t− j0x, (15)

with k0 = χ
χ′

√
T ′
1

Ds
+ χ

βt
. An oscillation is absent at the

zeroth order due to the BCs with Re(kc) > 0. θ1 and θ2
are at the first order in α. θ1 is a special solution of an
inhomogeneous linear differential equation,

∂2t θ1 − ∂2xθ1 =− α(∂2xθ0)cos(2θ0) + α(∂xθ0)
2sin(2θ0).

(16)

θ2 is a solution of a homogeneous linear differential equa-
tion such that θ satisfies the BCs at the first order in α,

∂2t θ2 − ∂2xθ2 = 0. (17)

The solution at the first order oscillates with two spatial
wavenumbers, 2j0 and 2k0j0, and one temporal frequency
2k0j0 [41],

θ(x, t) = j0(k0t− x)− α

4(k20 − 1)
sin[2j0(k0t− x)]

− α(2k20 − 1)

4(k20 − 1)
cos(2k0j0t)sin(2k0j0x)

+ αIm(η)cos(2k0j0t)cos(2k0j0x)

+ αRe(η)sin(2k0j0t)cos(2k0j0x) +O(α2). (18)

η is a constant depending on k0, kc=2k0j0 , and 2j0L. Note
that the perturbative solution is divergent and fails near
a “resonant” point k0 = 1 [41, 43].
Higher-order solutions can be systematically obtained

by the perturbative iteration, where the spin density and
current have the same periodicity in time as the first-
order solution, π(k0j0)

−1. The time periodicity can be
detected by a time-resolved measurement of the spin den-
sity in the non-superfluid “lead”, which depends on the
injected spin current (j0) and properties of the junction
(k0). The higher-order solution has no spatial periodicity
in general, while its Fourier-transform in space has two
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Spin superfluid
Spin 

injector
Spin non-
superfluid

(a)

(b) (c)

FIG. 1. A spin-injection model. A steady spin current j0 is injected from a spin injector (red) to the total-angular-momentum
superfluid (blue). The spin current passes through the superfluid (blue) and flows into a spin non-superfluid (yellow). The
direction of the dc component of the current is indicated by black arrows. (a) A straight geometry. (b) A contour plot of s(ℓ, t)
in a circular geometry with a positive current j0 = 4. (c) A contour plot of |s(ℓ, t)| in a circular geometry with a negative
current j0 = −4. χ = χ′ = Ds = 1, T ′

1 = 4, βt = 2, r = 1, L = 4, α = 0.1 are used in the contour plots.

major peaks at 2j0 and 2k0j0 as in the first-order solu-
tion. The two major wavenumbers can be observed by a
local measurement of the spin density in the superfluid.

The spin hydrodynamics under the spin current has a
unique geometric effect in a geometry with a finite curva-
ture (Figs. 1(b),1(c)). To see this, suppose that the width
of the junction in the circular geometry is small enough
that the radius of the junction is taken as a constant r
and the field depends only on time and a 1D angular co-
ordinate ϑ. With (x, y) = r(cosϑ, sinϑ), Eq. (6) leads to
a 1D Lagrangian [41],

L =
1

2
(∂tθ)

2 − 1

2
(∂ℓθ)

2[1 + αcos(2θ − 2

r
ℓ)], (19)

where ℓ ≡ rϑ. The corresponding EOM under the in-
jected spin current j0 together with the junction param-
eter k0 has a zeroth-order solution, θ0(ℓ, t) = k0j0t− j0ℓ,
and a first-order solution, θ0(ℓ, t)+θ1(ℓ, t)+θ2(ℓ, t). Here
θ1 is a special solution of an inhomogeneous differential
equation,

∂2t θ1 − ∂2ℓ θ1

=− αj0(j0 +
2

r
)sin[2k0j0t− 2(j0 +

1

r
)ℓ]. (20)

θ1 and θ2 introduce two wavenumbers, 2j0+
2
r and 2k0j0,

in the observables respectively, where the wavenumber of
θ1 acquires a linear curvature (

1
r ) dependence. Due to the

curvature dependence, two injected spin currents with
opposite signs (j0 ≡ j0 from Fig. 1(b) and j0 = −j0 from
Fig. 1(c)) lead to different spatial distributions of the
observables (non-reciprocal spin hydrodynamics) [41].

Dissipation effect.—In the presence of the Galilean co-
variance, a uniform superfluid moving slower than the ve-
locity of its Goldstone mode achieves a local energy mini-
mum, so that it is stable against dissipation by local per-
turbations (e.g. elastic scattering by disorder) [13, 41].
To see the stability of a supercurrent state with the bro-
ken U(1) spacetime symmetry, we compare classical en-
ergies of the 1D solution θ(x, t) and its local deformation

θ(x, t) + δθ(x, t). The deformation δθ(x, t) is induced
by local perturbations, so the spacetime derivatives of
δθ do not contain any uniform component in spacetime.
θ(x, t)+ δθ(x, t) as well as θ(x, t) is a classical solution of
Eq. (9), while they do not necessarily share the same
boundary conditions. The classical energy in the 1D
model can be evaluated from a Hamiltonian,

H[θ] =

∫
dx
{1
2
(∂tθ)

2 +
1

2
(∂xθ)

2[1− αcos(2θ)]
}
. (21)

As the classical energies are independent of time, for sim-
plicity, we compare time averages of the energies (with
k0 ̸= 1) over a large period of time T [41],

∆J ≡ lim
T→∞

1

T

(∫ T

0

dtH[θ + δθ]−
∫ T

0

dtH[θ]
)

= lim
T→∞

1

T

∫ T

0

dt

∫
dx{(∂tθ)(∂tδθ) + (∂xθ)(∂xδθ)

× [1− αcos(2θ)] + α(∂xθ)
2sin(2θ)(δθ)}+O((δθ)2)

=2 lim
T→∞

∫ T

0

dt

∫
dx(∂xθ2)(∂xδθ0) +O(α2δθ, (δθ)2),

(22)

with θ+ δθ = θ0+ δθ0+O(α). Terms oscillating in space
or time vanish after the spacetime integrals. δθ0, as well
as θ2, is a solution of Eq. (17), and both are given by lin-
ear superpositions of eiq(t−x) and eiq(x+t) over q. Thus,
for a given θ2 ̸= 0, one can always choose δθ0 such that
the spacetime integral of the right-hand side of Eq. (22)
remains non-zero and negative, i.e. δJ < 0. This means
that the supercurrent state is classically unstable toward
other states, and energy always dissipates by the local
perturbations. The instability results from the absence
of the Galilean covariance. The superflow state is dis-
tinct from the ground state by the spacetime oscillation
feature, and the energy of the superflow state can be
lowered by excitations δθ0 which match the oscillation
periodicity.
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The dissipation effect on the spin hydrodynamics
can be studied through an addition of the simplest
time-reversal breaking term, −T−1

1 ∂tθ, into the classi-
cal EOM [41]. With finite T−1

1 , the zeroth-order solu-
tion of spin current acquires linear spatial decay [11, 13],
which contrasts with the exponential decay in the non-
superfluid [13]. Thereby, the hydrodynamic feature of
spin transport survives against dissipation.

Summary.— In this Letter, we generalize the U(1) in-
ternal symmetry in conventional superfluid theories into
the U(1) spacetime symmetry. Due to the joint sym-
metry, the supercurrent state shows geometry-dependent
spacetime oscillations, and it is unstable against the dissi-

pation effect. Our study paves the way for further explo-
ration of multiple spacetime symmetries and their cou-
pling with internal symmetries.
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SUPPLEMENTAL MATERIAL FOR “SUPERFLUIDITY OF TOTAL ANGULAR MOMENTUM”

In this Supplemental Material, we provide detailed derivations and discussions that support the results in the main
text. In Sec. I, we discuss how the theory with the U(1) spacetime symmetry can be a good approximation for a certain
quantum spin model on a lattice. We also derive the U(1) theory from a microscopic model of exciton condensations
in semiconductors. In Sec. II, we derive the spin and orbital parts of Noether’s current and verify their conservation
relations. In Sec. III, we solve the spacetime distribution of the Goldstone mode in the spin-injection model with
the different geometries. In Sec. IV, we demonstrate the possibility of energy dissipation by using a stability analysis
against local perturbations. In Sec. V, we study the effects of dissipation on the classical motion. In Sec. VI, we
discuss some special parameter points in the spin-injection model. In Appendix A, we use the same stability analysis
as in Sec. III and derive the Landau criterion in a conventional superfluid. We use this classic and simple example,
to demonstrate the validity of our stability analysis. In Appendix B, we present how to construct a local deformation
of classical solutions of the equation of motion (EOM).

I. MICROSCOPIC MODELS

In this section, we discuss physical realizations of the U(1) spacetime symmetry in two physical models; (i) an XY
spin model for spin-orbit coupled magnets near a critical point, and (ii) a triplet excitonic model for semiconductors.
The U(1) spacetime symmetry is a joint continuous rotational symmetry that acts on both internal matter field and
two-dimensional spatial coordinates. The joint nature of the symmetry results from a locking between the rotation of
the matter field and that of the spatial coordinate. Such locking is ubiquitous in solid-state materials with relativistic
spin-orbit interaction, where spin or an interband component of spin forms the matter field. In solid-state materials
with periodic lattices, the spatial rotation must be discrete due to the lattices, so the joint rotation symmetry is also
discrete; the U(1) spacetime symmetry can not be an exact symmetry and it is valid only approximately. Nonetheless,
for some solid-state systems, the approximation becomes effective where the difference between discrete and continuous
joint rotations becomes irrelevant.

A. Easy-plane ferromagnetic spin model

To see the effectiveness of the U(1) theory in magnetic systems, let us consider a XY ferromagnetic spin system
in three-dimensional (3D) lattices that is symmetric under Cn rotation around a z axis (n = 3, 4, 6, · · · ) and time
reversal. We will first impose a spatial inversion symmetry; at the end of this subsection, we will show that the
inversion symmetry is not necessary to derive the U(1) theory for some cases. We suppose that the spin system is a
spin-orbit coupled magnet with an easy-plane spin anisotropy (an XY plane being the easy plane), and it undergoes a
continuous phase transition from a disordered phase to a ferromagnetic ordered phase of XY components of spins, Si,x

and Si,y. In this subsection, we will discuss the effective symmetry of spin hydrodynamics near the phase transition
point.

The second-order phase transition in the XY ferromagnet with the Cn rotation can be described by a partition
function Zn (n = 3, 4, 6, · · · ) with a Ginzburg-Landau (GL) action for a two-dimensional complex variable ϕ(x)
(ℏ = 1),

Zn =

∫
DϕDϕ† exp[−Sn,ϕ], Sn,ϕ =

∫
d3r

∫ 1/kBT

0

dτ sn[ϕ(r, τ)]. (I.1)

Here the internal field ϕ(r) is a spatial average of Si,x+ iSi,y with respect to a lattice site i over some hydrodynamic
volume element. i is the complex unit. r is a spatial coordinate of the hydrodynamic volume element. The transition
can happen either at the zero-temperature T = 0 critical point (quantum critical point) or at finite-temperature T ̸= 0
critical point (classical critical point). In this section, we consider the spin hydrodynamics near the T = 0 quantum
critical point. The time-reversal symmetry means the absence of an external magnetic (Zeeman) field in the spin
model, and the ferromagnetic order breaks the symmetry spontaneously. The time-reversal symmetry in the model
requires the dynamical exponent z at the quantum critical point to be one, z = 1 (see below).

For n = 4, the spin system is defined on a 3D tetragonal lattice with a C4 rotational symmetry around the z axis,
such as a layered square lattice. For n = 3 or n = 6, the system is defined on a 3D trigonal or hexagonal lattice with a
C3 or C6 rotation, e.g. layered honeycomb or triangle lattices. In the following, we first employ a symmetry argument
to determine the form of the GL action sn[ϕ] for n = 4, n = 3, and n = 6 and show that for the n = 3 or n = 6 case,
the U(1) joint rotational symmetry is an effective symmetry of the GL action for the xy spins near the critical point,
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while for the n = 4 case, the effective symmetry remains discrete (a Z4 joint rotational symmetry). To this end, note
that under the Cn rotation around the z axis, the complex field ϕ(r) of the xy spins, and the 3D spatial coordinate,
r ≡ (x, y, z), are rotated together due to the spin-orbit locking,

r → r′ = (x′, y′, z),

(
x′

y′

)
=

(
cos
(
2π
n

)
− sin

(
2π
n

)
sin
(
2π
n

)
cos
(
2π
n

) )( x
y

)
, ϕ(r) ≡ Sx(r) + iSy(r) → ϕ′(r′) = ϕ(r)ei

2π
n . (I.2)

The spatial inversion changes the sign of the coordinate vector, while the time-reversal changes the sign of ϕx, ϕy,
and i. These symmetries constrain forms of the actions for the ϕ field.

1. GL action for XY ferromagnets with C4 rotation

The symmetries of the joint C4 rotation around z and time reversal allow the following terms and their complex
conjugates in the GL action,

|ϕ|2 ≡ ϕ†ϕ, i[ϕ†∂zϕ− (∂zϕ
†)ϕ], (∂iϕ

†)(∂iϕ) (i = x, y, z), ϕ∂2−ϕ, ϕ∂2+ϕ, (|ϕ|2)2, ϕ4, · · · , (I.3)

with ∂± ≡ ∂x ± i∂y. Higher-order terms in ϕ, higher-order spatial gradient terms, and total-derivative terms are
omitted as ‘· · · ’. The higher-order ϕ terms are irrelevant near the critical point where the amplitude of ϕ becomes
smaller. The higher-order spatial gradient terms are irrelevant in the hydrodynamic regime where the volume element
over which the spin operator is averaged becomes larger. Here the time reversal forbids odd-order terms of ϕ. The
spatial inversion further forbids i[ϕ†∂zϕ− (∂zϕ

†)ϕ] from the action. Accordingly, the GL functional form allowed by
the symmetries is given by

Zn=4 =

∫
DϕDϕ† exp[−Sn=4,ϕ],

Sn=4,ϕ ≡
∫
d3r

∫ ℏ/kBT

0

dτ

{
η21
2
(∂τϕ

†)(∂τϕ) +
η21c

2
⊥

2
(∂jϕ

†)(∂jϕ) +
η21c

2
z

2
(∂zϕ

†)(∂zϕ) +
η21c

2
⊥

4
[α(∂−ϕ)

2 + α∗(∂+ϕ
†)2

+ β(∂+ϕ)
2 + β∗(∂−ϕ

†)2] +
U

2
(ϕ†ϕ− ρ0)

2 +
1

2
[c̃4ϕ

4 + c̃∗4(ϕ
†)4] + · · ·

}
, (I.4)

with j = x, y, imaginary time τ , real numbers ρ0, η1, c, U , and complex numbers α, β, c̃4. Here the first-order time-
derivative of ϕ, such as ϕ†∂τϕ, is forbidden by the time reversal symmetry. The second-order time-derivative term
is induced from the spin Berry phase by an integration of the z-component spin. Note that due to the time-reversal
symmetry, the dynamical exponent z around the T = 0 quantum critical point becomes one, namely z = 1.

A partition function Zn=4 describes the phase transition from the disordered phase (ρ0 < 0) to the ordered phase of
the xy spins (ρ0 > 0). In the ordered phase, a phase of ϕ is locked into four minima determined by the c̃4 term. At the
quantum critical point, the terms with higher-order gradient and/or ϕ terms become irrelevant in the long-wavelength
limit, and the effective symmetry of the GL action at the critical point is determined by a gapless free theory part,

Sn=4,ϕ ≡
∫
d3r

∫ ℏ/kBT

0

dτ

{
η21
2
(∂τϕ

†)(∂τϕ) +
η21c

2
⊥

2
(∂jϕ

†)(∂jϕ) +
η21c

2
z

2
(∂zϕ

†)(∂zϕ)

+
η21c

2
⊥

4
[α(∂−ϕ)

2 + α∗(∂+ϕ
†)2 + β(∂+ϕ)

2 + β∗(∂−ϕ
†)2]

}
. (I.5)

Importantly, though the α term in the second line is symmetric under the U(1) spacetime symmetry, ∂± → ∂′± =

e±iϵ∂±, ϕ→ ϕ′ = eiϵϕ for ∀ϵ, the β term is symmetric only under the joint Z4 rotational symmetry,

∂± → ∂′± = e±i
π
2 ∂±, ϕ→ ϕ′ = ei

π
2 ϕ, ϕ† → (ϕ′)† = e−i

π
2 ϕ†. (I.6)

Due to the β term, the effective symmetry at the critical point remains discrete for the n = 4 case.

2. GL action for XY ferromagnets with C3 or C6 rotation

For the hexagonal crystal family, on the contrary, the joint C3 or C6 rotational symmetry forbids the β term, so the
corresponding gapless free theory does have the U(1) spacetime symmetry. To this end, we analyze the terms allowed
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in the action. The symmetries of the C6 rotation around z, spatial inversion, and time reversal allow the following
terms and their complex conjugates in the action,

|ϕ|2, (∂iϕ
†)(∂iϕ) (i = x, y, z), ϕ∂2−ϕ, (|ϕ|2)2, ϕ3∂2+ϕ, ϕ6, · · · . (I.7)

When the C6 rotation is substituted by the C3 rotation, Eq. (I.7) also exhausts all symmetry-allowed terms apart
from higher-order ϕ terms, higher-order spatial-gradient terms, and total derivative terms. In fact, the C3 rotational
symmetry alone allows ϕ3 and ϕ∂+ϕ, while the ϕ3 term is prohibited by the time-reversal symmetry and ϕ∂+ϕ is a
total derivative term. Thus, the partition function Zn=3,6 near the critical point is given by

Zn=3,6 =

∫
DϕDϕ† exp[−Sn=3,6,ϕ]

Sn=3,6,ϕ ≡
∫
d3r

∫ ℏ/kBT

0

dτ

{
η21
2
(∂τϕ

†)(∂τϕ) +
η21c

2
⊥

2
(∂jϕ

†)(∂jϕ) +
η21c

2
z

2
(∂zϕ

†)(∂zϕ) +
η21c

2
⊥

4
[α(∂−ϕ)

2 + α∗(∂+ϕ
†)2]

+
η21c

2
⊥

4
[α̃6ϕ

3(∂2+ϕ) + α̃∗
6(ϕ

†)3(∂2−ϕ
†)] +

U

2
(ϕ†ϕ− ρ0)

2 +
1

2
[c̃6ϕ

6 + c̃∗6(ϕ
†)6] + · · ·

}
, (I.8)

where ρ0 > 0 and ρ0 < 0 correspond to ordered and disordered phases, respectively. Importantly, a gapless free theory
part Sn=3,6,ϕ of the action,

Sn=3,6,ϕ ≡
∫
d3r

∫ ℏ/kBT

0

dτ

{
η21
2
(∂τϕ

†)(∂τϕ) +
η21c

2
⊥

2
(∂jϕ

†)(∂jϕ) +
η21c

2
z

2
(∂zϕ

†)(∂zϕ) +
η21c

2
⊥

4
[α(∂−ϕ)

2 + α∗(∂+ϕ
†)2]

}
,

(I.9)

is symmetric under the U(1) spacetime symmetry,

∂± → ∂′± = e±iϵ∂±, ϕ→ ϕ′ = eiϵϕ, ϕ† → (ϕ′)† = e−iϵϕ†, for ∀ ϵ. (I.10)

This contrasts with the free theory for the n = 4 case which is symmetric only under the joint discrete rotational
symmetry.

In the ordered phase (ρ0 > 0) for the C6 case, a phase of ϕ is locked into six minima by the c̃6 term. The c̃6 and
α̃6 terms reduce the symmetry of the whole action into a joint discrete (Z6) rotational symmetry,

∂± → ∂′± = e±i
π
3 ∂±, ϕ→ ϕ′ = ei

π
3 ϕ, ϕ† → (ϕ′)† = e−i

π
3 ϕ†. (I.11)

In the ordered phase for the C3 case, the phase of ϕ is locked into three minima by the c̃6 term and other higher-ordered
terms omitted as ‘· · · ’ in Eq. (I.8). Nonetheless, unlike the β-term in Zn=4, α̃6 and c̃6 terms as well as the higher-order
terms are irrelevant in the long-wavelength limit at the quantum critical point, since their scaling dimensions at the
critical point are all negative.

The scaling dimensions of α̃6 and c̃6 terms at the critical point, yα6
and yc6 , can be evaluated from a dimensional

analysis of the gapless free theory part at T = 0; yα6
= 2−D = −2 and yc6 = 6− 2D = −2 with D = 3 + 1. Scaling

dimensions of the higher-order ϕ terms and higher-order spatial gradient terms are also negative and smaller than
yα6

and yc6 . When the hydrodynamic volume element becomes larger, the terms with negative scaling dimensions get
smaller at the critical point. Thanks to their irrelevance at the critical point, the GL action respects effectively the U(1)
spacetime symmetry in the long-wavelength limit. In other words, the spin hydrodynamics at the critical point becomes
U(1) spacetime symmetric more effectively for larger hydrodynamic volume element. The hydrodynamic regime with
the effective U(1) symmetry has a lower crossover boundary in its length scale; in order that the hydrodynamics has
the effective U(1) spacetime symmetry, the length scale Λ of the volume element should be greater than a certain
crossover length Λc,1,

Λ ≫ Λc,1. (I.12)

The crossover length scale is dependent on c̃6, α̃6, and other higher-order terms that manifest the joint discrete
rotational symmetries. In the C6 case, for example, Λc,1 is primarily dependent on c̃6, α̃6 and their scaling dimensions
with the following scalings,

Λc,1 ∝ |c̃6|
1

|yc6 | or |α̃6|
1

|yα6
| . (I.13)
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When the system is in the ordered phase but close to the critical point (ρ0 ≳ 0), the hydrodynamics regime with
the effective U(1) symmetry has also an upper bound in its length scale,

Λc,2 ≫ Λ ≫ Λc,1. (I.14)

The upper bound is because the ground state for ρ0 > 0 breaks the joint rotational symmetry spontaneously, and in
this sense, c̃6, α̃6, and the other higher-order terms manifesting the discrete symmetry are dangerously irrelevant. In
typical renormalization group (RG) flow trajectory, they get smaller around a saddle-point fixed point for the critical
point upon the increase of the length scale, while in the very long wavelength limit, they become larger again around
another fixed point that describes an ordered phase with broken joint U(1) symmetry (a Nambu-Goldstone fixed
point). The upper bound Λc,2 defines a length scale for this upturn behavior of the dangerously irrelevant scaling
variables. Generally, Λc,2 has a complicated scaling form of ρ, as it also depends on scaling of the coupling constants
around the Nambu-Goldstone fixed point. Nonetheless, Λc,2 is always greater than the lower bound, Λc,2 ≫ Λc,1, for
smaller ρ0. In the C6 case, for example, Λc,2 ≫ Λc,1 is sastified when ρ0, c̃6, and α̃6 are in the following regimes,

ρ

|yc6 |
yρ0
0 ≪ 1

|c̃6|
, ρ

|yα6
|

yρ0
0 ≪ 1

|α̃6|
. (I.15)

Here yρ0 is the scaling dimension of ρ0 around the critical point; yρ0 = 2.

3. Continuum limit of generic XY ferromagnetic spin models in the 3D hexagonal crystal family

The above argument is solely based on the symmetry and scaling arguments, suggesting that any XY ferromagnetic
spin models with the C3 or C6 rotational, spatial inversion, and time reversal symmetries has the effective U(1)
spacetime symmetry near the quantum critical point, if the models undergo the continuous phase transition of the
ferromagnetic ordering. In the following, we will argue this by deriving explicitly a continuum limit of generic XY
ferromagnetic spin models with the symmetries.

Exchange interactions in spin-orbit coupled magnets generally comprise of symmetric part Jij,µν = Jij,νµ and
antisymmetric part Dij,µν = −Dij,νµ,

H =
1

2

∑
i,j

∑
µ,ν

Si,µ

(
Jij,µν +Dij,µν

)
Sj,ν , (I.16)

with spin vector Si ≡ (Si,x, Si,y, Si,z). We first consider that the spins live on the 3D hexagonal lattice with C6

rotational and spatial inversion symmetries, namely the lattice belongs to either C6h or D6h point group. Further
discussion of other possibilities of point groups will be provided below. Here, the exchange interactions are not only
limited to those between the nearest neighboring sites on the lattice, but they can also be between further neighboring
sites.

Near the transition point of the ferromagnetic ordering of the XY spins, the Z component of the spins fluctuates
rapidly in space and time, so that one can legitimately integrate out the Z component, yielding effective spin models
for the XY spins,

Heff =
1

2

∑
i,j

∑
µ,ν=x,y

Si,µ

(
Jij,µν +Dij,µν

)
Sj,ν

=
1

2

∑
i,j

{(
Si,x Si,y

)( Jij,xx Jij,xy
Jij,yx Jij,yy

)(
Sj,x

Sj,y

)
+Dij,xy

[
Si,xSj,y − Si,ySj,x

]}
, (I.17)

with 2 by 2 symmetric and antisymmetric interactions, Jij,µν = Jij,νµ and Dij,µν = −Dij,νµ for µ, ν = x, y. The
effective exchange interactions in Eq. (I.17) as well as the exchange interactions in Eq. (I.16) respect the joint C6

rotational symmetry and inversion symmetry. In the following, we show that due to the C6 rotational symmetry, the
continuum limit of the symmetric exchange interactions in the effective spin models always take the same form as in
Eq. (I.8),

1

2

∑
i,j

∑
µ,ν=x,y

Si,µJij,µνSj,ν ≃
∫
dr3
{
r

2
|ϕ|2 + η21c

2
z

2
∂zϕ

†∂zϕ+
η21c

2
⊥

2

∑
i=x,y

∂iϕ
†∂iϕ+

η21c
2
⊥

4

[
α(∂−ϕ)

2 + α∗(∂+ϕ
†)2
]
+ · · ·

}
.

(I.18)
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To see this, note first that any bond of two spin sites, (i, j), in a sum of Eq. (I.17) has 5 other bonds in the sum
that are derived from the first bond (i, j) by the C6 rotation, i.e. (Cn6 (i), C

n
6 (j)) (n = 1, 2, · · · , 5). Due to the joint

C6 rotation symmetry, JCn
6 (i)Cn

6 (j),··· and Jij,··· are related by the C6 spin rotation around z;(
JC6(i)C6(j),xx JC6(i)C6(j),xy

JC6(i)C6(j),yx JC6(i)C6(j),yy

)
=

(
cos π3 sin π

3
− sin π

3 cos π3

)(
Jij,xx Jij,xy
Jij,yx Jij,yy

)(
cos π3 − sin π

3
sin π

3 cos π3

)
. (I.19)

Then, by using a gradient expansion, Sj,µ = Si,µ+(j− i)λ∂λSi,µ+
1
2 (j− i)λ(j− i)ϵ∂λ∂ϵSi,µ+ · · · , one can explicitly

show that a sum of the symmetric exchange interactions over the six bonds reduce to the same form of the continuum
limit as Eq. (I.18) up to the second order in the gradient expansion;

1

2

∑
n=0,1,··· ,5

(
SCn

6 (i),x SCn
6 (i),y

)( JCn
6 (i)Cn

6 (j),xx JCn
6 (i)Cn

6 (j),xy

JCn
6 (i)Cn

6 (j),yx JCn
6 (i)Cn

6 (j),yy

)(
SCn

6 (j),x

SCn
6 (j),y

)

≃ 3

2
(λij,1 + λij,2)ϕ

†ϕ+
3a2ij,⊥
16

{
2(λij,1 + λij,2)ϕ

†(∂2x + ∂2y)ϕ

+
∑
m=1,2

λij,me
2i(φij,⊥−ψij,⊥,m) ϕ(∂x − i∂y)

2ϕ+ c.c.

}

+
3a2ij,z
4

(λij,1 + λij,2)ϕ
†∂2zϕ+ ... (I.20)

Here ϕ on the right-hand side is from ϕ(ri) ≡ Si,x + iSi,y in Eq. (I.17), and the higher-order derivative and total
derivative terms are omitted. We also regard that i and Cn6 (i) (n = 1, · · · , 5) are the same for the argument of ϕ,
because their differences (if exist) can be controlled by the microscopic length. aij,⊥ and aij,z are the spatial length of
the bond (i, j) within the xy plane and along z axis, respectively; aij,⊥ ≡ |i⊥− j⊥|, aij,z ≡ |iz− jz|, with i = (i⊥, iz)
and j = (j⊥, jz). φij,⊥ is the angle between j⊥ − i⊥ and the x axis. λij,m and tij,m are real-valued eigenvalues and
eigenvectors of the 2 by 2 symmetric matrix Jij (m = 1, 2). ψij,⊥,m is the angle between tij,m and the x-axis in the

xy plane. As tij,1 and tij,2 are orthogonal to each other, ψij,2 = ψij,1 + π/2 and
∑
m=1,2 λij,me

2i(φij,⊥−ψij,⊥,m) =

(λij,1−λij,2)e2i(φij,⊥−ψij,⊥,1). A sum of Eq. (I.20) over different types of bonds leads to Eq. (I.18), where α is simply

given by the sum of a2ij,⊥
∑
m=1,2 λij,me

2i(φij,⊥−ψij,⊥,m). Note that in the absence of the spin-orbit interaction, Jij

are always proportional to the unit matrix, where λij,1 = λij,2, (λij,1−λij,2)e2i(φij,⊥−ψij,⊥,1) = 0 for any bond (i, j),
and α vanishes.

The continuum limit of the antisymmetric exchange interaction yields the first-order spatial gradient terms,

Dij,xy(Si,xSj,y − Si,ySj,x) = iDij,xy(i− j)µ
(
ϕ†∂µϕ− (∂µϕ

†)ϕ
)
+O(∂3). (I.21)

In the presence of the spatial inversion, they are cancelled by its inversion symmetric counterpart;

DI(i)I(j),xy(SI(i),xSI(j),y − SI(i),ySI(j),x) = −iDij,xy(i− j)µ
(
ϕ†∂µϕ− (∂µϕ

†)ϕ
)
+O(∂3).

with DI(i)I(j),xy = Dij,xy. Thus, the antisymmetric interaction gives only higher-order gradient terms in the contin-
uum limit for the GL action; they are all irrelevant in the sense that their scaling dimensions around the critical point
are negative.

Near the quantum critical point of the ferromagnetic order of the xy spin, the systems effectively have the U(1)
spacetime symmetry. Note that apart from the C6h and D6h point groups, the hexagonal crystal family (including
the trigonal crystal system and the hexagonal crystal system) has 10 other point groups: C3, C3i, D3, C3v, D3d from
the trigonal crystal system and C6, C3h, D6, C6v, D3h from the hexagonal crystal system. The GL action for C3, D3,
C6, and D6 has an additional term, iγ[ϕ†∂zϕ − (∂zϕ

†)ϕ], that comes from the antisymmetric exchange interaction
in Eq. (I.21). Such a term is prohibited for C3i, D3d, C6h, and D6h because there is the inversion symmetry. The
term is also prohibited for C3v, C3h, C6v, and D3h. Although there is no inversion symmetry, for C3v, C6v, and D3h,
there is a vertical mirror symmetry that reflects only one component of the in-plane spin vector; for C3h and D3h,
there is a horizontal mirror symmetry which makes the term opposite. In conclusion, a continuum limit of generic
XY spin models in the hexagonal crystal family with a spatial inversion or rotoinversion symmetry as well as the
time-reversal symmetry is described by Eq. (I.8). For the C3, D3, C6, and D6 cases, the first order z-derivative term
can be eliminated by re-definitions of ϕ and ρ0; ϕnew = e−izAzϕold and −U(ρ0)new = −U(ρ0)old − (η21c

2
zA

2
z)/2 with

γ = η21c
2
zAz/2. If Az is commensurate to the phase locking by the c̃6 term, 3Azaz = Zπ with an integer Z (aij,z = az),

the partition function has no magnetic frustration and it describes the continuous phase transition from a disordered
phase (ρ0 < 0) to the XY ferromagnetic order phase with a spin-helix along z (ρ0 > 0). As the first order z-derivative
term also respects the U(1) spacetime symmetry, the systems near the transition point have also the effective U(1)
spacetime symmetry for these cases.
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4. Hydrodynamics in an intermediate length scale near the quantum critical point

An analytic continuation of Eq. (I.8) at T = 0 (τ → it) leads to the following real-time complex field theory L̃ϕ,

L̃ϕ =
η21
2
(∂tϕ

†)(∂tϕ)−
η21c

2
⊥

2
(∂iϕ

†)(∂iϕ)−
η21c

2

4
[α(∂−ϕ)

2 + α∗(∂+ϕ
†)2]

− η21c
2

4
[α̃6(∂+ϕ)

2ϕ2 + α̃∗
6(∂−ϕ

†)2(ϕ†)2]− U

2
(ϕ†ϕ− ρ0)

2 − 1

2
[c̃6ϕ

6 + c̃∗6(ϕ
†)6], (I.22)

where we take classical solutions of ϕ independent of z, so the term of (∂zϕ
†)(∂zϕ) is negligible. Here, without loss

of generality, let us take α, α̃6 and c̃6 to be real, and assume that a coupling between the phase mode θ and the
amplitude mode ρ = ϕ†ϕ can be neglected. Then, we obtain an effective theory of the phase mode θ,

L̃ =
η21ρ0
2

(∂tθ)
2 − η21c

2
⊥ρ0
2

(∂xθ)
2[1− αcos(2θ)− α̃6ρ

2
0cos(4θ)]

− η21c
2
⊥ρ0
2

(∂yθ)
2[1 + αcos(2θ) + α̃6ρ0cos(4θ)]

+ η21c
2
⊥ρ0(∂xθ)(∂yθ)[αsin(2θ)− α̃6ρ0sin(4θ)]− c̃6ρ

3
0cos(6θ). (I.23)

As in Eq. (I.8), terms with higher-order derivatives or higher order in ρ0 are neglected in Eq. (I.23). Eq. (I.23) is
symmetric under the joint Z6 rotation,

θ → θ +
nπ

3
,

(
x
y

)
→
(

cos
(
nπ
3

)
− sin

(
nπ
3

)
sin
(
nπ
3

)
cos
(
nπ
3

) )( x
y

)
, (I.24)

while in the absence of α̃6 and c̃6, it is symmetric under the joint U(1) rotation;

θ → θ + ϵ,

(
x
y

)
→
(

cos ϵ − sin ϵ
sin ϵ cos ϵ

)(
x
y

)
, (I.25)

for ∀ϵ.
The U(1) theory becomes a good approximation theory for Eq. (I.23), when ρ0 approaches zero before ∂µθ (µ =

t, x, y) approach zero. This is the case for the 3D spin model Eq. (I.14) in the intermediate length scale near the
quantum critical point. Thereby, the internal field ϕ is introduced as a spatial average of Si,x + iSi,y over some
hydrodynamic volume element. When the length scale of the volume element increases within the intermediate length
scale, Λc,1 < Λ < Λc,2, a scaling of ρ0 and ∂µθ is controlled by the quantum critical point; ρ0 gets small faster than
∂µθ, and the approximation becomes better. On the other hand, when the length scale of the element becomes larger
than the upper bound Λc,2, another scaling law from the Nambu-Goldstone fixed point kicks in, and the c̃6 and α̃6

terms become relevant again [44, 45]. Besides, for a two-dimensional (2D) quantum spin model, although the c̃6 term
is dangerously marginal instead of dangerously irrelevant from simple dimensional counting, as long as a bare value
of c̃6 is small enough, there is still an intermediate length scale where the U(1) theory is applicable. To summarize,
the U(1) theory is effective near the quantum critical point only when θ fluctuates over a length in the intermediate
length scale. When θ fluctuates more slowly than Λc,2, ∂µθ becomes smaller than a small but finite ρ0, and the c̃6
and α̃6 terms dominate over the others, giving a large contribution to the equation of motion.

B. Spin-triplet exciton model

As another example of solid-state materials where the U(1) theory of spin dynamics is applicable, we consider
semiconductors with electron excitations near a conduction-band bottom and hole excitations near a valence-band
top around a high-symmetric k point, e.g. the Γ point. Near the band top and bottom, suppose the kinetic-energy
bands can be approximately described by a rotational-symmetric continuous theory. The theory with relativistic
spin-orbit interaction is expected to have joint continuous rotational symmetry.

To be specific, we consider a condensate of spin-triplet excitons in a two-dimensional semiconductor model with
Rashba-type spin-orbit interactions. We consider a 2D model for simplicity. It may be regarded as an effective model
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for 3D. The semiconductor model is given by

Hex =

∫
d2ra†[(− ∂2i

2m0
+ ϵg0)σ0 + ξR0(−i∂yσx + i∂xσy)]a

+

∫
d2rb†[(

∂2i
2m′

0

− ϵg0)σ0 + ξ′R0(i∂yσx − i∂xσy)]b+

∫
d2r(∆ta

†σ0b+∆∗
t b

†σ0a)

+
gs0
2

∑
σ,σ′=↑,↓

∫
d2r(a†σa

†
σ′aσ′aσ + b†σb

†
σ′bσ′bσ + 2ξ1a

†
σb

†
σ′bσ′aσ), (I.26)

with i = x, y. Here a and b are spin- 12 electron annihilation operators near the Γ point in the conduction band
and valence band, respectively. We suppose inter-band interaction is smaller than intra-band interaction, namely
0 < ξ1 < 1. Due to the attraction between electrons and holes (ξ1gs0), the quasiparticles form bound states inside
a band gap (ϵg0). The bound states have spin-singlet component and spin-triplet components. In the presence of
Rashba interaction (ξR0, ξ

′
R0) and inter-band “spinless” hopping (∆t), the in-plane component of the spin-triplet states

undergoes Bose-Einstein condensation at q = 0. In the following, we will show that this condensation is described by
Eq. (2) in the main text (without the cz term). we will derive Eq. (2) in the main text from Eq. (I.26). For simplicity,
we take the electron band and the hole band in a symmetric form, m0 = m′

0, ξR0 = ξ′R0, while the derivation can be
generalized into the case with m0xiR0 = m′

0ξ
′
R0. The derivation can be also applicable to a three-dimensional model

with a finite effective mass along z. Due to the Rashba interaction (ξR0) and interband tunneling (∆t), the system
has only a U(1) rotational symmetry and a time-reversal symmetry,

a → e−iϵσz/2a, b → e−iϵσz/2b,

(
x
y

)
→
(

cosϵ −sinϵ
sinϵ cosϵ

)(
x
y

)
, (I.27)

a → iσya, b → iσyb, t→ −t, i→ −i. (I.28)

The quadratic part of the Hamiltonian Eq. (I.26) is diagonalized,

Hex =
∑
k

{a†k,σk
[
(|k| − kR)

2

2m0
+ Eg0]ak,σk

− b†k,σk
[
(|k| − kR)

2

2m0
+ Eg0]bk,σk

}

+
∑
k

[∆ta
†
k,σk

bk,σk
+∆∗

t b
†
k,σk

ak,σk
]

+
gs
2

∑
σ,σ′=↑,↓

∫
d2r(a†σa

†
σ′aσ′aσ + b†σb

†
σ′bσ′bσ + 2a†σb

†
σ′bσ′aσ), (I.29)

where

kR = m0ξR0, Eg0 = ϵg0 −
k2R
2m0

, (I.30)

ak and bk are Fourier transforms of a(r) and b(r), σk denotes up spin along the direction of ẑ× k̂, k̂ ≡ k
|k| . Here we

discard the down-spin bands of the conduction and valence bands, because they are higher in energy and they do not
constitute low-energy exciton levels. Since excitons are formed by electrons and holes around the Γ point, we neglect
|k|-dependence of the hybridization coefficients of the conduction and valence bands,

aσ = ασcosΘ− βσe
iΦsinΘ, bσ = ασe

−iΦsinΘ + βσcosΘ, (I.31)

where

Eg0 =
√
E2
g0 + |∆t|2cos2Θ, ∆t =

√
E2
g0 + |∆t|2eiΦsin2Θ, (I.32)

and we used (
cos2Θ eiΦsin2Θ

e−iΦsin2Θ −cos2Θ

)
=

(
cosΘ −eiΦsinΘ
eiΦsinΘ cosΘ

)(
1 0
0 −1

)(
cosΘ eiΦsinΘ

−e−iΦsinΘ cosΘ

)
. (I.33)
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Taking Eq. (I.33) into the interaction term and taking Φ = 0 for simplicity, we get

gs0(a
†
σa

†
σ′aσ′aσ + b†σb

†
σ′bσ′bσ + ξ1a

†
σb

†
σ′bσ′aσ + ξ1b

†
σa

†
σ′aσ′bσ)

=gs0[(α
†
σβ

†
σ′βσ′ασ + β†

σα
†
σ′ασ′βσ)(cos

2Θsin2Θ+ cos2Θsin2Θ+ ξ1cos
4Θ+ ξ1sin

4Θ)

+ (α†
σβ

†
σ′ασ′βσ + β†

σα
†
σ′βσ′ασ)(cos

2Θsin2Θ+ cos2Θsin2Θ− ξ1cos
2Θsin2Θ− ξ1cos

2Θsin2Θ)

+ (α†
σα

†
σ′βσ′βσ + β†

σβ
†
σ′ασ′ασ)(cos

2Θsin2Θ+ cos2Θsin2Θ− ξ1cos
2Θsin2Θ− ξ1cos

2Θsin2Θ) + ...]

≡gs(α†
σβ

†
σ′βσ′ασ + β†

σα
†
σ′ασ′βσ) + wgs(α

†
σβ

†
σ′ασ′βσ + β†

σα
†
σ′βσ′ασ)

+ wgs(α
†
σα

†
σ′βσ′βσ + β†

σβ
†
σ′ασ′ασ) + .... (I.34)

Here we only keep terms in exciton-pairing channels in the basis of α and β, α†
σβ

†
σ′βσ′ασ, α

†
σα

†
σ′βσ′βσ, and β

†
σβ

†
σ′ασ′ασ.

Neglected terms contain also hybridization between excitons and intraband collective modes, α†
σα

†
σ′ασ′βσ, which in

the absence of the time-reversal symmetry leads to an additional cubic term (∂+ϕ)(ϕ
†)2 in Eq. (2) in the main text.

The hybridization and other neglected terms can be safely omitted as the intraband collective modes are gapped
excitations in the semiconductor. The Hamiltonian can be rewritten by the new basis,

Hex =
∑
k

{α†
k,σk

[
(|k| − kR)

2

2m
+ Eg]αk,σk

− β†
k,σk

[
(|k| − kR)

2

2m
+ Eg]βk,σk

}

+ gs
∑

σ,σ′=↑,↓

∫
d2r(α†

σβ
†
σ′βσ′ασ + wα†

σβ
†
σ′ασ′βσ +

w

2
α†
σα

†
σ′βσ′βσ +

w

2
β†
σβ

†
σ′ασ′ασ), (I.35)

where √
[
(|k| − kR)2

2m0
+ Eg0]2 + |∆t|2 ≈

√
E2
g0 + |∆t|2 +

Eg0√
E2
g0 + |∆t|2

(|k| − kR)
2

2m0

= Eg +
(|k| − kR)

2

2m
, (I.36)

gs =
gs0
2

[sin2(2Θ) + ξ1 + ξ1cos
2(2Θ)], w =

(1− ξ1)sin
2(2Θ)

sin2(2Θ) + ξ1[1 + cos2(2Θ)]
, (I.37)

with 0 < w < 1. Exciton operators are defined by Oµ = b†σµa where µ = 0, x, y, z. In terms of a completeness
relation

1

2

∑
µ

(σµ)αβ(σµ)γδ = δαδδβγ , (I.38)

the interaction terms are decomposed as follows,∑
σ,σ′

α†
σβ

†
σ′βσ′ασ = −

∑
σ,σ′

α†
σβσ′β†

σ′ασ = −1

2

∑
µ

O†
µOµ, (I.39)

∑
σ,σ′

α†
σβ

†
σ′ασ′βσ =

∑
σ,σ′

α†
σβσβ

†
σ′ασ′ = O†

0O0, (I.40)

∑
σ,σ′

α†
σα

†
σ′βσ′βσ ∼ −

∑
σ,σ′

α†
σβσ′α†

σ′βσ +
∑
σ,σ′

α†
σβσα

†
σ′βσ′ = −1

2

∑
µ

O†
µO

†
µ +O†

0O
†
0. (I.41)

In Eq. (I.41), we decompose the interaction in two different channels, so we do not divide the result by two. Adding
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Eqs. (I.39-I.41) together, we get

gs
∑
σ,σ′

(α†
σβ

†
σ′βσ′ασ + wα†

σβ
†
σ′ασ′βσ +

w

2
α†
σα

†
σ′βσ′βσ +

w

2
β†
σβ

†
σ′ασ′ασ)

=gs[−
1

2

∑
µ

O†
µOµ + wO†

0O0 −
w

4

∑
µ

(O†
µO

†
µ +OµOµ) +

w

2
(O†

0O
†
0 +O0O0)]

=− gs
4
[
∑
r

(2O†
rOr + wO†

rO
†
r + wOrOr) + (2− 4w)O†

0O0 − wO†
0O

†
0 − wO0O0]

=− gs
2
[
∑
r

(1 + wcos2qr)P
2
r + (1− 2w − wcos2q0)P

2
0 ], (I.42)

where r = x, y, z, Oµ ≡ Pµe
iqµ . Note that due to w, the U(1) symmetry of the four-component exciton field reduces

to a Z2 symmetry. Since 0 < w < 1, q0 = ±π
2 and qr = 0, π are preferred by the interaction. Fluctuations of qµ

around the minima are gapped excitations, so they can be safely neglected. This leads to

gs
∑
σ,σ′

(α†
σβ

†
σ′βσ′ασ + wα†

σβ
†
σ′ασ′βσ − w

2
α†
σα

†
σ′βσ′βσ − w

2
β†
σβ

†
σ′ασ′ασ)

=− gs
2
[
∑
r

(1 + w)P 2
r + (1− w)P 2

0 ] = −gs
2
[
∑
r

(1 + w)
(Or −O†

r

2i

)2
+ (1− w)

(O0 +O†
0

2

)2
]. (I.43)

By the Hubbard-Stratonovich transformation, we can introduce real exciton fields ϕµ,

exp{
∫
dτd2r

gs
2
[
∑
r

(1 + w)P 2
r + (1− w)P 2

0 ]} =

∫
Dϕµexp{−

∫
dτd2r[−

∑
r

iϕr(O
†
r −Or)

− ϕ0(O
†
0 +O0) +

∑
r

2

gs(1 + w)
ϕ2r +

2

gs(1− w)
ϕ20]}, (I.44)

where ϕr and ϕ0 have the physical meanings of gs(1+w)
2 ⟨Pr⟩ and gs(1−w)

2 ⟨P0⟩, respectively. Since 0 < w < 1, the
interaction term (Eq. (I.43)) favors the triplet excitons (ϕr) over the singlet excitons (ϕ0). The quadratic part of
Eq. (I.35) also lifts the four-fold degeneracy of ϕµ, while mass terms for ϕx and ϕy remain degenerate.

Due to the adjustment of the conduction band and valence band, m0ξR0 = m′
0ξ

′
R0, one can expect that momentum-

energy dispersions of the exciton bands have minima at q = 0, so condensation of the exciton fields happen at the
zero momentum. In the following, we keep track of all the four components, ϕµ (µ = 0, x, y, z), in the derivation of
Eq. (2) in the main text, to see whether and when ϕx and ϕy achieve the lowest energy (smallest mass at q = 0)
among others. Fermion fields can be integrated out,∫

D[a†, b†,a, b]exp
[
−
(
a† b†

)
G−1

(
a
b

)]
= det(G−1) = eTrln(G

−1), (I.45)

where

G−1 = G−1
0 +Gϕ, (I.46)

G0 =

(
ga0,kPσk

0

0 gb0,kPσk

)
≡

(
[−iωn + (|k|−kR)2

2m + Eg]
−1 σ0+σ

ẑ×k̂

2 0

0 [−iωn − (|k|−kR)2

2m − Eg]
−1 σ0+σ

ẑ×k̂

2

)
, (I.47)

Gϕ =

(
0 −i

∑
r ϕrσr − ϕ0σ0

i
∑
r ϕrσr − ϕ0σ0 0

)
. (I.48)

G−1
0 and Gϕ are block-diagonal in the momentum-frequency space and the coordinate space, respectively. G0 is

diagonal in spin along ẑ × k̂ and its diagonal element is zero for the down spin,

Pσk
=

1

2
(σ0 + σẑ×k̂) =

1

2
(σ0 − σxsinθk̂ + σycosθk̂). (I.49)
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The integration leads to an effective theory of the exciton fields,

Sϕ[ϕµ] = −Trln(1+G0Gϕ) +
2

gs

∫
dτd2r(

∑
r

1

1 + w
ϕ2r +

1

1− w
ϕ20), (I.50)

−Trln(1+G0Gϕ) =
1

2
Tr(G0GϕG0Gϕ) +

1

4
Tr(G0GϕG0GϕG0GϕG0Gϕ) + ... (I.51)

Note that “Tr” stands for traces over both spacetime and spin indices, while “tr” is trace over only spin indices (see
below). To determine the form of the effective theory, we use the following relations,

Pσk
σzPσk

= 0, (I.52)

Pσk
σxPσk

= Pσk
(σk̂cosθk̂ − σẑ×k̂sinθk̂)Pσk

= −sinθk̂Pσk
σẑ×k̂ = −sinθk̂σẑ×k̂Pσk

, (I.53)

tr(Pσk
σ0Pσk

σ0) = tr(P 2
σk
) = tr(Pσk

) = 1, (I.54)

tr(Pσk
σxPσk+q

σx) =
1

4
tr(σxσx) +

1

4
tr(σẑ×k̂σxσẑ×k̂+q

σx)

=
1

2
+

1

4
tr[(−sinθk̂σx + cosθk̂σy)σx(−sinθ

k̂+q
σx + cosθ

k̂+q
σy)σx]

=
1

2
(1 + sinθk̂sinθk̂+q

− cosθk̂cosθk̂+q
) =

1

2
[1− cos(θk̂ + θ

k̂+q
)], (I.55)

tr(Pσk
σyPσk+q

σy) =
1

2
[1 + cos(θk̂ + θ

k̂+q
)], (I.56)

tr(Pσk
σxPσk+q

σy) =
1

4
tr(σẑ×k̂σxσẑ×k̂+q

σy)

=
1

4
tr[(−sinθk̂σx + cosθk̂σy)σx(−sinθ

k̂+q
σx + cosθ

k̂+q
σy)σy]

=− 1

2
(sinθk̂cosθk̂+q

+ cosθk̂sinθk̂+q
) = −1

2
sin(θk̂ + θ

k̂+q
), (I.57)

tr(Pσk
σyPσk+q

σx) = −1

2
sin(θk̂ + θ

k̂+q
), (I.58)

tr(Pσk
σxPσk

σxPσk
σxPσk

σx) = tr[(Pσk
σxPσk

)4]

=tr[(Pσk
σẑ×k̂σẑ×k̂Pσk

)2]sin4θk̂ = tr(Pσk
)sin4θk̂ = sin4θk̂. (I.59)

As the exciton field ϕµ(q) (Fourier transform of ϕµ(r)) at the zero momentum (q = 0) is expected to have the smallest
energy, we expand the effective theory in terms of small q. The zeroth order in q gives the mass (Mµ) and the quartic
term (U) from the first and the second terms in Eq. (I.51), respectively. Let us first calculate the masses for the four
exciton components (µ = 0, x, y, z),

1

2
Tr(G0GϕG0Gϕ) ⊃

∑
µ

∫
dτd2rϕ2µ[

1

βL2

∑
k

ga0,kg
b
0,ktr(Pσk

σµPσk
σµ)]

=

∫
dτd2rϕ20(

1

βL2

∑
k

ga0,kg
b
0,k) +

1

2

∫
dτd2r(ϕ2x + ϕ2y)(

1

βL2

∑
k

ga0,kg
b
0,k), (I.60)

where we used Eqs. (I.52,I.54-I.56) and
∑

k cos
(
2θk̂
)
=
∑

k sin
(
2θk̂
)
= 0. Taking Eqs. (I.50,I.60) together, we get

1

2

∑
µ

Mµϕ
2
µ =

2

gs
(
∑
r

1

1 + w
ϕ2r +

1

1− w
ϕ20)−

D0

2
(ϕ2x + ϕ2y + 2ϕ20), (I.61)
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where

D0 =− 1

βL2

∑
k

ga0,kg
b
0,k = − 1

βL2

∑
n,k

1

iωn − ξk

1

iωn + ξk

=− 1

L2

∑
k

nF (ξk)− nF (−ξk)
2ξk

=

∫
d2k

(2π)2
tanh( 12βξk)

2ξk
> 0, (I.62)

ξk ≡ (|k| − kR)
2

2m
+ Eg, nF (ξk) ≡

1

eβξk + 1
, (I.63)

β is the inverse of temperature. So we have

Mz =
4

gs(1 + w)
> 0, M0 =

4

gs(1− w)
− 2D0, Mi =

4

gs(1 + w)
−D0, (I.64)

where i = x, y. Mi < 0 < M0 is realized by

1

1 + w
<

1

4
gsD0 <

1

2(1− w)
. (I.65)

Given that w > 1
3 , the condition can be realized by proper gs, β, and Eg. Given that the condition is satisfied, we

henceforth consider the effective theory only of ϕ = ϕx + iϕy and neglect the other exciton components as they are
gapped modes.

Eq. (2) in the main text takes the following form in the imaginary-time representation,

Lϕ,E =
η21
2
(∂τϕ

†)(∂τϕ) +
η21c

2
⊥

2
(∂iϕ

†)(∂iϕ) +
η21c

2
⊥

4
[α(∂−ϕ)

2 + α∗(∂+ϕ
†)2] +

U

2
(ϕ†ϕ− ρ0)

2, (I.66)

where the mass term was already obtained,

2Uρ0 =Mi = D0 −
4

gs(1 + w)
. (I.67)

To determine U , we calculate the quartic term in ϕx from the second term of Eq. (I.51), using Eq. (I.59) and∑
k sin

4 θk̂ = 3
8

∑
k,

1

4
Tr[(G0Gϕ)

4] ⊃ 1

βL2

∑
q1,q2,q3

ϕx(q1)ϕx(q2)ϕx(q3)ϕx(−q1 − q2 − q3){
1

2βL2

∑
k

(ga0,kg
b
0,k)

2tr[(Pσk
σx)

4]}

=

∫
dτd2rϕ4x{

1

2βL2

∑
k

(ga0,kg
b
0,k)

2tr[(Pσk
σx)

4]} =
3

8

∫
dτd2rϕ4x[

1

2βL2

∑
k

(ga0,kg
b
0,k)

2]. (I.68)

Thus, U is given by

U =
3

8βL2

∑
k

(ga0,kg
b
0,k)

2 =
3

8

∫
d2k

(2π)2
{ d
dz

[
1

eβz + 1

1

(z − ξk)2
]|z=−ξk +

d

dz
[

1

eβz + 1

1

(z + ξk)2
]|z=ξk ]

=
3

8

∫
d2k

(2π)2
1

(2ξk)2
[
tanh( 12βξk)

ξk
− β

1 + cosh(βξk)
] > 0. (I.69)

To determine the coefficients of the lowest-order gradient terms, we define σ± = 1
2 (σx ± iσy), ϕ = ϕx + iϕy, ϕ

† =
ϕx − iϕy, and set ϕ0 = ϕz = 0 in Gϕ in Eq. (I.48). Note also that

Gϕ =

(
0 −i(ϕσ− + ϕ†σ+)

i(ϕσ− + ϕ†σ+) 0

)
, (I.70)

tr(Pσk
σ+Pσk+q

σ−) =
1

8
[1− cos(θk̂ + θ

k̂+q
) + 1 + cos(θk̂ + θ

k̂+q
)] =

1

4
, (I.71)
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tr(Pσk
σ+Pσk+q

σ+) =
1

8
[1− cos(θk̂ + θ

k̂+q
)− 1− cos(θk̂ + θ

k̂+q
)

− isin(θk̂ + θ
k̂+q

)− isin(θk̂ + θ
k̂+q

)] = −1

4
ei(θk̂+θk̂+q

), (I.72)

tr(Pσk
σ−Pσk+q

σ−) = −1

4
e−i(θk̂+θk̂+q

). (I.73)

In terms of Eq. (I.70), the first term of Eq. (I.51) is given by

1

2
Tr(G0GϕG0Gϕ) =

1

2βL2

∑
k,q

(ga0,kg
b
0,k+q + gb0,kg

a
0,k+q)[ϕ

†
qϕqtr(Pσk

σ+Pσk+q
σ−)

+ ϕ−qϕqtr(Pσk
σ−Pσk+q

σ−)] + H.c. (I.74)

By an expansion of small q ≡ (q, iωm), we get

η21 = − 1

4βL2
∂2iωm

|q=0

∑
k

(ga0,kg
b
0,k+q + ga0,k+qg

b
0,k) = − 1

2βL2
∂2iωm

|q=0

∑
k

ga0,k− q
2
gb0,k+ q

2
, (I.75)

η21c
2 =

1

4βL2
∂2qx |q=0

∑
k

(ga0,kg
b
0,k+q + ga0,k+qg

b
0,k) =

1

2βL2
∂2qx |q=0

∑
k

ga0,k− q
2
gb0,k+ q

2
, (I.76)

η21c
2α =

1

4βL2
∂2qx |q=0

∑
k

(ga0,kg
b
0,k+q + ga0,k+qg

b
0,k)e

−i(θ
k̂
+θ

k̂+q
)

=
1

2βL2
∂2qx |q=0

∑
k

ga0,k− q
2
gb0,k+ q

2
e
−i(θ

k̂− q
2

+θ
k̂+

q
2

)
, (I.77)

where we used ∑
k

ga0,kg
b
0,k+q =

∑
k

ga0,k−qg
b
0,k =

∑
k

ga0,k− q
2
gb0,k+ q

2
. (I.78)

Equivalently, we can also use∑
k

1

2
(ga0,k)

′′gb0,k =
∑
k

1

2
ga0,k(g

b
0,k)

′′ =
∑
k

[
1

8
(ga0,k)

′′gb0,k +
1

8
ga0,k(g

b
0,k)

′′ − 1

4
(ga0,k)

′(gb0,k)
′], (I.79)

or ∑
k

(ga0,k)
′′gb0,k =

∑
k

ga0,k(g
b
0,k)

′′ = −
∑
k

(ga0,k)
′(gb0,k)

′. (I.80)

Here primes and double primes denote first-order and second-order derivatives with respect to one of the spacetime
components of k. Note that Eqs. (I.78,I.80) are valid given that associated integrals vanish or are sufficiently small
in the ultraviolet regime (large k region). Using them, we can determine η1 and η1c⊥ as follows,

η21 =
1

2βL2

∑
k

(∂iωm
|q=0g

a
0,k+q)(∂iωm

|q=0g
b
0,k+q)

=
1

2βL2

∑
k

1

(iωn − ξk)2
1

(iωn + ξk)2
=

1

2βL2

∑
k

(ga0,kg
b
0,k)

2 =
4U

3
> 0, (I.81)

η21c
2
⊥ =− 1

2βL2

∑
k

(∂qx |q=0g
a
0,k+q)(∂qx |q=0g

b
0,k+q)

=
1

2βL2

∑
k

1

(iωn − ξk)2
1

(iωn + ξk)2
(|k| − kR)

2k2x
m2|k|2

=
1

2

∫
d2k

(2π)2
1

(2ξk)2
[
tanh( 12βξk)

ξk
− β

1 + cosh(βξk)
]
(|k| − kR)

2

2m2
> 0. (I.82)
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To determine the coefficient of the spin-coordinate coupling term (η21c
2
⊥α), We can use a similar trick as

Eqs. (I.78,I.80) to simplify Eq. (I.77),

η21c
2
⊥α = − 1

2βL2

∑
k

∂qx |q=0[g
a
0,k+qe

−iθ
k̂+q ]∂qx |q=0[g

b
0,k+qe

−iθ
k̂+q ], (I.83)

where

∂qx |q=0e
−iθ

k̂+q = −ie−iθk̂∂qx |q=0arctan
ky

kx + qx
= ie−iθk̂

ky
k2x + k2y

= ie−iθk̂
sinθk̂
|k|

. (I.84)

Then we have

η21c
2α = − 1

2βL2

∑
k

[−(ga0,k)
2 (|k| − kR)cosθk̂

m
+ iga0,k

sinθk̂
|k|

][(gb0,k)
2 (|k| − kR)cosθk̂

m
+ igb0,k

sinθk̂
|k|

]e−2iθ
k̂

=− 1

2βL2

∑
k

[−(ga0,k)
2 |k| − kR

2m
+ ga0,k

1

2|k|
][(gb0,k)

2 |k| − kR
2m

+ gb0,k
1

2|k|
]

=− 1

8βL2

∑
k

{−(ga0,kg
b
0,k)

2 (|k| − kR)
2

m2
+ ga0,kg

b
0,k

1

|k|2
+ [ga0,k(g

b
0,k)

2 − (ga0,k)
2gb0,k]

|k| − kR
m|k|

}, (I.85)

where ∑
n

[ga0,k(g
b
0,k)

2 − (ga0,k)
2gb0,k] =

∑
n

[
1

−iωn + ξk
(

1

−iωn − ξk
)2 − (

1

−iωn + ξk
)2

1

−iωn − ξk
]

=
(iωn + ξk)− (iωn − ξk)

(iωn + ξk)2(iωn − ξk)2
=
∑
n

2ξk(g
a
0,kg

b
0,k)

2, (I.86)

|k| − kR
m|k|

[2ξk − (|k| − kR)|k|
m

] =
|k| − kR
m|k|

[2Eg −
(|k| − kR)kR

m
]. (I.87)

In terms of Eqs. (I.62,I.69,I.86,I.87), we finally determine η21c
2α as follows

η21c
2
⊥α =

1

2

∫
d2k

(2π)2
{
tanh( 12βξk)

2ξk

1

4|k|2

+
1

(2ξk)2
[
tanh( 12βξk)

ξk
− β

1 + cosh(βξk)
][
(|k| − kR)kR

m
− 2Eg]

|k| − kR
4m|k|

}. (I.88)

To evaluate α and c⊥, note first that the omission of the down-spin bands in Eq. (I.29) is justified when

1 ≪ βEg ≪ β
k2R
2m

. (I.89)

The condition also implies that when the temperature is low enough, electrons and holes are excited only around kR.
This naturally lets us introduce an “ultraviolet” cutoff kg in the integral over |k| in Eqs. (I.82,I.88),

η21c
2
⊥ =

∫
d2k

(2π)2
1

16ξ3k

(|k| − kR)
2

m2
=

∫ kR+kg

kR−kg

dk

2π

k

16ξ3k

(k − kR)
2

m2
, (I.90)

η21c
2
⊥α =

∫
d2k

(2π)2
1

16ξ3k|k|2
{kR|k|(|k| − kR)

2

2m2
− Eg|k|(|k| − kR)

m
+ [

(|k| − kR)
2

2m
+ Eg]

2}

=

∫ kR+kg

kR−kg

dk

2π

1

16ξ3kk
{ (k − kR)

2(k2 + k2R)

4m2
− EgkR(k − kR)

m
+ E2

g}. (I.91)
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The cutoff kg satifies that kg = O(
√
2mEg) ≪ kR. Note also that without the cutoff the integral in Eq. (I.88) has

the logarithmic divergence at k = 0. With the cutoff, We finally obtain

η21c
2
⊥Eg =

∫ kg

−kg

dk

2π

(kR + k)Eg
16

(
k2

2m
+ Eg)

−3 k
2

m2
=

∫ kg

0

dk

π

kREg
16

(
k2

2m
+ Eg)

−3 k
2

m2
= O(

kR
kg

), (I.92)

αη21c
2
⊥Eg =

∫ kg

−kg

dk

2π

(kR + k)−1Eg
16

(
k2

2m
+ Eg)

−3{k[(kR + k)2 + k2R]

4m2
− EgkRk

m
+ E2

g}

=
1

2
η21c

2Eg +O(1) <
1

2
η21c

2Eg + |O(
kR
kg

)|. (I.93)

A comparison between Eq. (I.92) and Eq. (I.93) suggests that |α| = 1
2 < 1 in the limit of Eq. (I.89). α = O(1)

is due to the large spin-orbit-coupling limit, while α ≪ O(1) for smaller spin-orbit coupling. Nonetheless, the
competition between different components of excitons will be more complicated in the smaller spin-orbit coupling
case. η21c

2
⊥Eg ≫ 1 is consistent with the physical picture of Eq. (I.89). In the large spin-orbit coupling limit, We can

also simplify Eqs. (I.62,I.81) and all the coefficients in Eq. (2) in the main text,

D0 =
4

gs(1 + w)
+ 2Uρ0 =

∫
d2k

(2π)2
1

2ξk
=

∫ kg

0

dk

π

1

2
(
k2

2m
+ Eg)

−1, (I.94)

η21 =
4U

3
=

∫
d2k

(2π)2
1

8ξ3k
=

∫ kg

0

dk

π

1

8
(
k2

2m
+ Eg)

−3. (I.95)

II. OBSERVABLES AND CONSERVATION RELATIONS

In this section, we derive the spin (jsµ) and orbital (jlµ) parts of Noether’s current in Eqs. (7,8) in the main text
and verify that the total angular momentum is conserved. We start with the classical effective theory Eq. (6) in the
main text,

L =
1

2
(∂tθ)

2 − 1

2
(∂xθ)

2[1− αcos(2θ)]− 1

2
(∂yθ)

2[1 + αcos(2θ)] + α(∂xθ)(∂yθ)sin(2θ). (II.1)

The theory has a U(1) spacetime symmetry,

θ → θ + ϵ∆θ = θ + ϵ, x→ x+ ϵ∆x = x− ϵy, y → y + ϵ∆y = y + ϵx, t→ t+ ϵ∆t = t. (II.2)

With the continuous symmetry Eq. (II.2), Noether’s theorem gives a conserved current,

jµ =
∂L

∂(∂µθ)
∆θ + [δµνL − ∂L

∂(∂µθ)
(∂νθ)]∆xν =

∂L
∂(∂µθ)

∆θ + Tµν∆xν , (II.3)

where µ, ν ∈ {t, x, y}, ∆xν ∈ {∆t,∆x,∆y}. Tµν ≡ δµνL− ∂L
∂(∂µθ)

(∂νθ) is a stress-energy tensor. The conserved current

obeys ∂µjµ = 0 as long as an equation of motion is satisfied,

∂µ[
∂L

∂(∂µθ)
]− ∂L

∂θ
= 0. (II.4)

The equation of motion is given by

∂2t θ − (∂2xθ)[1− αcos(2θ)]− 2α(∂xθ)
2sin(2θ)− (∂2yθ)[1 + αcos(2θ)] + 2α(∂yθ)

2sin(2θ)

+ 2α(∂x∂yθ)sin(2θ) + 4α(∂xθ)(∂yθ)cos(2θ) + α[(∂xθ)
2 − (∂yθ)

2]sin(2θ)− 2α(∂xθ)(∂yθ)cos(2θ)

=∂2t θ − (∂2xθ)[1− αcos(2θ)]− (∂2yθ)[1 + αcos(2θ)] + 2α(∂x∂yθ)sin(2θ)

− α[(∂xθ)
2 − (∂yθ)

2]sin(2θ) + 2α(∂xθ)(∂yθ)cos(2θ) = 0. (II.5)
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The theory has spatial and temporal translational symmetries, which imposes a conservation rule on the stress-energy
tensor,

∂µTµν = ∂µ[δµνL − ∂L
∂(∂µθ)

(∂νθ)] = 0. (II.6)

The total angular momentum current of Eq. (II.3) can be divided into spin angular momentum current js that does
not depend on Tµν , and orbital angular momentum current jl that depends on Tµν .

jsµ =
∂L

∂(∂µθ)
∆θ, jlµ = [δµνL − ∂L

∂(∂µθ)
(∂νθ)]∆xν . (II.7)

Let us focus on the spin part. Spin angular momentum density is

s = jst = ∂tθ, (II.8)

and corresponding spin currents are

jsx = −(∂xθ)[1− αcos(2θ)] + α(∂yθ)sin(2θ), (II.9)

jsy = −(∂yθ)[1 + αcos(2θ)] + α(∂xθ)sin(2θ). (II.10)

The spin density and current are zero at equilibrium, jsµ = 0. The spin angular momentum is not conserved,

∂µj
s
µ = G = −∂µjlµ. (II.11)

Local sources of the spin angular momentum are given by spin torque G. The torque represents the mutual conversion
between orbital and spin angular momenta. Taking the equation of motion Eq. (II.5) into Eqs. (II.8-II.10), we get
the spin torque as follows,

G =∂µj
s
µ = ∂2t θ − (∂2xθ)[1− αcos(2θ)]− (∂2yθ)[1 + αcos(2θ)]− 2(∂xθ)

2αsin(2θ) + 2(∂yθ)
2αsin(2θ)

+ 2α(∂x∂yθ)sin(2θ) + 4α(∂xθ)(∂yθ)cos(2θ)

=− α[(∂xθ)
2 − (∂yθ)

2]sin(2θ) + 2α(∂xθ)(∂yθ)cos(2θ). (II.12)

The orbital-angular-momentum density and current are given by

l = jlt = y(∂tθ)(∂xθ)− x(∂tθ)(∂yθ), (II.13)

jlx =− y
{1
2
(∂tθ)

2 − 1

2
(∂yθ)

2[1 + αcos(2θ)] +
1

2
(∂xθ)

2[1− αcos(2θ)]
}

+ x
{
(∂xθ)(∂yθ)[1− αcos(2θ)]− α(∂yθ)

2sin(2θ)
}
, (II.14)

jly =x
{1
2
(∂tθ)

2 − 1

2
(∂xθ)

2[1− αcos(2θ)] +
1

2
(∂yθ)

2[1 + αcos(2θ)]
}

− y
{
(∂xθ)(∂yθ)[1 + αcos(2θ)]− α(∂xθ)

2sin(2θ)
}
. (II.15)

The orbital angular momentum density and current depends explicitly on spatial coordinates, and they depend on a
choice of the origin for the spatial coordinates. Besides, the equation of motion Eq. (II.5) gives ∂2t θ instead of ∂tθ,
while jst as well as ∂tj

s
t contains ∂tθ. Nonetheless, we can verify the continuity equation Eq. (II.11) directly, using

Eqs. (II.5,II.13-II.15). ∂µj
l
µ is formally given by a term that has no explicit dependence on x and y, and terms that

depend explicitly and linearly on the spatial coordinates. The latter terms vanish thanks to Eq. (II.5);

∂(∂µj
l
µ)

∂y

∣∣
x,θ,∂µθ

= (∂2t θ)(∂xθ) + (∂tθ)(∂x∂tθ)

− (∂tθ)(∂x∂tθ) + (∂yθ)(∂x∂yθ)[1 + αcos(2θ)]− α(∂yθ)
2(∂xθ)sin(2θ)

− (∂xθ)(∂
2
xθ)[1− αcos(2θ)]− α(∂xθ)

2(∂xθ)sin(2θ)

− (∂xθ)(∂
2
yθ)[1 + αcos(2θ)]− (∂x∂yθ)(∂yθ)[1 + αcos(2θ)] + 2α(∂xθ)(∂yθ)

2sin(2θ)

+ 2α(∂xθ)(∂x∂yθ)sin(2θ) + 2α(∂xθ)
2(∂yθ)cos(2θ)

=(∂2t θ)(∂xθ)− (∂xθ)(∂
2
xθ + ∂2yθ)

+ α(∂xθ)sin(2θ)[(∂yθ)
2 − (∂xθ)

2 + 2(∂x∂yθ)]

+ α(∂xθ)cos(2θ)[(∂xθ)
2 − (∂yθ)

2 + 2(∂xθ)(∂yθ)] = 0, (II.16)
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∂(∂µj
l
µ)

∂x

∣∣
y,θ,∂µθ

= −(∂2t θ)(∂yθ)− (∂tθ)(∂y∂tθ)

+ (∂tθ)(∂y∂tθ)− (∂xθ)(∂x∂yθ)[1− αcos(2θ)]− α(∂xθ)
2(∂yθ)sin(2θ)

+ (∂yθ)(∂
2
yθ)[1 + αcos(2θ)]− α(∂yθ)

2(∂yθ)sin(2θ)

+ (∂yθ)(∂
2
xθ)[1− αcos(2θ)] + (∂x∂yθ)(∂xθ)[1− αcos(2θ)] + 2α(∂yθ)(∂xθ)

2sin(2θ)

− 2α(∂yθ)(∂x∂yθ)sin(2θ)− 2α(∂yθ)
2(∂xθ)cos(2θ)

=− (∂2t θ)(∂yθ) + (∂yθ)(∂
2
xθ + ∂2yθ)

+ α(∂yθ)sin(2θ)[(∂xθ)
2 − (∂yθ)

2 − 2(∂x∂yθ)]

+ α(∂yθ)cos(2θ)[(∂yθ)
2 − (∂xθ)

2 − 2(∂xθ)(∂yθ)] = 0. (II.17)

The former term is nothing but −G,

∂µj
l
µ −

∂(∂µj
l
µ)

∂x

∣∣
y,θ,∂µθ

−
∂(∂µj

l
µ)

∂y

∣∣
x,θ,∂µθ

=(∂xθ)(∂yθ)[1− αcos(2θ)]− α(∂yθ)
2sin(2θ)− (∂xθ)(∂yθ)[1 + αcos(2θ)] + α(∂xθ)

2sin(2θ)

=α[(∂xθ)
2 − (∂yθ)

2]sin(2θ)− 2α(∂xθ)(∂yθ)cos(2θ). (II.18)

Thus, the total angular momentum is indeed conserved,

∂µj
l
µ = α[(∂xθ)

2 − (∂yθ)
2]sin(2θ)− 2α(∂xθ)(∂yθ)cos(2θ) = −G. (II.19)

III. SOLUTIONS FOR THE SPIN-INJECTION MODEL

In this section, we solve θ(x, t) in the spin-injection model, Eq. (9) in the main text, together with the boundary
condition, Eq. (13) in the main text and jsx(x = 0, t) = j0. We consider a general junction parameter k0 except k0 = 1
(straight geometry), k20 = (1 + 1

j0r
)2 (circular geometry), and k0 = 0, while leaving discussions about solutions at

these special parameter points for Sec. VI.

A. Straight geometry without curvature

For the straight geometry without the curvature (Fig. 1(a) in the main text), let us consider the equation of motion
in the one-dimensional system,

∂2t θ = (∂2xθ)[1− αcos(2θ)] + α(∂xθ)
2sin(2θ). (III.1)

The boundary conditions are given by

jsx(0, t) = j0, (III.2)

sc(L, t) = kcj
s
x,c(L, t), (III.3)

with kc ≡ χ
χ′

[
Ds

(
1
T ′
1
+ ic

)]−1/2
+ χ

βt
. Here “c” stands for the frequency of spin density and current at x = L, and

Eq. (III.3) is imposed for each frequency component of the density and current. The density and current are given
by θ (Eq. (8) in the main text),

s = ∂tθ, jsx = −(∂xθ)[1− αcos(2θ)], jsy = α∂xθsin(2θ), G = −α(∂xθ)2sin(2θ). (III.4)

We solve the equation of motion by a perturbative expansion of α. With θ(x, t) = θ0(x, t) +O(α), the zeroth order
is

∂2t θ0 = ∂2xθ0. (III.5)
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The general solution of Eq. (III.5) is

θ0(x, t) = At+Bx+ F0 +
∑

c∈R,c ̸=0

[Fce
ic(t−x) + F ′

ce
ic(t+x)], (III.6)

where A,B, Fc, F
′
c are constants. Eq. (III.2) leads to

θ0(x, t) = At− j0x+ F0 +
∑

c∈R,c ̸=0

2Fccos(cx)e
ict. (III.7)

Since Re(kc) > 0, Eq. (III.3) requires Fc = 0 for c ̸= 0, and the zeroth order takes the following form,

θ0(x, t) = s(x, t)t− jsx(x, t)x+ F (0) = k0j0t− j0x+ F0. (III.8)

Here F0 can be absorbed by a time translation so we take F0 = 0. Note that without the spin-orbit coupling (α = 0),
the spin density and current are static,

jsx(0 < x < L) = j0 +O(α), s(0 < x < L) = k0j0 +O(α). (III.9)

Upon a substitution of Eq. (III.9) into Eq. (III.1) and an expansion of Eq. (III.1) in α, the first-order correction to
the solution is given by an inhomogeneous linear differential equation. Thereby, the first-order solution has two parts,
θ1 and θ2,

θ(x, t) = θ0(x, t) + θ1(x, t) + θ2(x, t) +O(α2), (III.10)

and θ1 is a special solution of the inhomogenous equation,

∂2t θ1 − ∂2xθ1 = −α(∂2xθ0)cos(2θ0) + α(∂xθ0)
2sin(2θ0) = αj20sin(2k0j0t− 2j0x). (III.11)

θ2(x, t) is a solution of the homogeneous differential equation,

∂2t θ2 − ∂2xθ2 = 0. (III.12)

With θ1(x, t) and θ2(x, t), the spin density and current should satisfy the BCs up to the first order in α.
Thanks to the linear x and t-dependence of θ0(x, t) and k0 ̸= 1, we can find a special solution,

θ1(x, t) = − α

4(k20 − 1)
sin(2k0j0t− 2j0x). (III.13)

θ2(x, t) takes the same form as Eq. (III.6). With these solutions, the spin density and current are given by the
following up to the first order in α,

s = k0j0 −
k0j0α

2(k20 − 1)
cos(2k0j0t− 2j0x) + ∂tθ2 +O(α2), (III.14)

jsx =j0 − αj0cos(2k0j0t− 2j0x)−
j0α

2(k20 − 1)
cos(2k0j0t− 2j0x)− ∂xθ2 +O(α2)

=j0 −
j0α(2k

2
0 − 1)

2(k20 − 1)
cos(2k0j0t− 2j0x)− ∂xθ2 +O(α2). (III.15)

In order that Eqs. (III.14,III.15) satisfy the BCs, θ2(x, t) must have the same frequency as θ1(x, t),

θ2(x, t) = αge2ik0j0(t−x) + αg′e2ik0j0(t+x) + c.c.. (III.16)

Here g and g′ are complex constants. By the same reasoning as in the text below Eq. (III.7), other frequency
components in θ2(x, t) vanish. This leads to

s =
1

2
k0j0 + αk0j0e

2ik0j0t[2ige−2ik0j0x − e−2ij0x

4(k20 − 1)
]

+ 2iαk0j0g
′e2ik0j0(t+x) +O(α2) + c.c., (III.17)
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jsx =
1

2
j0 + αj0e

2ik0j0t[2ik0ge
−2ik0j0x − (2k20 − 1)e−2ij0x

4(k20 − 1)
]

− 2iαk0j0g
′e2ik0j0(t+x) +O(α2) + c.c.. (III.18)

The boundary conditions Eqs. (III.2,III.3) require

αj0[2ik0g −
2k20 − 1

4(k20 − 1)
]− 2iαk0j0g

′ = 0, (III.19)

αj0[2ik0ge
−2ik0j0L − e−2ij0L

4(k20 − 1)
] + 2iαj0k0g

′e2ik0j0L

=kαj0[2ik0ge
−2ik0j0L − (2k20 − 1)e−2ij0L

4(k20 − 1)
]− 2ikαk0j0g

′e2ik0j0L, (III.20)

with

k0 =
χ

χ′ (
Ds

T ′
1

)−
1
2 +

χ

βt
, (III.21)

k ≡ k2k0j0 =
χ

χ′

[
Ds(

1

T ′
1

+ 2ik0j0)
]− 1

2 +
χ

βt
, (III.22)

and k−c = (kc)
∗ for a real number c. Eqs. (III.19,III.20) can be simplified,

2ik0(g − g′) =
2k20 − 1

4(k20 − 1)
, (III.23)

2ik0(ge
−2ik0j0L + g′e2ik0j0L)− 2ikk0(ge

−2ik0j0L − g′e2ik0j0L) =
1− (2k20 − 1)k

4(k20 − 1)
e−2ij0L. (III.24)

The two equations Eqs. (III.23,III.24) determine the two coefficients, g and g′,(
1 −1

(1− k)e−ik0βL (1 + k)eik0βL

)(
g
g′

)
=

1

8ik0(k20 − 1)

(
2k20 − 1

(1− (2k20 − 1)k)e−iβL

)
, (III.25)

where βL ≡ 2j0L. The solution of the equations is

g =
(2k20 − 1)(1 + k)eik0βL + [1− (2k20 − 1)k]e−iβL

(1 + k)eik0βL + (1− k)e−ik0βL

1

8ik0(k20 − 1)
, (III.26)

g′ =
[1− (2k20 − 1)k]e−iβL − (2k20 − 1)(1− k)e−ik0βL

(1 + k)eik0βL + (1− k)e−ik0βL

1

8ik0(k20 − 1)
. (III.27)

From Eqs. (III.8,III.10,III.13,III.16), we get

θ(x, t) =j0(k0t− x)− α

4(k20 − 1)
sin[2j0(k0t− x)]

+ 2αRe(g)cos[2k0j0(t− x)] + 2αRe(g′)cos[2k0j0(t+ x)]

− 2αIm(g)sin[2k0j0(t− x)]− 2αIm(g′)sin[2k0j0(t+ x)] +O(α2). (III.28)

The solution has one frequency (2k0j0) in time and two wavenumbers (2j0, 2k0j0) in space. The solution Eq. (III.28)
can be also rewritten as

θ(x, t) = j0(k0t− x)− α

4(k20 − 1)
sin[2j0(k0t− x)]

+ 2αRe(g + g′)cos(2k0j0t)cos(2k0j0x) + 2αRe(g − g′)sin(2k0j0t)sin(2k0j0x)

− 2αIm(g + g′)sin(2k0j0t)cos(2k0j0x) + 2αIm(g − g′)cos(2k0j0t)sin(2k0j0x) +O(α2). (III.29)
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According to Eqs. (III.23,III.26,III.27), Eq. (III.29) is nothing but Eq. (18) in the main text,

θ(x, t) =j0(k0t− x)− α

4(k20 − 1)
sin[2j0(k0t− x)]− α(2k20 − 1)

4(k20 − 1)
cos(2k0j0t)sin(2k0j0x)

+ αIm(η)cos(2k0j0t)cos(2k0j0x) + αRe(η)sin(2k0j0t)cos(2k0j0x) +O(α2), (III.30)

where

η ≡ 2i(g + g′) =
(2k20 − 1)[(1 + k)eik0βL − (1− k)e−ik0βL ] + 2[1− (2k20 − 1)k]e−iβL

4k0(k20 − 1)[(1 + k)eik0βL + (1− k)e−ik0βL ]
. (III.31)

Higher-order solutions can be obtained by the same perturbative iteration method. In the solution, the spin density
and current have the same periodicity in time as the first-order solution, π(k0j0)

−1. This is because the inhomogeneous
terms at every order keep the same discrete time translational symmetry as that for the first order. For irrational
k0, the solution is not periodic in the space coordinate x because of the superpositions of the two wavenumbers.
Nonetheless, the Fourier-transform in the space has two major peaks at 2j0 and 2k0j0.

B. Circular geometry with curvature

For the one-dimensional circular geometry with a finite radius r of the curvature (Figs. 1(b,c) in the main text),
the Lagrangian is generalized as follows

L =
1

2
(∂tθ)

2 − 1

2r2
(∂ϑθ)

2 +
α

2r2
(∂ϑθ)

2[cos(2θ)(sin2ϑ− cos2ϑ)− 2sin(2θ)sinθcosθ]

=
1

2
(∂tθ)

2 − 1

2
(∂ℓθ)

2[1 + αcos(2θ − 2

r
ℓ)], (III.32)

with a one-dimensional coordinate ℓ ≡ rϑ, and

∂rθ(x, y) ≡ ∂r(rcosϑ, rsinϑ) = 0, ∂x = −1

r
(sinϑ)∂ϑ, ∂y =

1

r
(cosϑ)∂ϑ. (III.33)

The Lagrangian gives the classical equation of motion in the one-dimensional system,

∂2t θ − (∂2ℓ θ)[1 + αcos(2θ − 2

r
ℓ)] + 2α(∂ℓθ)sin(2θ −

2

r
ℓ)[(∂ℓθ)−

1

r
]− α(∂ℓθ)

2sin(2θ − 2

r
ℓ)

=∂2t θ − (∂2ℓ θ)[1 + αcos(2θ − 2

r
ℓ)] + α(∂ℓθ)[(∂ℓθ)−

2

r
]sin(2θ − 2

r
ℓ) = 0, (III.34)

and the spin density and current,

s = ∂tθ, jsℓ = −(∂ℓθ)[1 + αcos(2θ − 2

r
ℓ)]. (III.35)

The boundary conditions are imposed on the spin density and current,

jsℓ (0, t) = j0, sc(L, t) = kcj
s
ℓ,c(L, t). (III.36)

The boundary condition at ℓ = L is imposed on every frequency (c) component of the density and current, and

kc =
χ
χ′

[
Ds

(
1
T ′
1
+ ic

)]−1/2
+ χ

βt
.

The zeroth-order solution of the EOM that satisfies the BCs is given by

θ0(ℓ, t) = k0j0t− j0ℓ. (III.37)

In the perturbative iteration method, the first-order solution comprises of θ1(ℓ, t) and θ2(ℓ, t). θ1(ℓ, t) is a special
solution of the inhomogeneous linear differential equation, Eq. (20) in the main text, while θ2(ℓ, t) is a solution of the
homogeneous linear differential equation. For k20 ̸= (1 + 1

j0r
)2, we find the special solution,

θ1(ℓ, t) =
α(1 + 2

j0r
)

4[k20 − (1 + 1
j0r

)2]
sin[2k0j0t− 2(j0 +

1

r
)ℓ], (III.38)
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together with

θ2(ℓ, t) = At+Bℓ+ F0 +
∑

c∈R,c ̸=0

[
Fce

ic(t−ℓ) + F ′
ce
ic(t+ℓ)

]
. (III.39)

A substitution of θ = θ0 + θ1 + θ2 +O(α2) into Eq. (III.35) leads to

s = k0j0 +
k0j0α(1 +

2
j0r

)

2[k20 − (1 + 1
j0r

)2]
cos[2k0j0t− 2(j0 +

1

r
)ℓ] + ∂tθ2 +O(α2), (III.40)

jsℓ =j0 +
αj0
2

2k20 − 2(1 + 1
j0r

)2 + (1 + 1
j0r

)(1 + 2
j0r

)

k20 − (1 + 1
j0r

)2
cos[2k0j0t− 2(j0 +

1

r
)ℓ]− ∂xθ2 +O(α2)

=j0 +
j0α[2k

2
0 − (1 + 1

j0r
)]

2[k20 − (1 + 1
j0r

)2]
cos[2k0j0t− 2(j0 +

1

r
)ℓ]− ∂xθ2 +O(α2). (III.41)

In order that Eqs.(III.40,III.41) satisfy the BCs, θ2(ℓ, t) must have the same frequency as θ1(ℓ, t);

θ2(ℓ, t) = αge2ik0j0(t−ℓ) + αg′e2ik0j0(t+ℓ) + c.c.. (III.42)

The complex constants, g and g′, are determined by(
1 −1

(1− k)e−ik0βL (1 + k)eik0βL

)(
g
g′

)
=

1

8ik0[k20 − (1 + 1
j0r

)2]

(
2k20 − (1 + 1

j0r
)

{1 + 2
j0r

− [2k20 − (1 + 1
j0r

)]k}e−i(1+
1

j0r )βL

)
, (III.43)

where k is given by Eq. (III.22).

θ1(ℓ, t) vanishes when j0 = − 2
r . Even when θ1(ℓ, t) = 0, θ2(ℓ, t) ̸= 0 in general. The non-zero θ2(ℓ, t) comes from

an O(α) contribution of jsℓ in Eq. (III.35). For j0 = − 2
r and k0 = 1

2 , both θ1(ℓ, t) and θ2(ℓ, t) reduce to zero, and
θ0(ℓ, t) becomes an “exact” solution satisfying the BCs. However, the exactness is not protected by the symmetry of
the theory, and there will be a finite θ1(ℓ, t) when higher-order expansion terms are considered in Eq. (6) in the main
text.

Besides, Eqs. (III.25,III.43) always have unique solutions for g and g′, because

(1 + k)eik0βL + (1− k)e−ik0βL = 0 (III.44)

or

k =
e−ik0βL + eik0βL

e−ik0βL − eik0βL
=

i

tan(2k0βL)
(III.45)

contradicts with Re(k) > 0. The solutions of Eq. (III.25) and Eq. (III.43) are divergent at k0 = 1 (straight) and
k20 = (1 + 1

j0r
)2 (circular), respectively. Physically, the divergence could be avoided by finite dissipation time T1. A

more detailed discussion on the divergence is given in Sec. VI.

The radius (r) dependence of θ(ℓ, t) leads to the non-reciprocity of the hydrodynamic spin transport. We show
the non-reciprocity in Figs. 1(b,c) in the main text. The non-reciprocity is essentially from θ1(ℓ, t), as the spatial
wavelength of θ1(ℓ, t) depends on the radius r; it also comes from θ2(ℓ, t) as θ2(ℓ, t) is different for two opposite currents
to satisfy the boundary conditions. From the figures, we can see that θ(ℓ, t) is periodic along t because θ1(ℓ, t) and
θ2(ℓ, t) share the same temporal frequency; the structure of θ(ℓ, t) along ℓ is more complicated because θ1(ℓ, t) and
θ2(ℓ, t) give two different spatial wavenumbers. To show the spatial structure of θ(ℓ, t) more clearly, we plot them in
a larger range of ℓ (see Fig. 2 in this Supplemental Material), although physically ℓ should not be greater than L, and
L should not be greater than 2πr.
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(a) (b)

FIG. 2. Contour plots of θ(ℓ, t) in a larger spatial range of ℓ with the same parameters in Figs. 1(b,c) in the main text. Fig. (a)
and Fig. (b) above correspond to Fig. 1(b) and Fig. 1(c) in the main text, respectively.

IV. POSSIBILITY OF DISSIPATION

In this section, we study the stability of the superfluid state with a finite supercurrent in the U(1) spacetime theory.
The Lagrangian Eq. (6) in the main text leads to a classical equation of motion, Eq. (II.5). A solution of the EOM
was obtained under boundary conditions of a finite current (Sec. III). The solution characterizes the supercurrent
state. To study the stability of the supercurrent state, we compare a classical energy of the solution θ(x, y, t) with
an energy of other solutions of the EOM with different BCs, say θ(x, y, t) + δθ(x, y, t). Here, we consider that δθ is
a deformation induced by spatially local perturbations. Thus, the spacetime derivatives of δθ(x, y, t) do not contain
any uniform component in spacetime. The classical energy is evaluated by a Hamiltonian that corresponds to the
Lagrangian Eq. (II.1),

H[θ] =

∫
d2r
{1
2
(∂tθ)

2 +
1

2
(∂xθ)

2
[
1− α cos(2θ)

]
+

1

2
(∂yθ)

2
[
1 + α cos(2θ)

]
− α(∂xθ)(∂yθ) sin(2θ)

}
. (IV.1)

The solution for the supercurrent state with broken U(1) spacetime symmetry depends on time, e.g. Eq. (18) in the
main text, while the Hamiltonian of θ and θ+δθ are conserved, i.e. time-independent. Thus, for clarity of calculation,
we compare the “time averages” of the classical energies over a large period of time T ,

∆J = lim
T→∞

1

T

(∫ T

0

H[θ + δθ]dt−
∫ T

0

H[θ]dt
)
. (IV.2)

When the classical energy of θ is lower than θ + δθ for arbitrary small δθ, the supercurrent state of θ(x, t) is stable
against the local perturbation. If it is not for some δθ, the supercurrent state is no longer stable, and it must experience
energy dissipation. Effects of the energy dissipation can be included as finite relaxation time into the classical EOM
(see Sec. V). To demonstrate the validity of our method used in this section, we also apply the same method to a
conventional superfluid moving at a finite velocity and derive its Landau criterion (see Appendix A).

As explained above, δθ is a deformation induced by the local perturbations, and the spacetime derivatives of δθ
are considered to be always zero on average. The locality of δθ is crucial in the following argument. For example, a
finite average of the space derivative of δθ changes a uniform current, and such δθ should be excluded from the local
deformation. This is because even for the conventional superfluid, the classical energy with a smaller velocity of the
supercurrent will always decrease. In the derivation of the Landau criterion in Appendix A, only single excitations
with (k, ω) are considered; perturbation that lowers the average velocity is excluded implicitly.

In this section, we apply the stability analysis to the total-angular-momentum superfluid in the spin-injection model.
We consider a general value of the junction parameter k0, except for k0 = 1 (straight geometry), k20 = (1 + 1

j0r
)2

(circular geometry) and k0 = 0, while leaving discussions about some of these points for Sec. VI. In the following, let
us study the straight geometry case.

In the one-dimensional spin injection model, θ depends only on x and t; θ(x, t) and θ(x, t) + δθ(x, t). The energy
difference between θ and θ+ δθ will be evaluated order by order in powers of the SOC (α). To this end, we expand θ
and δθ in powers of α,

θ = θ0(x, t) + θ′1(x, t) +O(α2), (IV.3)

δθ(x, t) = δθ0(x, t) + δθ1(x, t) +O(α2), (IV.4)
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where

θ′1(x, t) = θ1(x, t) + θ2(x, t), (IV.5)

δθ1(x, t) = O(α). δθ0(x, t), θ0(x, t), and θ2(x, t) are solutions of Eq. (III.5). Since the spacetime derivatives of δθ(x, t)
is not uniform, δθ0(x, t), as well as θ2(x, t), is given by linear superpositions of eiq(x−t) and eiq(x+t) over q, e.g.

δθ0(x, t) =
1√
L

∑
q

[δdqe
iq(x−t) + δd′qe

iq(x+t)], (IV.6)

with the system length L. In Appendix B, we give a perturbation theory in the SOC (α) that determines the higher
order corrections (e.g. δθ1) for a given δθ0 in the form of Eq. (IV.6).
Given the α-expansions of θ and θ + δθ, we now evaluate their energy difference order by order in the power of α.

We expand ∆J in Eq. (IV.2),

∆J = δJ +
1

2
δ2J +O((δθ)2). (IV.7)

Here δJ and δ2J are at the first and second order in δθ, respectively. The first-order variation is (Eq. (22) in the
main text)

δJ =
1

T

∫ T

0

dt

∫
dx{(∂tθ)(∂tδθ) + (∂xθ)(∂xδθ)[1− αcos(2θ)] + α(∂xθ)

2sin(2θ)(δθ)}

=
1

T

∫ T

0

dt

∫
dx[(∂tθ0)(∂tδθ0) + (∂tθ

′
1)(∂tδθ0) + (∂tθ0)(∂tδθ1)

+ (∂xθ0)(∂xδθ0) + (∂xθ
′
1)(∂xδθ0) + (∂xθ0)(∂xδθ1)

− α(∂xθ0)(∂xδθ0)cos(2θ0) + α(∂xθ0)
2sin(2θ0)(δθ0)] +O(α2)

=
1

T

∫ T

0

dt

∫
dx{(∂tθ′1)(∂tδθ0) + (∂xθ

′
1)(∂xδθ0) + α[(∂2xθ0) cos(2θ0)− (∂xθ0)

2 sin(2θ0)]δθ0}+O(α2)

=
1

T

∫ T

0

dt

∫
dx[(∂tθ

′
1)(∂tδθ0) + (∂xθ

′
1)(∂xδθ0) + (−∂2t θ1 + ∂2xθ1)δθ0] +O(α2)

=
2

T

∫ T

0

dt

∫
dx(∂xθ2)(∂xδθ0) +O(α2), (IV.8)

where we neglect boundary contributions in the right-hand side, e.g.

1

T

∫ T

0

(∂tθ0)(∂tδθ1) =
k0j0
T

∫ T

0

(∂tδθ1) = O(T−1),∫
dx(∂xθ0)(∂xδθ1) = −j0

∫
dx(∂xδθ1) = O(1) ≪ O(L). (IV.9)

From the 3rd line to the 4th line, we use Eq. (III.11). From the 4th line to the last line, we neglect terms that contain
θ1 and δθ0, because for k0 ̸= 1, θ1 and δθ0 have different velocities (ratios between the frequency and wavenumber),
and their product must vanish under the spacetime integral. The second-order variation is

1

2
δ2J =

∫
dtdx{1

2
(∂tδθ)

2 +
1

2
(∂xδθ)

2[1− αcos(2θ)]− α(δθ)2[(∂xθ)
2cos(2θ) + (∂2xθ)sin(2θ)]}

=

∫
dtdx{1

2
(∂tδθ)

2 +
1

2
(∂xδθ)

2 − α

2
(∂xδθ0)

2cos(2θ0)

− α(δθ0)
2[(∂xθ0)

2cos(2θ0) + (∂2xθ0)sin(2θ0)]}+O(α2)

=

∫
dtdx{1

2
(∂tδθ)

2 +
1

2
(∂xδθ)

2

− α

2
(∂xδθ0)

2cos(2θ0)− α(δθ0)
2(∂xθ0)

2cos(2θ0)}+O(α2). (IV.10)

Note that 1
2δ

2J ≥ 0 at O(α). This is because the leading order term (O(1)-term) is positive semi-definite, and
negative contributions come from O(α) terms. Besides, under the spacetime integral, the O(α) terms can be nonzero
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only if δθ0 in Eq. (IV.6) comprises of (more than) two Fourier components, q1, q2, · · · , and an oscillation function
from (δθ0)

2 and that from cos(2θ0) = cos(2j0k0t− 2j0x) cancel each other, e.g.

q1 − q2 = ±j0k0, q1 + q2 = ±j0. (IV.11)

In the presence of such components in δθ0, however, the leading order term is positive definite.
δθ0, as well as θ2, is a solution of Eq. (III.5); both are given by linear superpositions of eiq(t+x) and eiq(t−x) over q.

Thus, for given θ2 ̸= 0, one can always choose δθ0 such that the spacetime integral of (∂xθ2)(∂xδθ0) remains non-zero
and negative, δJ < 0. This suggests that the superflow state is stable only when θ2(x, t) = 0, while it is not stable
when θ2(x, t) ̸= 0.

The same conclusion holds true in the spin-injection model with the circular geometry. In the one-dimensional
spin-injection model with finite curvature, the Hamiltonian is given by

H =

∫
dℓ

{
1

2
(∂tθ)

2 +
1

2
(∂ℓθ)

2[1 + αcos(2θ − 2

r
ℓ)]

}
, (IV.12)

where θ and θ+ δθ depend only on ℓ and t. Their energy difference ∆J can be expanded in the powers of small local
deformation δθ. The first- and second-order variations of the energy in δθ are

δJ =
1

T

∫ T

0

dt

∫
dℓ

{
(∂tθ)(∂tδθ) + (∂ℓθ)(∂ℓδθ)[1 + αcos(2θ − 2

r
ℓ)]− α(∂ℓθ)

2sin(2θ − 2

r
ℓ)(δθ)

}
, (IV.13)

1

2
δ2J =

1

T

∫ T

0

dt

∫
dℓ

{
1

2
(∂tδθ)

2 +
1

2
(∂ℓδθ)

2

+ α(∂ℓδθ)
2cos(2θ − 2

r
ℓ) + α(δθ)2{[(∂ℓθ)2 −

2

r
(∂ℓθ)]cos(2θ −

2

r
ℓ) + (∂2ℓ θ)sin(2θ −

2

r
ℓ)}
}
, (IV.14)

respectively. Eqs. (IV.13,IV.14) have a similar structure as Eqs. (IV.8,IV.10), respectively. For k20 ̸= (1 + 1
j0r

)2

(resonance point), one can use the α-expansion of θ and δθ, and the expressions support the same conclusion in the
circular geometry case; δJ < 0 for some δθ0 and 1

2δ
2J ≥ 0.

In summary, contrary to the conventional superfluid with θ1 = θ2 = 0, the supercurrent state with the broken
U(1) spacetime symmetry is classically unstable toward other states, and it must experience the energy dissipation
by local perturbation. Physically speaking, the difference in the stabilities between these two types of superfluids
comes from the fact that the spin-injection boundary condition does not break the U(1) symmetry of the conventional
superfluid, but it breaks the U(1) spacetime symmetry of the total-angular-momentum superfluid; under the U(1)
spacetime rotation, the whole junction should also be rotated. Effects of the energy dissipation can be included as
finite relaxation time T−1, while the motion of θ with vanishing or small T−1

1 can be realized only in a superclean
limit.

A conventional superfluid described by a non-relativistic complex field has a critical velocity given by the Landau
criterion. Below the critical velocity, a supercurrent is stable. The Landau criterion should be derived from a theory
of the complex field instead of an effective theory of a Goldstone mode. This is because when the velocity approaches
the critical value, a low-energy condition is already violated. Our analyses only study the stability in the low-energy
limit where a non-relativistic complex field and a relativistic complex field both lead to a Goldstone mode with linear
dispersion.

V. EFFECTS OF DISSIPATION IN THE CLASSICAL EOM

Note first that the classical equation, Eq. (II.5), as well as its 1D descendants, Eqs. (III.1,III.34), are all invariant
under the time-reversal operation; t→ −t, and θ → θ+ π. In the previous section, we demonstrate that the classical
energy of the spin supercurrent state is higher than other states due to the finite α. This suggests that the supercurrent
state decays into other states with lower energy. Such an energy-non-conserving decay process generally breaks the
time-reversal symmetry of the classical equation. To study the effect of the decay process into the spin hydrodynamics
predicted in Sec. III, we include the simplest time-reversal-breaking term, ∂tθ, into the classical equation;

∂2t θ − (∂2x)θ[1− α cos(2θ)]− (∂2yθ)[1 + α cos(2θ)] + 2α(∂x∂yθ) sin(2θ)

− α[(∂xθ)
2 − (∂yθ)

2] sin(2θ) + 2α(∂xθ)(∂yθ) cos(2θ) = − 1

T1
∂tθ. (V.1)
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From the symmetry point of view, one could also add other time-reversal breaking terms that respect the U(1)
spacetime symmetry but breaks the time-reversal symmetry, e.g.

· · · = − 1

T1
∂tθ −

1

T2
∂tθ × (∂2xθ + ∂2yθ)−

1

T3
∂tθ ×

{
(∂2xθ − ∂2yθ) cos(2θ) + 2∂x∂yθ sin(2θ)

}
+ · · · (V.2)

Nonetheless, the first term on the right-hand side always dominates the others in the hydrodynamic regime, since the
physical variable θ changes much more slowly than any microscopic length scales in the hydrodynamic regime, and in
this sense, the other terms in Eq. (V.2) are higher-order spatial gradient terms than the first term in Eq. (V.2). In
this section, we will solve Eq. (V.1) or its 1D descendant in the spin-injection model with the straight geometry,

∂2t θ − (∂2xθ)[1− α cos(2θ)]− α(∂xθ)
2 sin(2θ) = − 1

T1
∂tθ. (V.3)

θ0(x, t) with the dissipation term was previously solved by Ref. [11, 13]. It satisfies

∂2t θ0 +
1

T1
∂tθ0 = ∂2xθ0. (V.4)

The general solution (up to a constant F0) of Eq. (V.4) is

θ0(x, t) = At+
A

2T1
x2 +Bx+

∑
c∈R,c ̸=0

[Fce
ict−iκcx + F ′

ce
ict+iκcx], (V.5)

where A,B, Fc, F
′
c are constants and

κc =

√
c2 + i

c

T1
. (V.6)

The boundary conditions Eqs. (III.2,III.3) are satisfied by

B = −j0, A = −k0(
A

T1
L+B), Fc = F ′

c = 0, (V.7)

which leads to

A = (1 +
k0L

T1
)−1k0j0. (V.8)

This gives the zeroth order solution of the EOM with the BCs,

θ0(x, t) =
T1k0j0
T1 + k0L

t− j0[1−
k0x

2(T1 + k0L)
]x ≡ k̃0j0t− j0h(x)x, (V.9)

jsx(0 < x < L) =
T1 + k0(L− x)

T1 + k0L
j0 +O(α), s(0 < x < L) =

T1k0j0
T1 + k0L

+O(α). (V.10)

In the conventional spin superfluid with T−1
1 ̸= 0, the spin density and the spin current are static. Different from the

dissipationless case (T−1 = 0), the spin current decreases linearly in the one-dimensional coordinate x, while the spin
density is uniform in x.
Due to nonlinear x-dependence of θ0(x, t), the perturbative analyses in the SOC (α) becomes harder. To obtain

the solution of the EOM analytically, we consider a limit that a phase accumulation γ is small when the spatial
dependence of the current is small,

γ ≡ [−dh(x)
dx

L]j0L =
k0j0L

2

2(T1 + k0L)
≪ 1. (V.11)

The small γ limit can be achieved by a small dissipation term or a short propagation distance. The zeroth order
solution in the small γ and α limit is

θ0(x, t) = k̃0j0(1−
k0L

T1
)t− j0h(x)x = k̃0j0t− j0x+O(γ). (V.12)
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We will solve θ(x, t) up to the first order in α or in γ, namely O(α, γ). Thereby, we keep the zeroth order of θ0(x, t)
when solving θ1(x, t) and θ2(x, t). Eq. (III.11) is slightly modified and becomes

∂2t θ1 +
1

T1
∂tθ1 − ∂2xθ1 = αj20sin(2k̃0j0t− 2j0x) =

αj20
2i

e2ik̃0j0t−2ij0x + c.c.. (V.13)

Eq. (V.13) has a special solution,

θ1(x, t) =
αj20e

2ik̃0j0t−2ij0x

2i(−4k̃20j
2
0 − 2i

T1
k̃0j0 + 4j20)

+ c.c. = − αj0T1e
2ik̃0j0t−2ij0x

8ij0T1(k̃20 − 1) + 4k̃0
+ c.c.

≡αg0e2ij0(k̃0t−x) + c.c., (V.14)

where

g0 = − j0T1

8ij0T1(k̃20 − 1) + 4k̃0
. (V.15)

Eq. (III.16) holds true, while Eqs. (III.17,III.18) are modified,

s =
1

2
k̃0j0 + αk̃0j0e

2ik̃0j0t[2ige−2ik̃0j0x − j0T1e
−2ij0x

4j0T1(k̃20 − 1)− 2ik̃0
]

+ 2iαk̃0j0g
′e2ik̃0j0(t+x) +O(α2, γ2, αγ) + c.c., (V.16)

jsx =
1

2
j0 + αj0e

2ik̃0j0t[2ik̃0ge
−2ik̃0j0x − j0T1e

−2ij0x

4j0T1(k̃20 − 1)− 2ik̃0
− e−2ij0x

2
]

− 2iαk̃0j0g
′e2ik̃0j0(t+x) + o(α, γ, γj0L) + c.c.

=
1

2
j0 + αj0e

2ik̃0j0t{2ik̃0ge−2ik̃0j0x − [j0T1(2k̃
2
0 − 1)− ik̃0]e

−2ij0x

4j0T1(k̃20 − 1)− 2ik̃0
}

− 2iαk̃0j0g
′e2ik̃0j0(t+x) +O(α2, γ2, αγ) + c.c.. (V.17)

The boundary conditions Eqs. (III.2,III.3) leads to the following secular equation (cf. Eq. (III.25)),(
1 −1

(1− k)e−ik̃0βL (1 + k)eik̃0βL

)(
g
g′

)
=

1

8ik̃0j0T1(k̃20 − 1) + 4k̃20

(
j0T1(2k̃

2
0 − 1)− ik̃0

(j0T1 − j0T1(2k̃
2
0 − 1)k + ik̃0k)e

−iβL

)
. (V.18)

The solution of Eq. (V.18) is

g =
[j0T1(2k̃

2
0 − 1)− ik̃0](1 + k)eik̃0βL + [j0T1 − j0T1(2k̃

2
0 − 1)k + ik̃0k]e

−iβL

[(1 + k)eik̃0βL + (1− k)e−ik̃0βL ][8ik̃0j0T1(k̃20 − 1) + 4k̃20]
, (V.19)

g′ =
[j0T1 − j0T1(2k̃

2
0 − 1)k + ik̃0k]e

−iβL − [j0T1(2k̃
2
0 − 1)− ik̃0](1− k)e−ik̃0βL

[(1 + k)eik̃0βL + (1− k)e−ik̃0βL ][8ik̃0j0T1(k̃20 − 1) + 4k̃20]
. (V.20)

Similar to Eq. (III.28), the solution of θ(x, t) is

θ(x, t) =k̃0j0t− j0[1−
k0x

2(T1 + k0L)
]x

+ 2αRe(g0)cos[2j0(k̃0t− x)]− 2αIm(g0)sin[2j0(k̃0t− x)]

+ 2αRe(g)cos[2k̃0j0(t− x)] + 2αRe(g′)cos[2k̃0j0(t+ x)]

− 2αIm(g)sin[2k̃0j0(t− x)] + 2αIm(g′)sin[2k̃0j0(t+ x)] +O(α2, γ2, αγ), (V.21)
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where g0, g, g
′ are given by Eqs. (V.15,V.19,V.20). k0, k, and k̃0 are given by Eqs. (III.21,III.22,V.9). Compared

to Eqs. (III.25,III.43), Eqs. (V.19,V.20,V.21) have no divergence due to finite T1. The situation is analogous to
periodically driven harmonic oscillators, where the dissipation removes divergence due to resonance [43]. Note also

that the solution Eq. (V.21) has a periodicity in time, π(k̃0j0)
−1, and two characteristc wavelengths, 2j0, and 2k̃0j0.

A solution at higher order in γ has all spatial Fourier components, while it is still periodic in time with the same
periodicity.

VI. SPECIAL PARAMETER POINTS IN THE SPIN-INJECTION MODEL

In this section, we study some special parameter points in the spin-injection model without the spin relaxation
term, where solutions in Sec. III do not apply directly and need careful investigations.

A. k0 = 1 (straight geometry) and k2
0 = (1 + 1

j0r
)2 (circular geometry)

Consider k0 = 1 in the straight geometry and k20 = (1+ 1
j0r

)2 in the circular geometry. Naive substitutions of k0 = 1

into Eqs. (III.13,III.25) and of k20 = (1 + 1
j0r

)2 into Eqs. (III.38,III.43) lead to divergences in θ1 and θ2, respectively.

It seems that the divergences in θ1 and θ2 cancel each other. For example, Eqs. (III.30,III.31) at k0 = 1 become

η|k0=1 =
[(1 + k)eiβL − (1− k)e−iβL ] + 2(1− k)e−iβL

4(k20 − 1)[(1 + k)eiβL + (1− k)e−iβL ]
=

1

4(k20 − 1)
, (VI.1)

θ(x, t)|k0=1 =j0(t− x)− α

4(k20 − 1)
sin[2j0(t− x)]− α

4(k20 − 1)
cos(2j0t)sin(2j0x)

+
α

4(k20 − 1)
sin(2j0t)cos(2j0x) +O(α2)

=j0(t− x) +O(α2), (VI.2)

where the final result of θ(x, t) is apparently finite. However, Eq. (VI.2) is not a solution to the equation of motion
Eq. (III.1). In fact, with light-cone coordinates

ξ = t− x, ζ = t+ x, (VI.3)

Eq. (III.11) at k0 = 1 becomes

[(∂ξ + ∂ζ)
2 − (∂ξ − ∂ζ)

2]θ1 = 4∂ξ∂ζθ1 = αj20sin(2j0ξ). (VI.4)

Eq. (VI.4) has a special solution which is not consistent to Eq. (VI.2),

θ1 = −αζ
16

cos(2j0ξ) = −α(t+ x)

16
cos[2j0(t− x)]. (VI.5)

Note that |θ1| in Eq. (VI.5) is not bounded for large ζ = t+x. This indicates that the perturbation with respect to α
becomes invalid at k0 = 1, leading to the discrepancy. The divergences at k0 = 1 can be regarded as the resonance of
the inhomogeneous linearized differential equation [43], and one can expect that the SOC has non-perturbative effects
around k0 = 1.
To understand the origin of the non-perturbative effect of α, let us consider a set of solutions of Eq. (III.1) that

depends on x and t only through x − vt. For the later comparison to a special solution developed in Sec. III,
θ0 + θ1 +O(α2), let v to be k0,

θ(x, t) = θ(x− k0t), θ′ ≡ ∂xθ = − 1

k0
∂tθ. (VI.6)

Here, the prime denotes an x-derivative. Eq. (III.1) effectively becomes an ordinary differential equation,

(k20 − 1)θ′′ = −αθ′′cos(2θ) + αθ′2sin(2θ). (VI.7)
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To solve this equation, use its analogy to one-dimensional classical mechanics, where the phase θ(x) as a function of
x corresponds to a one-dimensional coordinate as a function of time. The classical mechanics for the one-dimensional
coordinate has a Lagrangian whose variation gives Eq. (VI.7) as a classical EOM,

L1D =
1

2
(k20 − 1)θ′2 +

α

2
θ′2cos(2θ). (VI.8)

The classical mechanics has a canonical momentum conjugate to the coordinate,

π =
∂L1D

∂θ′
= (k20 − 1)θ′ + αθ′cos(2θ), (VI.9)

as well as a conserved Hamiltonian,

H1D = πθ′ − L1D =
1

2
(k20 − 1)θ′2 +

α

2
θ′2cos(2θ). (VI.10)

Utilizing the x-independence (“time”-independence) of H1D, we can solve the EOM from Eq. (VI.10),

dθ

dx
= ±

√
2H1D

k20 − 1 + αcos(2θ)
. (VI.11)

Its formal solution is given by

±(x− x0) =

∫ θ(x)

θ(x0)

√
k20 − 1 + αcos(2θ)

2H1D
dθ. (VI.12)

With Eq. (VI.6), we get a set of (1+1)-dimensional solutions,

±(x− k0t− C0) =

∫ θ(x,t)

θ(x0,t0)

√
k20 − 1 + αcos(2θ)

2H1D
dθ, (VI.13)

where C0 = x0 − k0t0.
Eq. (VI.13) is inclusive of those perturbative solutions in Sec. III that depend on x and t only through x− k0t, i.e.

θ0 + θ1 given by Eqs. (III.8,III.13). Namely, when α≪ |k20 − 1|, we can apply an expansion in α,

±(x− k0t− C0) =

∫ θ(x,t)

θ(x0,t0)

√
k20 − 1

2H1D
[1 +

α

2(k20 − 1)
cos(2θ)]dθ +O(α2). (VI.14)

From this, we obtain

θ(x, t) =±

√
2H1D

k20 − 1
(x− k0t− C ′

0)−
α

4(k20 − 1)
sin(2θ) +O(α2)

=θ0 −
α

4(k20 − 1)
sin(2θ0) +O(α2), (VI.15)

where

θ0 = ±

√
2H1D

k20 − 1
(x− k0t− C ′

0), (VI.16)

C ′
0 = C0 ∓

√
k20 − 1

2H1D
{θ(x0, t0) +

α

4(k20 − 1)
sin[2θ(x0, t0)]}. (VI.17)

Note that due to the absence of θ2(x, t) in its α-expansion, Eq. (VI.15) does not satisfy the boundary conditions in
the spin-injection model in general.
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Nonetheless, Eq. (VI.13) is still useful to see that the expansion in α is invalid when |k20 − 1| < O(α). Take k0 = 1
in Eq. (VI.13) as an example. Thereby, the sign of cos(2θ) is conserved from Eq. (VI.10). Then, the integral of
Eq. (VI.13) gives

±
√

2H1D

α
(x− k0t− C0) = E(θ(x, t), 2)− E(θ(x0, t0), 2), (VI.18)

where E(θ,m) is the second-kind elliptic integral. This special solution can be made independent from α because α
can be absorbed into another parameter H1D. The α-independence as well as the conserved sign of cos(2θ) are not
consistent with θ0(x, t) + θ1(x, t) in Eqs. (III.8,III.13). This suggests that the expansion in α is invalid, particularly
at k0 = 1.

B. k0 = 0 (straight geometry)

Another special parameter point is k0 = 0. k0 = 0 is a limit where χ in Eq. (III.21) is much smaller than χ′
√

Ds

T ′
1

and βt, and kc goes to zero for any c;

kc ≡
χ

χ′

√
1

Ds(
1
T ′
1
+ ic)

+
χ

β
→ 0. (VI.19)

We first consider k0 = 0 in the straight geometry (r−1 = 0). θ0 at k0 = 0 has no time dependence in Eq. (III.8), so
that the phase F0 in Eq. (III.8) cannot be absorbed into the time. Meanwhile, s(x = L−) = 0 because kc = 0 for any
c, and s(x) ≡ ∂tθ = 0 can be always satisfied by a time-independent θ. Thus, we have only to make Eqs. (III.8,III.10)
with an additional F0 to satisfy the other boundary condition, jsx(x = 0+) = j0. Firstly, let us choose θ0 = −j0x+F0

that satisfies the boundary condition. The substitution into Eq. (III.11) gives θ1 = α
4 sin(−2j0x+ F0). To satisfy the

boundary condition up to the 1st order in α (see also Eq. (III.4)),

jsx(x = 0+) = j0 −
j0α

2
cos(2F0)− ∂xθ2 +O(α2) = j0, (VI.20)

we have

θ2(x) = −j0α
2

cos(2F0)x. (VI.21)

Here, |θ2(x)| for large x is not bounded, where the perturbation in α breaks down. An alternative way to get a
consistent perturbative solution is to require θ2(x) = 0 and take θ0(x) = −j̃0x+ F0 where j̃0 ̸= j0. Then we have

jsx(x = 0+) = j̃0 −
j̃0α

2
cos(2F0)− ∂xθ2 +O(α2) = j0. (VI.22)

From this, we get

j̃0 = j0[1−
α

2
cos(2F0)]

−1 = j0[1 +
α

2
cos(2F0)] +O(α2). (VI.23)

At O(α), this solution is equivalent to absorbing θ2(x) in Eq. (VI.21) into θ0(x). Note also that from Eq. (IV.8),
θ2(x) = 0 implies that the steady (but not uniform) current without spin accumulation has no energy dissipation.
However, a higher-order calculation in α suggests that δJ can be non-zero and negative. This is because δθ1 and θ1
can share identical Fourier components (see Eq. (B.35) in Appendix B).

C. k0 = 0 (circular geometry)

Let us next consider the circular geometry with k0 = 0. In a similar way as in the previous section, take θ2(ℓ) = 0
and θ0(ℓ) = −j̃0ℓ+ F0 with j̃0 ̸= j0. Then, similar to Eq. (20) in the main text, we obtain

−∂2ℓ θ1 = −αj̃0(j̃0 +
2

r
)sin(−2j̃0ℓ−

2

r
ℓ+ 2F0). (VI.24)
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When j̃0 ̸= − 1
r , Eq. (VI.24) leads to

θ1(ℓ) =
αj̃0(j̃0 +

2
r )

4(j̃0 +
1
r )

2
sin(2j̃0ℓ+

2

r
ℓ− 2F0). (VI.25)

Note that when j̃0 = − 2
r , θ1(ℓ) = 0, and θ(ℓ) = 2ℓ

r + F0 (F0 ∈ R) becomes an “exact” solution of Eq. (III.34). The
solution is not exact in the presence of higher-order derivatives in the model Eq. (6) in the main text.

From Eq. (VI.25) and θ2 = 0, the boundary condition at ℓ = 0+ reads

jsℓ (ℓ = 0+) = j0 =j̃0 + αj̃0cos(2F0)−
αj̃0(j̃0 +

2
r )

2(j̃0 +
1
r )

cos(2F0) +O(α2)

=j̃0 +
αj̃20

2(j̃0 +
1
r )

cos(2F0) +O(α2). (VI.26)

So we have

j̃0 = j0 −
αj̃20

2(j̃0 +
1
r )

cos(2F0) +O(α2). (VI.27)

As in the previous case, the steady current without spin accumulation has an energy dissipation.

1. k0 = 0, j̃0 = − 1
r
(circular geometry)

When j̃0 = − 1
r , Eq. (VI.24) leads to

θ1 = −ℓ
2

2
αj̃0(j̃0 +

2

r
)sin(2F0) =

ℓ2α

2r2
sin(2F0). (VI.28)

When F0 ̸= N
2 π, the perturbation of α becomes invalid for larger ℓ, where |θ1(ℓ)| is not bounded. When F0 = N

2 π,
θ1(ℓ) = 0, and the boundary condition requires

j0 = j̃0[1 + α(−1)N ] = −1

r
[1 + α(−1)N ]. (VI.29)

This solution (θ(ℓ, t) = ℓ
r +

Nπ
2 ) can exist only at k0 = 0, while it is not continuously connected to a solution at finite

small k0 (see below).

2. k0 → 0, j0 = − 1
r
+O(α) (circular geometry)

To see that the solution Eq. (VI.29) is not continuously connected to a perturbative solution at finite small k0, let
us keep a finite k0 and choose j0 = − 1

r +O(α) in Sec. III; θ0(ℓ) =
1
r (k0t− ℓ) +O(α). In the perturbation theory, we

should neglect O(α2) contributions to θ1, so θ1 is not affected by the O(α) component in j0. Then Eq. (20) in the
main text becomes

∂2t θ1 − ∂2ℓ θ1 = − α

r2
sin(−2k0

r
t), (VI.30)

which leads to a solution,

θ1 = − α

4k20
sin(

2k0
r
t). (VI.31)

When k0 → 0, the solution has the divergence. Physically speaking, when k0 → 0, F0 changes slowly with respect to
time, so we cannot fix the phase F0 in Eq. (VI.28).
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A. APPENDIX: DERIVATION OF THE LANDAU CRITERION

In this section, we use the same framework as in Sec. IV and derive the Landau criterion. A similar argument
can be found in Ref. [13], while the derivation here is more formal than Ref. [13]. We begin with a one-dimensional
superfluid model,

L̃ϕ = iℏϕ†∂tϕ− ℏ2

2m
(∂xϕ

†)(∂xϕ)−
U

2
(ϕ†ϕ)2 + µϕ†ϕ, (A.1)

with its classical equation of motion,

iℏ∂tϕ = (− ℏ2

2m
∂2x + Uϕ†ϕ− µ)ϕ. (A.2)

Thanks to the Galilean covariance of the Lagrangian Eq. (A.1), our discussion will be easier than Sec. IV, and we do
not need to expand the variation of the motion as in Sec. IV. Namely, using the Galilean covariance, we can directly
obtain two motions that are close to each other, and compare their energies from the corresponding Hamiltonian,

H̃ϕ[ϕ] =

∫
dx[

ℏ2

2m
(∂xϕ

†)(∂xϕ) +
U

2
(ϕ†ϕ)2 − µϕ†ψ]. (A.3)

Consider a steady flow ϕ0(x, t),

ϕ0(x, t) =
√
ρ0 exp

[
i

ℏ
(mvx− mv2

2
t)

]
. (A.4)

Let us assume that the following motion ϕ(x, t), as well as ϕ0(x, t), satisfies the EOM, Eq. (A.2),

ϕ(x, t) = ϕ′(x′, t′) exp

[
i

ℏ
(mvx− mv2

2
t)

]
= ϕ′(x− vt, t) exp

[
i

ℏ
(mvx− mv2

2
t)

]
, (A.5)

with x′ = x − vt and t′ = t. Here |ϕ′(x′, t′) − √
ρ0| ≪ √

ρ0 and ϕ(x, t) is close to ϕ0(x, t). Using a Galilean
transformation,

x′ = x− vt, t′ = t, (A.6)

∂x = ∂x′ , ∂t = ∂t′ − v∂x, (A.7)

we can see that ϕ′(x′, t′) must satisfy a similar equation as Eq. (A.2),

(iℏ∂t +
1

2
mv2)ϕ′(x′, t′) = [

1

2m
(−iℏ∂x +mv)2 + Uϕ′†ϕ′ − µ]ϕ′(x′, t′), (A.8)

iℏ∂t′ϕ′(x′, t′) = (− ℏ2

2m
∂2x′ + Uϕ′†ϕ′ − µ)ϕ′(x′, t′). (A.9)

Now we compare the energies of ϕ(x, t) and ϕ0(x, t). The energy of ϕ0(x, t) is,

H̃ϕ[ϕ0] =

∫
dx[

ℏ2

2m
(∂xϕ

†
0)(∂xϕ0) +

U

2
(ϕ†0ϕ0)

2 − µϕ†0ϕ0] = E0 +
1

2
mv2Q0, (A.10)

where

E0 =

∫
dx(

U

2
ρ20 − µρ0) = −µ

2

∫
dxρ0, Q0 =

∫
dxρ0. (A.11)

The energy of ϕ(x, t) is,

H̃ϕ[ϕ] =

∫
dx[

ℏ2

2m
(∂xϕ

†)(∂xϕ) +
U

2
(ϕ†ϕ)2 − µϕ†ϕ]

=

∫
dxϕ′†(x− vt, t)[

1

2m
(−iℏ∂x +mv)2 +

U

2
ϕ′†ϕ′ − µ]ϕ′(x− vt, t)

=

∫
dxϕ′†(x, t)[

1

2m
(−iℏ∂x +mv)2 +

U

2
ϕ′†ϕ′ − µ]ϕ′(x, t)

=

∫
dxϕ′†(x, t)[− ℏ2

2m
∂2x − ivℏ∂x +

1

2
mv2 +

U

2
ϕ′†ϕ′ − µ]ϕ′(x, t)

=H̃ϕ[ϕ
′] + vPϕ[ϕ

′] +
1

2
mv2Qϕ[ϕ

′], (A.12)
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where

Pϕ[ϕ
′] =

∫
dxϕ′†(x, t)(−iℏ∂x)ϕ′(x, t), Qϕ[ϕ

′] =

∫
dxϕ′†(x, t)ϕ′(x, t). (A.13)

Thus, the energy difference between ϕ(x, t) and ϕ0(x, t) is

∆Eϕ[ϕ, ϕ0] = H̃ϕ[ϕ]− H̃ϕ[ϕ0] = (H̃ϕ[ϕ
′]− E0) + vPϕ[ϕ

′] +
1

2
mv2(Qϕ[ϕ

′]−Q0). (A.14)

For ϕ′ that satisfies the equation of motion Eq. (A.9), energy Hϕ[ϕ
′], momentum Pϕ[ϕ

′], and U(1) charge Qϕ[ϕ
′] must

be all conserved. This is because from Eq. (A.9), ϕ′(x, t) is a solution of Eq. (A.2).
The average velocity of ϕ(x, t) is not small, while ϕ′(x, t) can be assumed at the near-equilibrium limit [40]. In this

limit, the EOM of ϕ′ =
√
ρ0 + δρ′eiθ

′
can be described by a wave equation of δρ′ and θ′,

∂2t θ
′(x, t)− ρ0U

m
∂2xθ

′(x, t) = 0, (A.15)

δρ′(x, t) = − ℏ
U
∂tθ

′(x, t). (A.16)

Thereby, θ′(x, t) is given by a superposition of oscillations,

θ′(x, t) =
1√
L

∑
q

[fqe
iq(x−vct) + f ′qe

iq(x+vct)], vc =

√
ρ0U

m
. (A.17)

In the near-equilibirum limit of ϕ′, we evaluate the energy difference in the leading order in small fq and f ′q,

H̃ϕ[ϕ
′]− E0 =

∫
dx[

ℏ2ρ0
2m

(∂xθ
′)2 +

U

2
(δρ′)2] =

∫
dx[

ℏ2ρ0
2m

(∂xθ
′)2 +

ℏ2

2U
(∂tθ

′)2]

=
ℏ2ρ0
m

∑
q

q2(|fq|2 + |f ′q|2), (A.18)

Pϕ[ϕ
′] =

∫
dxℏδρ′(∂xθ′) = −ℏ2

U

∫
dx(∂tθ

′)(∂xθ
′) =

ℏ2ρ0
mvc

∑
q

q2(|fq|2 − |f ′q|2), (A.19)

Qϕ[ϕ
′]−Q0 =

∫
dxδρ′ = 0. (A.20)

Taking Eqs. (A.18-A.20) into Eq. (A.14), we have

∆Eϕ =
ℏ2ρ0
m

∑
q

q2[(1 +
v

vc
)|fq|2 + (1− v

vc
)|f ′q|2]. (A.21)

To make ∆Eϕ ≥ 0 for any (small) fq and f ′q, we obtain the Landau criterion,

|v| ≤ vc =

√
ρ0U

m
. (A.22)

B. APPENDIX: LOCAL DEFORMATIONS OF A CLASSICAL SOLUTION OF THE EOM

The superfluid state with a finite supercurrent is characterized by the solution θ(x, t) of the classical EOM in the
one-dimensional spin-injection model (e.g. with the straight geometry). In Sec. IV, we introduced its local deformation
θ(x, t) + δθ(x, t) as another solution of the EOM with different boundary conditions. We regarded that δθ(x, t), as
well as θ(x, t), can be determined perturbatively in the SOC (α). At the zeroth order in SOC, θ + δθ, as well as θ, is
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a solution of ∂2t θ − ∂2xθ = 0, and so is δθ. Since δθ(x, t) is a local deformation and its spacetime derivatives should
not contain any uniform components in space, the zeroth order of δθ(x, t) must be given by Eq. (IV.6);

δθ0(x, t) =
1√
L

∑
q

[
δdqe

iq(x−t) + δd′qe
iq(x+t)

]
. (B.1)

In this appendix, for a given form of Eq. (IV.6) as the zeroth order, we will show how to determine the first order of
δθ(x, t);

δθ(x, t) = δθ0(x, t) + δθ1(x, t) +O(α2). (B.2)

We first give a general framework to determine δθ. θ + δθ, as well as θ, is a local minimum of the action,
S =

∫
d3rL ≡

∫
dtd2rL, and δθ is infinitesimally small. Thus, we take a δθ-variation of S;

S[θ] ≡ Sxx[θ] + Syy[θ] + Sxy[θ] +
1

2

∫
d3r(∂tθ)

2, (B.3)

Sxx ≡ −1

2

∫
d3r(∂xθ)

2[1− α cos(2θ)], Syy ≡ 1

2

∫
d3r(∂yθ)

2[1 + α cos(2θ)], Sxy ≡ α(∂xθ)(∂yθ) sin(2θ). (B.4)

The first-order variation just gives the equation of motion Eq. (II.5),

δS = δSxx + δSyy + δSxy −
∫
d3r(δθ)(∂2t θ), (B.5)

δSxx ≡
∫
d3r(δθ){(∂2xθ)[1− αcos(2θ)] + α(∂xθ)

2sin(2θ)}, (B.6)

δSyy ≡
∫
d3r(δθ){(∂2yθ)[1 + αcos(2θ)]− α(∂yθ)

2sin(2θ)}, (B.7)

δSxy ≡ −2α

∫
d3r(δθ)[(∂x∂yθ)sin(2θ) + (∂xθ)(∂yθ)cos(2θ)]. (B.8)

δS vanishes since θ is an extremum or a saddle point of S. The second-order variation δ2S determines small defor-
mation δθ in such a way that θ + δθ is an extremum or a saddle point of S. Sxx gives

δ2Sxx =

∫
d3r(δθ){(∂2xδθ)[1− αcos(2θ)] + 2α(∂2xθ)sin(2θ)(δθ)}

+ 2α(∂xθ)(∂xδθ)sin(2θ) + 2α(∂xθ)
2cos(2θ)(δθ)}

=−
∫
d3r[(∂xδθ)

2 + αcos(2θ)(δθ)∂2x(δθ)− 2αsin(2θ)(∂2xθ)(δθ)
2

− 2α(∂xθ)(δθ)(∂xδθ)sin(2θ)− 2α(∂xθ)
2cos(2θ)(δθ)2], (B.9)

where ∫
d3rαcos(2θ)(δθ)∂2x(δθ) = −

∫
d3rα∂x[cos(2θ)(δθ)](∂xδθ)

=

∫
d3r[2αsin(2θ)(∂xθ)(δθ)(∂xδθ)− αcos(2θ)(∂xδθ)

2]. (B.10)

Taking Eq. (B.10) into Eq. (B.9), we get

δ2Sxx = −
∫
d3r{(∂xδθ)2[1− αcos(2θ)]− 2α(δθ)2[cos(2θ)(∂xθ)

2 + sin(2θ)(∂2xθ)]}. (B.11)
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Similarly, we get from Syy

δ2Syy = −
∫
d3r{(∂yδθ)2[1 + αcos(2θ)] + 2α(δθ)2[cos(2θ)(∂yθ)

2 + sin(2θ)(∂2yθ)]}. (B.12)

Sxy gives

δ2Sxy =− 2α

∫
d3r(δθ)[(∂x∂yδθ)sin(2θ) + 2(δθ)cos(2θ)(∂x∂yθ)

+ (∂xδθ)(∂yθ)cos(2θ) + (∂yδθ)(∂xθ)cos(2θ)− 2(δθ)sin(2θ)(∂xθ)(∂yθ)], (B.13)

where

−α
∫
d3r(δθ)(∂x∂yδθ)sin(2θ) =α

∫
d3r(∂yδθ)[(∂xδθ)sin(2θ) + 2(δθ)cos(2θ)(∂xθ)]

=α

∫
d3r(∂xδθ)[(∂yδθ)sin(2θ) + 2(δθ)cos(2θ)(∂yθ)]. (B.14)

Taking Eq. (B.14) into Eq. (B.13), we get from Sxy

δ2Sxy = 2α

∫
d3r{(∂xδθ)(∂yδθ)sin(2θ) + 2(δθ)2[sin(2θ)(∂xθ)(∂yθ)− cos(2θ)(∂x∂yθ)]}. (B.15)

Besides, we have

−δ
∫
d3r(δθ)(∂2t θ) =

∫
d3r(δ∂tθ)

2. (B.16)

Combining Eqs. (B.11,B.12,B.15,B.16) together, we obtain the second-order variation of S with respect to small δθ,

Sδθ =
1

2
δ2S =

∫
d3r
{1
2
(∂tδθ)

2 − 1

2
(∂xδθ)

2[1− αcos(2θ)]

− 1

2
(∂yδθ)

2[1 + αcos(2θ)] + α(∂xδθ)(∂yδθ)sin(2θ)

+ α(δθ)2{2sin(2θ)(∂xθ)(∂yθ) + cos(2θ)[(∂xθ)
2 − (∂yθ)

2]

+ sin(2θ)(∂2xθ − ∂2yθ)− 2cos(2θ)(∂x∂yθ)}
}
. (B.17)

Here θ is a solution of the classical EOM. Given such θ, we have only to find those δθ that makes δSδθ[δθ] = 0.
In the following, we focus on the one-dimensional solution (∂yθ = ∂yδθ = 0) for simplicity, and neglect the integral

over y, while the following derivation can be generalized to ∂yδθ ̸= 0. The action becomes in the one-dimensional
model

K ≡Sδθ|∂yθ=∂yδθ=0

=

∫ ∞

−∞
dt

∫
L

dx {1
2
(∂tδθ)

2 − 1

2
(∂xδθ)

2[1− αcos(2θ)] + α(δθ)2[(∂xθ)
2cos(2θ) + (∂2xθ)sin(2θ)]}. (B.18)

We substitute into K a perturbative solution of θ in α, e.g. Eqs. (III.28), and expand K in powers of α. This gives

K = K0 +K1 +K2 +O(α3), (B.19)

where Kn = O(αn). K is a quadratic function of δθ. In terms of a Fourier transform of δθq,ω,

δθq,ω =
1√
L

∫
L

dx

∫ ∞

−∞
dt δθ(x, t) e−iqx+iωt, (B.20)

the quadratic function can be characterized by matrix elements among wavenumber q and frequency ω;

K =
1

L

∑
q,q′

∫
dω

2π

∫
dω′

2π
δθ†q,ωKq,ω;q′,ω′ [θ] δθq′,ω′ . (B.21)
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Let us take a solution θ(x, t) for the spin-injection model with the straight geometry as an example. We first take
a part of θ(x, t) with only one spatial wavelength from Eqs. (III.8,III.13),

θ(x, t) = θ0(x, t) + θ1(x, t) +O(α2), (B.22)

θ0(x, t) = −j0x+ j0k0t, θ1(x, t) =
α

4(k20 − 1)
sin(2j0x− 2j0k0t). (B.23)

An inclusion of θ2(x, t) shall be given later. The zeroth order of K is given by

K0 =
1

2

∫
dt

∫
L

dx [(∂tδθ)
2 − (∂xδθ)

2] =
1

2

∑
q

∫
dω

2π
δθ†q,ω(ω

2 − q2)δθq,ω, (B.24)

A substitution of Eq. (B.23) into O(α)-terms in Eq. (B.18) gives K1 and K2,

α

2
(∂xδθ)

2cos(2θ0 + 2θ1) + α(δθ)2(∂xθ0 + ∂xθ1)
2cos(2θ0 + 2θ1)

+α(δθ)2(∂2xθ0 + ∂2xθ1)sin(2θ0 + 2θ1)

=
α

2
(∂xδθ)

2cos(2θ0) + α(δθ)2(∂xθ0)
2cos(2θ0)

− α(∂xδθ)
2sin(2θ0)θ1 − 2α(δθ)2(∂xθ0)(∂xθ1)cos(2θ0)

− 2α(δθ)2(∂xθ0)
2sin(2θ0)θ1 − α(δθ)2(∂2xθ1)sin(2θ0) +O(α3)

=
α

2
(∂xδθ)

2cos(2j0x− 2k0j0t) + αj20(δθ)
2cos(2j0x− 2j0k0t)

+
α2(∂xδθ)

2

4(k20 − 1)
sin2(2j0x− 2j0k0t)−

α2j20(δθ)
2

k20 − 1
cos2(2j0x− 2j0k0t)

+
α2j20(δθ)

2

2(k20 − 1)
sin2(2j0x− 2j0k0t) +

α2j20(δθ)
2

k20 − 1
sin2(2j0x− 2j0k0t) + O(α3). (B.25)

Equivalently, we have

K1 =α

∫
dt

∫
L

dx [
1

2
(∂xδθ)

2cos(2j0x− 2j0k0t) + j20(δθ)
2cos(2j0x− 2j0k0t)]

=α

∫
dt

∫
L

dx [
1

4L

∑
q,q′

∫
ω,ω′

qq′δθ†q,ωδθq′,ω′ +
j20
2L

∑
q,q′

∫
ω,ω′

δθ†q,ωδθq′,ω′ ]e−iqx+iωteiq
′x−iω′te2ij0x−2ij0k0t +H.c.

=
α

4

∑
q

∫
ω

δθ†q+2j0,ω+2j0k0
δθq,ω[q(q + 2j0) + 2j20 ] + H.c.

=
α

4

∑
q

∫
ω

δθ†q+j0,ω+j0k0δθq−j0,ω−j0k0(q
2 + j20)e

−2ij0k0t +H.c., (B.26)

K2 =α2

∫
dt

∫
L

dx
{ (∂xδθ)

2

8(k20 − 1)
[1− cos(4j0x− 4j0k0t)]−

j20(δθ)
2

k20 − 1
cos(4j0x− 4j0k0t)

+
j20(δθ)

2

4(k20 − 1)
[1− cos(4j0x− 4j0k0t)]

}
=

α2

8(k20 − 1)

∑
q

∫
dω

2π
δθ†q,ωδθq,ωq

2 +
α2j20

4(k20 − 1)

∑
q

∫
dω

2π
δθ†q,ωδθq,ω

− α2

16(k20 − 1)

∑
q

∫
dω

2π

{
δθ†q+2j0,ω+2j0k0

δθq−2j0,ω−2j0k0

[
(q2 − 4j20) + 8j20 + 2j20

]
e−4ij0k0t +H.c.

}
=

α2

8(k20 − 1)

∑
q

∫
dω

2π
δθ†q,ωδθq,ω(2j

2
0 + q2)

− α2

16(k20 − 1)

∑
q

∫
dω

2π

[
δθ†q+2j0,ω+2j0k0

δθq−2j0,ω−2j0k0(q
2 + 6j20) + H.c.

]
. (B.27)
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Taking Eqs. (B.24,B.26,B.27) into Eq. (B.20), we obtain the matrix elements,

1

2π
Kq+p,ω+ν;q−p,ω−ν = (ω2 − q2)δp,0δ(ν) +

α(q2 + j20)

2
(δp,j0δ(ν − j0k0) + δp,−j0δ(ν + j0k0))

− α2

8(k20 − 1)
[−2(2j20 + q2)δp,0δ(ν) + (q2 + 6j20)(δp,2j0δ(ν − 2j0k0) + δp,−2j0δ(ν + 2j0k0))] +O(α3). (B.28)

To find δθ that satisfies δSδθ[δθ] = 0, we only have to find an eigenmode of K in Eq. (B.21) that belongs to
zero eigenvalue (“eigenenergy”). At the zeroth order in α, eigenmodes of K are characterized by q and ω, and the
“zero-energy” eigenmodes are obtained by setting ω to be q (on-shell condition). When α is included perturbatively,
eigenmodes at q and ω hybridize with eigenmodes at q±2j0 and ω±2j0k0 as well as eigenmodes at q±4j0 and ω±4j0k0
in terms of off-diagonal mixing terms. Due to the off-diagonal mixing terms, eigenmodes of K are characterized by q
and ω modulo 2j0 and 2j0k0 respectively, and (q, ω) ∈ [−j0, j0] × [−k0j0, k0j0] plays a role of a first Brillouin zone.
In the Brillouin zone, eigenmodes at the same (q, ω) are distinguished by a band index n,

K =
1

2

∑
n∈N

∑
−j0≤q<j0

∫ k0j0

−k0j0

dω

2π
δφ†

q,ω,nΛq,ω,nδφq,ω,n +O(α3), (B.29)

with

δθq+2j0m1,ω+2k0j0m2
=
∑
n∈N

cq,ω,n;m1,m2
δφq,ω,n, (B.30)

m1 ∈ Z, m2 ∈ Z. Here, cq,ω,n;m1,m2
is analogous to the periodic part of a Bloch wavefunction in the band theory.

From Eq. (B.28) Kq,ω;q,ω′ is real symmetric, so that cq,ω,n;m1,m2
are real. An eigenstate of the lowest energy, say

δφq,ω,n=0, must approach δθq,ω in the limit of α → 0. Such lowest eigenmode (n = 0) is calculated up to the 2nd
order in α as follows,

cq,ω,0;m1,m2
=δm1,0δm2,0 −

α[
(q+j0)

2+j20
2 ]

(ω + 2j0k0)2 − (q + 2j0)2 − ω2 + q2
δm1,1δm2,1

−
α[

(q−j0)2+j20
2 ]

(ω − 2j0k0)2 − (q − 2j0)2 − ω2 + q2
δm1,−1δm2,−1 +O(α2)

=δm1,0δm2,0 − α
1 +O(q, ω)

4(k20 − 1)
δm1,1δm2,1 − α

1 +O(q, ω)

4(k20 − 1)
δm1,−1δm2,−1 +O(α2). (B.31)

A corresponding “eigenenergy” is calculated up to the 2nd order,

Λq,ω,0 =ω2 − q2 +
α2(2j20 + q2)

4(k20 − 1)

−
α2[

(q+j0)
2+j20

2 ]2

(ω + 2j0k0)2 − (q + 2j0)2 − ω2 + q2
−

α2[
(q−j0)2+j20

2 ]2

(ω − 2j0k0)2 − (q − 2j0)2 − ω2 + q2
+O(α3)

=ω2 − q2 +
α2(2j20 + q2)

4(k20 − 1)
− α2(2j20 + 2qj0 + q2)2

4[4j20(k
2
0 − 1) + 4qj0 − 4ωj0k0]

− α2(2j20 − 2qj0 + q2)2

4[4j20(k
2
0 − 1)− 4qj0 + 4ωj0k0]

+O(α3), (B.32)

namely

Λq,ω,0 =ω2 +
α2j20
2

1

k20 − 1
− q2[1− α2

4(k20 − 1)
]

− α2

16j20(k
2
0 − 1)

(4j40 + 8qj30 + 8q2j20)[1−
q − ωk0
j0(k20 − 1)

+
(q − ωk0)

2

j20(k
2
0 − 1)2

+O((q + ωk0)
3)]

− α2

16j20(k
2
0 − 1)

(4j40 − 8qj30 + 8q2j20)[1 +
q − ωk0
j0(k20 − 1)

+
(q − ωk0)

2

j20(k
2
0 − 1)2

+O((q + ωk0)
3)] +O(α3)

=ω2 +
α2j20
2

1

k20 − 1
− q2[1− α2

4(k20 − 1)
]− α2j20

2(k20 − 1)
+O(α2ω2, α2q2, α2ωq, α3)

=ω2 − q2[1− α2

4(k20 − 1)
] +O(α2ω2, α2q2, α2ωq, α3). (B.33)
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The lowest energy band indicates that δθ evaluated on shell, Λq,ω,0 = 0, behaves like a gapless classical wave. This is
because the original theory, Eq. (6) in the main text, has a spacetime translational symmetry. Thus, for any θ, one
can choose δθ as a translation of θ, and such δθ does not change the Lagrangian. For a general k0 (off the resonance
point; k0 ̸= 1), α can be treated perturbatively, and the classical wave up to the 2nd order in α has a well-defined
(i.e. real-valued) velocity v,

1− α2

4(k20 − 1)
= 1 +O(α2) ≡ v2 > 0. (B.34)

By evaluating the eigenmode on shell (|ω| = |q|+O(α2)|q|), we finally determine the first-order δθ1 for an arbitrary
form of δθ0 given by Eq. (B.1),

δθ1(x, t) =
1√
L

|q|<j0∑
q

∫ k0j0

−k0j0
dω
[
δ(q − ω)dq + δ(q + ω)d′q

]
×
[
− α

1 +O(q)

4(k20 − 1)
ei(q+2j0)x−i(ω+2j0k0)t − α

1 +O(q)

4(k20 − 1)
ei(q−2j0)x−i(ω−2j0k0)t

]
. (B.35)

Finally, let us include θ2(x, t) into Eq. (B.22),

θ(x, t) = θ0(x, t) + θ1(x, t) + θ2(x, t) +O(α2), (B.36)

θ2(x, t) =2αRe(g)cos[2k0j0(t− x)] + 2αRe(g′)cos[2k0j0(t+ x)]

− 2αIm(g)sin[2k0j0(t− x)]− 2αIm(g′)sin[2k0j0(t+ x)]. (B.37)

Eq. (B.27) has an additional O(α2) contribition,

∆K2 =

∫
dtdx[−α(∂xδθ)2sin(2θ0)θ2 + 2α(δθ)2(∂xθ0)(∂xθ2)cos(2θ0)

− 2α(δθ)2(∂xθ0)
2sin(2θ0)θ2 + α(δθ)2(∂2xθ2)sin(2θ0)]. (B.38)

For k0 ̸= 1, ∆K2 contributes only to off-diagonal matrix elements of Kq,ω;q,ω, so that it changes neither Eq. (B.33)
nor Eq. (B.35) at their respective sub-leading order.
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