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ON ASPHERICAL CONFIGURATION LIE GROUPOIDS

S.K. ROUSHON

Abstract. The complement of the hyperplanes {xi = xj}, for all i 6= j in
Mn, for M an aspherical 2-manifold, is known to be aspherical. Here we
consider the situation, when M is a 2-dimensional orbifold. We prove this
complement to be aspherical for a class of aspherical 2-dimensional orbifolds,
and predict that it should be true in general also. We generalize this question
in the category of Lie groupoids, as orbifolds can be identified with a certain
kind of Lie groupoids.

Contents

1. Introduction 1
2. Lie groupoids and orbifolds 3
2.1. Lie groupoids 3
2.2. Orbifolds as Lie groupoids 5
3. Asphericity 9
4. Proof 12
References 14

1. Introduction

Let X be a topological space and PBn(X) be the configuration space of ordered
n-tuples of pairwise distinct points of X . That is,

PBn(X) = {(x1, x2, . . . , xn) ∈ Xn | xi 6= xj , for i 6= j}.

Let M be a connected manifold of dimension ≥ 2, and n ≥ 2. The Fadell-
Neuwirth fibration theorem ([[7], Theorem 3]) says that the projection map Mn →
M r to the first r coordinates restricts to the following locally trivial fiber bundle

map, with fiber homeomorphic to PBn−r(M̃), where M̃ = M − {r points}.

f(M) : PBn(M) → PBr(M).

Our main motivation for this article is the following corollary of the fibration
theorem. In the rest of the article we assume r = n− 1.

Theorem 1.1. ([[7], Corollary 2.2]) Let M be a connected aspherical 2-manifold.
Then PBn(M) is also aspherical.

Date: March 28, 2024.
2020 Mathematics Subject Classification. Primary: 22A22, 55P20, 55R80; Secondary: 57R18.
Key words and phrases. Configuration Lie groupoid, orbifold, orbifold fundamental group.

1

http://arxiv.org/abs/2309.12198v3


2 S.K. ROUSHON

Proof. Note that, the fiber of f(M) is aspherical, since it is homeomorphic to
M − {(n − 1) points}. Next, since f(M) is a fibration, it induces a long exact
sequence of homotopy groups. Therefore, by induction on n, we conclude that
PBn(M) is aspherical. �

It is an important subject to study the homotopy groups, especially the funda-
mental groups of the configuration spaces of a manifold. Since in dimension ≥ 3,
the space PBn(M) and the product manifold Mn have isomorphic fundamental
groups, the dimension 2 case is of much interest. Using the fibration f(M), there
are results to compute the higher homotopy groups of the configuration space as
well. See [7] for more on this subject.

Orbifolds are also of fundamental importance in algebraic and differential ge-
ometry, topology and string theory. In [17] we studied the possibility of extending
the Fadell-Neuwirth fibration theorem for orbifolds. However, to define a fibration
between orbifolds, we had to consider the category of Lie groupoids. Since an orb-
ifold can be realized as a Lie groupoid ([12]), and there are enough tools in this
category to define a fibration. There, we defined two notions (a and b-types) of a
fibration ([[17], Definition 2.4]) and the corresponding (a and b-types) configura-
tion Lie groupoids of a Lie groupoid to enable us to state a Fadell-Neuwirth type
fibration theorem. For an orbifold M , the b-type configuration Lie groupoid is the
correct model to induce the orbifold structure on PBn(M). We proved that the
Fadell-Neuwirth fibration theorem extends in this generality, under some strong
hypothesis (c-groupoid). We will show in Proposition 3.1, that this is the best
possible extension. For this, we will deduce that the map f(M) is not a a(or b)-
type fibration for the a(or b)-type configuration Lie groupoids of Lie groupoids,
corresponding to global quotient orbifolds of dimension ≥ 2 with a homological
condition, and a non-empty singular set. In fact, for 2-dimensional orbifolds with
at least one cone point, f(M) does not induce a long exact sequence of orbifold
homotopy groups. See Remark 3.2 for a more precise statement.

Recall that, for a connected aspherical 2-manifold M , by Theorem 1.1, PBn(M)
is an aspherical manifold. Equivalently, the universal cover of PBn(M) is a con-
tractible manifold.

We define an orbifold M to be aspherical, if its universal orbifold cover M̃ is a

contractible orbifold, that is, if the orbifold homotopy groups πorb
q (M̃), for q ≥ 1,

are trivial.
At this point, one may ask if Theorem 1.1 is true for connected 2-dimensional

orbifolds. In the following theorem we give an answer to this question, for a class
of aspherical 2-dimensional orbifolds. Let C∗ be C with one puncture.

Theorem 1.2. Let M be one of the following 2-dimensional orbifolds.

• Underlying space is C with one cone point of order m ≥ 2.
• Underlying space is C with two cone points of order 2.
• Underlying space is C∗ with one cone point of order 2.

Then PBn(M) is aspherical.

Here, we make some remark on the reasons behind the three cases in the theo-
rem. The first one relates to the solution of the K(π, 1)-problem of the hyperplane
arrangement complement corresponding to the unitary reflection groups G(m, l, n)
([14]), and the finite type Artin groups of type Dn (m = 2 case) ([3]). The second
and third cases need the solutions of the K(π, 1)-problem for the affine Artin groups



ON ASPHERICAL CONFIGURATION LIE GROUPOIDS 3

of types D̃n and B̃n, respectively ([15], [4]). The K(π, 1)-problem for hyperplane
arrangement complements is well known, and there are milestone results in the
literature. See [5] for finite type Artin groups, [15] for affine Artin groups, and [2]
for finite complex reflection groups.

We predict the following.

Asphericity conjecture. PBn(M) is aspherical, for a connected aspherical 2-
dimensional orbifold M .

Since a contractible orbifold is a manifold ([11]), the universal orbifold cover M̃
of a connected aspherical 2-dimensional orbifold, is an aspherical simply connected

2-manifold. Therefore, M̃ is diffeomorphic to a submanifold of R2, and πorb
1 (M) is

acting effectively and properly discontinuously on M̃ . We will prove in Proposition
3.3, that the Asphericity conjecture is equivalent to the following statement.

Asphericity conjecture for orbit configuration spaces. Let H be a discrete
group acting effectively and properly discontinuously on a connected and simply

connected submanifold M̃ of R2. Then, the following orbit configuration space of

the action of H on M̃ , is aspherical.

PBn(M̃,H) := {(x1, x2, . . . , xn) ∈ Mn | Hxi 6= Hxj , for i 6= j}.

To define the orbifold homotopy groups of an orbifold, one needs to look at
orbifolds as Lie groupoids. In the next section we will see how to study orbifolds in
the category of Lie groupoids. Then, we will formulate the above statements in this
general setting. Also, we will justify the equivalence of the Asphericity conjecture
and its orbit configuration space version. In the final section we give the proof of
Theorem 1.2.

2. Lie groupoids and orbifolds

In this paper by a ‘manifold’ we mean a ‘Hausdorff smooth manifold’ and by a
‘group’ we mean a ‘discrete group’, unless mentioned otherwise. A ‘map’ is either
continuous or smooth, which will be clear from the context. And a ‘fibration’ would
mean a ‘Hurewicz fibration’.

We now recall some basics on Lie groupoids and orbifolds. See [1], [12] or [13]
for more details.

2.1. Lie groupoids. Let G be a Lie groupoid with object space G0 and morphism
space G1. Let s, t : G1 → G0 be the source and the target maps defined by s(σ) = x
and t(σ) = y, for σ ∈ morG(x, y) ⊂ G1. Recall that s and t are smooth and
submersions.

A homomorphism f between two Lie groupoids is a smooth functor which re-
spects all the structure maps. f0 and f1 denote the object and morphism level maps
of f , respectively. For any x ∈ G0, the set t(s−1(x)) is called the orbit of x. The
space |G| of all orbits with respect to the quotient topology is called the orbit space
of the Lie groupoid. If f : G → H is a homomorphism between two Lie groupoids,
then f induces a map |f | : |G| → |H|, making the following diagram commutative.
We define G to be Hausdorff if |G| is Hausdorff, and it is called a c − groupoid if
the quotient map G0 → |G| is a covering map. Hence a c-groupoid is Hausdorff.



4 S.K. ROUSHON

G0
f //

��

H0

��
|G|

|f |
// |H|.

Given a Hausdorff Lie groupoid G, we defined in [[17], Definition 2.8] the b-
configuration Lie groupoid PBb

n(G). In this paper we do not use the superscript b
as we consider only this configuration Lie-groupoid. Recall that, its object space
PBn(G)0 is the n-tuple of objects of G with mutually distinct orbits.

PBn(G)0 = {(x1, x2, . . . , xn) ∈ Gn
0 | t(s−1(xi)) 6= t(s−1(xj)), for i 6= j}.

The morphism space PBn(G)1 is (sn, tn)−1(PBn(G)0 ×PBn(G)0). We also showed
in [[17], Lemma 2.9] that the projection to the first n− 1 coordinates on both the
object and morphism spaces define a homomorphism f(G) : PBn(G) → PBn−1(G).

Let H and G be two Lie groupoids and f : H → G be a homomorphism, such that
f0 : H0 → G0 is a covering map. Then, f is called a covering homomorphism of Lie
groupoids if H0 is a left G-space with f0 equal to the action map, H1 = G1 ×G0

H0

and f1 is the first projection. The source and the target maps of H coincide with
the second projection and the action map, respectively.

Next we recall the important concept of the classifying space of a Lie groupoid,
which is required to define algebraic invariants of the Lie groupoid. For a Lie
groupoid G, the classifying space BG is defined as the geometric realization of the
simplicial manifold G• defined by the following iterated fibered products.

Gk = G1 ×G0
G1 ×G0

· · · ×G0
G1.

See [[1], p. 25] or [12] for some discussion on this matter, in the context of
orbifold Lie groupoids (Example 2.3).

Definition 2.1. The k-th homotopy group of G is defined as the k-th ordinary
homotopy group of BG. That is, πk(G, x̃0) := πk(BG, x̃0) for x̃0 ∈ G0. A Lie
groupoid G is called aspherical if πk(G, x̃0) = 0 for all k ≥ 2 and for all x̃0 ∈ G0.

Note that, a homomorphism f : G → H induces a map Bf : BG → BH. Also
see [1] or [12] for some more on homotopy groups of Lie groupoids.

Now, we recall the concept of equivalence between two Lie groupoids. One
consequence of this concept is that an equivalence f : G → H between two Lie
groupoids induces a weak homotopy equivalence Bf : BG → BH.

A more appropriate notion of equivalence between Lie groupoids is Morita equiv-
alence.

Definition 2.2. Let f : G → H be a homomorphism between Lie groupoids. f is
called an equivalence if the following conditions are satisfied.

• The following composition is a surjective submersion.

H1 ×H0
G0

π1 // H1
t // H0.

Here H1 ×H0
G0 is the fibered product, defined by s and f0.

H1 ×G0
G0

π1 //

π2

��

H1

s

��
G0

f0 // H0.
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• The following commutative diagram is a fibered product of manifolds.

G1
f1 //

(s,t)

��

H1

(s,t)

��
G0 × G0

f0×f0 // H0 ×H0.

G and H are called Morita equivalent if there is a third Lie groupoid K and two
equivalences as follows.

G Koo // H.

Next, we recall a standard example of a Lie groupoid which is relevant for us.

Example 2.3. Let M̃ be a manifold, and a Lie group H is acting on M̃ smoothly.

Out of this information one constructs a Lie groupoid G(M̃,H) as follows, and call it

the translation Lie groupoid. Define G(M̃,H)0 = M̃ , G(M̃,H)1 = M̃×H , s(x, h) =
x, t(x, h) = h(x), u(x) = (x, 1), i(x, h) = (x, h−1) and (h(x), h′) ◦ (x, h) = (x, h′h),

for h, h′ ∈ H and x ∈ M̃ . When H is the trivial group then G(M̃,H) is called the

unit groupoid, denoted by G(M̃) and is identified with M̃ . In this paper we always
consider H to be discrete (unless explicitly mentioned) and is acting effectively

and properly discontinuously on M̃ ([[21], Definition 3.7.1]). Then G(M̃ ,H) is an

example of an (effective) orbifold Lie groupoid. In this case G(M̃,H) is also called

an orbifold Lie groupoid inducing the orbifold structure on M = M̃/H . For the
more general definition of orbifold Lie groupoid see [12] or [[1], Definition 1.38].

Definition 2.4. We call an effective orbifold Lie groupoid of type G(M̃ ,H) as in
Example 2.3, a translation orbifold Lie groupoid.

Example 2.5. Let H and M̃ be as in Example 2.3. Let H ′ be a subgroup of H

and i : H ′ → H be the inclusion map. Then the maps f0 := id : M̃ → M̃ and

f1 := (id, i) : M̃ ×H ′ → M̃ ×H together define a homomorphism f : G(M̃,H ′) →

G(M̃,H).

Frequently, in this paper we will be using the following lemma.

Lemma 2.6. Let G and H be two orbifold Lie groupoids, and f : G → H be a
covering homomorphism. Then f induces isomorphisms on higher homotopy groups
and an injection on the fundamental groups.

Proof. It is easy to see that a covering homomorphism between two orbifold Lie
groupoids induces a covering map on their classifying spaces. The Lemma now
follows from standard covering space theory. See [[1], Proposition 2.17]. �

2.2. Orbifolds as Lie groupoids. An orbifold ([21]) or a V -manifold as in [19],
is defined as follows.

Definition 2.7. Let M be a paracompact Hausdorff topological space. Assume
for each x ∈ M , there is a connected open neighborhood Ux ⊂ M of x satisfying
the following conditions.

• There is a connected open set Ũx in some Rn and a finite group Gx of diffeo-

morphisms of Ũx. Furthermore, there is a Gx-equivariant map φx : Ũx → M such

that the induced map [φx] : Ũx/Gx → M is a homeomorphism onto Ux.
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Then, (Ũx, Gx, φx) is called a chart and M is called an orbifold, with underlying
space M . Given a chart (Ux, Gx, φx), the group Gx can be shown to be unique,
and is called the local group at x. If the local group at x is trivial, then x is called
a smooth or a regular point, otherwise it is a singular point or a singularity.

Assume dimension of M is 2. Let (Ux, Gx, φx) be a chart such that, Gx is finite

cyclic of order q, acting by rotation around the origin (0, 0) ∈ Ũx ⊂ R2 by an
angle 2π

q
and φx((0, 0)) = x. Then, x is called a cone point of order q. Also, there

are two other types of singularities, called reflector lines and corner reflectors. In
this dimension, it is known that the underlying space is homeomorphic to a 2-
dimensional manifold. The genus of the underlying space M is called the genus of
the orbifold M . See [20] for more details.

Example 2.8. An orbifold Lie groupoid G gives an orbifold structure on |G|. See
[[1], Proposition 1.44].

We now have the following useful lemma.

Lemma 2.9. Let G and H be two orbifold Lie groupoids and f : G → H be a
homomorphism. Then, f is a covering homomorphism of Lie groupoids if and only
if |f | : |G| → |H| is an orbifold covering map.

Proof. See [[1], p. 40] for a proof. �

Example 2.10. If a group H acts effectively and properly discontinuously on a

manifold M̃ , and H ′ is a subgroup of H , then the homomorphism G(M̃,H ′) →

G(M̃,H) (Example 2.5) is a covering homomorphism. In particular, if a finite

group H acts effectively on a manifold M̃ , then G(M̃) → G(M̃,H) is a covering
homomorphism.

It is well known that two orbifold Lie groupoids induce equivalent orbifold struc-
tures on M if and only if they are Morita equivalent ([13], [12]).

In our situation of translation orbifold Lie groupoids we see in the following
lemma, that when two translation orbifold Lie groupoids are Morita equivalent
then in the Morita equivalence, the third orbifold Lie groupoid also can be chosen
to be a translation orbifold Lie groupoid. We need this lemma for the proof of
Theorem 3.5.

Lemma 2.11. Let two translation orbifold Lie groupoids G(M1, H1) and G(M2, H2)
are inducing equivalent orbifold structures on M . Then there is a third transla-
tion orbifold Lie groupoid G(M3, H3), which is equivalent to both G(M1, H1) and
G(M2, H2).

Proof. Let p1 : (M1,m1) → (M,m) and p2 : (M2,m2) → (M,m) be the orbifold
covering projections, with groups of covering transformations H1 and H2, respec-
tively. Here m ∈ M is a smooth point. Consider the orbifold covering M3 of M
corresponding to the subgroup

K := (p1)∗(π1(M1,m1)) ∩ (p2)∗(π1(M2,m2)) < πorb
1 (M,m).

Let H3 be the group of covering transformation of the orbifold covering map p3 :
M3 → M .

Then, we will establish the following diagram.

G(M1, H1) G(M3, H3)oo // G(M2, H2).
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We will first define the arrows and then show that they are, in fact, homomorphisms
and equivalences.

We just need to check it for one of these arrows, since the same proof will work
for the other one as well.

Denote G(M3, H3) by G and G(M1, H1) by H. Let p : (M3,m3) → (M1,m1) be
the covering map corresponding to the subgroup (p1)

−1
∗ (K) of π1(M1,m1), and let

ρ : H3 = πorb
1 (M,m)/p3∗(π1(M3,m3)) // πorb

1 (M,m)/p1∗(π1(M1,m1)) = H1

be the quotient homomorphism. Note that, p is a genuine covering map of mani-
folds.

Then define f0 = p and f1 = (p, ρ) : M3 × H3 → M1 × H1. The following
commutative diagram shows that f : G → H is a homomorphism, where h3 ∈ H3.

M3
h3 //

p

��

M3

p

��
M1

ρ(h3) //

p1

!!❈
❈❈

❈❈
❈❈

M1

p1

}}④④
④④
④④
④

M

Now we check that f is an equivalence. See Definition 2.2.
The first condition in the definition of an equivalence says that the composition

H1 ×H0
G0

π1 // H1
t // H0

should be a surjective submersion. In our situation it takes the following form.

(M1 ×H1)×M1
M3

π1 // (M1 ×H1)
t // M1.

The fibered product is with respect to s (first projection) and p. Since p and t are
both surjective submersions, it follows that t ◦ π1 is a surjective submersion.

Next, we have to check the second condition in the definition of an equivalence,
that is, we have to show that the following diagram is a fibered product in the
category of manifolds.

G1
f1 //

(s,t)

��

H1

(s,t)

��
G0 × G0

f0×f0 // H0 ×H0.
In this case, the diagram takes the form.

M3 ×H3
(p,ρ) //

(s,t)

��

M1 ×H1

(s,t)

��
M3 ×M3

(p,p) // M1 ×M1.

Recall that, here (s, t)(m3, h3) = (m3, h3(m3)) for (m3, h3) ∈ M3 ×H3, and simi-
larly, (s, t)(m1, h1) = (m1, h1(m1)) for (m1, h1) ∈ M1 ×H1.

To check that the above diagram is a fibered product, we have to complete the
following commutative diagram by defining the dashed arrow l, such that the whole
diagram commutes. Here A is a manifold and the maps i, j and k are smooth. The
two lower right hand side triangles are given to be commutative, that is, (s, t) ◦ i =
k = (p, p)◦j. For a ∈ A let i(a) = (m1(a), h1(a)) and j(a) = (m3(a),m

′
3(a)). Then,

we get k(a) = (p(m3(a)), p(m
′
3(a))) = (m1(a), h1(a)(m1(a))).
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M3 ×H3
(p,ρ) //

(s,t)

��

M1 ×H1

(s,t)

��

A

i

::✉✉✉✉✉✉✉✉✉✉

k

$$■
■■

■■
■■

■■
■

j

zz✉✉
✉✉
✉✉
✉✉
✉

l

dd■
■
■
■
■

M3 ×M3
(p,p) // M1 ×M1.

Next, consider the following diagram. The unique map h3(a) is obtained by
lifting the composition of the horizontal maps using lifting criterion of covering
space theory. Now, we define l(a) = (m3(a), h3(a)). This completes the proof that
f is an equivalence of Lie groupoids.

(M3,m
′
3(a))

p

��
(M3,m3(a))

p //

h3(a)

22❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢
(M1,m1(a))

h1(a) // (M1, p(m
′
3(a))).

This completes the proof of the lemma. �

We are now ready to recall the following definition.

Definition 2.12. Let G be an orbifold Lie groupoid inducing an orbifold structure
on M . Then, the k-th orbifold homotopy group πorb

k (M,x0) of M is defined as the
homotopy group πk(G, x̃0) for some x̃0 ∈ G0 lying above a base point x0 ∈ M . M
is called aspherical if G is aspherical.

The fundamental group of an orbifold Lie groupoid G inducing the orbifold struc-
ture on M , is also called the orbifold fundamental group of the orbifold M . This
group is identified with the standard definition of orbifold fundamental group of M
(see [21]). Hence, by Lemmas 2.6 and 2.9, we get the following lemma.

Lemma 2.13. An orbifold covering map induces isomorphisms on higher homotopy
groups, and an injection on orbifold fundamental groups.

An useful immediate corollary of the lemma is the following.

Corollary 2.14. Let M be a connected orbifold and p : M̃ → M be an orbifold

covering map. Assume that M̃ is connected and has no singular points. Then

p∗ : πk(M̃) → πorb
k (M) is an isomorphism for all k ≥ 2.

In general an orbifold need not be the quotient of a manifold by an effective and
properly discontinuous action of a discrete group. For example, the sphere with one
cone point and the sphere with two cone points of different orders are examples of
closed 2-dimensional orbifolds, which are not covered by manifolds. See [21]. Also
see Proposition 1.54 and Conjecture 1.55 in [1] for some more general discussion.

It is standard to call a connected orbifold M good or developable if there is a

manifold M̃ and an orbifold covering map M̃ → M .
We will need the following extension of the main theorem of [16], which says

that a connected 2-dimensional orbifold with finitely generated and infinite orbifold
fundamental group is good.

Proposition 2.15. Let M be a connected 2-dimensional orbifold, with infinite
orbifold fundamental group. Then M is good.
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Proof. First, recall that a 2-dimensional orbifold has three different types of singular
sets: cone points, reflector lines and corner reflectors (See [[20], p. 422]). The
points on the reflector lines and corner reflectors contributes to the boundary of
the underlying space, called orbifold boundary. Hence, after taking a double of the
underlying space along this orbifold boundary components, and then applying [[16],
Lemma 2.1], we get an orbifold double cover of M which has only cone points.

Therefore, we can assume that the orbifold M has only cone points. Also, we
replace each manifold boundary component with a puncture. Clearly, this does not
affect the orbifold fundamental group of M .

Note that, if πorb
1 (M) is finitely generated, then the proposition follows from

[[16], Theorem 1.1]. If it is infinitely generated, then M either has infinite genus or
has infinitely many punctures or infinitely many cone points.

Hence, we can write M as an infinite increasing union of orbifolds of the type
M(ri, si), i ∈ N. Each M(ri, si) has finite genus, ri number of punctures and si
number of cone points. Furthermore, we can assume that M(ri, si) has infinite
orbifold fundamental group. Then clearly, M(ri, si) is aspherical, since they are
all good orbifolds with infinite orbifold fundamental groups. Hence, a direct limit
argument shows that M is also aspherical, since the orbifold homotopy groups are

covariant functors. Therefore, by Lemma 2.13, the universal orbifold covering M̃
of M has all the orbifold homotopy groups trivial. We now apply [11] to conclude

that M̃ is a manifold. Hence M is a good orbifold. �

3. Asphericity

In this section we state the Asphericity conjecture and Theorem 1.2, in the
general set up of the category of Lie groupoids.

If M is an orbifold, then PBn(M) is an orbifold, since it is an open set in the
product orbifold Mn.

Let H be a group acting effectively and properly discontinuously on a connected

manifold M̃ . Then the quotient M = M̃/H has an orbifold structure.

Consider the space PBn(M̃,H) of n-tuples of points of M̃ with pairwise dis-
tinct orbits, defined in the Introduction. Then, Hn acts effectively and prop-

erly discontinuously on PBn(M̃,H), with quotient, the orbifold PBn(M). Hence,

PBn(G(M̃,H)), the configuration Lie groupoid of n points of G(M̃,H) is the cor-

responding translation orbifold Lie groupoid G(PBn(M̃,H), Hn). Recall that, for
a good orbifold M , we can have many configuration Lie groupoids associated to
different regular orbifold coverings of M . Also, clearly given two such orbifold cov-
erings, the corresponding configuration Lie groupoids will induce equivalent orbifold
structures on PBn(M).

In [[17], Theorem 2.10] we proved that the homomorphism f(G) : PBn(G) →
PBn−1(G) is a b-fibration for a c-groupoid G. We had also shown that, this is the
best possible class of Lie groupoids to which this fibration result can be proven. In
the following proposition, we deduce a more general statement.

A surjective map g : X → Y is called a quasifibration, if g : (X, g−1(y)) →
(Y, y) is a weak homotopy equivalence, for all y ∈ Y ([6]). Hence, a fibration is a
quasifibration, and also a quasifibration induces a long exact sequence of homotopy
groups.
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Proposition 3.1. Let H be a finite group, acting effectively on a connected man-

ifold M̃ of dimension m ≥ 2, with at least one fixed point. Assume that the in-

tegral homology group Hm(M̃,Z) is finitely generated. Then the projection map

f0 : PBn(M̃,H) → PBn−1(M̃,H) is not a quasifibration.

Proof. By hypothesis, there is a point s ∈ M̃ , so that the isotropy group Hs = {h ∈

H | hs = s} is nontrivial. There is a neighbourhood Us ⊂ M̃ of s preserved by Hs

and hUs ∩ Us = ∅ for all h ∈ H −Hs. Such a neighbourhood exists, see the proof

of [[21], Proposition 5.2.6]. Since regular points are dense in M̃/H , there is a point
s′ ∈ Us which has trivial isotropy group. That is, s′ corresponds to a regular point

and s corresponds to a singular point on M̃/H .

Choose a point x = (s, x2, . . . , xn−1) ∈ PBn−1(M̃,H), such that Hxi 6= Hs′

for all i = 2, 3, . . . , n − 1. Let y = (s′, x2, . . . , xn−1). Note that |Hs| < |Hs′|.

Then it follows that f−1
0 (x) and f−1

0 (y) are obtained from M̃ , by removing |Hs|
and |Hs′| number of points, respectively. Hence, they have non-isomorphic integral

homology groups in dimension m, since Hm(M̃,Z) is finitely generated. Therefore,
f−1
0 (x) and f−1

0 (y) are not weak homotopy equivalent. On the other hand, for
a quasifibration over a path connected space any two fibers are weak homotopy
equivalent ([9], chap. 4, p. 479). Therefore, f0 is not a quasifibration. �

The examples in the proposition above are the primary reasons why the Fadell-
Neuwirth fibration theorem does not extend to orbifolds, and more generally to Lie
groupoids.

Remark 3.2. In [8], Flechsig pointed out that the short exact sequence proved
in [17] is, in fact, a four-term exact sequence. That is, the kernel of the homo-
morphism f(M)∗ : πorb

1 (PBn(M)) → πorb
1 (PBn−1(M)) is not isomorphic to the

orbifold fundamental group of a generic fiber (that is, fiber over a smooth point)
of f(M), if M is a genus zero 2-dimensional orbifold with at least one puncture
and at least one cone point. See [18] for more on this matter. Therefore, together
with Theorem 1.2, for such M we conclude that f(M) is not a quasifibration of
orbifolds, that is, it does not induce a long exact sequence of orbifold homotopy
groups. Furthermore, using [[18], Theorem 2.2], the same would not be true in
general also if the Asphericity conjecture has a positive answer.

Let C be the class of all connected 2-dimensional orbifolds with πorb
1 (M) infinite.

Let M ∈ C. Then, by Proposition 2.15, M is a good orbifold. For convenience we

denote by GM , a translation orbifold Lie groupoid G(M̃,H), inducing the orbifold
structure on M . Since M is good, there are many such translation orbifold Lie
groupoids.

The following proposition justifies the equivalence between the Asphericity con-
jecture and its orbit configuration space version, of the Introduction.

Proposition 3.3. Let M ∈ C and consider a translation orbifold Lie groupoid

G(M̃,H), such that M = M̃/H. Then, PBn(M) is aspherical if and only if the

manifold PBn(M̃,H) is aspherical.

Proof. Note that, by our convention (Example 2.3) H is acting on M̃ effectively

and properly discontinuously, so that M = M̃/H . Therefore, the quotient map



ON ASPHERICAL CONFIGURATION LIE GROUPOIDS 11

PBn(M̃,H) → PBn(M) is an orbifold covering map. Hence by Corollary 2.13,

PBn(M̃,H) is aspherical if and only if PBn(M) is aspherical. �

Corollary 3.4. Let M be as in the statement of Theorem 1.2. Then, for any
translation orbifold Lie groupoid GM , PBn(GM ) is aspherical.

The above corollary is equivalent to Theorem 1.2, but stated in the category
of Lie groupoids. The advantage of this statement is that we can now state the
Asphericity conjecture in a wider context.

Recall that, we defined a Lie groupoid G to be Hausdorff if |G| is Hausdorff.

Asphericity Problem. Consider an aspherical Hausdorff Lie groupoid G, such
that G0 is connected and 2-dimensional, then PBn(G) is aspherical.

Next, consider the homomorphism f(GM ) : PBn(GM ) → PBn−1(GM ), for M ∈
C.

We end this section by giving a functorial relationship between the homomor-
phisms f(GM )∗ and f(HM )∗, for two translation orbifold Lie groupoids GM and
HM , respectively.

Theorem 3.5. For M ∈ C and for any two translation orbifold Lie groupoids GM

and HM , we have the following commutative diagram for all q, where the horizontals
maps are isomorphisms.

πq(PBn(GM ))

f(GM )
∗

��

// πq(PBn(HM ))

f(HM )
∗

��
πq(PBn−1(GM )) // πq(PBn−1(HM )).

Proof. The statement is to relate the identification of homotopy groups of the differ-
ent translation orbifold Lie groupoids inducing the orbifold structure on PBn(M),
and the corresponding homomorphism f(GM )∗, via a commutative diagram.

Since the two translation orbifold Lie groupoids GM and HM induce the same
orbifold structure on M , by Lemma 2.11 there is another translation orbifold Lie
groupoid KM and a diagram of equivalences.

GM KM
oo // HM .

Since all the orbifold Lie groupoids we are considering are of translation type, it is
easy to see that the above diagram induces the following diagram of equivalences.

For, the morphism space of PBn(G(M̃ ,H)) is nothing but PBn(G(M̃ ,H))0×Hn =

PBn(M̃,H)×Hn, for any translation orbifold Lie groupoid G(M̃,H). See Definition
2.2.

PBn(GM ) PBn(KM )oo // PBn(HM ).

Hence, we get the following commutative diagram of homomorphisms.

PBn(GM )

f(GM )

��

PBn(KM )oo //

f(KM)

��

PBn(HM )

f(HM )

��
PBn−1(GM ) PBn−1(KM )oo // PBn−1(HM ).

In the diagram all the horizontal homomorphisms are equivalences, and hence in-
duce weak homotopy equivalences on the classifying spaces.

Now, note that the homomorphisms f(GM ), f(KM ) and f(HM ) all induce the
same projection map PBn(M) → PBn−1(M).
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The theorem now follows, by applying the homotopy functor on the above dia-
gram. �

4. Proof

In this section we prove Theorem 1.2, which supports the Asphericity conjecture.

Proof of Theorem 1.2. Case 1. Let M be the complex plane with a cone point of
order m ≥ 2 at the origin. That is, the underlying space of M is C and the cyclic
group (say H) of order m is acting on C by rotation about the origin, by an angle
2π
m
, to get the orbifold M as the quotient.

First note that, in this case the universal orbifold cover of M is M̃ = C. Then,

note that PBn(M̃,H) is the following hyperplane arrangement complement.

PBn(M̃,H) = {(z1, z2, . . . , zn) ∈ C
n | zmi 6= zmj , i 6= j}.

In [[14], p5] it was shown that PBn(M̃,H) fibers over the manifold PBn−1(C
∗).

For m = 2 it was established in [3]. The fibration B : PBn(M̃,H) → PBn−1(C
∗)

is defined by zj 7→ zmn − zmj , for j = 1, 2, . . . , n− 1. By Theorem 1.1, PBn−1(C
∗) is

aspherical. Therefore, again using the long exact sequence of homotopy groups, and

by an induction on n, we get that PBn(M̃,H) is aspherical. Hence, by Corollary
2.14 PBn(M) is aspherical.

Case 2. Assume M has C as the underlying space, with two cone points at 0 and
1
2 of order 2 each.

Consider the hyperplane arrangement complement corresponding to the affine

Artin group of type D̃n ([3]).

PD̃n(C) := {(z1, z2, . . . , zn) ∈ C
n | zi ± zj /∈ Z, i 6= j}.

We proceed to show that there is an orbifold covering map PD̃n(C) → PBn(M).
We define this map in the following diagram.

PD̃n(C)
E //

%%▲
▲▲

▲▲
▲▲

▲▲
▲

X

Q

��
PBn(M)

Here X = {(w1, w2, . . . , wn) ∈ (C∗)n | zi 6= z±1
j , i 6= j}. The map E is the

restriction of the n-fold product of the exponential map z 7→ exp(2πiz), and Q is
the restriction of the n-fold product of the map q : C∗ → M , defined by

q(w) =
1

4

(
1−

1 + w2

2w

)
.

E is a genuine covering map and Q is a 2n-sheeted orbifold covering map. Since q
is a 2-fold orbifold covering map as q sends the branch point +1 to 0 and −1 to 1

2 ,

and it is of degree 2 around these points. Therefore, Q ◦ E : PD̃n(C) → PBn(M)
is an orbifold covering map.

On the other hand recently, in [15], it was proved that PD̃n(C) is aspherical.
Therefore, by Corollary 2.14 PBn(M) is also aspherical.

Case 3. Assume M has C − {1} as the underlying space with 0 a cone point of
order 2.
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Consider the following hyperplane arrangement complement.

W = {w ∈ C
n | wi 6= ±wj , for all i 6= j;wk 6= ±1, for all k}.

In [[4], §3] the following homeomorphism is observed.

C
∗ ×W ≃ X := {x ∈ C

n+1 | xi 6= ±xj , for all i 6= j;x1 6= 0}.

(λ,w1, w2, . . . , wn) 7→ (λ, λw1, . . . , λwn)

In [[4], Lemma 3.1] it is then proved that the hyperplane arrangement com-
plement X is simplicial, in the sense of [5]. Hence, again by [5] X is aspherical.
Therefore, W is aspherical.

Next, note that there is the following finite sheeted orbifold covering map.

W → PBn(M).

(w1, w2, . . . , wn) 7→ (w2
1 , w

2
2, . . . , w

2
n)

Thus, PBn(M) is also aspherical.
This completes the proof of the theorem. �

Remark 4.1. For a direct proof of asphericity of X , see [10].
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