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The nucleus of eukaryotic cells typically makes up around 30% of the cell volume and has significantly
different mechanics, which can make it effectively up to ten times stiffer than the surrounding
cytoplasm. Therefore it is an important element for cell mechanics, but a quantitative understanding
of its mechanical role during whole cell dynamics is largely missing. Here we demonstrate that elastic
phase fields can be used to describe dynamical cell processes in adhesive or confining environments in
which the nucleus acts as a stiff inclusion. We first introduce and verify our computational method
and then study several applications of large relevance. For cells on adhesive patterns, we find that
nuclear stress is shielded by the adhesive pattern. For cell compression between two parallel plates,
we obtain force-compression curves that allow us to extract an effective modulus for the cell-nucleus
composite. For micropipette aspiration, the effect of the nucleus on the effective modulus is found
to be much weaker, highlighting the complicated interplay between extracellular geometry and cell
mechanics that is captured by our approach. We also show that our phase field approach can be
used to investigate the effects of viscoelasticity and cortical tension.

1 Introduction
Many essential biological processes depend on the mechanical
properties of animal cells and their ability to dynamically react
to mechanical cues from their environment. Classical examples
include the spreading behaviour of cells on substrates of variable
stiffness,1,2 cell migration in the direction of larger stiffness3,4

and cell differentiation in response to environmental stiffness.5,6

A typical cell response to variable environmental stiffness is to
adapt the own stiffness to match the one of the environment.7,8

However, there are also situations in which it is favorable for cells
to work with a different stiffness then the surrounding. One
prominent example are migratory immune and cancer cells in
confined spaces, which tend to increase their softness in order to
more easily squeeze through the pores in their environment.9–11

The main determinant of cell mechanics is the cytoskeleton,
a crosslinked and highly dynamical polymer network, giving
the cell stability and the ability to quickly change its mechan-
ics.12–14 In particular, the cytoskeleton allows cells to generate
forces, mainly pushing forces through polymerization and pulling
forces through motor activity, both of which convert chemical
energy into mechanical work and thus make the cell an active
system.13,15 Although the plasma membrane typically does not
contribute much to cell mechanics directly, it is important in the
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sense that it determines cell volume and surface area; in addition,
it provides guidance for the organization of the cell cortex gener-
ated by the cytoskeleton as a thin polymeric network wrapping
the whole cell.16,17

In recent years, it has become clear that a third important me-
chanical component of animal cells is the nucleus.18 The nucleus
harbours the genetic information of the cell and is separated from
the cytoplasm by its nuclear envelope. Due to its overarching
role for gene expression, it has long been overlooked that the
nucleus also plays an important role in mechanics. Having a
cell-type dependent diameter of several micrometers and occu-
pying a large fraction of the overall cell volume (typically up to
30%), the nucleus is the largest and most prominent of all cel-
lular organelles.19 The mechanics of the nucleus is determined
by the interplay between the two nuclear membranes, the em-
bedded nuclear pore complexes, the nuclear lamina, the nuclear
cytoskeleton (which includes actin filaments and myosin motors)
and the different chromatin domains. The combined effect of
these factors leads to an effective nuclear stiffness that can be up
to 10-fold stiffer than the rest of the cell,20 which together with
its size already suggests its importance in whole-cell mechanics.
A very recent computational study showed that even a spatially
varying nuclear stiffness can be described on the whole cell level
by one effective modulus for the nucleus.21

During recent years, it has been shown in many experimental
studies that the nucleus indeed has very specific mechanical roles
in animal cells. In matrix-driven cell differentiation, the nuclear
stiffness correlates with tissue and matrix compliance, leading to
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stiffer cell nuclei on stiffer substrates and pointing at its ability of
perceiving mechanical cues and adapting to them.22 Recently, it
has been demonstrated that nuclear deformations instruct migra-
tory behaviour of cells in confined spaces, indicating that the nu-
cleus serves as a ruler and mechanosensor.23,24 Moreover, nuclear
size and stiffness limit the minimal size of constrictions through
which a migratory cell can squeeze through.10 In turn, it has been
observed that nuclear softening during passage of narrow con-
strictions is often associated with nuclear envelope rupture and
DNA damage, which in our context are not only failure processes,
but also signaling events.10,25,26 Stresses and strains on the nu-
cleus can also lead to structural changes in chromatin packing and
a subsequent softening of the nucleus.27 It also has been shown
that metastatic cancer cells use the nucleus as a "battering ram" to
invade soft tissue.28 In cell migration, the nucleus is positioned
by the microtubule-organizing center either at the front or the
back, depending also on the properties of the environment; when
positioned at the front, it can be used as a ram during cell migra-
tion. Last but not least, it is known that forces originating from
the interplay between cytoskeleton and the cellular surrounding
can be directly transmitted to the nuclear envelope leading to nu-
clear deformations, triggering transcriptional activities and cellu-
lar reactions to these stimuli. This direct mechanotransduction
pathway includes the LINC protein complexes establishing a di-
rect physical connection between nucleus and cytoskeleton.29,30

Despite this growing body of evidence of its importance for
cell mechanics and mechanotransduction, the nucleus is often ne-
glected when modelling whole-cell mechanics, often due to lack
of an appropriate theoretical framework. We here propose an ex-
tension of our previously developed elastic phase field approach
for cell mechanics31 that also includes the nucleus. In the spirit
of multi-phase field approaches,32–34 the nucleus is introduced as
an additional field, as was done in previous phase field studies of
cells,35,36 but this time, we associate to the nucleus elastic mate-
rial characteristics and make them different from the ones of the
rest of the cell. This enables us to study the effect of the nucleus
on the cell’s mechanical behaviour in a variety of different and bi-
ologically highly relevant situations, including various boundary
conditions between an adherent cell and the substrate as well as
compression and micropipette suction experiments of spherical
cells. We also show that our approach is sufficiently general to
allow for the investigation of viscoelasticity and cortical tension,
which paves the way towards more detailed models of nuclear
mechanics in the future.

This work is structured as follows. First, we present the mod-
elling approach for an elastic cell with a nucleus in section 2.
We then demonstrate its applicability for homogeneously and lo-
cally adhered cells in section 3, already pointing out an important
role of the nucleus. For the simple geometry of an isotropically
contracting, homogeneously adhering, disk-like cell with a nu-
cleus, we can use analytical solutions to validate the numerical
solution. We then proceed with discussing numerical studies of
more complex experimental setups, namely patterned adhesion
and dynamic failure of an adhesion point including viscoelastic
relaxation. In section 4 we finally turn to cells in confinement
and discuss as examples the compression of cells between two

parallel plates as well as micropipette aspiration. In this section
we also study viscoelastic effects of Kelvin-Voigt type. We con-
clude with a discussion and outlook on possible applications and
further extensions of the proposed method.

2 Elastic phase field model for a cell with nucleus
To explicitly account for the cell’s nucleus in a model of an elastic
cell in both stationary and dynamic situations, we extend the pre-
viously introduced elastic phase field approach.31 The phase field
method, originally developed in the context of solidification pro-
cesses37 is nowadays widely used, especially in the communities
of fracture mechanics38,39 and poly-crystalline structures40. Due
to its ease in describing deformable or moving boundary prob-
lems, applications spread out to soft matter physics, e.g. vesicles
in flow41 or growing actin gels42. In the context of cellular bio-
physics, it proved efficient to model single cell migration43–47

and cell collectives,32–34,48 as well as more recently cell31 and
tissue49 mechanics. Phase field models for a cell containing an
explicit nucleus have been already proposed. However, Ref.35

neglected mechanics by solely considering the dynamics of two
internal chemicals, while Ref.36 assumed Stokesian hydrodynam-
ics. To our knowledge, no phase field model has been proposed
yet that would account for elastic continuum mechanics and al-
low to model several cellular compartments – here the cytoplasm
and the nucleus – having different material properties.

The study of moving boundary problems is a computationally
expensive task because at each point in time the location of the
boundary has to be determined anew in order to impose the re-
spective boundary conditions. The phase field approach circum-
vents this problem by introducing an evolution equation for an
auxiliary order parameter field φ(xxx, t) (the phase field) describing
the object of interest. It differentiates between two bulk "phases",
in our context the inside of the object (φ = 1) and its outside
(φ = 0), defined by the minima of a double-well potential. In-
terfaces between these phases are then given by smooth tanh-like
transitions from one bulk value to the other. The location of the
interface can be identified with the location of the maximum of
the phase field gradient |∇φ |, or simpler, with the position of
the isosurface with φ = 1/2. If the evolution equation for the
phase field is coupled adequately to the other model equations
that describe the physical quantities of interest in the two phases
(e.g. deformation, flow or diffusing chemicals), the domain de-
forms and/or moves in response to the processes described by
these model equations.

In our approach, the cell and its nucleus are represented by
two phase fields, ρ(xxx, t) and ψ(xxx, t), respectively, cf. Fig. 1 A. Each
field has its own evolution equation which follows an overdamped
relaxational dynamics

∂tφ = Dφ ∆φ −∂φ g(φ)+Dφ κφ |∇φ |− 1
ξ
(∇ ·ΣΣΣ+FFFtot) ·∇φ (1)

for φ ∈ {ρ,ψ}, respectively. The first term penalizes the forma-
tion of interfaces whose width εφ is set by the diffusion coeffi-
cient Dφ (εφ ∝

√
Dφ ). In general, the two interface widths could

be chosen to be different. The second term is the derivative of a
double-well potential of the form g(φ) = φ 2(1− φ)2. Its minima
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Fig. 1 (A) Sketch of the two-phase field approach for modelling a cell with
a nucleus. The computational domain Ω with boundary ∂Ω is divided
into different compartments by use of the phase fields ρ(xxx, t) and ψ(xxx, t)
for the whole cell and the nucleus, respectively. The distinguished phases
are the outside of the cell (ρ = 0,ψ = 0), the cytoplasm (ρ = 1,ψ = 0),
and the nucleus, (ρ = 1,ψ = 1). (B) Radial cut showing the interpolation
functions for a cell of diameter 2RC with a nucleus of diameter 2RN .
The cell (h(ρ), black dashed line) is split into two compartments, the
cytoplasm (h(ρ)−h(ψ), red) and the nucleus (h(ψ), blue).

are associated with the interior of the cell/the nucleus (φ = 1)
and the space outside the cell/the nucleus (φ = 0), respectively,
cf. again Fig. 1 A. It should be noted that the exact form of the
double-well potential is arbitrary; we opted for the simplest one.
Inherent to the phase field approach is a wall energy (surface
tension) that tends to pull together curved interfaces.50–52 Em-
ploying the third term in Eq. (1), proportional to the interface
curvature κφ = −∇ · (∇φ/|∇φ |), allows to remedy this effect.51

Finally, we couple the phase field dynamics to the continuum me-
chanics via the last term in Eq. (1). It describes a movement of the
phase field in case the mechanical force balance, ∇ ·ΣΣΣ+FFFtot = 0
with ΣΣΣ being the stress tensor and FFFtot all the forces acting on the
domain, is not fulfilled.

The evolution of the displacement field uuu can be written, using
the common assumption of overdamped dynamics for cells and
tissues, as

ξ ∂tuuu = ∇ ·ΣΣΣ+FFFtot . (2)

Here ξ sets the timescale of the relaxation into mechanical equi-
librium, given by the force balance. The total force, FFFtot =

FFF − γ(xxx) [1−h(ρ)]uuu, contains all the applied forces FFF and a term
that suppresses artefacts in the displacement field that may arise
in the outside phase due to reverting interface motions under
force release. Eqs. (1), (2) have been developed and verified in
depth in Ref.31, where more details can be found.

The stress tensor ΣΣΣ has to be defined on the entire computa-
tional domain. In case of several compartments with different
material properties, the phase field stress tensor has to interpo-
late the stress tensors σσσ (and lastly material parameters) of the
individual considered phases, with smooth transitions at the re-
spective interfaces. For this purpose, we use weighting functions
of the form h(φ) = φ 2(3−2φ) for the cell and the nucleus, respec-
tively.42,53 The total phase field stress tensor ΣΣΣ is then defined
as

ΣΣΣ(ρ,ψ) = [h(ρ)−h(ψ)]σσσCCC +h(ψ)σσσNNN (3)

with σσσCCC/NNN being the stress tensors of the cytoplasmic (CCC) (i.e.

the intracellular part without nucleus) and the nuclear compart-
ment (NNN). The interpolation function for the cytoplasmic com-
partment is h(ρ)−h(ψ)(i.e. cell, but not nucleus), cf. Fig. 1 B. As
for the phase field potential, the form of the weighting functions
is again not unique. They should, however, fulfil certain condi-
tions, namely h(1) = 1, h(0) = 0 and ∂φ h(1) = ∂φ h(0) = 0. Outside
of the cell we assume the stress tensor to be zero for simplicity.
Note that the cytoplasmic and the nuclear compartments are me-
chanically coupled (only) via the phase field stress tensor, Eq. (3).

Finally, we have to specify the constitutive relation for the cyto-
plasm and the nucleus, respectively. We assume linear elasticity54

with the stress tensors defined as σσσα = 2µα εεε +λ α tr(εεε)111, where
α = {C,N} for cytoplasm (C) and nucleus (N). Here, µα and λ α

are the Lamé coefficients of each compartment. The strain tensor
εεε is defined in index notation as εi j = (1/2)(∂ui/∂x j + ∂u j/∂xi)

and 111 is the identity matrix.
In three-dimensions, the Lamé coefficients are given by λ3D =

νE/[(1+ ν)(1− 2ν)] and µ3D = E/[2(1+ ν)] with Young’s mod-
ulus E and Poisson’s ratio ν . Depending on the geometry of
the considered problem, different two-dimensional approxima-
tions can be used: Strongly spread cells, having a height d (as-
sumed to be along the z-axis) considerably smaller than the lat-
eral extensions, can be approximated as thin elastic sheets in
plane stress formulation. In this case the stress components
σzz = σxz = σyz = 0 vanish and the problem becomes effectively
two-dimensional with thickness-averaged λ2D = νEd/(1−ν2) and
µ2D = Ed/[2(1+ν)].55 For a cell having the shape of a long cylin-
der (again in z-direction), the plane strain formulation can be
applied, where εzz = εxz = εyz = 0.55 Here, the Lamé coefficients
are identical to the three-dimensional ones. We will specifically
mention the used approximation for each experiment discussed
in the following.

3 Modeling spread cells
We now demonstrate the applicability of the proposed method
by investigating a cell of height d spread onto a compliant sub-
strate in 2D plane stress formulation. This situation is biologi-
cally highly important, since cells are able to sense the mechan-
ical properties of their environment via internal force generation
and transmission of these forces to the outside.8 The received in-
formation can then be used by the cell to adapt its mechanical
properties and morphology, and possibly even to induce division,
differentiation or motility (processes which are beyond the scope
of this work). To model a spread cell, we have to include active
cell contractility and cell-substrate adhesion as central features
into the proposed method.

Active stresses ΣΣΣact can be straightforwardly introduced into
the phase field stress tensor, Eq. (3), as an additive contribution.
In principle, the active stress can be time- and space-dependent.
Contractile stresses within a cell arise due to the activity of myosin
II motor proteins, which slide cytoskeletal actin filaments rela-
tively to each other.56 While some part of the contracting cy-
toskeleton spans over the nucleus, other parts can also bind di-
rectly to it via LINC complexes, exerting contractile stress on the
nuclear boundary.29,30 Using the common approximation of an
isotropic contractile stress σσσact = σ0d111, with σ0 > 0 and 111 the
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Fig. 2 (A) Sketch of the model for a cell (thickness d, radius RC) with a concentric nucleus (radius RN). The cell is contracting isotropically with
active stress σ0 while being adhered to a substrate via a spring stiffness density Y (xxx) on a ring RY ≤ r ≤ RC. The cytoplasm (EC, νC) and the nucleus
(EN , νN) can have different material properties. (B) The homogeneous adhesion case with RY = 0. Shown in the upper panel are the phase field (solid)
and analytical (dashed) solutions for the radial displacement field ur, normalized by the cell radius in mechanical equilibrium, rC. Shown are the cases:
EN/EC = 10, RN/RC = 0.5 (blue); EN/EC = 10, RN/RC = 0.75 (red); and the phase field solution for EN/EC = 1 and RN/RC = 0.5 (black, mostly covered
by the blue curve). The inset shows the trace of the stress tensor, normalized by the active stress σ0, for EN/EC = 10, RN/RC = 0.5; the contour lines
correspond to ρ = 0.5 (cell, solid) and ψ = 0.5 (nucleus, dashed), The lower panel shows the radial profile of ρ (cell, solid) and ψ (nucleus, dashed)
in mechanical equilibrium with colors corresponding to the upper panel. (C) Adhesion on an outer ring only. In the upper panel phase field solutions
for ur/rC are shown for EN/EC = 10, RN/RC = 0.5 and varying RY /RC = 0.5,0.6,0.7.0.8 (blue to green). The inset shows the normalized stress for the
case RY /RC = 0.8 (dotted line marks inner ring boundary) and the lower panel the phase field profiles for the case RY /RC = 0.5 (blue). (D) Until now,
the case f = 0 was considered (cf. Eq. (4)) i.e. the whole cell was contracting. When gradually restricting contraction to the cytoplasm by varying
f = 0,0.2,0.5,1 (blue to green), cf. the discussion in the main text, extensile forces are exerted on the nucleus of radius RN/RC = 0.5. The lower panel
shows the phase field profiles for f = 0 (blue) and f = 1 (green). The inset shows the normalized stress for the case EN/EC = 10 and f = 1, for better
comparison with the insets of B and C. All simulations were performed on N = 512×512 grid points on a domain of 50 µm×50 µm. If not specified
above, the other mechanical parameters are RC = 12.5 µm, d = 1 µm, EC = σ0 = 1kPa, νC = νN = 0.5 and Y0 = 0.8nN/µm3. Further parameters are as
in table 1.

identity matrix, we write the active stress tensor as

ΣΣΣact = [h(ρ)− f h(ψ)]σ0d111. (4)

The function in the bracket indicates in which cell compartment
the active contractile stress is acting. We consider two extreme
cases which represent processes in the third dimension that here
are integrated out. For f = 0, the whole cell is under contractile
stress, including the nucleus. Hence only the forces at the cell
boundary are unbalanced and effectively contract the cell. Such
a situation can result from the presence of a strong perinuclear
actin cap.57 For f = 1, only the cytoplasm is contracting. Then the
nucleus effectively feels an extensile force. This situation should
result if the complete contractile apparatus is localized in the cy-
toplasm and does not bridge over the nucleus. By varying f from
0 to 1, we can tune the strength of this effect. In the follow-
ing, we consider σσσact to be time-independent and homogeneous
in the respective cell compartments and investigate only steady
state situations.

The second feature needed to model spread cells is cell-
substrate adhesion, anchoring the cell and allowing for force
transmission from the cytoskeleton to the substrate via integrin-
mediated adhesion sites. A simple approximation for a fully elas-
tic substrate is an elastic foundation, where adhesion sites are
modeled as a spring stiffness density Y (xxx) resisting cell defor-
mations.58–60 The associated restoring force entering the elastic
Eq. (2) is then given by

FFF(xxx) =−Y (xxx)h(ρ)uuu (5)

where h(ρ) indicates that adhesion sites can only form under-
neath the cell. In principle, Y (xxx) could be made time-dependent
as well, allowing to model dynamics of bond formation.

3.1 Adhering cell with radial symmetry

We first study a circular cell which is spread and actively con-
tracting on an elastic foundation, as shown in Fig. 2 A. This
geometry was originally used to explain the experimentally ob-
served concentration of traction forces at the cell periphery from
a mechanical perspective and is analytically solvable for homo-
geneously adhered cells.15,59,60 Recently, an analytical solution
for the case where adhesion is restricted to a ring at the cell’s
periphery has been also given.61 To benchmark our numerical
framework, we generalized the homogeneous adhesion model by
additionally considering a disk-like nucleus in the cell’s center;
the analytical solution is given in Appendix B. To specify the dif-
ferent possible geometries, we introduce the cell’s radius RC, the
nucleus’ radius RN and the radius of the adhesive ring RY , mean-
ing that the cell adheres for RY ≤ r ≤ RC.

We begin with the simplest case of a cell fully and homoge-
neously adhered to the substrate, i.e. Y (xxx) = Y0 and RY → 0,
and assume the contracting cytoskeleton spans over the nucleus,
f = 0. Fig. 2 B upper panel shows the phase field (solid curves)
and analytical solutions (dashed) for the radial displacement field
ur for different nuclear stiffnesses and radii. Both are in very
good agreement, confirming our approach. Deviations result from
the diffuse description of the nucleus-cytoplasm boundary in the
phase field framework and can be reduced by decreasing its in-

4 | 1–15Journal Name, [year], [vol.],



terface width. The kink at the nucleus-cytoplasm interface, oc-
curring in both the analytical and numerical solution, is due to
the different rigidities of the two considered cell compartments.
Consistent with previous results, the highest deformations are at
the cell periphery.59 This is associated with high traction stresses
at the periphery and lowered total internal stresses, as visualized
in the inset of Fig. 2 B by plotting the trace of the stress tensor,
normalized by the active stress level σ0.

How important is the nucleus for the mechanics? For a nucleus
of half the cell’s radius, RN/RC = 0.5, the nucleus stiffness EN

has only a negligible effect on the cell’s deformation. Increasing
the nuclear radius, a realistically stiff (EN/EC = 10) nucleus (red
curves) leads to considerably different slopes in the displacement
field. However, the overall position of the cell periphery remains
approximately the same, cf. the solid curves in the lower panel of
Fig. 2 B, displaying the radial phase field profiles.

It is important to note that the displacement field in the nu-
cleus always remains small. This demonstrates that strong cell
adhesion protects the nucleus against large deformations and
stresses. The determining factors are the distance between the
nucleus and the cell boundary, RC − RN , and the characteristic
distance over which stress can propagate through the cytoplasm,
which for an adhering cell is given by the localization length

lC =
√

ECd/Y (1−ν2
C).

59 Peripheral cell adhesion is sufficient for
protecting the nucleus, corresponding to the experimental obser-
vation of strong adhesions forming mostly at the cell periphery,
while the basal side under the nucleus is mostly adhesion free.62

This shielding can have a major impact on the nuclear
mechanosensing ability of stimuli originating at the cell edge. In
a second study we therefore restrict the adhesion to a ring at the
cell periphery of inner radius RY , to see whether the nuclear de-
formation increases, indicating a higher perception of mechanical
stimuli. In most cell types, the nucleus occupies not more than a
third of the cellular volume. Therefore, we fix the nucleus ra-
dius to RN/RC = 0.5, for which we found above that the nuclear
stiffness has only a negligible effect on cell mechanics, and the
stiffness to EN/EC = 10. We then examine the radial deformation
upon varying the inner radius RY of the adhesion ring as shown
in the upper panel of Fig. 2 C. Note that the deformation field
is linear in the non-adhered cell parts, i.e. both in the nucleus
and the inner part of the cytoplasm. As visible from the displace-
ment field, a larger RY , and therefore a decreased adhesion area,
increases the deformation the nucleus experiences. This demon-
strates that adhesion restricted to the cell periphery leads to an
increased stress propagation to the nucleus, as also visible in the
inset of Fig. 2 C. Nevertheless large deformations are prevented as
shown by the only slightly increased deformation peak compared
to the fully adhered case in Fig. 2 B upper panel. This agrees
with recent experiments on optogenetic activation of whole cells
that showed that disc and ring geometries give little differences
in regard to whole-cell contractility.63

Lastly, we study the situation of a fully adhered disk, but now
with a varying parameter f as described above. Increasing f
from 0 to 1, leads to an extensile stress on the nuclear bound-
ary. Fig. 2 D upper panel demonstrates the radial displacement

Fig. 3 A cell adhering in a rectangular shape due to adhesive spots in the
corners. Adhesive spots (dotted) have a radius radh = 1.15 µm with high
Y0 = 16nN/µm3, to prevent slipping from the adhesion sites. The cell
contracts under an isotropic contractile stress σ0/EC = 0.4. Shown is the
normalized trace of the stress tensor for the cases EN/EC = 1,2,10 (top to
bottom) with an initially circular nucleus (A) centered in the cell and (B)
shifted in x-direction by 1.5RN . The contour lines correspond to ρ = 0.5
(solid, cell) and ψ = 0.5 (dashed, nucleus). (C) and (D) show the trace
of the stress tensor along the symmetry line y = 0 for the corresponding
simulations shown in (A) and (D). All simulations were performed on
N = 1024× 512 grid points on a domain of 50 µm× 25 µm. Initial cell
dimensions are 30 µm×15 µm with RN = 5µm, d = 1 µm, EC = 1kPa and
νC = νN = 0.5. Rest as in table 1.

field for RN/RC = 0.5 and EN/EC = 2 for different f = 0,0.2,0.5,1,
the peaks close to the nucleus-cytoplasm interface clearly show-
ing a radial stretching of the nucleus, which is also visible in the
lower panel of Fig. 2 D showing the phase field profiles for the
cases f = 0 (blue) and f = 1 (green). Similar observations can
be made for other nuclear rigidities. For increasing parameter f ,
the nucleus experiences higher extensile stresses, also visualized
in the inset of Fig. 2, in contrast to the previous discussed cases.

In summary, the above results verify our elastic phase field ap-
proach and indicate that the transmission of mechanical cues to
the nucleus strongly depends on the actual adhesion geometry
and the force transmission from the cytoskeleton to the nucleus.

3.2 Contractile cells on adhesion patterns
Micro-patterned adhesive substrates are a standard setup for
studying cellular behaviour in structured environments.64–67 Ad-
herent cells are always under contraction, as nicely demonstrated
by the ubiquitous invaginated arcs that form when cells adhere
with point-like adhesions.15,68 Here, we investigate the impact of
the nucleus on the overall cell morphology in such geometries. As
a first example, we study a rectangular pattern with four circular
adhesive patches of radius radh located at its corners. We start
with a 2D rectangular cell, described in plane stress, and allow
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it to form focal adhesions at the corners and contracting isotrop-
ically under a contractile stress σ0. The nucleus initially has a
circular shape of radius RN with physiological nucleus-to-cell vol-
ume ratio VN/VC ≈ 0.17. We consider the case that the cytoskele-
ton contracts the whole cell, i.e. f = 0. For the adhesion strength
Y (xxx) we use a smoothly varying field, transitioning in a tanh-like
manner from the maximal value Y0 in the focal adhesion towards
zero outside of it. Primarily, this ensures numerical stability com-
pared to pinning the cell completely to the focal adhesion (via the
boundary condition uuu = 0, cf. also Ref.31). It also would allow to
study different adhesive strengths in different focal adhesions.

Representative results are shown in Fig. 3. The panels of Fig. 3
A study a centered nucleus and demonstrate the effect of an in-
creased nuclear-cytoplasmic stiffness ratio EN/EC. Clearly, the
nucleus is deformed by the invaginated arcs for low nuclear stiff-
ness. A higher nuclear stiffness rather changes the shape of
the cell, demonstrating again that localized adhesion and an in-
creased nuclear stiffness protect the nucleus against large defor-
mations/stresses. Yet one also sees how stress bridges start to
emerge between nucleus and adhesions, which look like precur-
sors of stress fibers. Similar perturbations are observable for ex-
ample for cells spreading on nanonets.69

Similar to the previous study in circular geometry, the distance
between the nucleus and the cell edge is a determining factor for
the magnitude of the morphology perturbation. If the nucleus po-
sition is shifted away from the cell’s center, cf. Fig. 3 B, a stress ac-
cumulation at the cytoplasm-nucleus boundary can be observed,
while the stress is lowered on the opposite side of the nucleus. In
Fig. 3 C and D the trace of the stress along the symmetry line y= 0
is depicted, clearly showing the stress decrease for higher EN/EC

and its asymmetry when shifting the nucleus. Interestingly, as vis-
ible in Fig. 3 B, the stress "builds a bridge" between the closeby
focal adhesions and the nucleus,70 quite possibly impacting the
mechanosensing of the nucleus. Furthermore, one can hypothe-
size that the asymmetric stress distribution for shifted nuclei al-
lows the cell to differentiate between left and right, which may
be important to polarize for cell migration.

3.3 Failure of a focal adhesion

Having demonstrated that the proposed modeling framework is
able to describe static spread elastic cells with nucleus in com-
plex geometries, we now give an example of a simple dynamic
response. Similar to the last example, we consider a cell on a
micro-patterned adhesive environment favoring a hexagonal cell
shape. The cell first contracts isotropically under a stress σ0 until
it reaches mechanical equilibrium. The resulting shape, includ-
ing stress focusing at the adhesion spots and invaginated arcs in
between, is shown in the left panel of Fig. 4 A. Afterwards, one
of the adhesion spots (here, the most right one) is suddenly re-
moved, mimicking the rupture/dissolution of a focal adhesion,
and the cell deforms into a new mechanical equilibrium given by
this geometry, see the right panel of Fig. 4 A. One can clearly see
that the cell relaxes an substantial amount of stress in the area of
the missing adhesion point. The stress inside the nucleus is also
reduced, in the shown example by 14.5 %, and again shows an

Fig. 4 (A) A cell with nucleus was allowed to spread in a hexagonal
adhesion pattern and to contract isotropically with σ0/EC = 0.4 until it
reached mechanical equilibrium (left panel). Subsequently the most right
adhesion spot was removed and the cell evolved towards a new mechanical
equilibrium (right panel). The colormap shows the normalized trace of
the stress tensor. The cell shape (isocline ρ = 0.5, solid black) and nucleus
shape (ψ = 0.5, dashed black) are also shown. (B) Shown is the average
displacement ⟨δ |uuu|⟩, with respect to the initial reference displacement in
(A), as a function of time t for different friction coefficients ξ . For all
tested ξ , the behavior is the one of a Kelvin-Voigt model. The simulations
were performed on N = 512× 512 grid points on a domain of 50 µm×
50 µm. Initial cell edge length is 17.5 µm and RN = 6.65 µm with cell
height d = 1 µm resulting in VN/VC ≈ 0.17. Further, EN/EC = 10 with
EC = 1kPa, νC = νN = 0.5, radh = 1.25 µm and Y0 = 16nN/µm3. Rest as in
table 1.

asymmetry. Note that the cell does not fully round up in the re-
gion close to the detached adhesion point, which is a consequence
of the reference state of the elastic model.

To quantify the dynamics of this relaxation, we investigated
the cell-averaged displacement ⟨|uuu|⟩ = (1/Vcell)

∫
ρ|uuu|dΩ, where

the cell’s volume is given by Vcell =
∫

ρdΩ. Fig. 4 B shows
⟨δ |uuu|⟩ = ⟨|uuu|⟩− ⟨|uuure f |⟩, i.e. the deviation from the reference dis-
placement at the time point of the removal of the focal adhe-
sion, as a function of time and for different friction coefficients
ξ (cf. Eq. (2)) and EN/EC = 10. As can be seen, the displace-
ment ⟨δ |uuu|⟩ always levels at the same plateau value, reflecting
that mechanical equilibrium is reached, with ξ determining the
relaxation time.

It should be noted that in Ref.31 the elasto-dynamic formula-
tion of Eq. (2) was introduced out of necessity to couple the phase
field dynamics with elasticity in a reversible fashion. Hence, if
one wants to describe a system with "pure" elastic behavior, one
should not probe the system on time scales τ faster then the one
set by ξ . On the flip side, if one does so, the average displacement
follows the relaxation behaviour of a viscoelastic material with
long-term elastic behavior. This is reflected by the dashed curves
in Fig. 4 B where we applied a Kelvin-Voigt model, predicting
⟨δ |uuu(t)|⟩ = umax[1− exp(−t/τR)], to interpret the data, which fits
perfectly. Here umax is the maximum average displacement and
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τR the characteristic relaxation timescale. The Kelvin-Voigt model
is a widely used and experimentally validated model for cellular
mechanics, describing that mechanical relaxation does not occur
instantaneously (as in linear elasticity), but is retarded by internal
friction, stemming from viscous flow and cytoskeletal reorganiza-
tion. For a Kelvin-Voigt material the relaxation timescale is given
by τR = η/E, where E is the Young’s modulus and η the material’s
viscosity. We verified that the correspondence to a Kelvin-Voigt
model holds for all tested nucleus stiffnesses and the above com-
parison hence allows to associate ξ with an effective viscosity η .
Note that, however, since the cell is a composite material of cy-
toplasm and nucleus, both E and η entering τR are cell-averaged
quantities. We will revisit viscoelastic effects in section 4.2.

4 Cells in confinement and modulus measurements

We now turn to the problem of cells in confinement, again focus-
ing on the effects of the nucleus. On the one hand, in their physio-
logical environment, cells are often subject to (dynamic) straining
induced by their surrounding. Examples include cyclic stretching
in lung and vascular tissue or the migration of immune cells and
metastatic cancer cells through narrow openings in tissues or fi-
brous networks. On the other hand, several experimental meth-
ods have been developed to probe cellular mechanical responses,
including compression of cells between two plates23,24,71–75 and
cell aspiration by micropipettes.76–81 Here, we show how the lat-
ter two can be modeled using our framework to extract effective
elastic moduli.

In both experimental setups, the interaction of the examined
cell with the confining obstacles – the plates of the compression
apparatus or the tube walls of the micropipette – is crucial. In
the phase field method, such "obstacles" can be described by im-
plementing another, static phase field ϕ(xxx), also having tanh-like
transitions from ϕ = 1 within the obstacle to ϕ = 0 outside, and
which is assumed here to be perfectly rigid. The local presence
of the obstacle is then manifesting itself by interactions of the
cell’s phase field with ϕ. Motivated by a phenomenological ex-
cluded volume potential of the form F = α

2 ρ2ϕ2 presented ear-
lier,32,33,46 we add the following excluded volume force to the
force Ftot entering Eqs. (1), (2):

FFFexcl = αρϕ
2 ∇h(ρ)

f (h(ρ))
. (6)

Here the first term, including the interaction strength α, is the
derivative of the excluded volume energy. ∇h(ρ) indicates that
the volume exclusion force acts orthogonal to the ρ-interface and
is restricted to the interface region. Finally, f (x) =

√
1+ ε(∇x)2

with a small ε ≪ 1 implements saturation of the force in case the
phase field gradient becomes too steep.33

4.1 Compressing cells between two parallel plates

Compressing cells between two parallel plates is nowadays a stan-
dard experimental technique to mechanically probe global cell
mechanics.20,72–75,82,83 For instance, in combination with com-
putational predictions, it has been demonstrated that for mitotic
cells the cell cortex dominates cell mechanics.75 Beyond that, also

cellular responses to increased confinement have been addressed,
evidencing that it can induce the mesenchymal-amoeboid transi-
tion84 and trigger cell migration.23,24 In the latter studies it was
suggested that the extent of nuclear compression determines the
onset of this response. Also a recent computational study has
shown that a stiff nucleus increases the effective stiffness of cells
as probed in such experiments.21

We model compression experiments by implementing the upper
and lower plates via the field ϕ(xxx). Both plates are initially not
in contact with the cell, such that FFFexcl = 0. They are moved
towards each other successively by the grid spacing ∆x each time
the cell has relaxed into mechanical equilibrium. Having reached
the desired compression level/plate distance, this procedure can
be reversed to release the cell from the confinement. Note that
we study the quasi-static, purely elastic process first, to be able
to compare with analytical solutions. Cell compression that is
continuous in time, where the response will then be of Kelvin-
Voigt-type, cf. section 3.3, will be investigated in section 4.2.

So far, in section 3 we used an effectively 2D plane stress ap-
proach, which was justified for a thin, spread cell. In the com-
pression experiment, the simplest effective 2D problem would be
the plane strain approach, corresponding to a long cylinder with
circular cross-section. To see how sensitive the compression ex-
periment is to the geometry, we compared this simple case (un-
realistic for a cell) to the axially symmetric case of a 3D sphere
compressed between the plates. Note that the latter needs solving
all equations defined above in cylindrical coordinates.

Fig. 5 A shows the distribution of stresses, visualised via tr(ΣΣΣ),
within the cross-section of a cell in plane strain (top, cylinder ge-
ometry; note that this implies that the nucleus is also a cylinder)
and of a spherical cell in axial symmetry (bottom). The nuclear
stiffnesses are EN/EC = 2 (left) and 10 (right), respectively. In
the snapshots, the plates have a distance of 90% of the initial cell
diameter 2RC. Both cases show an increased stress concentration
for increasing nuclear stiffness in the regions between the nucleus
and the plates, with a band-like stress accumulation connecting
the cell edge in contact with the plates and the nucleus. The
plane strain case shows an overall higher stress, since it does not
allow a considerable stress relaxation within the nucleus, lead-
ing to slightly higher cytoplasmic deformations and therefore a
higher eccentricity of the cross-sectional shape as compared to
the axially symmetric situation. Nevertheless, overall the behav-
ior is rather similar.

To further quantify the compression experiments, we obtained
the force-compression curves for the results shown in Fig. 5 A.
This was done by calculating the total force F =

∫
|∇ ·Σ|ρdV in me-

chanical equilibrium for the respective total compression δ of the
cell, normalized by the cell diameter 2RC, as shown in Fig. 5 B. As
can be noticed, a consistently higher force is required to deform a
plane strain cylinder (triangles) by the same δ as compared to a
sphere in axial symmetry (circles), consistent with Fig. 5 A. Note
that for the resulting line contact problem in plane strain, the
fundamental measure for this case is the in-plane force per length
F/L.85 In order to compare the force-compression curves in both
geometries, we determined the length of the cylinder L= 4/3RC in
plane strain, such that the cylinder volume is equal to the sphere
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Fig. 5 (A) Compression of a cell in the plane strain geometry (long cylinder, top) compared to a spherical cell (axial symmetry, bottom). Shown
are the cases EN/EC = 2 and EN/EC = 10. (B) Numerically obtained force-compression curves. The symbols are numerical solutions with plane strain
(triangles) and axial symmetry (circles), respectively, cf. panel A. The solid curves are fits to the respective analytical solutions (available in the absence
of the nucleus). (C) For the case of axial symmetry, we extracted an effective elastic modulus from fits as shown in panel B. In the physiological
range of nucleus sizes and stiffness, the effective modulus measured in compression is up to three times larger than the one of the pure cytoplasmic
stiffness. Colors in B: EN/EC = 2 in axial symmetry (blue), EN/EC = 10 in axial symmetry (yellow); EN/EC = 2 in plane strain (red), EN/EC = 10 in
plane strain (green). Colors in C: nucleus size of VN/VC = 0.125 (blue); nucleus size VN/VC = 0.3 (red). (D) Compression experiment similar to (A)
but for an axially symmetric, pancake-shaped cell. Simulations for (A)-(C) were performed on N = 512×512 grid points and for (D) on N = 512×256
grid points. Mechanically relevant parameters for all shown simulations (if not mentioned otherwise) are RN = 6.25 µm in (A) and (D), EC = 1kPa,
νC = νN = 0.48, and α = 6kPa. Rest as in table 1.

volume in axial symmetry, and multiplied the average force per
length by L.

Importantly, for both contact problems studied here, plane
strain and axial symmetry, there exists an analytical solution for
the force-compression relation in the absence of the nucleus.85

The force-compression relation of an elastic sphere compressed
by two rigid plates is the Hertz problem with F ∝ δ 3/2 for an ar-
bitrary pressure distribution.85,86 In plane strain, the relation is
more complicated and can be given as δ ∝ (F/L) log(B/

√
F/L),

where B is a constant containing information about the cell size
and its effective stiffness.85 Fig. 5 B shows, apart from the numer-
ically obtained data (symbols), also fits to these relations (solid
curves), resulting in a very good agreement for both geometries.
Importantly, the Hertzian theory F ∝ δ 3/2 is still valid, even in the
presence of a rather large and stiff nucleus.

As the two-plate setup is extensively used to measure cellular
stiffnesses, we tried to infer the effective Young’s modulus Ee f f

(i.e. cell plus nucleus as measured in the respective apparatus)
of our model cell in the physically relevant axial symmetric sit-
uation. We used the full Hertzian law F = (

√
2RCE ′/3)δ 3/2 for a

parabolic pressure distribution with F the total force per plate and
E ′ = Ee f f /(1−ν2

e f f ). Here Ee f f and νe f f are the effective elastic

parameters of the cell-nucleus composite for rigid plates.86 We
assumed here that νe f f = νC = νN . Fig. 5 C then shows that Ee f f

increases non-linearly with increasing nucleus stiffness EN . For
physiological nucleus sizes VN/VC = 0.125−0.3, the effective mod-
ulus Ee f f experiences an up to three-fold increase for EN/EC = 10.
Note, that for EN/EC = 1 the comparison with Hertzian theory
yields an effective modulus slightly Ee f f < 1, resulting from the
unknown pressure distribution in the phase field simulation.

As long as the plates are not strongly adhesive, compression

should not activate contractility and thus above we did not in-
clude any active stress. If we include active stress in our simula-
tions, we find similar stress patterns, but the fit to Hertz-theory
did not work well anymore (results not shown).

Our simulations can also be used to study the effect of differ-
ent cell shapes. Fig. 5 D shows the compression of an initially
pancake-like shaped cell in axial symmetry, similarly as studied in
Ref.75, for different nucleus stiffnesses EN/EC = 1,2,10. It can be
directly compared to the initially spherical cell in Fig. 5 A, bot-
tom. Again, for increasing nucleus stiffness a redistribution of
stresses within the cell is visible. For EN/EC = 1, the regions of
highest stress are located close to the cell boundary at the tran-
sition points from vanishing to finite curvature, as predicted be-
fore.75 However, for increasing nucleus stiffness the upper and
lower poles of the nucleus, nearest to the plates, become the
zones of highest stress. Again a band-like stress from the cell
boundary in contact with the plates to the nucleus boundary is
visible. The main impact of cell morphology (sphere vs. pancake)
on nuclear straining thereby comes from the distance between
the nucleus and the cell boundary: forces are better propagated
to the nucleus for flatter cell shapes.

Finally, we studied the effect of cortical tension on the force-
compression curves of spherical cells. Cortical tension is due to
myosin II motor activity in the actin cortex located directly under-
neath the plasma membrane. Since the cortex is thin compared
to the cell dimension, effectively this effect can be described as a
surface tension λS. Hence in the phase field sense51,87, we add
the force

FFFst = λSκρ

∇h(ρ)
f (h(ρ))

(7)

to FFFtot in Eqs. (1),(2).
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Fig. 6 Force-compression curves for a spherical cell subject to a cortical
surface tension of varying strength λS = 0,1,2nN/µm for different nuclear
stiffnesses EN/EC = 2 and 10. The symbols are the numerical results and
the solid lines fits according to the Hertz law. Note that the deformation
of the cell due to the cortical tension, prior to compression, changes
its diameter (from 2RC to 2rC), which is used to normalize δ . The
compression is quasi-stationary; parameters are EC = 0.5kPa and ξ =

0.04nN · s/µm3 for better numerical stability. Other parameters as in
Fig. 5 and Table 1.

In the simulation, the cell is first allowed to mechanically re-
lax under the applied cortical tension, then the compression is
started. Hence we now normalized the compression height δ

by the cell diameter 2rC in mechanical equilibrium, with applied
surface tension but before compression. We chose a lower cell
stiffness than before, EC = 0.5kPa, to make the effect more ap-
parent, and a realistic cortical surface tension range of up to
λS = 2nN/µm88,89. Fig. 6 shows the obtained force-compression
curves for nuclear stiffnesses EN/EC = 2 and 10. One can see that
increasing λS results in an increase of the required force for com-
pression, especially for larger compression. However, the stiffer
the nucleus, the smaller is the effect relative to the case without
surface tension.

To quantify, we again performed a comparison to Hertz theory
(solid lines in Fig. 6), yielding good fits for all tested cases. For
the extracted effective cell stiffnesses Ee f f we found an increase
of ∼ 63% for EN/EC = 2 (from Ee f f = 0.53kPa for λS = 0nN/µm
to Ee f f = 0.82kPa for λS = 2nN/µm) and of ∼ 25% for EN/EC =

10 (from Ee f f = 0.91kPa for λS = 0nN/µm to Ee f f = 1.22kPa for
λS = 2nN/µm). Hence cortical surface tension effectively stiffens
cells, as is to be expected since compression increases the surface
area. The effect decreases with increasing nuclear rigidity, and
also with increasing cytoplasmic stiffness.

4.2 Compressing cells: viscoelastic effects
As shown in the previous section, the quasi-stationary (elastic)
case is well suited to determine the effective stiffness of the cell-
nucleus composite. Rapid compression (i.e faster than the elastic
relaxation) leads to viscoelastic effects. We consider again the
case of a spherical cell with nucleus. Now the plates are moved
towards each other in a continuous fashion with a velocity v.

Fig. 7 A shows resulting force-compression curves for nuclear
stiffnesses EN/EC = 2 (left) and EN/EC = 10 (right) and for dif-
ferent plate velocities v. The blue curve marks the quasi-static

C

A B

D

Fig. 7 (A) Numerically obtained force-compression curves for a spherical
cell between two plates in axial symmetry. The plates are moved with a
velocity of v= 0,0.5,1.25,1.875,2.5 µm/s (blue to grey); v= 0 corresponds
to the quasi-stationary case studied in Fig. 5. Left panel: EN/EC = 2;
right panel EN/EC = 10. (B) Force-velocity curve extracted from (A) at
a given δ , here the last time point where δ/(2RC) ≤ 0.05. The force
required for the same compression increases with plate velocity, as time
becomes increasingly insufficient to relax stress. (C) Shown is the strain
energy (left) and the dissipated energy (right), as a function of time
for different nucear stiffnesses EN/EC = 1,2,10. At t = 0 the plates were
suddenly removed and the cell allowed to relax back to its spherical,
undeformed state. The numerically obtained solutions (circles) are fit
(solid lines) allowing to extract relaxation times and effective viscosity.
(D) Table giving Ee f f obtained from Fig. 5 D, the average τR from the
fits in (C) and the resulting ηe f f = Ee f f ·τR. Parameters as in Fig. 5 with
VN/VC = 0.125, i.e. RN = 6.25 µm. Other parameters as in table 1.

case discussed in Fig. 5. One clearly sees that increasing the plate
velocity increases the force required to reach the same relative
compression δ . We also note that if the plate motion is stopped in
between, the force relaxes and reaches the corresponding lower
bound given by the quasi-stationary case (blue curve), as ob-
served in experiments75.

In accordance to the previous results, comparing the cases
EN/EC = 2 and EN/EC = 10 of Fig. 7 A shows that increasing
the nuclear stiffness increases the force. On the other hand, the
stiffer the nucleus, the smaller the effect of the compression ve-
locity becomes. To further quantify these observations, Fig. 7 B
shows the force-velocity relation, obtained by calculating the total
force experienced by the cell at a certain δ (here at the last time
point where δ/(2RC) ≤ 0.05), for the plate velocities v shown in
Fig. 7 A. An almost linear increase of the force with plate velocity
v is visible, with only a marginal difference between EN/EC = 1
and EN/EC = 2, suggesting that soft nuclei have only a small ef-
fect. The increase of the force with plate velocity v is due to insuf-
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ficient time of viscoelastic stress relaxation to mechanical equi-
librium for finite plate velocity. Such a higher (not completely
relaxed) stress should consequently lead to the higher effective
stiffness for the cell-nucleus composite at a given velocity. How-
ever, we refrained from fitting the force-compression curves to the
Hertz law, as it is only valid in the stationary case.

As a second test to show that the phase field model describes
viscoelastic effects of Kelvin-Voigt-type correctly, we analyzed a
relaxation experiment. A spherical cell was compressed in a
quasi-stationary manner as described in the last section. After
reaching a compression δ of 10% of the initial cell diameter (2RC),
the plates were removed instantly and the cell allowed to relax
back to its initial, undeformed configuration. Fig. 7 C shows the
time evolution of the strain energy Eε = (1/2)

∫
V Σi jεi jdV (left)

and of the dissipated energy Ed = E0 −Eε (right) from the time
point of plate removal (t = 0) of elastic energy E0 = Eε (t = 0),
for different nuclear stiffnesses EN/EC. The circles are the nu-
merically obtained results, showing that the strain energy decays
exponentially and that the dissipated energy levels to a plateau
for large times, both indicating the mechanical equilibrium of the
undeformed state.

As discussed already in Sect. 3.3, in the viscoelastic regime our
phase field model is of Kelvin-Voigt type. We hence can fit the cor-
responding strain energy function, Eε (t) = E0 exp(−2t/τR), and
dissipated energy function ED = E0 [1− exp(−2t/τR)], to the nu-
merical data, cf. the solid curves in Fig. 7 C, allowing to extract
the relaxation timescale τR (here we average over the results from
strain energy and dissipated energy) for the different nuclear stiff-
nesses considered. Together with the effective cell-nucleus rigidi-
ties, obtained previously in Fig. 5 D for VN/VC = 0.125, we are
able to infer the effective viscosities ηe f f = Ee f f ·τR. The obtained
values are given in the table Fig. 7 D. As expected, the relaxation
times decrease with nuclear stiffness but the effective viscosity
ηe f f remains approximately constant, as it is determined by ξ

in Eq. (2). This shows that ξ sets the effective viscosity of the
composite model under compression, similar as had been shown
in Sect. 3.3 for the adhesion geometry. We note that we used a
small ξ here, to get a relaxation on a time scale of seconds, since
the numerical time step in the compression geometry is very small
(10−4s). This value corresponds more to intracellular relaxation
time scales, while those for a whole cell are of the order of tens
of seconds or minutes90. We stress that there is no problem to
increase ξ , and consequently the effective viscosity and τR, as ex-
emplified in Fig. 4 B for the adhesion geometry.

4.3 Micropipette aspiration

An alternative to cell compression experiments for measur-
ing cellular rheological responses are micropipette experi-
ments.76,79–81,91 In this setup, cells are sucked into a pipette tube
by applying a pressure difference ∆P between the tube’s interior
and the exterior space. In this setup, forces are more locally ap-
plied compared to global straining in compression experiments.
Micropipette aspiration has already been studied numerically and
together with experiments showed that cells can have elastic and
viscous signatures.92 Therefore, this experiment has been used to

measure both the elastic modulus E and viscosity η of cells.76

We are again interested in the influence of the nucleus on the
measurement of the effective cell stiffness, in the context of this
more local force application. Considering a spherical cell with
axial symmetry, the stationary pipette wall can be modeled as
in the previous example by using a field ϕ(xxx), placing it closely
to the cell membrane. Before sucking the cell into the pipette,
we first let the cell relax into mechanical equilibrium due to the
interaction with the pipette walls, cf. Eq. (6). To prevent any rigid
body motion of the cell, we let it adhere to a sphere (field ϕ̃(xxx)) on
the side opposite to the pipette, as also done experimentally77,78

using an adhesion force

FFFadh = Y (∇ϕ̃)(∇h(ρ))uuu. (8)

Note that this is the phase field version of Eq. (5), modeling ad-
hesion of the cell with strength Y when it is in contact with the
sphere.

Applying now a pressure, P1, in the micropipette tube that is
smaller than the pressure P0 in the cell’s interior (the outside pres-
sure is assumed to be P0 as well) leads to a boundary force acting
at the cell membrane within the pipette like

FFF p = ∆P(xxx)
∇h(ρ)
f (h(ρ))

(9)

where ∆P(xxx) = (P1 − P0)p(xxx) and where p(xxx) marks the mi-
cropipette interior (where P1 is applied).

Fig. 8 A shows results for the aspiration of spherical nucleated
cells (RC = 15 µm, RN = 7.5 µm) for nucleus stiffnesses EN/EC =

1,2 and 10 into a micropipette of radius Rp = 2/3RN = 5 µm using
a pressure difference of ∆P/EC = 0.5. As expected, the highest
positive stresses occur at the cell membrane within the pipette,
while negative stresses arise at the edges of the micropipette,
where it effectively pushes against the cell. Furthermore, in the
case of stiff nuclei (EN/EC = 10), stress accumulation occurs again
in the vicinity of the nucleus boundary nearest to the pipette.
This again suggests the possible perception of mechanical stim-
uli by the nucleus, even for very locally applied forces. While
stiffer nuclei only deform marginally and are shifted within the
cell towards the pipette position, soft nuclei (EN/EC = 1,2) show
some egg-like asymmetry in their morphology due to deforma-
tion. The black curves in the panels of Fig. 8 A show the cell and
nucleus boundaries (0.5-phase field isocurves) for three different
time points, to exemplify the dynamic nature of the problem.

Also in the micropipette geometry, one can extract an effective
modulus for the cell-nucleus composite. Within the elastic regime
of aspiration, the stiffness can be approximated by the relation
E = (3ζ/2π)∆P(Rp/Lp), where Rp is the inner micropipette radius
and ζ is a shape factor for the micropipette geometry.93 No closed
form exists for calculating the shape factor ζ .

To calculate the effective cell stiffness Ee f f from the numerics,
we determine the aspiration length Lp and, knowing the applied
pressure difference and the micropipette radius, we estimated the
effective modulus over a range of nucleus stiffnesses, nucleus
sizes, pressure differences and micropipette radii, cf. Fig. 8 B.
All tested cases yield Ee f f ≈ 1 for EN/EC = 1 with a deviation
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Fig. 8 (A) Micropipette aspiration of a spherical cell (RC = 15 µm) with nucleus (RN = 7.5 µm) into a pipette of Rp/RN = 2/3 with ∆P/EC = 0.5 in axial
symmetry. Shown are the cases EN/EC = 1, EN/EC = 2 and EN/EC = 10. Cell and nucleus boundary are depicted for three different time points: before
pressure application (dotted black), during pressure application (dashed gray) and in mechanical equilibrium (solid black). The solid line outside the
cell marks the edges of the pipette walls (top) and the spherical bead the cell adheres to (bottom). The color map shows the trace of the stress tensor
normalized by the cytoplasmic stiffness EC. (B) Effective moduli extracted from experiments as shown in A at ∆P/EC = 0.5 (blue), for higher pressures
∆P/EC = 0.75 (red) and ∆P/EC = 1 (yellow), and at ∆P/EC = 0.5 but for a larger nucleus VN/VC = 0.3 (gray) or for a larger pipette Rp/RN = 1 (green).
All cases show an increase in effective modulus with nucleus stiffness, but much smaller as compared to the compression experiment in Fig. 5 C. Note,
due to the unknown shape factor for the micropipette, we shifted the curves slightly such that for EN/EC = 1 the expected modulus is recovered.
Simulations were performed on N = 512×512 grid points. If not mentioned otherwise, the parameters used are RC = 15 µm, RN/RC = 0.5, EC = 1kPa,
νC = νN = 0.48, α = 6kPa and Y = 5nN/µm2 (unit for adhesion strength is now different due to phase field-type definition, Eq. (8)). Other parameters
as in table 1.

of less than 5% for ∆P/EC = 0.5. Since the shape factor is un-
known, we hence shifted all results such that for EC = EN we get
the correct modulus. There also is a slight dependence on the
applied pressure. However, with increasing pressure (from blue
to yellow curves in Fig. 8 B), the extracted effective moduli Ee f f

approach each other, indicating that the method is best suited for
sufficiently large applied pressures.

All studied cases show an increase in effective stiffness for
stiffer nuclei. However, this increase is approximately 30% for the
largest and stiffest nuclei. Hence the localized force application
due to the micropipette geometry leads to much lower measured
Ee f f compared to the global cell compression geometry, cf. Fig. 5.
This clearly demonstrates – and quantifies – that experimentally
measured effective cell stiffnesses do not only depend on the in-
ner structure of the cell, but also on the experimental setup.

5 Discussion and conclusions

Cell mechanics and mechanotransduction are strongly influenced
by the largest cellular organelle, the nucleus. Despite increas-
ing evidence of its mechanical importance, models explicitly ac-
counting for nuclear mechanics are still rare. We here developed
a two-phase field approach for modelling cell mechanics with an
additional internal compartment associated with nuclear elastic
properties and investigated the mechanical response of cells in
a selection of biologically relevant geometries and experimental
setups. We also verified our approach in several cases for which
analytical solutions are available to the elastic equations and in-
vestigated the effects of cortical tension and viscoelasticity.

In the first part described in section 3, we considered the case
of spread cells in unstructured and structured environments using
a 2D plane stress formulation. For homogeneous adhesion, the ef-

fect of a physiologically sized nucleus on the mechanical response
of the cell is small as the adhesion to the substrate effectively
shields the nucleus from deformations and stresses. Even periph-
eral adhesion on a ring pattern is still sufficient to protect the
nucleus. However, in more structured environments with highly
localized adhesion sites, a much higher transmission of stresses
to the nucleus was observed. These observations demonstrate
theroretically that the actual adhesion geometry can be sensed by
cells at the nucleus, similar to recent conclusions with a purely
elastic model (no phase field).61

When modeling micro-patterned environments, stiffer nuclei
also change the cellular morphology, by perturbing the formation
of the invaginated arcs. Additionally, the nuclear position largely
effects the stress distribution within the cell, which may be an
important input for the cell with regard to the determination of
its polarity, e.g. when having to distinguish between front and
back. For stiff nuclei, "stress bridges" resembling stress fibers form
from close-by focal adhesions to the nuclear boundary, suggesting
an effect on the perception of mechanical cues. Again a similar
effect can be seen in purely elastic models (no phase fields).70

The here-proposed phase field method allows to model not
only stationary but also dynamic situations. As a simple exam-
ple we considered the failure of a focal adhesion for a cell on
a hexagonal micro-patterned substrate. The coupling of phase
field dynamics and elasticity made it necessary to use an elastody-
namic formulation for the evolution of the displacement field.31

We here showed, that the relaxation into mechanical equilibrium
is of Kelvin-Voigt type. In turn, if a purely elastic behaviour of the
system is desired, it should not be probed on timescales shorter
than the respective relaxation time. It should also be noted that
the elastic description memorizes the initial condition (i.e. the
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reference state of the elastic displacement) of the cell before the
application of forces or stresses. Hence in situations such as the
study of adhesion failure in Fig. 4 A, the cell does not relax to a
(deformed) pentagonal shape with an invaginated arc at the cell
edge where the disappeared focal adhesion was located. In the
future, the memory effect can be removed by an extra dynamics
for the reference state.

In the second part, described in section 4, we modeled com-
pression experiments of cells between two parallel plates and the
aspiration of cells into micropipettes in an axial symmetric geom-
etry. Again, stiffer nuclei showed stress accumulation near their
boundary pointing towards a significant role of nuclear mechanics
in determining the properties of the cellular environment. Impor-
tantly, our model allowed the extraction of effective elastic mod-
uli of the cell-nucleus composite for both experimental methods,
yielding consistently lower effective moduli for local pressure ap-
plication in micropipette experiments compared to more global
cell compression. This shows theoretically that the determina-
tion of effective cell moduli is not only dependent on cell geom-
etry but also the experimental setup used. A similar conclusion
has been reached when experimentally comparing different meth-
ods to probe whole cell mechanics.94 For the micropipette aspira-
tion experiments the extraction of elastic moduli is best suited for
sufficiently large pressures. Low pressure application leads to a
slight underestimation in the range of 5% of the effective cell stiff-
ness, which is partially influenced by the unknown shape factor
for the pipette, cf. the discussion of Fig. 8 B. We also investigated
the effect of cortical tension in the compression geometry. It re-
sults in an increase of the required force needed for compression.
The stiffer the nucleus, the smaller is the effect relative to the case
without cortical tension.

The quasi-stationary compression of cells is described well by
Hertz theory and therefore allows the identification of an effective
modulus, similar to a very recent computational study with elas-
ticity (no phase field).21 We next demonstrated that our phase
field approach is also applicable in the viscoelastic regime, e.g.
for dynamic compression with different plate velocities and re-
laxation studies. The force required for the same compression
increases with plate velocity, as time becomes increasingly insuffi-
cient to relax the stress induced by the plate motion. From numer-
ical relaxation experiments we could extract the relaxation time
scale, which can be adjusted in the model varying the parame-
ter ξ in Eqs. (1), (2), and the effective viscosity, confirming that
our approach is fully consistent with the Kelvin-Voigt viscoelastic
solid. At the current stage, our model does not describe viscoelas-
ticity of Maxwell type, that is a viscoelastic fluid without memory.
The best way to achieve this in our context might be to introduce
an own dynamics for the reference state.

In the future, the here-developed method should prove useful
for investigating the effect of a nucleus and/or other cellular or-
ganelles, potentially described with different material laws, in a
large variety of situations. Additional new insights on mechan-
otransduction could be gained by examining the effect of the
nuclear position within the cell in fully three-dimensional (3D)
situations. In this respect, the phase field method can be ex-
tended relatively easily to 3D, making it possible to consider more

complex environments like fibrous network geometries or non-
symmetric constrictions.95–97 The presented method could also
be used to describe the role of cell nucleus mechanics in tissues,
using the multi-phase field approach.32–34 Note that recently, a
new jamming transition due to the presence of nuclei was pre-
dicted for tissues by an active foam model.98 It would be inter-
esting to study the same effect in our dynamic continuum frame-
work.

Another important context of cell and nuclear mechanics is
cell migration through constrictions, where the minimal constric-
tion size is predominantly determined by the nuclear size and
stiffness.10 We envision to supplement the current approach by
self-organized internal driving forces inducing cellular motility,
that could be implemented by an actin "polarization" field44 and
should naturally enter the elastodynamic equation (2). In the
context of mechanotransduction, the coupling of the proposed
method to a system of reaction-diffusion equations should allow
to model nuclear translocation of proteins like YAP/TAZ in re-
sponse to nuclear straining (and opening of nuclear pore com-
plexes99–101). This could elucidate further – and more directly –
the role of nuclear mechanics on spatio-temporal import dynam-
ics and mechanically induced signalling events.

In summary, the elastic phase field approach for modelling the
mechanics of nucleated cells is very versatile and easy to general-
ize for future applications. The results presented should be useful
to quantify experiments and last but not least point to many in-
teresting implications with regard to the role of the nucleus on
whole cell mechanics, mechanosensing and related subjects.

Appendix

A Other parameters of the model

Table 1 contains the default values for additional parameters
used, if not specified otherwise in the figure captions.

Table 1 Phase field parameters not specified in the figure captions

Parameter Symbol Value Unit
time step ∆t 0.001 s
diffusion coeff. phase field (PF)∗ Dφ 1.25 µm2/s
friction coefficient∗∗ ξ 0.004 nN · s/µm3

local suppression coeff.∗∗ γ(xxx) 0.014−0.04 nN · s/µm3

regularization parameter ε 0.0025 µm2

diffusion coeff. adhesion PF DY 0.25 µm2/s
diffusion coeff. obstacle PF Dϕ 0.625 µm2/s

∗For φ ∈ {ρ,ψ}, i.e. cell and nucleus. Sets the interface width to 0.5µm.
∗∗Note, in plane strain and axial symmetry the unit is nN · s/µm4.
In Sect. 4 ∆t = 10−4s.

B Analytical solution for an adherent contractile disk-like
cell with nucleus

We consider a concentric cell and its nucleus with possibly dif-
ferent Young’s moduli EN and EC and Poisson’s ratio νN and νC

as depicted in Fig. 2 A. Further we assume a homogeneous and
isotropic contractile stress σ0(xxx, t) = σ0 and spring stiffness den-
sity Y (xxx, t) = Y . Both nucleus and cytoplasm are assumed to be
linearly elastic. In each of these two cell compartments the equa-
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tion of mechanical equilibrium

∇ ·σσσ −Y uuu = 0 (10)

has to be solved under respective boundary conditions. From
the radial symmetry of the problem follows that the only non-
vanishing displacement is in the radial direction, i.e. uuu = ureeer.
Therefore, Eq. (10) can be rewritten in polar coordinates yielding

r2 ∂ 2ur

∂ r2 + r
∂ur

∂ r
−
(

1+
r2

l2
α

)
ur = 0 (11)

with lα =
√

Eα d/
[
Y
(
1−ν2

α

)]
being the localization lengths59 for

cytoplasm (α = C) and nucleus (α = N), respectively. Note, that
Y could also vary between cytoplasm and nucleus. Eq. (11) is a
modified Bessel equation with general solution

ur(r) = AI1

(
r
lα

)
+BK1

(
r
lα

)
(12)

where I1(x) and K1(x) are modified Bessel function of the first
and second kind and A and B are constants to be determined via
the boundary conditions for both subdomains. These are for the
nucleus compartment

uN
r (0) = 0 and σrr(RN) =−σNd, (13)

where σN is the a priori unknown stress at the cell-nucleus inter-
face, and for the cytoplasm

σrr(RC) =−σ0d and uN
r (RN)−uC

r (RN) = 0. (14)

The stress σN at the nucleus-cytoplasm boundary can be deter-
mined by using that

σ
N
rr(r)

∣∣∣
r→RN

= σ
C
rr(r)

∣∣∣
r→RN

. (15)

By using the above boundary conditions, the resulting solution is

ur(r) =


− σN dlN

2µN+λN

I1

(
r

lN

)
I0

(
RN
lN

)
− 2µN

2µN+λN

lN
RN

I1

(
RN
lN

) for 0 ≤ r ≤ RN

ACI1

(
r
lC

)
+BCK1

(
r
lC

)
for RN < r ≤ RC

(16)
with lengthy but straightforward to obtain expressions for AC, BC.
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