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We resolve the unexpected and long-standing disagreement between experiment and theory in
the Efimovian three-body spectrum of 7Li, commonly referred to as the lithium few-body puzzle.
Our results show that the discrepancy arises out of the presence of strong non-universal three-body
spin-exchange interactions, which enact an effective inflation of the universal Efimov spectrum. This
conclusion is obtained from a thorough numerical solution of the quantum mechanical three-body
problem, including precise interatomic interactions and all spin degrees of freedom for three alkali-
metal atoms. Our results show excellent agreement with the experimental data regarding both the
Efimov spectrum and the absolute rate constants of three-body recombination, and in addition reveal
a general product propensity for such triatomic reactions in the Paschen-Back regime, stemming
from Wigner’s spin conservation rule.

Introduction.— There exists a general desire in physics
to formulate accurate descriptions of nature from a min-
imal number of adjustable parameters, thus uncovering
the presence of universal behavior. A paradigmatic ex-
ample of a system where this ideal picture is realized is
the scattering of two particles at low energy. Here, the
wave function delocalizes to the point that the observable
properties of the system become insensitive to the exact
microscopic detail of the interaction, allowing for a de-
scription purely in terms of the s-wave scattering length
a [1]. This remarkable universality carries through to sys-
tems of more than two particles, most strikingly exempli-
fied at the three-body level by virtue of the Efimov effect.
At a two-body scattering resonance, where a → ∞, the
Efimov effect induces a universal emergence of an infinite
tower of geometrically spaced three-body bound states
[2, 3]. The resulting spectrum is fully determined by a
single length scale, the three-body parameter, typically
expressed as the negative scattering length a− where the
ground state trimer dissociates into the three-body scat-
tering continuum [1, 4–6]. In turn, the Efimov effect and
three-body parameter induce universal properties in few-
body clusters of four or more particles, further extending
the applicability of universal theory [5].

The vast majority of experimental studies of the Efi-
mov effect utilize ultracold atomic gases, where the scat-
tering length can be directly controlled by means of a
magnetic Feshbach resonance [7, 8]. Near such a reso-
nance, the three-body parameter can be extracted from
a characteristic log-periodic modulation of the rate of
three-body recombination [1, 4, 9]. Interestingly, al-
though the precise value of a− is typically sensitive to
non-universal short-range physics, the Efimov spectrum
in atomic systems possesses an additional van der Waals
universality a− ≈ −9.7 rvdW [10–12], where rvdW gives
the characteristic length scale associated with the two-
body interaction. Theoretical analyses have shown that

this universality is robust for Efimov states near broad
Feshbach resonances, and originates from a universal sup-
pression of three-body probability in the short range
[13, 14].

For Feshbach resonances of intermediate to narrow
width, both theoretical and experimental works have
demonstrated an increase of |a−|, arising from the associ-
ated growth of the two-body effective range scale [15–22].
However, a series of experiments in this regime with the
lightest bosonic alkali, 7Li, have failed to observe this be-
havior, and in fact measured values for |a−| that, remark-
ably, recede slightly below the universal van der Waals
value [23–27]. While similar behavior can be obtained in
some theoretical scenarios [20, 28], it is generally unclear
how to connect these to 7Li, and sophisticated numeri-
cal models have so far failed to reproduce the data. The
long-standing challenge to explain this unexpected mis-
match between theory and experiment is now referred to
as the lithium few-body puzzle [29–31]. As descriptions
of quantum matter are typically derived starting from
an understanding of the underlying microscopic physics,
elucidating the origin of the lithium few-body puzzle is
relevant to a wide array of different subfields. In par-
ticular, resolving this puzzle opens up opportunities to
further study fundamental questions such as the possi-
ble impact of non-additive three-body forces [30], non-
universal multichannel physics [31], and the prevalence
of few-body universality [32].

In this Letter, we investigate the connection between
the anomalous value of |a−| in 7Li and the presence
of three-body spin-exchange interactions. Here, spin-
exchange refers to a process in which the internal spin
state of the atoms is altered by coupling of the valence
electrons, and thus necessarily occurs at short length
scales. Due to the aforementioned suppression of three-
body probability in this regime, a useful distinction can
be made between two-body spin-exchange, where the
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FIG. 1. Illustration of three-body recombination through two
distinct spin-exchange pathways, where the color of particles
represents their spin state and two connected particles rep-
resent a molecule. In the upper pathway one of the parti-
cles conserves its spin throughout the recombination. In the
bottom pathway, all three particles partake in spin-exchange
such that no single spin is conserved. The pathway in which
all particles preserve their initial spin is included in all calcu-
lations.

state of the third particle is conserved, and three-body
spin-exchange, where all particles change their spin. As
we illustrate in Fig. 1, this distinction can also naturally
be applied to three-body recombination. For many ap-
plications, the contributions of three-body spin-exchange
are negligible, which significantly simplifies the three-
body problem [15–20, 33–35]. Recently however, stud-
ies have found three-body spin-exchange to contribute
significantly to three-body observables in 39K [36] and
7Li [37], both at relatively large magnetic fields. Moti-
vated by these findings we study the Efimov spectrum
in 7Li, using a recently developed numerical approach
to the quantum mechanical three-body problem which,
together with high-performance computing facilities, al-
lows us to include all coupled three-body channels in the
Hamiltonian [36, 38].

Inflation of the Efimov spectrum.— Following the ex-
periment of Ref. [26], we analyze two high-field Fesh-
bach resonances in spin-polarized ultracold 7Li gases, in
the hyperfine states |f,mf ⟩in = |1, 1⟩ and |f,mf ⟩in =
|1, 0⟩ respectively. Both resonances have similar negative
background scattering lengths on the order of rvdW =
32.4863 a0, and are both of intermediate to narrow res-
onance width [26, 39]. In line with experiment we study
the rate of three-body loss of the trapped gas density n,
typically expressed in terms of a recombination rate con-
stant L3 as dn/dt = −L3 n

3. In the zero-energy limit it
can be formally expressed as [38, 40–42],

L3 =
∑

ν,c3

Lpart
3 (φν , c3), (1)

where,

Lpart
3 (φν , c3) =

12πm

ℏ
(2πℏ)6 (2)

× lim
E→0

∫
dq̂3 q3| ⟨(q3, c3), φν |Uα0(E)|Ψin⟩| 2,

reminiscent of Fermi’s golden rule. Each element
⟨(q3, c3), φν |Uα0(z)|Ψin⟩ describes transition from an in-
coming three-body state with energy E into a molecular
state |φν⟩ of a pair α and a third free particle with rela-
tive momentum q3 in spin state |c3⟩.
To calculate the operator Uα0(E) we solve the inelas-

tic three-body scattering problem in momentum space,
using the Alt-Grassberger-Sandhas (AGS) equations [43]
(see Supplemental Material [44]). As any two-body sub-
system can transfer energy to the third particle, the
three-body problem embeds the off-shell solution to the
two-body problem, which we obtain by exact diagonaliza-
tion of the two-body Hamiltonian. We calculate L3 for a
range of scattering lengths on the attractive (a < 0) side
of the Feshbach resonance, and subsequently extract the
values of the three-body parameter a− and trimer width
η− by fitting the data to universal predictions from effec-
tive field theory [1]. To highlight the role of three-body
spin-exchange, we compare two different approaches to
the spin-basis of the three-body problem, referred to as
Full Multichannel Spin (FMS) and Fixed Spectating Spin
(FSS) models [36]. In an FMS calculation, all coupled
three-body spin-channels that conserve the total mag-
netic quantum number MF = mf1 + mf2 + mf3 are
included, thus taking into account both recombination
pathways in Fig. 1. In an FSS model, the spin basis is
constrained to only those channels where the spin of the
third particle is fixed, thus omitting the lower pathway.
To model the pairwise interactions we use realistic sin-
glet and triplet Born-Oppenheimer interaction potentials
[39]. It follows that the FMS model is quantum mechani-
cally rigorous, save for the omission of non-additive three-
body forces which are generally assumed to be negligible
in ultracold atomic gases [4].

Our results are shown in Fig. 2. In an FSS calcula-
tion, the value of |a−| is significantly larger than both
the universal van der Waals value and the experimen-
tal data, suggesting a significant squeezing of the spec-
trum for this narrow resonance which is in line with the
majority of multichannel three-body models in the cur-
rent literature [17, 18, 22]. Our main result is that upon
including three-body spin-exchange processes, the addi-
tional accessible states induce non-trivial multichannel
physics that acts to cancel the increase of |a−| , and can
even decrease |a−| to below the universal van der Waals
value thus resulting in an inflation of the spectrum. Con-
sequently, our FMS calculations significantly improve on
the FSS results with respect to the experimental data,
and for the |f,mf ⟩in = |1, 1⟩ state specifically our FMS
results for both a− and η− fall within the experimental
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FIG. 2. Results of our calculations, compared directly with the experimental data of Ref. [26]. Table (a) shows the three-body
parameter a− and trimer width η− obtained using FSS and FMS models. The associated values of the three-body recombination
rate coefficient L3 as a function of the scattering length a are shown in Figs. (b) and (c), for the two distinct incoming hyperfine
states. The fits of L3 to universal theory giving the results in table (a) are shown as dash-dotted lines in matching color. Insets
show the two-body scattering length as a function of magnetic field, where the green shaded region matches the range of
scattering lengths in the enclosing figure. We note that an additional independent measurement of the Efimov trimer in the
|1, 1⟩ state obtained a−/rvdW = −7.76(31) and η− = 0.17 [27].

uncertainty of Ref. [26]. As conservation of MF dictates
that the number of coupled three-body channels in the
|f,mf ⟩in = |1, 0⟩ state is about twice as large as in the
|f,mf ⟩in = |1, 1⟩ state, the corresponding FMS calcula-
tion is considerably more expensive numerically. For this
reason we can not fully converge this calculation in the
ultraviolet cut-off on the momentum grid and the num-
ber of angular momentum states, which leads to a dis-
crepancy between our calculations and the experimental
data in Fig. 2(c). However, as we show in the Supple-
mentary Material [44], the change in a− with the relevant
numeric parameters indicates that a match with exper-
iment is also achievable for the |f,mf ⟩in = |1, 0⟩ state
if numerical resources allow. Regardless, the significant
improvement of the FMS model compared to the FSS
model is clear.

Previous three-body studies have shown that the uni-
versal increase in |a−| near narrow resonances arises from
a repulsive barrier in the three-body potential scaling
with the effective range, which progressively squeezes the
Efimov spectrum [45]. Recently however, the unexpected
observation of a trimer state above the atom-dimer dis-
association threshold has prompted further theoretical
analysis, which indicates that the Efimov state of 7Li
may actually exist behind the universal repulsive barrier
[32]. While the universal effects of the barrier are evident
in our FSS results, the observed sensitivity of the value
of |a−| to short-range three-body spin-exchange processes
is in fact consistent with the presence of a non-universal
trimer state in the inner potential well. In this sense,

our FMS results can serve as important numerical con-
firmation of this novel trimer binding mechanism. Such
an identification furthermore indicates that three-body
spin-exchange couplings induce an effective attractive in-
teraction that can tug the trimer state into the inner
potential well, thus causing the inflation of the Efimov
spectrum. In the future, it may be interesting to analyze
the exact nature of this trimer and the corresponding po-
tential in more detail, for which an approach similar to
Ref. [22] could prove a useful starting point.

Propensity rule for three-body recombination.— Next
to the excellent match with the three-body parameter our
calculations also show good agreement with the individ-
ual measurements of L3. As three-body recombination
is an important and ubiquitous chemical process, rele-
vant far beyond the specific context of Efimov physics,
this agreement motivates us to analyze the recombina-
tion rates more closely [46]. To characterize the nature
of the spin-exchange pathways we separately examine the
partial recombination rates Lpart

3 , which effectively pro-
vide a measure of the population distribution of product
states following three-body recombination.

Interestingly, our calculations hint at the existence of
a spin propensity rule, as the number of strongly cou-
pled channels is remarkably small, with the vast major-
ity of product channels having near negligible relative re-
combination rates (see Supplementary Material [44] for
more detail). We will now show that this behavior results
from a manifestation of Wigner’s electronic-spin conser-
vation rule [47, 48] for three atoms, originating from the
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FIG. 3. Analysis of the electronic spin-propensity rule for three-body recombination. In Figs. (a) and (b) we show the
components of the incoming two-body radial wave functions rψin(r), highlighting the electronic spin components |↓↓⟩ in
green and |↓↑⟩ in dash-dotted orange. The resonantly-enhanced singlet |↓↑⟩ components dominate the wave function at short
distance. In Fig. (c) and (d) we show the averaged partial recombination rate L3(MS) to channels with total electronic
projection MS , with associated nuclear projection MI . The fraction in blue(red) originates from atom-dimer states accessible
by two-body(three-body) spin-exchange.

relatively weak coupling between the electronic and nu-
clear spins of the atoms at large magnetic fields. In this
Paschen-Back regime [49], the spins independently pre-
cess around the magnetic field direction, such that single-
particle states are best described by the individual pro-
jection quantum numbers ms and mi. For simplicity let
us briefly neglect the subdominant contribution from the
nuclear spin, whose coupling to the magnetic field is rel-
atively weak. Then both incoming single-particle states
studied in this work may be written as,

|f,mf ⟩in ∼ |↓⟩+ δ |↑⟩ , (3)

where |↓/↑⟩ represent the down and up electronic spin
states ms = −1/2 and ms = 1/2 respectively, and δ
scales with the ratio of the hyperfine and Zeeman energies
[50].

In the Paschen-Back regime δ is a small number,
which motivates us to expand the incoming three-body
state into four distinct components scaling as δn, where
n equals the number of electronic spins pointing up.
Each component can be uniquely identified with a def-
inite value of the total electronic spin projection MS =
ms1 +ms2 +ms3 = −3/2 + n, which is rigorously con-
served in this basis as it is fully uncoupled from the nu-
clear spin. Hence, if it is possible to identify a domi-
nant incoming projection MS , then the outgoing prod-
uct state distribution will show a propensity to states
that conserve this projection. To determine the domi-
nant incoming component we have to consider both the

scaling with the small parameter δ and the amplitude
of the associated wave functions at small nuclear sep-
arations, where recombination processes typically take
place. As we illustrate in Figs. 3(a) and 3(b), the dom-
inant short-range components of the incoming two-body
wave functions are in the singlet two-body state |↓↑⟩,
correspondent with the spin character of the resonantly
coupled Feshbach level. It follows that recombination
preferably occurs through three-body states with (par-
tial) singlet character, of which the state |↓↓↑⟩ (n = 1)
has the dominant scaling with δ. Thus, we finally deduce
that three-body recombination will show a propensity to
product channels with MS = − 1

2 .
To confirm the presence of this propensity in our nu-

merics we define an augmented partial recombination
rate L3(

{
msj ,mij

}
) as,

L3(
{
msj ,mij

}
) =

∑

ν,c3

| ⟨ms1 ,mi1 ,ms2 ,mi2 |φν⟩| 2 (4)

×| ⟨ms3 ,mi3 |c3⟩| 2
Lpart
3 (φν , c3)

L3
.

By this definition L3(
{
msj ,mij

}
) averages the spin-

projection | ⟨ms1 ,mi1 ,ms2 ,mi2 |φν⟩| 2| ⟨ms3 ,mi3 |c3⟩| 2
with respect to the discrete probability distribution
Lpart
3 (φν , c3)/L3, and hence forms a measure of the

relative importance of a state defined by a set of quan-
tum numbers

{
msj ,mij

}
for three-body recombination,

normalised to unity if summed over all available states.
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To obtain L3(MS) we sum L3(
{
msj ,mij

}
) over all

spin states with definite MS , which then gives the
results shown in Figs. 3(c) and 3(d). The electronic
spin-conservation propensity is clearly present for
both Feshbach resonances we study. Note that in the
argument outlined above all three particles are treated
equally, and no reference is made to a special role for
the spectating particle. Indeed, we observe that the
|↓↓↑⟩ component of L3 is split almost equally between
channels in which the spectating spin is conserved or
changed, with the latter being slightly larger.

Outlook.— Our findings suggest several new avenues
for future research. First the excellent match between
our 7Li results and the experimental data now provides a
new benchmark for the theoretical description of strongly
interacting few-body systems. Our method thus shows
great promise for studying other systems where measure-
ments deviate from the current theoretical predictions
[21]. Aside from these experimental concerns, there is
also a more conceptual challenge to now further charac-
terize the physical mechanism underpinning the forma-
tion of the non-universal Efimov trimer observed in this
work, which will require untangling the exact reshaping
of the three-body potential in the presence of three-body
spin-exchange [22, 32, 45].

Our results also have interesting implications beyond
the realm of Efimov physics. The uncovered spin-
propensity rule in the rate of three-body recombination
provides a remarkably simple picture of triatomic chem-
ical reactions in large magnetic fields, which can now
aid in the understanding and possible experimental con-
trol of state-to-state quantum chemistry in these regimes
[34, 35]. Further studies in this direction may also seek
to elucidate the more subtle role of the individual nu-
clear spins, which should have a similar propensity to be
conserved in the Paschen-Back regime.
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I. THREE-BODY MODEL AND NUMERICAL METHOD

In this Supplementary Material we give a more detailed overview of our model and numerical method, outlining
the Hamiltonian, three-body integral equations and spin models. We also give more detail on the universal fit of L3,
and discuss the numerical convergence. We note that the method as outlined here is based on Ref. [S1].

A. Three-body Hamiltonian

We consider three pairwisely interacting alkali-metal atoms of equal mass m moving in an external magnetic field
B. The system is described using the Hamiltonian H = H0 + V , where,

H0 =
∑

j

[
Tj +Hhf

j +HZ
j (B)

]
, V =

∑

α

Vα. (S1)

We use Latin indices j to label the three particles and Greek indices α ≡ (jj′) to label the three distinct pairs.
The non-interacting Hamiltonian H0 consists of the single-particle kinetic energy operators Tj and the hyperfine and
Zeeman interactions,

Hhf
j = Ahf

j sj · ij , HZ
j (B) =

(
γnj ij + γej sj

)
·B. (S2)

Here sj and ij respectfully represent the electronic and nuclear spin of atom j, Ahf
j is the hyperfine constant, and

γ
n/e
j are the electronic and nuclear gyromagnetic ratios. Together, the hyperfine and Zeeman Hamiltonians have

8 single-particle eigenstates, which can be unambiguously connected to distinct hyperfine states |fj ,mfj ⟩ at zero
magnetic field. In the three-body sector, spin-exchange couples all states with the same total MF = mf1 +mf2 +mf3 ,
resulting in the three-body spin spectra shown in Figs. S1(a) and S1(b). Here the jump in complexity between the
|f,mf ⟩in = |1, 1⟩ (MF = 3) and |f,mf ⟩in = |1, 0⟩ (MF = 0) calculations is immediately evident, and in addition one
will note that the incoming state |f,mf ⟩in = |1, 0⟩ couples to several states that have nearly degenerate scattering
thresholds [S2]. In numerical practice we compose the three-body spin basis by forming products of two-body spin
states with a third single-particle state, allowing us to explicitly (anti)symmetrize the two-body part in accordance
with bosonic exchange symmetry [S3]. This structure for the spin-basis also turns out to be the most well suited for
the three-body equations, which we will discuss further down below.

Let us now define the two-body interactions Vα, which we formulate using the method of Ref. [S4]. Neglecting
magnetic dipole-dipole interactions, the potential is isotropic and can be decomposed as,

Vα = V 0
αP0

α + V 1
αP1

α. (S3)

where P0
α,P1

α respectively project on the electronic singlet and triplet subspaces of the pair α. At large two-body

separations rα the potentials are equivalent and given as V
0/1
α (rα) → −C6/r

6
α, where the dispersion coefficient

C6 defines the van der Waals length as rvdW = (mC6/ℏ2)1/4/2. In the short-range, the shape of the singlet and
triplet interactions is very complicated and depends strongly on non-universal detail of the atomic structure. We
use the Born-Oppenheimer potentials formulated in Ref. [S4] by fitting two-body coupled-channels calculations to
experimental scattering data and binding energies. The resulting potentials are plotted in Fig. S1(c).

∗ Corresponding author: j.v.d.kraats@tue.nl
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FIG. S1. Multichannel aspects of the three-body problem. In Figs (a) and (b) we show the spectrum of coupled non-degenerate
three-body internal states as a function of the external magnetic field B, for the |f,mf ⟩in = |1, 1⟩ and |f,mf ⟩in = |1, 0⟩
incoming states respectively. The state highlighted in red represents the incoming state and thus also gives the three-body
scattering threshold. The vertical dash-dotted line indicates the location of the Feshbach resonance studied in the main text. In
(c) we show the molecular singlet (1Σ+

g ) and triplet (3Σ+
u ) Born-Oppenheimer interaction potentials as formulated in Ref. [S4].

B. Three-body integral equations

We now turn to the three-body problem. To evaluate the recombination rate we require the matrix elements of the
three-body transition operator Uα0(z), which we calculate from the Alt-Grassberger-Sandhas (AGS) equations [S5].
They can be most easily derived by starting from the two-body transition operator t(ε) at two-body energy ε, which
obeys the Lippmann-Schwinger equation,

t(ε) = V + V
1

ε−H2b
0 − V

V (S4)

Intuitively, t(ε) describes how two particles coming in from infinity with energy ε scatter with each other, and
escape back to infinity. In the first order Born approximation, the second term is neglected, such that the whole
process contains a single two-body interaction. This approximation fails at stronger interactions, where the multiple
scatterings captured by the second term have to be included.

To define an analogous transition operator for the three-body problem we have to account for the fact that now
the interaction V need not always vanish at infinity. This is immediately evident for the process of three-body
recombination, where the system transitions from a free state (typically indicated with subscript 0) to an atom-dimer
state (labelled with index α denoting the pair forming the molecule). With this in mind, the proper generalization of
the Lippmann-Schwinger equation at three-body energy E reads,

Uα0(E) =
∑

β ̸=α

Vβ +
∑

β ̸=α

Vβ
1

E −H0 − V
V, (S5)

where one notes that the interaction Vα between the molecular pair is excluded from the outgoing interaction vertex
[S6]. After some algebra, the right hand side may be written as,

Uα0(E) =
∑

β ̸=α

Tβ +
∑

β ̸=α

Tβ
1

E −H0
Uβ0, (S6)

which is a form of the AGS equation. Here,

Tα(E) = Vα + Vα
1

E −H0 − Vα
Vα, (S7)

is the off-shell two-body transition matrix generalized to the three-body space. The fact that the three-body problem
embeds the off-shell two-body problem logically follows from the third particles ability to carry away excess energy.
Finally, we rewrite the AGS equation into symmetrized form by writing Uα0 → 1

3Uα0(1 + P ), where P = P+ + P− is
the sum of cyclic permutation operators. Then we finally obtain the integral equation,

Uα0(E) =
1

3
PTα(E)(1 + P ) + PTα(E)G0(E)Uα0(z). (S8)
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where we have also used the permutation operators to replace the sums over β, and defined G0(E) = (E −H0)
−1 as

the uncoupled three-body Green’s operator. Similar to Eq. (S4) the first term describes a single coupling between
the pair α that forms the molecule and the third particle, which is captured to all orders of perturbation theory
by Tα(E). The second term expands into an infinite perturbation series that captures all multiple couplings, which
become important for strong interactions.

We express Eq. (S8) in the basis of partial-wave three-body states |kq(lλ)LML⟩ ⊗ |c1c2, c3⟩ [S6], where k and q
are the magnitude of the relative dimer and atom-dimer momenta, l and λ are the relative dimer and atom-dimer
angular momenta, and L and ML are the total angular momentum and its magnetic projection. As the full system
has rotational symmetry both L and ML are conserved. We restrict our calculations to the lowest channel L = 0,
which dominates the three-body recombination rate for bosons in the low-energy limit [S7]. This immediately enforces
that l = λ, such that the internal rotational states of the three-body complex can be described with a single quantum
number. The two-body spin state |c1c2⟩ is (anti)symmetrized in accordance with the spatial parity set by l [S3].

By the above definitions, we have a unique two-body transition operator T c3l
α (E) for each two-body spin projection

mf12 =MF −mf3 and partial wave l. We obtain the associated two-body eigenenergies εc3lν and eigenfunctions |ψc3l
ν ⟩

by solving the two-body Schrödinger equation in position space using a mapped discrete variable representation [S8].
This approach constrains the movement of particles to a hard-wall box, whose size far exceeds all relevant length
scales in the problem [S1]. With the two-body problem solved, we can formulate the complete set of eigenstates of
the three-body Hamiltonian H0 + Vα as |ψcdl

ν ⟩ ⊗ |q, c3⟩. Inserting into Eq. (S7) we then have,

T c3l
α (E) = Vα + 4π

∫ ∞

0

dq q2 |q, c3⟩
∑

ν

Vα |ψc3l
ν ⟩⟨ψc3l

ν |Vα
E − εc3lν − 3

4
ℏ2q2

m − εc3
⟨q, c3| , (S9)

where εc3 is the energy of the third particle spin state. In numerical practice we compute the spectral decomposition of
this operator, which transforms the AGS equation (S8) to a one-dimensional integral equation that, upon discretization
of the third particle momenta q, becomes a matrix equation that can be straightforwardly solved numerically. Our
discretization, taken from Refs. [S1, S9], is based on Gauss-Legendre quadrature segmented into three sections as
q1rvdW ∈

[
10−5, 10−2

]
, q2rvdW ∈

[
10−2, 1

]
and q3rvdW ∈ [1, qmaxrvdW]. The value of qmax acts as an ultraviolet cut-

off, which we discuss in more detail in Sec. I E. The number of grid points in each segment are tuned for convergence
of a−, which is typically very fast due to the efficiency of Gaussian quadrature. As is typical in quantum scattering
theory we evaluate the AGS equation at infinitesimally complex energies, which allows us to converge the integration of

the poles in the two-body at transition matrix at q =
√

4m(E − εc3 − εc3lν )/3ℏ2, correspondent with the third-particle

momenta where the three-body recombination process is exactly on-shell [S9].

C. Three-body spin models

To separate the contributions from two-body and three-body spin-exchange processes, we use two different models
for the spin coupling [S10]. In a full multichannel spin (FMS) model, we make no approximations and include all
three-body channels that conserve the total spin projectionMF = mf1 +mf2 +mf3 . In the fixed spectating spin (FSS)
model, we turn off three-body spin exchange processes by replacing the two-body interaction Vα with the restricted
form,

V FSS
α = Vα |cin3 ⟩

〈
cin3

∣∣ . (S10)

In this way the two-body interaction is turned off if the third particle is not in the incoming spin state. In the AGS
equations this replacement is equivalent to restricting |c3⟩ to |cin3 ⟩ everywhere, such that mf12 = mf1 +mf2 and mf3

are separately conserved.

D. Fitting of the recombination rate

For large negative scattering length, universal theory predicts a power-law increase of the three-body recombination
rate coefficient, given as L3 = 3C−(a)ℏa4/m. The function C−(a) gives the log-periodic oscillation of the recombi-
nation rate arising from the Efimov effect. A two-parameter analytical prediction for C−(a) can be obtained in the
formalism of effective field theory, which gives [S11],

C−(a) = 4590
sinh(2η−)

sin2 [s0 ln(a/a−)] + sinh2(η−)
. (S11)
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FIG. S2. Convergence of the three-body parameter a− and trimer width η− with the maximum two-body angular momentum
lmax, for the |1, 1⟩ incoming hyperfine state in (a) and the |1, 0⟩ incoming hyperfine state in (b). Filled scatter plots have
qmaxrvdW = 40, while empty scatter plots have qmaxrvdW = 20. Colored lines have been added as a guide for the eye. The
experimental data and uncertainty interval of Ref. [S12] is shown as a black dotted line with surrounding shaded region.

To perform the fit of L3 we first compute the dimensionless quantity mL3/(3ℏa4), and subsequently fit C−(a) directly.
Provided that we compute L3 close to an Efimov resonance, then 3 data points are typically sufficient to obtain a
converged fit.

E. Numerical convergence

Our numerical method is based on two important numerical parameters relevant for convergence, namely the max-
imum two-body partial wave lmax and the maximum third particle momentum qmax (which also limits the maximum
binding energy for accessible molecular levels). In an FMS calculation, the number of coupled spin-channels is set
purely by the initial state, in accordance with the conservation of the total magnetic quantum number MF . As also
noted in the main text, this means that an FMS calculation for |f,mf ⟩in = |1, 0⟩, with a total of 50 coupled three-body
channels, is considerably more expensive numerically than the |f,mf ⟩in = |1, 1⟩ state, which has 22 coupled channels
(for l even). Hence, in the |f,mf ⟩in = |1, 1⟩, we can fully converge an FMS calculation with parameters lmax = 12
and qmaxrvdW = 40, as we have confirmed by computing single points for L3 with lmax = 16 or qmaxrvdW = 60.
For the |f,mf ⟩in = |1, 0⟩ state, our numerical resources limit us to lmax = 8 and qmaxrvdW = 40, which is not yet
converged in lmax. Typically, FMS calculations are limited by the considerable memory required to store the kernel
of the STM equation. For example, the lmax = 8 and qmaxrvdW = 40 FMS calculation in the |f,mf ⟩in = |1, 0⟩ state
required over 6 terabytes of internal memory, which was the biggest calculation we could perform. As the memory
requirement will grow quadratically with lmax, a converged calculation in this state will likely be considerably more
taxing numerically.

However, despite the lack of numerical convergence, a comparison of the FMS results in Fig. S2(a) and Fig. S2(b)
shows that for both states the value of |a−| decreases monotonously with lmax, although the convergence is slower for
the |f,mf ⟩in = |1, 0⟩ state likely due to the larger number of coupled channels. Extrapolating the trend for a− in
Fig. S2(b) to larger values of lmax suggests that a converged result for the three-body parameter will further improve
on the match with experimental data.

II. PARTIAL RECOMBINATION RATES

To further highlight the significance of three-body spin-exchange in the system we analyze the partial recombination
rates Lpart

3 (φν , c3) explicitly. They are plotted in Fig. S3 as a function of the kinetic energy of the third particle
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FIG. S3. Partial recombination rates Lpart
3 (φν , c3) to individual atom-dimer channels as a function of the relative kinetic energy

ε3 = 3ℏ2q2/(4m) of the third particle following recombination, computed at a negative scattering length close to a−. Again we
distinguish between product channels accessible purely by two-body spin-exchange in blue, and only accessible by three-body
spin-exchange in red. The 5 dominant product states are explicitly labelled using the notation lmf12

(ν), where l is the molecular
partial wave in spectroscopic notation, mf12 = mf1 +mf2 is the molecular magnetic quantum number and ν is the vibrational
quantum number, defined such that ν = −1 denotes the shallowest bound state in the associated channel. An asterisk denotes
states in which the spectating particle is excited to the f = 2 hyperfine manifold.

following recombination. Here it becomes evident that the majority of product states are weakly coupled, which gives
the first hint for the existence of the propensity rule introduced in the main text. We also highlight the strongly
dominant product state S−1(ν = −1) for the incoming state |f,mf ⟩in = |1, 0⟩, which is in fact a Feshbach dimer
originating from a Feshbach resonance in the mf1 + mf2 = −1 two-body channel at B = 938 G. Combined with
the very small energetic separation from the incoming channel, see Fig. S1(b), this makes that the kinetic energy
following recombination is very small. This, combined with the enhanced scattering length in this channel leads
to strongly enhanced three-body recombination. Note that the state S−1(ν = −1) also conforms with the electronic
spin-propensity rule as outlined in the main text. Earlier work has found the exact same state to provide an important
recombination channel for this incoming hyperfine state in the weakly interacting regime [S13]. Note that for the
incoming state |f,mf ⟩in = |1, 1⟩ no such special situation exists, and all closed-channel thresholds have much larger
energetic spacing from the incoming state, see Fig. S1(a).

[S1] T. Secker, J.-L. Li, P. M. A. Mestrom, and S. J. J. M. F. Kokkelmans, Phys. Rev. A 103, 032817 (2021).
[S2] Y. Yudkin, P. S. Julienne, and L. Khaykovich, Phys. Rev. A 107, 053303 (2023).
[S3] T. Secker, D. J. M. Ahmed-Braun, P. M. A. Mestrom, and S. J. J. M. F. Kokkelmans, Phys. Rev. A 103, 052805 (2021).
[S4] P. S. Julienne and J. M. Hutson, Phys. Rev. A 89, 052715 (2014).
[S5] E. Alt, P. Grassberger, and W. Sandhas, Nuclear Physics B 2, 167 (1967).
[S6] W. Glöckle, The quantum mechanical few-body problem, Texts and monographs in physics (Springer, Berlin, 1983).
[S7] B. D. Esry, C. H. Greene, and H. Suno, Phys. Rev. A 65, 010705(R) (2001).
[S8] K. Willner, O. Dulieu, and F. Masnou-Seeuws, J. Chem. Phys. 120, 548 (2004).
[S9] P. M. A. Mestrom, T. Secker, R. M. Kroeze, and S. J. J. M. F. Kokkelmans, Phys. Rev. A 99, 012702 (2019).

[S10] T. Secker, J.-L. Li, P. M. A. Mestrom, and S. J. J. M. F. Kokkelmans, Phys. Rev. A 103, 022825 (2021).
[S11] E. Braaten and H.-W. Hammer, Physics Reports 428, 259 (2006).
[S12] N. Gross, Z. Shotan, O. Machtey, S. Kokkelmans, and L. Khaykovich, C. R. Phys. 12, 4 (2011).
[S13] J.-L. Li, T. Secker, P. M. A. Mestrom, and S. J. J. M. F. Kokkelmans, Phys. Rev. Research 4, 023103 (2022).


